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Abstract
Recent studies illustrate how machine learning (ML) can be used to bypass a core challenge of 
molecular modeling: the tradeoff between accuracy and computational cost. Here, we assess 
multiple ML approaches for predicting the atomization energy of organic molecules. Our 
resulting models learn the difference between low-fdelity, B3LYP, and high-accuracy, G4MP2, 
atomization energies, and predict the G4MP2 atomization energy to 0.005 eV (mean absolute 
error) for molecules with less than 9 heavy atoms (training set of 117232 entries, test set 13026) 
and 0.012 eV for a small set of 66 molecules with between 10 and 14 heavy atoms. Our two 
best models, which have different accuracy/speed tradeoffs, enable the effcient prediction of 
G4MP2-level energies for large molecules and are available through a simple web interface.

1 Introduction
There are a large range of quantum chemical methods for calculation of molecular energies, 
with trade-offs between accuracy and computational cost governed by the approximations used 
to make the predictions computationally tractable.[1] One type of quantum chemical approach 
for accurate energy calculations is based on a composite technique in which a sequence of 
well-defned ab initio molecular orbital calculations is performed to determine the total energy of 
a given molecular species. Composite methods, such as G4MP2,[2] typically have a mean 
absolute error (MAE) accuracy of better than 1 kcal/mol (0.04 eV) for test sets of molecules with 
accurate data. However, at the current time the size of molecules to which these methods can 
be applied is limited by the availability of suffcient computational power. Density functional 
methods are much faster, but less accurate.[3] The widely used B3LYP DFT method[4] has a 
MAE of about 4 kcal/mol (0.2 eV), but is also limited in the size of the molecules that can be 
handled, due to time-consuming calculations.

Machine learning (ML) offers opportunities for bypassing the tradeoff between accuracy and 
computation cost. Recent publications have shown how ML can create fast models that directly 
link the inputs and outputs of an expensive calculation.[5–7] Further studies demonstrate the 
advantages of predicting the differences between low- and high-fdelity calculations (i.e., Δ-
Learning),[8] or of using multiple levels of fdelity to train the same model.[9,10] It is also 
possible to link easily-computable properties to the outcomes of extensive calculations, as 
shown by how Seko et al. used calculated bulk moduli as inputs to a model that predicts melting 
temperature.[11] Neural networks offer more possibilities through the ability to train the same 
model on multiple properties (e.g., multi-task or transfer learning).[12] It is as yet unclear which 
of these many options yields optimal performance for different types of applications.

In this work, we focus on designing ML models to predict the atomization energy of molecules at 
G4MP2-level accuracy at a lower computational cost. In particular, we investigate how to tailor 
two of the best-performing methods for learning molecular properties to this task, namely: 
SchNet[13]—a deep convolutional neural network approach, and FCHL—a conventional 
machine learning approach.[14] We examine how to integrate information from low-cost B3LYP 
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calculations into each method and fnd that both techniques predict atomization energies of 
molecules larger than our training set with errors below 0.04 eV using a Δ-learning approach. 
We have created a simple interface to allow others to use our best-performing models by 
publishing them on DLHub,[15] so that accurate atomization energies are readily accessible to 
the materials and chemistry community at large.

2 Methods
We frst describe the datasets and ML approaches used in this work.

2.1 Datasets
We used the QM9-G4MP2 dataset described by Curtiss et al.[16] as a starting point for our 
model. This dataset contains the B3LYP- and G4MP2-computed properties for 133,296 
molecules, each with from one to nine heavy atoms (C, F, N, O). The B3LYP data and the 
geometries for the molecules are from the QM9 dataset of Ramakrishnan et al.[17] We used the 
same geometry for the G4MP2 calculations as the B3LYP, and did not further relax the 
molecule at the G4MP2 level. We selected 130,258 of the 133,296 molecules for use in our 
study, omitting those whose bonding connectivity changed on relaxation, as identifed by 
Ramakrishnan et al.. We randomly selected 10% of the remaining QM9-G4MP2 as the hold-out 
set to be used to evaluate model performance, but never used in model training or 
hyperparameter optimization, yielding a 117,232-molecule training dataset, QM9-G4MP2-train, 
and a 13,026-molecule hold-out set, QM9-G4MP2-holdout.

We also make use of a separate dataset, G4MP2-heavy, of G4MP2 energies for 66 molecules 
with between 10 and 14 heavy atoms, calculated previously as part of a study on bio-oil derived 
molecules. We used these molecules to evaluate the ability of our models to predict the 
properties of molecules larger than those in QM9-G4MP2, although we note this is a relatively 
small set and a set including more larger molecules is needed to more accurately evaluate our 
models. 

The identities, molecular coordinates, and computed properties of the molecules in G4MP2-
heavy and the exact train/test splits used for QM9-G4MP2-train are available in full on the 
Materials Data Facility[18,19] and GitHub.[20]

2.2 Machine Learning Approaches
We employ two ML strategies: the continuous-flter convolution neural networks of Schütt et al. 
(SchNet), and the alchemical and structural distribution approach of Faber et al. (FCHL).

2.2.1 SchNet
We selected SchNet as a deep learning approach for predicting the properties of molecules, 
given its best-in-class performance on predicting atomization energies at the time this study 
began.[13] SchNet takes the atomic numbers and positions of each atom in a molecule as 
inputs. First, each atomic number is mapped to a vector (the “embedding”) to generate the initial 
representation for each atom. The interaction layers of SchNet update these representations 
based on distances to, and representations of, nearby neighbors. The representation produced 
at the end of the interaction layers is then fed into a multi-layer, dense neural network to 
produce the contribution of each atom. The atomic contributions are then aggregated (e.g., via 
summation) to generate the molecular property. 

We use the open-source implementation of SchNet available in SchNetPack[21] and the 
recommended hyperparameters defned in Ref. [21]. With these hyperparameters, a SchNet 
model has millions of trainable parameters, including the embeddings for each element, 
parameters for how distance relates to updated representation, and other model components. 
As with most deep neural networks, SchNet is trained by iteratively adjusting each parameter 
based on the gradient of the error with respect to each parameter, as computed via 
backpropagation. We employ the optimizer (Adam) and learning rate schedule specifed in Ref. 
[21].
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2.2.2 FCHL 
The FCHL method uses Kernel-Ridge Regression (KRR) to learn molecular properties of an 
atomistic system from M-body representations of the local chemical environment.[14] The core 
of the FCHL method is an approach for measuring the similarity of the local environments of two 
atoms. Each atom is described using a series of M-body expansions, which are modeled as 
weighted sums of Gaussians over sets of the neighbors. The similarity of two atomic 
environments is computed as an integral over the squared difference between each of these 
distributions. The similarity of two molecules is defned as a sum of the similarities between 
each atom in each molecule, which leads to improved accuracy on training sets with diverse 
molecular sizes over similarity metrics that consider the molecule as the fundamental unit.[22] 
We use the recommended hyperparameters for this method, and the open-source QML 
library[23] and Scikit-learn[24] to ft FCHL models.

3 Results and Discussion
Our goal is to develop a model that predicts G4MP2 energies for organic molecules with 
accuracies comparable to G4MP2 computations. (G4MP2-computed enthalpies of formation, 
obtained from atomization energies of organic molecules, have a MAE of 0.77 kcal/mol when 
compared to accurate experimental values[1,16].)  That is, we want a model that when trained 
on a set of (molecule description, G4MP2 energy) pairs (the training set) can achieve high 
accuracies when used to predict G4MP2 energies for other molecules for which only the 
description is provided (the test set). 

In our work, we compared the performance of different modeling strategies, validated the ability 
of each strategy to compute the energies of molecules larger than the training set, and 
assessed the degree to which knowledge of a molecule’s equilibrium structure effects accuracy. 
We explore each topic in turn.

3.1 Modifying SchNet to Incorporate Information from Low-Fidelity Calculations
The SchNet neural network architecture permits several routes to augmenting our predictions of 
G4MP2 energies with results from other calculations. We implemented fve strategies in all to 
produce fve models in addition to the baseline SchNet. Three require only a molecular structure 
as input:

SchNet Transfer: Transfer learning in neural networks is often accomplished by using 
the weights learned in a related problem as a starting point in training a new model. We 
used the weights from a model trained on B3LYP atomization energies as a starting 
point for our model. 

SchNet Multitask: Training a network on several related outputs is thought to cause 
models to learn more-generalizable representations.[25] We explore this strategy by 
concurrently training a SchNet model on B3LYP- and G4MP2-computed atomization 
energies and the B3LYP-computed HOMO, LUMO, and Zero Point Energy. 

SchNet Stacked: Stacking in ML is the technique of using one model’s output as an input 
to another. We use the atomic contributions to the total B3LYP energies as inputs to the 
output layer of SchNet, creating what is effectively a Δ-learning model (see SchNet Delta 
below) that infers the difference between B3LYP and G4MP2 energies, rather than the 
B3LYP energy directly.

The other two models use molecular/atomic properties computed with B3LYP as model inputs:

SchNet Delta: As introduced by Ramakrishnan et al., Δ-Learning models learn the 
difference between different calculations.[8] We train a model that learns the difference 
between B3LYP and G4MP2 energies.

SchNet Charges: We use the partial charges from B3LYP as features in the SchNet 
embedding layer, which originally contains only features related to the atomic element. 
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(We also experimented with using partial charges in the output layers rather than the 
embedding layer, but did not fnd notable improvements in performance.)

All source code needed to create models using these approaches is available in a GitHub 
repository that includes scripts with the hyperparameter choices for our models, results showing 
that we replicate previous literature, and the exact versions of SchNetPack used in our study.
[20] The modifcations we made to SchNetPack will be contributed to the main repository after 
submission of this paper.

We frst tested each model by performing a standard, random-split cross-validation test. Each 
model was trained by using identical subsets of QM9-G4MP2-train with sizes ranging from 1000 
to 117,232 entries, all of which are available from MDF.[19] We trained each model until the 
learning rate decayed to 10-6 (as suggested by Schütt et al.[21]), and then measured the 
performance of the model on QM9-G4MP2-holdout. We used the same molecules in the test set 
for all models (the 10% split described in Section Datasets) and the same training set for all 
models with the same training set size. In this way, we ensure that no molecules used to train a 
model ever appear in the test set and remove the effect of training set selection from model 
performance.

All models achieve MAEs relative to the G4MP2 atomization energy that are much lower than 
the MAE between B3LYP and G4MP2 atomization energies on the same molecules, 0.20 eV. 
We show the best-performing models in Error: Reference source not found. Our best-performing 
model, SchNet Delta, predicts G4MP2 energies with a MAE of only 4.5 meV (0.1 kcal/mol) after 
being trained on 117,232 molecules: much less than that between experiment and G4MP2 
(~0.8 kcal/mol). SchNet Delta predictions are thus also an accurate estimator of experimental 
atomization energies. 

We note interesting trends among the performance of our modifed SchNet models. SchNet 
Delta, which uses the B3LYP energy as an input, performs best. In contrast, using the atomic 
partial charges as input (SchNet Charges) yields only a small performance improvement (4%) 
over baseline SchNet, most visible for smaller training set sizes. We conclude that ML models 
perform better when they incorporate properties that are more related to the property being 
predicted.

The benefts of transfer learning are also most visible on the smaller training set sizes. SchNet 
Transfer achieves an error of ~90 meV with only 1000 training points: 28 times better that the 
baseline SchNet. This result suggests a relationship between the features that best predict 
B3LYP and G4MP2 energies. SchNet Transfer converges faster than all other ML strategies, 
reaching optimal weights after only 222 epochs on our largest training set size. (Baseline 
SchNet requires twice as many epochs.) Re-using data clearly provides speed advantages, 
although the accuracy benefts decrease with training set size. The MAE of 13.4 meV for 
transfer learning at the largest training set size is only 10% better than baseline SchNet. 

SchNet Multitask performs uniformly worse than all other models. We constructed this model by 
adding more outputs to the “Atomwise” output layers at the end of the network, which increases 
the number of parameters by less than 0.1%. This increase is apparently insuffcient to 
simultaneously capture G4MP2 atomization energy and all other properties with the same 
fdelity. Given that the SchNet Transfer results indicate that the representations learned for 
B3LYP and G4MP2 energies are suffciently alike to make transfer learning benefcial, the poor 
performance of SchNet Multitask suggests that HOMO/LUMO energies require a conficting 
representation to energies or, simply, that the network requires more fexibility (e.g., more 
trainable weights) to model all fve properties concurrently. 

The performance improvements achieved by SchNet Stacked relative to baseline SchNet also 
diminish for large training sets. Here, the issue is that accuracy is limited by the accuracy of the 
underlying B3LYP model, 14 meV when trained on the full dataset; we do not exceed this 
accuracy in predicting the G4MP2 energies. We do note that SchNet Stacked produces 
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accuracies comparable to SchNet Delta for small training sets and that it is superior to SchNet 
Transfer with the same training set size. 

3.2 Training FCHL Models on QM9-G4MP2
We also evaluated the FCHL method, which has the best performance of any conventional 
machine learning strategy for predicting molecular atomization energies on the QM9 dataset as 
of when this work was performed.[14] We only tested two variants of FCHL: training directly on 
the atomization energies (FCHL) and training on the difference between G4MP2 and B3LYP 
atomization energies (FCHL Delta). As shown in Error: Reference source not founda, we fnd 
that the FCHL method achieves a MAE of 22.3 meV with a training set of 104, which is 
consistent with the MAE reported by Faber et al. when using FCHL with B3LYP energies.[14] 
We were only able to train the model on training sets of 104 entries or less, due to the large 
memory required to train, and the slow evaluation times of FCHL models with large training 
sets. We expect that further improvements are possible at larger training set sizes, given that 
the learning curve shown in Error: Reference source not founda remains roughly linear up to 104 

entries. 

Like SchNet Delta, the FCHL Delta model also predicts G4MP2 energies very accurately, with a 
MAE of only 5.2 meV (0.1 kcal/mol) after being trained on 104 molecules: much less than that 
between experiment and G4MP2 (~0.8 kcal/mol). Consequently, we do not expect that further 
expanding the training set of FCHL Delta will yield any improvement in the utility of the resulting 
models when evaluating molecules like those in QM9-G4MP2-holdout. At 5.2 meV, the error of 
the model is low enough that the error between G4MP2 and experiment would dominate the 
error between FCHL Delta and experiment. However, the fact that the learning rate for FCHL 
Delta has not plateaued (Error: Reference source not founda) suggests that the FCHL Delta 
method is fexible enough to address problems more challenging than that posed by QM9-
G4MP2 (e.g., larger molecules, more diversity in chemical elements).
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3.3 Comparing SchNet and FCHL for Energy Prediction
We found that the FCHL models had better accuracy than the SchNet models trained with the 
same data. As shown in Error: Reference source not found, each FCHL model achieves 
accuracy comparable to that of the equivalent SchNet model (SchNet and SchNet Delta, 
respectively) trained with 10 times more data. The FCHL models require many fewer than 1000 
G4MP2 calculations to predict the G4MP2 energies more accurately than B3LYP. SchNet 
Transfer performs nearly equivalently to FCHL when trained on 1000 G4MP2 calculations, 
illustrating the advantages of weight sharing in deep neural networks. Analogous multi-
resolution training approaches in KRR[9,10] could offer a route to achieving similar 
improvements for the FCHL model (e.g., fewer expensive G4MP2 calculations may be 
necessary). 

We also fnd a signifcant tradeoff between accuracy and execution speed in SchNet and FCHL. 
Being based on KRR, FCHL requires comparing a molecule to each molecule in its training set 
when predicting molecular properties, leading to an execution time that scales linearly with the 
number of training points (see Error: Reference source not foundb). In contrast, the size of the 
network used in SchNet need not scale with the number of training entries and, consequently, 
the execution rate is invariant to training set size. FCHL achieves similar performance to SchNet 
with a training set of 100 entries on 10 cores of an Intel E-2680v3 CPU. Given that deep neural 
networks can easily use accelerators (e.g., GPGPUs) and considering that we made predictions 
in batches for FCHL but not for SchNet, we expect there is more room to further accelerate 
SchNet than FCHL.

One route to reducing the tradeoff between accuracy and execution speed is careful selection of 
the molecules in the FCHL training set. Browning et al. report that using a genetic algorithm to 
identify the best molecules can reduce KRR model error by up to 75%.[26] However, we do not 
expect this strategy to equalize performance, as the errors of SchNet models trained on all 
available data are 20 times lower than FCHL models with similar evaluation speed (i.e., those 
trained on 100 entries). We conclude that FCHL presents a better choice than SchNet for 
models of atomization energy only when training data are scarce or longer execution times are 
acceptable. 
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3.4 Predicting Energies of Molecules Larger than the Training Set
We further tested the usefulness of our models by validating their ability to predict molecules 
that are larger than those in the training set. Specifcally, we trained each SchNet and FCHL 
model with QM9-G4MP2-train subsets containing exclusively molecules with fewer than 41 (152 
molecules), 51 (1161 molecules), 61 (14317 molecules), and 71 (111906 molecules) electrons, 
respectively. We then evaluated performance on the 6166 molecules with more than 67 
electrons in QM9-G4MP2-holdout.

 

To further test the ability of our models to predict the energies of large molecules, we compared 
model predictions to the G4MP2 results in the G4MP2-heavy data set (see Section Datasets). 
We frst trained SchNet Delta on all 117,232 entries in QM9-G4MP2-train and FCHL Delta on 
the largest training set feasible on our hardware, 104 entries. We found that the FHCL Delta and 
SchNet Delta models achieve MAEs of 12.5 meV and 39.5 meV, respectively, on G4MP2-
heavy. The results are shown in Error: Reference source not found. These errors are somewhat 
higher than those measured on QM9-G4MP2-holdout (4.4 meV and 5.1 meV, respectively), 
which is consistent with our fnding that errors increase with molecule size. That said, the 
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Our frst step was to study the effect of different methods for guessing atomic coordinates on 
model accuracies. We used Open Babel to approximate atomic coordinates algorithmically 
using known bond angles, by relaxing the structure using the MMFF94 force feld,[32] and using 
a search for the lowest energy conformation among different permutations of rotatable bonds.
[33] We used the resulting coordinates as input to the G4MP2 Transfer model trained on all of 
QM9-G4MP2-train, and then determined the MAE of the model with respect to QM9-G4MP2-
holdout. In this way, we fully remove the need to perform B3LYP calculations before running the 
ML model. The model evaluated using the structure post conformer search achieved the lowest 
MAE of 327 meV—higher than the B3LYP atomization energy MAE of 201 meV and 25 times 
larger than the error when using the B3LYP coordinates. We found similar performance 
degradation for SchNet Stacked. We conclude that the models retain some predictive power (a 
MAE of 327 meV is 200 times better than a guess-the-mean model) when used on approximate 
coordinates, but that performance is degraded enough to make the models signifcantly less 
useful.

We attempted two different transfer learning routes for improving the performance of models on 
approximate coordinates. First, we retrained SchNet Transfer with the approximate coordinates 
as input and using the weights learned using all of QM9-G4MP2-train as a starting point; this 
reduces the MAE to 222 meV. We further reduced the dependence on coordinates by selecting 
a different conformer for each molecule at each epoch and rattling the coordinates of the 
conformer with a standard deviation of 0.1 Å. Retraining with “blurred” coordinates of molecules 
reduced the MAE to 205 meV, which is equivalent to the B3LYP atomization energy for the 
same molecules (200 meV). In short, our model produces estimates of the G4MP2 atomization 
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energy for molecules with nine or fewer heavy atoms that are as good as B3LYP, but at much 

faster rates.

Unfortunately, the strategy of re-training the model on perturbed coordinates fails for larger 
molecules. As shown in Error: Reference source not founda, the baseline SchNet model 
retrained on the perturbed conformers for each molecule has errors of up to 2 eV when 
predicting the energy of a molecule given its generated atomic coordinates. The errors increase 
with molecular size, which could be both an effect of the error of ML models increasing with 
molecular size and the quality of the generated coordinates decreasing. The Root Mean 
Squared Deviation (RMSD) between the generated and B3LYP coordinates increases with the 
number of heavy atoms in our large model test set; for the largest molecules (14 heavy atoms), 
it is over four times larger than the median RMSD in our small molecule test set. However, as 
shown by Error: Reference source not foundb, the increase in error cannot be fully explained by 
RMSD.

We conclude that it is possible to reduce the dependence of SchNet-based models on knowing 
the DFT-relaxed coordinates of a molecule by training on the conformers of each molecule with 
perturbed coordinates. The retrained models can predict the G4MP2 energies of small 
molecules with superior accuracy to B3LYP when provided only the coordinates generated with 
force felds. However, this strategy currently fails for larger molecules. Considering the higher 
accuracy of our models when given the B3LYP coordinates (Section Predicting Energies of
Molecules Larger than the Training Set), better accuracy on large molecules could be achieved 
with better estimates of relaxed coordinates (e.g., by using generative networks[34]). However, 
we do not currently recommend using SchNet to predict atomization energies without relaxed 
coordinates until improved techniques for generating atomic coordinates are available.

-9-

 
 
 
 
 
 



3.6 Recommendations
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Our results lead us to recommend two different ML models for predicting accurate energetics at 
the G4MP2 level of theory, depending on performance needs. If optimized B3LYP coordinates 
and energies are available, we recommend using the FCHL Δ-learning model for optimal 
accuracy and the SchNet Δ-learning model if slower time-per-prediction of the FCHL model is 
unacceptable. As shown in Figure 5, both models can be used to increase the accuracy of 
energies relative to B3LYP calculations by up to a factor of 10. 

The SchNet Delta and FCHL Delta models are available for anyone to use via DLHub.[15] 
DLHub’s simple Python interface takes the XYZ coordinates of a molecule and returns the 
G4MP2 atomization enthalpy; it runs models on cloud or cluster resources, eliminating the need 
to understand how to use QML or SchNetPack or even to install them. We hope that by 
publishing the models in this way, we will enable others to integrate the capabilities developed 
in this work in their own research.

The degradation of model performance with molecule size motivates the use of better training 
sets for quantum chemistry, particularly on larger molecules. Specifcally, we recommend that 
datasets containing molecules with more than 9 heavy atoms (e.g., TensorMol’s datasets[35], 
PubChemQC[36]) should be used in future benchmarking of models to predict atomization 
energy.  

4 Conclusion
We compared multiple ML strategies for producing accurate estimates of G4MP2-level 
atomization energies of molecules at reduced computational costs. We evaluated models based 
on the FCHL and SchNet approaches and found that both approaches yield models that reliably 
predict the atomization energy 10 times more accurately than B3LYP for molecules larger than 
those in their training sets. The strong performance was achieved by learning the difference 
between B3LYP and G4MP2 atomization energies—an approach that we found yields higher 
accuracy than other methods of integrating data from multiple fdelities of calculations (e.g., 
transfer learning). We produced two state-of-the-art ML models that predict the G4MP2-level 
atomization energy of molecules within 5 meV for molecules of similar size and somewhat larger 
for molecules larger than those in the training set. Our FCHL-based model has accuracies three 
times better than SchNet but has at least a 100 times greater computational cost per prediction. 
We have made the models available for unrestricted use via a web API.
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