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Abstract

Recent studies illustrate how machine learning (ML) can be used to bypass a core challenge of
molecular modeling: the tradeoff between accuracy and computational cost. Here, we assess
multiple ML approaches for predicting the atomization energy of organic molecules. Our
resulting models learn the difference between low-fidelity, BSLYP, and high-accuracy, G4MP2,
atomization energies, and predict the G4MP2 atomization energy to 0.005 eV (mean absolute
error) for molecules with less than 9 heavy atoms (training set of 117232 entries, test set 13026)
and 0.012 eV for a small set of 66 molecules with between 10 and 14 heavy atoms. Our two
best models, which have different accuracy/speed tradeoffs, enable the efficient prediction of
G4MP2-level energies for large molecules and are available through a simple web interface.

1 Introduction

There are a large range of quantum chemical methods for calculation of molecular energies,
with trade-offs between accuracy and computational cost governed by the approximations used
to make the predictions computationally tractable.[1] One type of quantum chemical approach
for accurate energy calculations is based on a composite technique in which a sequence of
well-defined ab initio molecular orbital calculations is performed to determine the total energy of
a given molecular species. Composite methods, such as G4MP2,[2] typically have a mean
absolute error (MAE) accuracy of better than 1 kcal/mol (0.04 eV) for test sets of molecules with
accurate data. However, at the current time the size of molecules to which these methods can
be applied is limited by the availability of sufficient computational power. Density functional
methods are much faster, but less accurate.[3] The widely used B3LYP DFT method[4] has a
MAE of about 4 kcal/mol (0.2 eV), but is also limited in the size of the molecules that can be
handled, due to time-consuming calculations.

Machine learning (ML) offers opportunities for bypassing the tradeoff between accuracy and
computation cost. Recent publications have shown how ML can create fast models that directly
link the inputs and outputs of an expensive calculation.[5—7] Further studies demonstrate the
advantages of predicting the differences between low- and high-fidelity calculations (i.e., A-
Learning),[8] or of using multiple levels of fidelity to train the same model.[9,10] It is also
possible to link easily-computable properties to the outcomes of extensive calculations, as
shown by how Seko et al. used calculated bulk moduli as inputs to a model that predicts melting
temperature.[11] Neural networks offer more possibilities through the ability to train the same
model on multiple properties (e.g., multi-task or transfer learning).[12] It is as yet unclear which
of these many options yields optimal performance for different types of applications.

In this work, we focus on designing ML models to predict the atomization energy of molecules at
G4MP2-level accuracy at a lower computational cost. In particular, we investigate how to tailor
two of the best-performing methods for learning molecular properties to this task, namely:
SchNet[13]—a deep convolutional neural network approach, and FCHL—a conventional
machine learning approach.[14] We examine how to integrate information from low-cost B3LYP
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calculations into each method and find that both techniques predict atomization energies of
molecules larger than our training set with errors below 0.04 eV using a A-learning approach.
We have created a simple interface to allow others to use our best-performing models by
publishing them on DLHub,[15] so that accurate atomization energies are readily accessible to
the materials and chemistry community at large.

2 Methods

We first describe the datasets and ML approaches used in this work.

2.1 Datasets

We used the QM9-G4MP2 dataset described by Curtiss et al.[16] as a starting point for our
model. This dataset contains the B3LYP- and G4MP2-computed properties for 133,296
molecules, each with from one to nine heavy atoms (C, F, N, O). The B3LYP data and the
geometries for the molecules are from the QM9 dataset of Ramakrishnan et al.[17] We used the
same geometry for the G4MP2 calculations as the B3LYP, and did not further relax the
molecule at the G4MP2 level. We selected 130,258 of the 133,296 molecules for use in our
study, omitting those whose bonding connectivity changed on relaxation, as identified by
Ramakrishnan et al.. We randomly selected 10% of the remaining QM9-G4MP2 as the hold-out
set to be used to evaluate model performance, but never used in model training or
hyperparameter optimization, yielding a 117,232-molecule training dataset, QM9-G4MP2-train,
and a 13,026-molecule hold-out set, QM9-G4MP2-holdout.

We also make use of a separate dataset, G4AMP2-heavy, of G4MP2 energies for 66 molecules
with between 10 and 14 heavy atoms, calculated previously as part of a study on bio-oil derived
molecules. We used these molecules to evaluate the ability of our models to predict the
properties of molecules larger than those in QM9-G4MP2, although we note this is a relatively
small set and a set including more larger molecules is needed to more accurately evaluate our
models.

The identities, molecular coordinates, and computed properties of the molecules in G4MP2-
heavy and the exact train/test splits used for QM9-G4MP2-train are available in full on the
Materials Data Facility[18,19] and GitHub.[20]

2.2 Machine Learning Approaches
We employ two ML strategies: the continuous-filter convolution neural networks of Schiitt et al.
(SchNet), and the alchemical and structural distribution approach of Faber et al. (FCHL).

2.2.1 SchNet

We selected SchNet as a deep learning approach for predicting the properties of molecules,
given its best-in-class performance on predicting atomization energies at the time this study
began.[13] SchNet takes the atomic numbers and positions of each atom in a molecule as
inputs. First, each atomic number is mapped to a vector (the “embedding”) to generate the initial
representation for each atom. The interaction layers of SchNet update these representations
based on distances to, and representations of, nearby neighbors. The representation produced
at the end of the interaction layers is then fed into a multi-layer, dense neural network to
produce the contribution of each atom. The atomic contributions are then aggregated (e.g., via
summation) to generate the molecular property.

We use the open-source implementation of SchNet available in SchNetPack[21] and the
recommended hyperparameters defined in Ref. [21]. With these hyperparameters, a SchNet
model has millions of trainable parameters, including the embeddings for each element,
parameters for how distance relates to updated representation, and other model components.
As with most deep neural networks, SchNet is trained by iteratively adjusting each parameter
based on the gradient of the error with respect to each parameter, as computed via
backpropagation. We employ the optimizer (Adam) and learning rate schedule specified in Ref.
[21].



2.2.2 FCHL

The FCHL method uses Kernel-Ridge Regression (KRR) to learn molecular properties of an
atomistic system from M-body representations of the local chemical environment.[14] The core
of the FCHL method is an approach for measuring the similarity of the local environments of two
atoms. Each atom is described using a series of M-body expansions, which are modeled as
weighted sums of Gaussians over sets of the neighbors. The similarity of two atomic
environments is computed as an integral over the squared difference between each of these
distributions. The similarity of two molecules is defined as a sum of the similarities between
each atom in each molecule, which leads to improved accuracy on training sets with diverse
molecular sizes over similarity metrics that consider the molecule as the fundamental unit.[22]
We use the recommended hyperparameters for this method, and the open-source QML
library[23] and Scikit-learn[24] to fit FCHL models.

3 Results and Discussion

Our goal is to develop a model that predicts G4MP2 energies for organic molecules with
accuracies comparable to G4MP2 computations. (G4MP2-computed enthalpies of formation,
obtained from atomization energies of organic molecules, have a MAE of 0.77 kcal/mol when
compared to accurate experimental values[1,16].) That is, we want a model that when trained
on a set of (molecule description, G4AMP2 energy) pairs (the training set) can achieve high
accuracies when used to predict G4MP2 energies for other molecules for which only the
description is provided (the test set).

In our work, we compared the performance of different modeling strategies, validated the ability
of each strategy to compute the energies of molecules larger than the training set, and
assessed the degree to which knowledge of a molecule’s equilibrium structure effects accuracy.
We explore each topic in turn.

3.1 Modifying SchNet to Incorporate Information from Low-Fidelity Calculations
The SchNet neural network architecture permits several routes to augmenting our predictions of
G4MP2 energies with results from other calculations. We implemented five strategies in all to
produce five models in addition to the baseline SchNet. Three require only a molecular structure
as input:

SchNet Transfer: Transfer learning in neural networks is often accomplished by using
the weights learned in a related problem as a starting point in training a new model. We
used the weights from a model trained on B3LYP atomization energies as a starting
point for our model.

SchNet Multitask: Training a network on several related outputs is thought to cause
models to learn more-generalizable representations.[25] We explore this strategy by
concurrently training a SchNet model on B3LYP- and G4MP2-computed atomization
energies and the B3LYP-computed HOMO, LUMO, and Zero Point Energy.

SchNet Stacked: Stacking in ML is the technique of using one model’s output as an input
to another. We use the atomic contributions to the total BSLYP energies as inputs to the
output layer of SchNet, creating what is effectively a A-learning model (see SchNet Delta
below) that infers the difference between B3LYP and G4MP2 energies, rather than the
B3LYP energy directly.

The other two models use molecular/atomic properties computed with BALYP as model inputs:

SchNet Delta: As introduced by Ramakrishnan et al., A-Learning models learn the
difference between different calculations.[8] We train a model that learns the difference
between B3LYP and G4MP2 energies.

SchNet Charges: We use the partial charges from B3LYP as features in the SchNet
embedding layer, which originally contains only features related to the atomic element.
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(We also experimented with using partial charges in the output layers rather than the
embedding layer, but did not find notable improvements in performance.)

All source code needed to create models using these approaches is available in a GitHub
repository that includes scripts with the hyperparameter choices for our models, results showing
that we replicate previous literature, and the exact versions of SchNetPack used in our study.
[20] The modifications we made to SchNetPack will be contributed to the main repository after
submission of this paper.

We first tested each model by performing a standard, random-split cross-validation test. Each
model was trained by using identical subsets of QM9-G4MP2-train with sizes ranging from 1000
to 117,232 entries, all of which are available from MDF.[19] We trained each model until the
learning rate decayed to 10¢ (as suggested by Schitt et al.[21]), and then measured the
performance of the model on QM9-G4MP2-holdout. We used the same molecules in the test set
for all models (the 10% split described in Section Datasets) and the same training set for all
models with the same training set size. In this way, we ensure that no molecules used to train a
model ever appear in the test set and remove the effect of training set selection from model
performance.

All models achieve MAEs relative to the G4MP2 atomization energy that are much lower than
the MAE between B3LYP and G4MP2 atomization energies on the same molecules, 0.20 eV.
We show the best-performing models in Error: Reference source not found. Our best-performing
model, SchNet Delta, predicts G4AMP2 energies with a MAE of only 4.5 meV (0.1 kcal/mol) after
being trained on 117,232 molecules: much less than that between experiment and G4MP2
(~0.8 kcal/mol). SchNet Delta predictions are thus also an accurate estimator of experimental
atomization energies.

We note interesting trends among the performance of our modified SchNet models. SchNet
Delta, which uses the B3LYP energy as an input, performs best. In contrast, using the atomic
partial charges as input (SchNet Charges) yields only a small performance improvement (4%)
over baseline SchNet, most visible for smaller training set sizes. We conclude that ML models
perform better when they incorporate properties that are more related to the property being
predicted.

The benefits of transfer learning are also most visible on the smaller training set sizes. SchNet
Transfer achieves an error of ~90 meV with only 1000 training points: 28 times better that the
baseline SchNet. This result suggests a relationship between the features that best predict
B3LYP and G4MP2 energies. SchNet Transfer converges faster than all other ML strategies,
reaching optimal weights after only 222 epochs on our largest training set size. (Baseline
SchNet requires twice as many epochs.) Re-using data clearly provides speed advantages,
although the accuracy benefits decrease with training set size. The MAE of 13.4 meV for
transfer learning at the largest training set size is only 10% better than baseline SchNet.

SchNet Multitask performs uniformly worse than all other models. We constructed this model by
adding more outputs to the “Atomwise” output layers at the end of the network, which increases
the number of parameters by less than 0.1%. This increase is apparently insufficient to
simultaneously capture G4MP2 atomization energy and all other properties with the same
fidelity. Given that the SchNet Transfer results indicate that the representations learned for
B3LYP and G4MP2 energies are sufficiently alike to make transfer learning beneficial, the poor
performance of SchNet Multitask suggests that HOMO/LUMO energies require a conflicting
representation to energies or, simply, that the network requires more flexibility (e.g., more
trainable weights) to model all five properties concurrently.

The performance improvements achieved by SchNet Stacked relative to baseline SchNet also
diminish for large training sets. Here, the issue is that accuracy is limited by the accuracy of the
underlying B3LYP model, 14 meV when trained on the full dataset; we do not exceed this
accuracy in predicting the G4MP2 energies. We do note that SchNet Stacked produces
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accuracies comparable to SchNet Delta for small training sets and that it is superior to SchNet
Transfer with the same training set size.

3.2 Training FCHL Models on QM9-G4MP2

We also evaluated the FCHL method, which has the best performance of any conventional
machine learning strategy for predicting molecular atomization energies on the QM9 dataset as
of when this work was performed.[14] We only tested two variants of FCHL: training directly on
the atomization energies (FCHL) and training on the difference between G4MP2 and B3LYP
atomization energies (FCHL Delta). As shown in Error: Reference source not founda, we find
that the FCHL method achieves a MAE of 22.3 meV with a training set of 104, which is
consistent with the MAE reported by Faber et al. when using FCHL with BSLYP energies.[14]
We were only able to train the model on training sets of 10* entries or less, due to the large
memory required to train, and the slow evaluation times of FCHL models with large training
sets. We expect that further improvements are possible at larger training set sizes, given that
the learning curve shown in Error: Reference source not founda remains roughly linear up to 10*
entries.

Like SchNet Delta, the FCHL Delta model also predicts G4MP2 energies very accurately, with a
MAE of only 5.2 meV (0.1 kcal/mol) after being trained on 10* molecules: much less than that
between experiment and G4MP2 (~0.8 kcal/mol). Consequently, we do not expect that further
expanding the training set of FCHL Delta will yield any improvement in the utility of the resulting
models when evaluating molecules like those in QM9-G4MP2-holdout. At 5.2 meV, the error of
the model is low enough that the error between G4MP2 and experiment would dominate the
error between FCHL Delta and experiment. However, the fact that the learning rate for FCHL
Delta has not plateaued (Error: Reference source not founda) suggests that the FCHL Delta
method is flexible enough to address problems more challenging than that posed by QM9-
G4MP2 (e.g., larger molecules, more diversity in chemical elements).
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Figure 1. (a) Mean Absolute Error (MAE) and (b) execution speed of several ML models trained to predict the
G4MP2 atomization energy. Solid lines are SchNet models,[13] and dashed lines are FCHL models.[14] Each model
was trained on identical training sets of varied sizes and then tested on 13,026 total energies of molecules that were
absent from the training set. The horizontal dashed line in (a) denotes the MAE of B3LYP total atomization energies
compared to G4MP2 for these molecules: 0.20 eV. We limited the training set size for FCHL to 10* due to its large
computational cost.

3.3 Comparing SchNet and FCHL for Energy Prediction

We found that the FCHL models had better accuracy than the SchNet models trained with the
same data. As shown in Error: Reference source not found, each FCHL model achieves
accuracy comparable to that of the equivalent SchNet model (SchNet and SchNet Delta,
respectively) trained with 10 times more data. The FCHL models require many fewer than 1000
G4MP2 calculations to predict the G4MP2 energies more accurately than B3LYP. SchNet
Transfer performs nearly equivalently to FCHL when trained on 1000 G4MP2 calculations,
illustrating the advantages of weight sharing in deep neural networks. Analogous multi-
resolution training approaches in KRR[9,10] could offer a route to achieving similar
improvements for the FCHL model (e.g., fewer expensive G4MP2 calculations may be
necessary).

We also find a significant tradeoff between accuracy and execution speed in SchNet and FCHL.
Being based on KRR, FCHL requires comparing a molecule to each molecule in its training set
when predicting molecular properties, leading to an execution time that scales linearly with the
number of training points (see Error: Reference source not foundb). In contrast, the size of the
network used in SchNet need not scale with the number of training entries and, consequently,
the execution rate is invariant to training set size. FCHL achieves similar performance to SchNet
with a training set of 100 entries on 10 cores of an Intel E-2680v3 CPU. Given that deep neural
networks can easily use accelerators (e.g., GPGPUs) and considering that we made predictions
in batches for FCHL but not for SchNet, we expect there is more room to further accelerate
SchNet than FCHL.

One route to reducing the tradeoff between accuracy and execution speed is careful selection of
the molecules in the FCHL training set. Browning et al. report that using a genetic algorithm to
identify the best molecules can reduce KRR model error by up to 75%.[26] However, we do not
expect this strategy to equalize performance, as the errors of SchNet models trained on all
available data are 20 times lower than FCHL models with similar evaluation speed (i.e., those
trained on 100 entries). We conclude that FCHL presents a better choice than SchNet for
models of atomization energy only when training data are scarce or longer execution times are
acceptable.



3.4 Predicting Energies of Molecules Larger than the Training Set

We further tested the usefulness of our models by validating their ability to predict molecules
that are larger than those in the training set. Specifically, we trained each SchNet and FCHL
model with QM9-G4MP2-train subsets containing exclusively molecules with fewer than 41 (152
molecules), 51 (1161 molecules), 61 (14317 molecules), and 71 (111906 molecules) electrons,
respectively. We then evaluated performance on the 6166 molecules with more than 67
electrons in QM9-G4MP2-holdout.

All of our ML models achieve more accurate
predictions of atomization energy than B3LYP
for large molecules, but different models
require different amounts of training data to
pass this threshold. As shown in Error:
Reference source not found, FCHL Delta
requires only the molecules with fewer than
41 electrons to improve upon B3LYP. In
contrast, the best SchNet models and the
. - . T baseline FCHL model require all molecules
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Figure 2. Comparison of ML models for predicting the 27.7 times lower than that of B3LYP,
G4MP2 atomization energies of molecules larger than  respectively, which illustrates how our ML

those in the training set. The chart shows the MAE of )
models trained on various subsets of QM9-G4MP2-train, models can generate accurate predlctlons for

each containing all molecules that are smaller than a Molecules larger than those in the training
maximum electron count (the x axis) and evaluated using  set.
molecules larger than 67 electrons from QM9-G4MP2-

holdout. The horizontal dashed line indicates the MAE of i i
B3LYP with respect to G4AMP2. The vertical dashed line We also studied the effect of molecule size

marks the smallest molecule size the evaluation set. on mod e,l error, with the g O al of
understanding how our models are likely to

perform for molecules even larger than those
in QM9-G4MP2. We trained each model on all molecules in QM9-G4MP2-train with fewer than
61 electrons and measured model performance for subsets of molecules from QM9-G4MP2-
holdout with different sizes. The MAEs for each model generally increase with molecule size yet
are all lower than the MAE of B3LYP. This increase in error with molecule size cannot be
explained completely by the energy scale of the molecules increasing with size. As shown in
Error: Reference source not found, we find that the error in energy per electron also tends to
increase with molecular size. Given that the difference between B3LYP and G4MP2 energies
remains roughly constant with molecule size (Error: Reference source not found), we expect
that there is a maximum molecule size beyond which our models will fail to predict G4MP2
energies accurately. However, we lack sufficient data to estimate the cross-over point with
confidence.
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To further test the ability of our models to predict the energies of large molecules, we compared
model predictions to the G4MP2 results in the G4MP2-heavy data set (see Section Datasets).
We first trained SchNet Delta on all 117,232 entries in QM9-G4MP2-train and FCHL Delta on
the largest training set feasible on our hardware, 10* entries. We found that the FHCL Delta and
SchNet Delta models achieve MAEs of 12.5 meV and 39.5 meV, respectively, on G4MP2-
heavy. The results are shown in Error: Reference source not found. These errors are somewhat
higher than those measured on QM9-G4MP2-holdout (4.4 meV and 5.1 meV, respectively),
which is consistent with our finding that errors increase with molecule size. That said, the
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properties. As each model was trained using the B3LYP equilibrium structures as input, we
assume that it may be necessary to first determine the equilibrium structure with B3LYP before
predicting atomization energy—unless a suitable approximation is available. Removing the need
to perform a B3LYP calculation to determine the equilibrium structure would drastically
accelerate the rate at which we can predict G4AMP2 energies. Consequently, we studied
whether energies can be computed accurately when using, instead, atomic coordinates
generated by using cheap force fields.

Our first step was to study the effect of different methods for guessing atomic coordinates on
model accuracies. We used Open Babel to approximate atomic coordinates algorithmically
using known bond angles, by relaxing the structure using the MMFF94 force field,[32] and using
a search for the lowest energy conformation among different permutations of rotatable bonds.
[33] We used the resulting coordinates as input to the G4MP2 Transfer model trained on all of
QM9-G4MP2-train, and then determined the MAE of the model with respect to QM9-G4MP2-
holdout. In this way, we fully remove the need to perform B3LYP calculations before running the
ML model. The model evaluated using the structure post conformer search achieved the lowest
MAE of 327 meV—higher than the B3LYP atomization energy MAE of 201 meV and 25 times
larger than the error when using the B3LYP coordinates. We found similar performance
degradation for SchNet Stacked. We conclude that the models retain some predictive power (a
MAE of 327 meV is 200 times better than a guess-the-mean model) when used on approximate
coordinates, but that performance is degraded enough to make the models significantly less
useful.

We attempted two different transfer learning routes for improving the performance of models on
approximate coordinates. First, we retrained SchNet Transfer with the approximate coordinates
as input and using the weights learned using all of QM9-G4MP2-train as a starting point; this
reduces the MAE to 222 meV. We further reduced the dependence on coordinates by selecting
a different conformer for each molecule at each epoch and rattling the coordinates of the
conformer with a standard deviation of 0.1 A. Retraining with “blurred” coordinates of molecules
reduced the MAE to 205 meV, which is equivalent to the B3LYP atomization energy for the
same molecules (200 meV). In short, our model produces estimates of the G4MP2 atomization



energy for molecules with nine or fewer heavy atoms that are as good as B3LYP, but at much
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Figure 4. Accuracy of a (cyan) SchNet Transfer model retrained on the conformers each molecule in QM9-G4MP2-
train dataset, the SchNet Delta model (red), and (gray) B3LYP on predicting the G4MP2 atomization energy for
molecules larger than the training set. (a) Error with respect to electron count for all models and (b) error with respect
to the Root Mean Squared Deviation between the generated molecular coordintaes and true B3LYP structure. The
SchNet Delta model was evaluated by using the B3LYP molecular geometry as input and the SchNet Transfer model
used a geometry generated from the SMILES string using a force-field to illustrate using ML after and before
performing a B3LYP calcualtion, respectively. The SchNet Transfer was trained by selecting a random conformer for
each molecule and then coordinates were perturbed with a standard deviation of 0.1 A at each epoch.

faster rates.

Unfortunately, the strategy of re-training the model on perturbed coordinates fails for larger
molecules. As shown in Error: Reference source not founda, the baseline SchNet model
retrained on the perturbed conformers for each molecule has errors of up to 2 eV when
predicting the energy of a molecule given its generated atomic coordinates. The errors increase
with molecular size, which could be both an effect of the error of ML models increasing with
molecular size and the quality of the generated coordinates decreasing. The Root Mean
Squared Deviation (RMSD) between the generated and B3LYP coordinates increases with the
number of heavy atoms in our large model test set; for the largest molecules (14 heavy atoms),
it is over four times larger than the median RMSD in our small molecule test set. However, as
shown by Error: Reference source not foundb, the increase in error cannot be fully explained by
RMSD.

We conclude that it is possible to reduce the dependence of SchNet-based models on knowing
the DFT-relaxed coordinates of a molecule by training on the conformers of each molecule with
perturbed coordinates. The retrained models can predict the G4MP2 energies of small
molecules with superior accuracy to BSLYP when provided only the coordinates generated with
force fields. However, this strategy currently fails for larger molecules. Considering the higher
accuracy of our models when given the B3LYP coordinates (Section Predicting Energies of
Molecules Larger than the Training Set), better accuracy on large molecules could be achieved
with better estimates of relaxed coordinates (e.g., by using generative networks[34]). However,
we do not currently recommend using SchNet to predict atomization energies without relaxed
coordinates until improved techniques for generating atomic coordinates are available.



3.6 Recommendations
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Figure 5. MAEs between G4MP2-level atomization energy calculations and SchNet Delta predictions, FCHL Delta
predictions, and B3LYP-level energy calculations. The two ML models were trained, using only molecules with nine
heavy atoms or fewer, to predict the difference between B3LYP and G4MP2 energies. MAEs are shown relative to
two sets of molecules, both outside of the ML models’ training set: (a) a holdout set of molecules with nine or fewer
heavy atoms, and (b) a small dataset of molecules with 10 or more heavy atoms. The error bars are the standard
error of the mean. Numbers above each bar indicate the number of molecules with each number of heavy atoms.

Our results lead us to recommend two different ML models for predicting accurate energetics at
the G4MP2 level of theory, depending on performance needs. If optimized B3LYP coordinates
and energies are available, we recommend using the FCHL A-learning model for optimal
accuracy and the SchNet A-learning model if slower time-per-prediction of the FCHL model is
unacceptable. As shown in Figure 5, both models can be used to increase the accuracy of
energies relative to B3LYP calculations by up to a factor of 10.

The SchNet Delta and FCHL Delta models are available for anyone to use via DLHub.[15]
DLHub’s simple Python interface takes the XYZ coordinates of a molecule and returns the
G4MP2 atomization enthalpy; it runs models on cloud or cluster resources, eliminating the need
to understand how to use QML or SchNetPack or even to install them. We hope that by
publishing the models in this way, we will enable others to integrate the capabilities developed
in this work in their own research.

The degradation of model performance with molecule size motivates the use of better training
sets for quantum chemistry, particularly on larger molecules. Specifically, we recommend that
datasets containing molecules with more than 9 heavy atoms (e.g., TensorMol’s datasets[35],
PubChemQC[36]) should be used in future benchmarking of models to predict atomization
energy.

4 Conclusion

We compared multiple ML strategies for producing accurate estimates of G4MP2-level
atomization energies of molecules at reduced computational costs. We evaluated models based
on the FCHL and SchNet approaches and found that both approaches yield models that reliably
predict the atomization energy 10 times more accurately than B3LYP for molecules larger than
those in their training sets. The strong performance was achieved by learning the difference
between B3LYP and G4MP2 atomization energies—an approach that we found yields higher
accuracy than other methods of integrating data from multiple fidelities of calculations (e.qg.,
transfer learning). We produced two state-of-the-art ML models that predict the G4MP2-level
atomization energy of molecules within 5 meV for molecules of similar size and somewhat larger
for molecules larger than those in the training set. Our FCHL-based model has accuracies three
times better than SchNet but has at least a 100 times greater computational cost per prediction.
We have made the models available for unrestricted use via a web API.
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