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Abstract (100 words): 

Facilitating the application of machine learning to materials science problems requires 

enhancing the data ecosystem to enable discovery and collection of data from many sources, 

automated dissemination of new data across the ecosystem, and the connecting of data with 

materials-specifc machine learning models. Here, we present two projects, the Materials Data 

Facility (MDF) and the Data and Learning Hub for Science (DLHub), that address these needs. 

We use examples to show how MDF and DLHub capabilities can be leveraged to link data with 

machine learning models and how users can access those capabilities through web and 

programmatic interfaces.



1 Introduction
A growing opportunity exists for the materials science community to leverage and build upon 

the advances in machine learning (ML) and artifcial intelligence (AI) that are reorienting and 

reorganizing industries across the economy. In materials science, there is well-founded 

optimism that such advances may allow for a greatly increased rate of discovery, development, 

and deployment of novel materials, bringing researchers closer to realizing the vision of the 

Materials Genome Initiative [1]. However, despite considerable growth in the number of 

materials datasets and the volume of data available, researchers continue to lack easy access 

to high-quality machine-readable data of sufcient volume and breadth to solve many 

interesting problems. They also struggle with growing diversity and complexity in the data 

science and learning software required to apply ML and AI techniques to materials problems: 

software that includes not only materials-specifc tools but also a wide range of other data 

transformation, data analysis, and ML/AI components, many not designed specifcally for 

materials problems. Seizing the opportunity of ML and AI for materials discovery thus requires 

not just more and better data and software: it requires new approaches to navigating and 

combining data sources and tools that allow researchers to easily discover, access, integrate, 

apply, and share diverse data and software.

We describe in this article two related materials data infrastructure systems that 

address these needs: the Materials Data Facility (MDF) [2] and the Data and Learning Hub for  

Science (DLHub) [3]. MDF serves as an interconnection point for materials data producers and 

consumers. Its services allow data to be collected from many sources, to be enriched with a 

variety of tools (e.g., automated metadata extraction, quality control), and to fow onwards to 

many destinations, including not only MDF-operated services (e.g., the MDF Publish 

repository, for storage of data with no other home, and the MDF Discover search index, for 



integration, navigation, and search of any and all data known to MDF), but also to the growing 

number of other materials-related data infrastructure components (e.g., 4CeeD [4], Citrination 

[5], NIST Materials Resource Registry [6]). DLHub provides similar functions for ML/AI models 

and associated data transformation and analysis tools, allowing researchers to describe and 

publish such tools in ways that support discovery and reuse; run published tools over the 

network (with tools executed on a scalable hosted infrastructure); and link models, other tools, 

and data sources into complete pipelines that can themselves be published, discovered, and 

run. 

In the sections that follow, we briefy review the state of the materials data ecosystem; 

describe MDF and DLHub goals, features, and service architectures; and present three 

examples that showcase how MDF and DLHub can be applied to materials science problems. 

We conclude with thoughts on future directions for the materials data ecosystem.

2 The Materials Data Ecosystem
Many types of tools are available to address myriad problems in handling materials data. Most 

prominent are the extensively-curated and specialized data repositories of materials data, 

including high-throughput density functional theory (DFT) databases [7–11] and polymer 

property databases [12,13]. Tools like Citrination [5] and the Confgurable Data Curation 

System (CDCS-formerly MDCS) [6] allow scientists to quickly create and share new databases. 

Curated databases provide data in well-structured forms that are immediately-accessible to 

data analysis software, but only represent a small fraction of the useful materials data. 

General-purpose publication repositories (e.g., NIST Materials Data Repository [6], 

Zenodo, Figshare) provide the ability for researchers to make data available to others, even if 

those data have not yet undergone the extensive curation typically needed to produce 

structured datasets. Laboratory Information Management System (LIMS) and workfow 



management tools like 4CeeD [4] and Materials Commons [14] provide a route for curating 

data and tracking provenance as data are produced. Together, these tools ofer a rich 

environment of data ready for use in materials research. 

As data availability has increased, a concomitant growth has occurred in software tools 

to simplify and automate common tasks in the materials informatics pipeline: for example, the 

MAterials Simulation Toolkit for Machine Learning (MAST-ML) [15], the Materials Knowledge 

System in Python (pyMKS) [16], matminer [17], pymatgen [18], and the Atomic Simulation 

Environment (ASE) [19]. Another critical community efort is the NIST Materials Resource 

Registry (MRR) [6], a federated set of registries built to enable registration and discovery of 

datasets, software, projects, and organizations relevant to materials science. Together, these 

tools, data services, and software comprise many of the components needed to speed the 

application of materials informatics and ML.

3 Materials Data Facility (MDF)
While the materials data ecosystem described previously has grown considerably in the 

volume of data available and the number of available tools, there remain many opportunities to 

enhance the value of individual components by connecting them in ways that leverage and 

maximize their unique strengths. Such connections would enable a thriving materials 

ecosystem in which new data gathered at any repository are automatically dispatched to other 

repositories; new services are easily constructed from a growing set of modular software and 

service components; new service capabilities are applied automatically to appropriate data 

streams; and new machine learning studies are easily bootstrapped from data gathered with a 

single query from dozens of repositories, and analyzed with models from multiple sources. 

MDF supports this vision by providing an interconnection point that allows producers of 

materials data to dispatch their results broadly and data consumers to discover and aggregate 



data from independent sources. It streamlines and automates data sharing, discovery, access, 

and analysis by: 1) enabling data publication, regardless of data size, type, and location; 2) 

automating metadata extraction from submitted data into MDF metadata records (i.e., JSON 

formatted documents following the MDF schema [21]) using open-source materials-aware 

extraction pipelines and ingest pipelines; and 3) unifying search across many materials data 

sources, including both MDF and other repositories with potentially diferent vocabularies and 

schemas. Currently, MDF stores 30 TB of data from simulation and experiment, and also 

indexes hundreds of datasets contained in external repositories, with millions of individual MDF 

metadata records created from these datasets to aid fne-grained discovery.

3.1 Collecting and Sharing Data with MDF 

The diversity and scale of materials data can pose challenges for both data producers and data 

consumers. Data producers can fnd it difcult to determine which repository best suits their 

dataset, or they may have specialized requirements (e.g., support for large datasets, advanced 

curation fows, or varying access control across the dataset lifecycle) that are not met by any 

single repository. Consumers attempting to locate data face yet more difculties, as in order to 

collect data, they must often frst navigate difering web and programmatic interfaces, and then 

merge data cataloged and described by diferent metadata schemas. MDF takes important 

steps towards addressing these challenges by supporting collection of data from many 

locations, enriching and transforming those data in materials-aware ways, and managing 

interactions with many data services.

MDF consists of three modular services: MDF Publish, MDF Discover, and MDF 

Connect. MDF Publish is a decentralized dataset repository. It allows a user to publish a 

dataset to any Globus endpoint [20], identify the published dataset with a permanent identifer, 

and implement user-driven dataset curation fows. MDF Discover provides a scalable, access-



controlled, cloud-hosted, materials-specifc search index, coupled with software tools to 

enable advanced user queries and data retrieval. MDF Connect is the central element that 

connects not only MDF Publish and Discover, but also external services (Figure 1). It supports 

three primary actions: 1) submission via user requests from programmatic or web interfaces 

triggers the MDF Connect service to collect from many common sources; 2) enrichment of 

collected data through general and materials-specifc metadata extraction, combination of 

extracted and user-provided metadata into MDF metadata records, and transformation of 

dataset contents (e.g., from proprietary to open formats); and 3) dispatch of data to MDF 

Publish, metadata to MDF Discover, and combinations of data and metadata to other 

community data services selected by the user. MDF Connect can collect data from cloud 

storage providers (Google Drive, Box, Dropbox), distributed storage systems accessible via 

Globus [20], community repositories (NIST Materials Data Repository [6], Figshare, Zenodo), 

and materials-specifc data services (e.g., 4CeeD [4]).

Figure 1: Materials Data Facility (MDF) overview. (1) Users submit data to MDF by 
specifying the data’s location, title, authors, and more. (2) MDF Connect collects data 
from the specifed location and applies materials-specifc extractors and 
transformations to enrich the data. (3) Processed data and metadata are dispatched to 
any supported community data service(s) specifed by the user. Other users can then 



discover, interact with, and access the data using any of those services.

As described earlier, when a user submits a dataset to MDF Connect, the MDF Connect 

service collects the data, enriches the data by extracting further information from the fles, and 

dispatches that information to the wider ecosystem. MDF Connect enriches data by invocation 

of a series of extractors that extract general information (e.g., fle name and size) and scientifc 

information (e.g., crystal structure or material composition) from the fles provided by the user 

to facilitate discovery. Subsequently, this extracted information is merged with user-provided 

metadata to create an MDF metadata record following the MDF schema [21]. For example, 

MDF Connect is able to extract the inputs and outputs of electron microscopy images and DFT 

codes, among others, to generate descriptions of the material being studied, identify 

instrument settings, or capture computed properties and convert these into MDF metadata 

records that are dispatched to the MDF Discover index. Advanced users can build new data 

extractors for the ecosystem or provide additional information to help MDF Connect make 

sense of the data provided (e.g., by providing a mapping between felds in a custom comma-

separated values fle and the MDF schema [21]). MDF Connect also allows optional dispatch of 

this information to other host services, such as Citrination and MRR. Thus, with minimal efort 

from the researcher, MDF Connect provides enriched descriptions of the submitted data and 

makes it available in many forms.

3.2 Data Discovery with MDF

The rapidly growing quantities of data contained within both MDF Publish and other 

community repositories makes discovery of datasets based on their attributes or contents a 

challenging problem. No single schema can cover all data types, yet users want to be able to 

search across these diverse data. MDF Discover addresses these needs by operating a fexible 

search index in which registered datasets and associated fles are described by key-value pair 



metadata records (e.g., JSON documents) created by MDF Connect that follow a metadata 

schema extending the DataCite and NIST Materials Resource Registry conventions [21].  For 

added fexibility, MDF Discover also allows for addition of up to 10 user-defned metadata 

felds per dataset on which searches can be performed. This search index is operated in the 

cloud for scalability and availability, with a REST API permitting both programmatic and web 

access.[22]

MDF Discover aims to allow simple data discovery while also permitting advanced 

querying and data faceting when required. To this end, it implements a query syntax that 

supports full-text matching (i.e., matching of query text against the value of any key in the 

registered metadata), direct querying against user-specifed keys, typed range queries for 

dates and numeric felds, fuzzy matching, and wildcard matching. Additionally, users may 

discover data through faceting operations that allow users to retrieve summary statistics, 

partition matching data into buckets, and drill down into these buckets with subsequent 

queries. For example, a user may facet data by elemental composition to determine how many 

records are available for diferent elements, and then select a single element of interest to 

investigate further.

Another important feature of MDF Discover is the ability to defne access controls on 

each registered record. While most data and metadata registered with MDF are publicly 

accessible, access control mechanisms allow users to defne which users or groups of users 

can access certain metadata. Multiple metadata records may be associated with a single 

dataset or the contained fles, with difering permissions allowing for diferent users to see 

diferent views depending upon the user permissions. These capabilities promote an open, 

participatory environment where users can contribute to the description of a dataset 

incrementally, with assurance that only authorized users can see metadata records until they 



are ready for broader sharing. When a user searches MDF, their search results refect only the 

metadata records that they are authorized to access.

Many materials scientists interact with data, and share analysis methods, by writing 

Python programs. To support these users, MDF provides the MDF Forge Python client to make 

it easy to write Python programs that use MDF Discover capabilities to perform common 

search and data collection tasks, such as searching by dataset name, author names, or 

elemental composition, and that then use Globus or HTTPS methods to retrieve data records 

identifed by such searches. For example, Figure 2 shows a user frst querying by dataset 

name (i.e., source_name) and elemental composition and then retrieving results, including all 

referenced fles, with Globus. A similar data retrieval mechanism allows MDF Forge users to 

retrieve data by HTTPS, although this route can be signifcantly less performant for data 

aggregations that include large fles or many fles. Users can install MDF Forge on various 

operating systems via the Python Package Index (PyPI).

Figure 2: Example showing a query and data retrieval operation using the MDF Forge 
Python client. A Forge Python client is instantiated, and a search is performed to fnd 
records from the Open Quantum Materials Database (OQMD) that contain cobalt or 
vanadium. The result set is then passed to the globus_transfer function to transfer the 
fles associated with the matching results, including the full simulation output for each 
record, to the user’s local Globus Connect Personal endpoint. 

4 The Data and Learning Hub for Science (DLHub)

A key factor slowing the adoption of data-driven materials science approaches is that few 

machine learning models and other related codes developed by materials scientists are easily 



accessible. Even when open-source codes are shared via mechanisms such as GitHub, they 

can be difcult to install, train, and run. The commercial use of machine learning has benefted 

from the availability of web interfaces that provide simple routes for employing common 

machine learning tasks (e.g., the Rekognition tools from Amazon). Similar capabilities are 

required for research models.

We created DLHub to make it possible for scientists to make models accessible via 

web interfaces with minimal efort. Much as MDF connects data providers and consumers 

across the materials science community, DLHub [3] connects data with reusable data 

transformation and model serving capabilities, allowing producers of such capabilities to make 

them easily available, and permitting consumers to quickly discover the latest AI/ML 

developments and to apply those developments to their research projects. Thus, for example, 

a researcher working with scanning transmission electron microscopy images may be able to 

easily discover and apply a model to assess image quality or to detect loop defects. 

DLHub seeks to overcome inefciencies in the ML life cycle by providing facilities that 

allow researchers to describe, publish, discover, and run ML models and associated data 

transformation and analysis codes with minimal overhead. Using DLHub, a researcher can 

discover, for example, that a model exists for prediction of materials structure and phase from 

x-ray coherent difraction data (see Section 5.2), that this model is accessible at a persistent 

DLHub web address (URL), and that the model expects as input images of shape 32x32 pixels 

and produces as output images of shape 32x32 pixels. The researcher can then use the 

DLHub SDK to call this model from any network-connected computer without needing to 

download, confgure, and run the model on their local PC. By eliminating the need to install 

complex software, DLHub greatly reduces the overheads associated with reusing and 

programmatically incorporating models and other software into analyses, services, or other 

code.



Under the hood, the DLHub service organizes user-supplied metadata and software 

(models, custom functions, etc.) to create portable and scalable Docker container servables; 

registers servables along with descriptive metadata in a catalog to support discovery; and 

deploys servables onto scalable computing systems to permit rapid execution in response to 

user requests. Chard et al. [3] provide a full description of the DLHub service and architecture. 

4.1 DLHub Capabilities

The DLHub service and SDK allow researchers to perform four key actions (see Figure 3): 1) 

describe a software tool by providing the information that the DLHub service needs to create 

and to permit discovery and use of the associated servable; 2) publish a servable, sending fles 

and metadata to DLHub to create the servable and register it in the servable catalog; 3) search 

the catalog to discover interesting servables and to learn how to use them; and 4) run a 

servable against provided input data on DLHub-provided computing infrastructure. Users can 

access each of these capabilities through the DLHub SDK, a REST API, or a command line 

interface (CLI). 

Describe: A researcher frst uses DLHub SDK functions to specify the models, code, 

and data (e.g., neural network weights) that will be used to construct a new servable, and to 

provide descriptive metadata such as author names, links to source code, input types and 

shapes, and domain of application. The initial DLHub schema leverages and extends work 

from Kipoi [23] and DataCite [24]. This information allows other scientists to determine whether 

the servable is applicable to their problem and what information to provider when invoking it. 

The DLHub SDK provides utilities that, for common types of servables (e.g., Keras, Tensorfow, 

ScikitLearn, and Torch, model objects), can extract automatically much of the information 

needed to describe and recreate the servable (e.g., input and output shapes, neural network 

architecture, locations of important fles, software dependencies). Because scientifc software 



often involve custom libraries, DLHub is not limited to only common libraries and can serve 

arbitrary Python functions.

A researcher who describes a model to DLHub can also specify whether access to the 

created servable and its metadata is to be fully open or, alternatively, constrained to a group or 

a defned list of users. Access policies for a servable and its metadata can be diferent: thus, 

for example, metadata may be open, permitting discovery, while access to the servable itself 

constrained to specifed individuals. A user can thus discover that a servable exists and 

proceed to request access.

Publish: A user can then send a request to DLHub to publish the servable. A publish 

request collects the metadata and fles specifed when the user describes their model and 

dispatches this information to the DLHub service. Upon receiving the model description, the 

DLHub service builds the servable into a portable container (e.g., Docker or Singularity) and 

loads the combined metadata into the servable catalog. Note that the container is constructed 

automatically by the DLHub service; the user need not install any software on their system for 

that purpose. Once the build process is complete, a unique DLHub service endpoint is 

constructed to which users can send requests to invoke the newly published model. 

Optionally, a user can choose to associate a unique identifer, like a digital object identifer 

(DOI), with the servable to enhance citability. 

Discover: Users can discover published servables, for which they are authorized to 

view metadata, by querying the associated metadata. The full set of felds are described in the 

DLHub schema which can be found from the DLHub web page linked in the Code and Data 

Availability section. A servable query, like the data queries used by the MDF (Section 3), can 

combine full-text search, range queries, pattern matching, and wildcards. Query results provide 

added context about how to use the servable(s) located. For example, the user might learn that 

the model accepts images of a specifc size, fnd a link to associated journal articles, or be 



directed to a test set of data they can use with the servable. This functionality is accessed 

through the DLHub SDK, CLI, or a web interface that is under development.

Run: Once a user has found a servable that they want and are authorized to run, they 

can invoke it on input data that they supply, and receive the resulting output in response. The 

servable itself runs remotely on services that execute on a 200-processor cluster at Argonne 

National Laboratory, Amazon Web Services, or other supported resources. Requests can be 

synchronous (i.e., the reply from DLHub service contains the outputs) or asynchronous (i.e., the 

reply contains a key used to retrieve the results later). These two modes allow DLHub to 

support servables with both fast and slow execution times.

Figure 3: DLHub usage pattern. A user describes a model or custom code to make it discoverable and 
reusable. The user submits a publish request to DLHub, triggering a transfer of the required fles and 
registration of the model metadata with the DLHub service. A servable is created to hold the model 
and custom code, and the associated metadata are loaded into a registry for later discovery. 
Subsequently, users can run the servable with new inputs to receive the defned output from the 
servable.

4.2 DLHub Service

The DLHub service is designed to support the publish, discover, and run capabilities just 

discussed with high availability, scalability, security, and performance. (The describe capability 

is handled by the DLHub SDK.) To this end, the DLHub service’s implementation comprises 

multiple components: a cloud-hosted DLHub service that accepts user publish, discover, and 

run requests; a cloud-hosted servable creation service; a cloud-hosted metadata catalog used 

to serve discover requests; and potentially many servable execution environments that are able 



to run on cloud resources, Kubernetes clusters, high-performance computing systems or 

elsewhere. 

DLHub packages servables as Docker or Singularity containers, a computing 

technology that facilitates portability across diferent computing resources and provides a 

sandboxed execution environment. DLHub uses Parsl [25] to manage scalable computing 

resources by deploying servable containers on provisioned nodes or cloud instances. It sets up 

a high-performance connection between the DLHub service and the deployed servable. When 

a user executes a servable, the DLHub service retrieves the servable metadata and validates 

the input parameters. The request is packaged with servable metadata and serialized for 

transmission to an execution node capable of running the servable; the servable is deployed 

on one or more nodes; the DLHub service transmits the input data to the servable for 

execution; and the servable sends results back to the DLHub service when complete.

5 Science Use Cases

To illustrate the power of these approaches, and how DLHub and MDF capabilities can be 

included in scientifc workfows, we describe three science use cases. The frst combines data 

hosted and indexed within MDF Publish and Discover, respectively, with ML models published 

as servables to DLHub to rapidly predict band gap based on an input image. The second uses 

a DLHub servable to extract the corresponding material structure from a set of input X-Ray 

coherent difraction images. The third uses several diferent DLHub servables to make more 

accurate atomization energy predictions using low fdelity simulations as input, with the training 

and test data indexed and hosted in MDF Publish and Discover. Code for each example is 

accessible as described in the Code and Data Availability section.



5.1 Combining DLHub and MDF to Facilitate Band Gap Prediction

Stein et al. [26] recently described ML methods for predicting material band gap and spectra 

from optical images obtained experimentally. The dataset used to train their ML model 

contained optical absorption spectra and optical images of samples prepared via high-

throughput techniques [27]. They also described methods for training a variational autoencoder 

(VAE) model and for training an ML model on the resultant encoder latent space to predict a 

sample’s optical absorption spectrum. The band gap can then be determined from these 

predicted spectra by using the multiple adaptive regression splines (MARS) algorithm to locate 

the absorption onset [28].

To make this work easily reusable, we submitted the training dataset to MDF Connect, 

dispatched the extracted metadata in MDF Discover, and published the models referencing 

those data in DLHub. The Stein dataset consists of MDF metadata records describing 180,902 

individual optical images and output spectrum fles, so as to enable creation of diferent 

training and test datasets by sub-selecting data by index or materials composition as needed. 

The experimental dataset used in this study had previously been available only as a single, 

large HDF5 fle. Now, with MDF, the dataset can be partitioned via user queries, immediately 

enabling new applications and data mixing opportunities. Second, we published several 

models into DLHub (as servables) based on, and extending, the models of Stein et al. [26], 

including a frst model that resembles the optical image VAE described in the paper, a second 

optical image autoencoder (AE) model, and a third model that instead uses color clustering 

techniques to predict the material bandgap. We then used the dataset, as available in MDF 

Discover, to streamline the process of retrieving data (Figure 4a) and running servables within 

DLHub on the retrieved data (Figure 4b). We demonstrated autoencoding of the original images 

(Figure 4c) and examination of the latent space of the trained VAE (Figure 4d) with respect to 

image color and bandgap, all with only a few lines of code.



Figure 4: Retrieving test data through MDF and passing data to DLHub for prediction of 
absorption onset (band gap). (a) Using the Forge Python client, the input image and 
absorption spectrum are aggregated from the stored dataset. (b) The retrieved data are sent 
as input to the encoder model in DLHub to produce a latent representation of the image. (c)  
Two original input images and corresponding AE and VAE model outputs. (d) A sampling of 
the VAE latent space clustered by the TSNE algorithm [29], with each circle color 
representing the image color and with size proportional to band gap for a subset of the data. 
Links to the code to reproduce this work can be found in the Code and Data Availability 
section.

5.2 Coherent Difraction Imaging Prediction

X-Ray coherent difraction imaging (CDI) is an experimental technique that allows for 

determination of material structure and phase, with the phase encoding many interesting 

material properties, such as strain state [30]. To enable rapid phase and structure predictions 

from CDI data, Cherukara et al. [30] built a deep convolutional neural network to predict phase 

and structure, using a set of simulated CDI images of varying structures with varying strains for 

model training. Given the importance of CDI in materials science, especially at the Advanced 

Photon Source at Argonne National Laboratory, the widespread availability and deployment of 



such a model would be of great value, enhancing the ability to gather information quickly on 

samples and to assess the state of an experiment in a control loop.

In this case, we frst submitted the available test data to MDF. Next, as the trained 

model is freely available via GitHub, we simply described it with metadata to credit the authors 

and enhance discovery, and then published it into DLHub using the DLHub Python SDK to 

pass the model’s GitHub location and metadata to DLHub. The DLHub service then collected 

the model fles, here comprising a set of Keras saved weights and the model architecture, and 

created a servable and an associated servable endpoint automatically. Researchers can thus 

test and run this servable on data with minimal coding knowledge or software installation 

overhead. In fact, only three lines of code, as shown in Figure 5(a), in addition to the data 

retrieval code (omitted for brevity) are needed to run this servable. Two examples of an input 

CDI and the predicted output structure are shown in Figure 5(b).

Figure 5: Predicting material structure based on CDI 
data, via DLHub. (a) Using the DLHub Python client, the 
input X-ray difraction data (32x32 pixel CDI intensities) 
are run with the cherukara_structure servable in DLHub. 



(b) Example CDI intensity (left) input and (right) predicted 
structures from the DLHub servable. Links to the code to 
reproduce this work can be found in the Code and Data 
Availability section.

5.3 Fast, High-Quality Estimates of Molecular Atomization Energies

The ability to predict the energy of a molecule accurately from frst-principles calculations 

forms the core of many approaches for the discovery and rational design of materials. 

However, while ab initio methods exist that can predict the energy of molecules with 

accuracies comparable to the uncertainty in corresponding experimental data (e.g., G4MP2 

[31]), the computational expense of these high-accuracy methods limits their widescale use. To 

address this issue, Ward et al. [32] built machine learning models that use a recently-published 

MDF dataset to predict high-accuracy, G4MP2 energies from the outputs of faster, but 

inaccurate calculations (B3LYP). The authors used DLHub to make this capability available to 

the wider community. 

Ward et al. [32] used well-established techniques from the materials literature to build 

this capability. The models were trained using a deep learning approach by Schütt et al. 

(SchNet [33]) to learn the diferences between B3LYP- and G4MP2-level atomization energy 

calculations (i.e., Δ-learning [34]). The best resulting models predict G4MP2-level molecular 

atomization energies with an accuracy of around 10 meV, far below the diference between 

G4MP2 and experimental values. The models produced in this work are available in DLHub so 

that others in the community can use them without needing to install any software. As shown 

in Figure 6, it is possible to correct the B3LYP atomization energies for hundreds of molecules 

per second by using the model from Ward et al. through DLHub – putting the ability to quickly 

estimate high-fdelity atomization energies in the hands of any molecular modeler. This 



capacity can be scaled elastically with demand by increasing or decreasing the number of 

servable replicas running in DLHub.

Figure 6: Time to predict the G4MP2-level atomization energy of 
100 molecules given input B3LYP energies and relaxed structure 
using a machine learning model produced by Ward et al. [32] as a 
function of molecule size. Timings were measured over 64 
identical runs with one servable container running in the DLHub 
service. Throughput may be scaled elastically by varying the 
number of container replicas. Error bars representing the standard 
error of the mean are within the size of the markers. Links to the 
code to reproduce this work can be found in the Code and Data 
Availability section.

6 Conclusion

We have described key MDF and DLHub capabilities that we argue are critical to building a 

materials data ecosystem that is optimized to enable the widespread application of machine 

learning and artifcial intelligence methods. These capabilities include automation of data 

sharing (even for large datasets) among heterogenous data services; enrichment of data with 

both general and materials-specifc metadata to promote discovery and reuse; software tools 

to simplify data discovery, aggregation, and use; and a library of curated machine learning 

models and processing logic that can easily be applied to new data streams. Each capability is 



provided as a service, greatly reducing the work required for users to access these powerful 

capabilities and enabling other data services to leverage them in a modular fashion. We 

presented three examples to showcase some of the many ways in which MDF and DLHub 

capabilities can be used to deliver the results of machine learning studies in materials science 

to a broad audience. In future work, we plan to build connections between MDF and other 

data services to encourage broader and more simple dissemination and discovery of datasets. 

Towards improving data discovery, we see a clear opportunity for various projects to combine 

eforts to collaboratively build the software necessary to automate the extraction of metadata 

from hundreds of common fle types used in materials science, since much of this work is 

currently fragmented across several code bases. Further, we are encouraged to see that many 

data repositories now enable open and automated harvesting and access to their collected 

results through REST APIs, although lack of a shared authentication strategy is a remaining 

challenge. With DLHub, we will soon enable execution of models and servables on distributed 

resources (e.g., Jetstream, Amazon Web Services, DOE Leadership Computing Facilities), and 

will enable the linking of servables to better represent the often-complex logic seen in machine 

learning applications. These and other eforts continue to move the community forward to the 

ultimate goal of realizing a complete data ecosystem to support the application of machine 

learning in materials science. In the meantime, the examples presented in this article highlight 

how cohesive infrastructure services, such as MDF and DLHub, can streamline complex 

materials discovery tasks. 

Code and Data Availability
As DLHub and MDF are both evolving projects, the code presented in this article will change 

over time. To best enable researchers to reproduce and build upon this work, we provide a 

growing repository of worked examples from various scientifc domains, accessible via 



https://www.dlhub.org. Access to all code, packages (e.g., Forge and other clients), 

d o c u m e n t a t i o n , a n d i n t e r f a c e s r e l a t e d t o M D F c a n b e f o u n d v i a 

https://www.materialsdatafacility.org. Access to all code, packages (e.g., DLHub SDK and 

CLI), documentation, and interfaces related to DLHub can be found at https://www.dlhub.org.
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