A Data Ecosystem to Support Machine Learning in
Materials Science

Ben Blaiszik'*T, Logan Ward'?, Marcus Schwarting?®, Jonathon Gaff', Ryan Chard'?, Daniel

Pike®, Kyle Chard'?, lan Foster'?*

" University of Chicago
2 Argonne National Laboratory
8 Cornell University

T Corresponding authors: Ben Blaiszik (blaiszik@uchicago.edu), lan Foster (foster@anl.gov)

Abstract (100 words):

Facilitating the application of machine learning to materials science problems requires
enhancing the data ecosystem to enable discovery and collection of data from many sources,
automated dissemination of new data across the ecosystem, and the connecting of data with
materials-specific machine learning models. Here, we present two projects, the Materials Data
Facility (MDF) and the Data and Learning Hub for Science (DLHub), that address these needs.
We use examples to show how MDF and DLHub capabilities can be leveraged to link data with
machine learning models and how users can access those capabilities through web and

programmatic interfaces.

1 Introduction

A growing opportunity exists for the materials science community to leverage and build upon
the advances in machine learning (ML) and artificial intelligence (Al) that are reorienting and
reorganizing industries across the economy. In materials science, there is well-founded
optimism that such advances may allow for a greatly increased rate of discovery, development,
and deployment of novel materials, bringing researchers closer to realizing the vision of the
Materials Genome Initiative [1]. However, despite considerable growth in the number of
materials datasets and the volume of data available, researchers continue to lack easy access
to high-quality machine-readable data of sufficient volume and breadth to solve many
interesting problems. They also struggle with growing diversity and complexity in the data
science and learning software required to apply ML and Al techniques to materials problems:
software that includes not only materials-specific tools but also a wide range of other data
transformation, data analysis, and ML/Al components, many not designed specifically for
materials problems. Seizing the opportunity of ML and Al for materials discovery thus requires
not just more and better data and software: it requires new approaches to navigating and
combining data sources and tools that allow researchers to easily discover, access, integrate,

apply, and share diverse data and software.

We describe in this article two related materials data infrastructure systems that
address these needs: the Materials Data Facility (MDF) [2] and the Data and Learning Hub for
Science (DLHub) [3]. MDF serves as an interconnection point for materials data producers and
consumers. Its services allow data to be collected from many sources, to be enriched with a
variety of tools (e.g., automated metadata extraction, quality control), and to flow onwards to
many destinations, including not only MDF-operated services (e.g., the MDF Publish

repository, for storage of data with no other home, and the MDF Discover search index, for

integration, navigation, and search of any and all data known to MDF), but also to the growing
number of other materials-related data infrastructure components (e.g., 4CeeD [4], Citrination
[5], NIST Materials Resource Registry [6]). DLHub provides similar functions for ML/AI models
and associated data transformation and analysis tools, allowing researchers to describe and
publish such tools in ways that support discovery and reuse; run published tools over the
network (with tools executed on a scalable hosted infrastructure); and link models, other tools,
and data sources into complete pipelines that can themselves be published, discovered, and

run.

In the sections that follow, we briefly review the state of the materials data ecosystem;
describe MDF and DLHub goals, features, and service architectures; and present three
examples that showcase how MDF and DLHub can be applied to materials science problems.

We conclude with thoughts on future directions for the materials data ecosystem.

2 The Materials Data Ecosystem

Many types of tools are available to address myriad problems in handling materials data. Most
prominent are the extensively-curated and specialized data repositories of materials data,
including high-throughput density functional theory (DFT) databases [7-11] and polymer
property databases [12,13]. Tools like Citrination [5] and the Configurable Data Curation
System (CDCS-formerly MDCS) [6] allow scientists to quickly create and share new databases.
Curated databases provide data in well-structured forms that are immediately-accessible to
data analysis software, but only represent a small fraction of the useful materials data.
General-purpose publication repositories (e.g., NIST Materials Data Repository [6],
Zenodo, Figshare) provide the ability for researchers to make data available to others, even if
those data have not yet undergone the extensive curation typically needed to produce

structured datasets. Laboratory Information Management System (LIMS) and workflow

management tools like 4CeeD [4] and Materials Commons [14] provide a route for curating
data and tracking provenance as data are produced. Together, these tools offer a rich
environment of data ready for use in materials research.

As data availability has increased, a concomitant growth has occurred in software tools
to simplify and automate common tasks in the materials informatics pipeline: for example, the
MAterials Simulation Toolkit for Machine Learning (MAST-ML) [15], the Materials Knowledge
System in Python (pyMKS) [16], matminer [17], pymatgen [18], and the Atomic Simulation
Environment (ASE) [19]. Another critical community effort is the NIST Materials Resource
Registry (MRR) [6], a federated set of registries built to enable registration and discovery of
datasets, software, projects, and organizations relevant to materials science. Together, these
tools, data services, and software comprise many of the components needed to speed the

application of materials informatics and ML.

3 Materials Data Facility (MDF)

While the materials data ecosystem described previously has grown considerably in the
volume of data available and the number of available tools, there remain many opportunities to
enhance the value of individual components by connecting them in ways that leverage and
maximize their unique strengths. Such connections would enable a thriving materials
ecosystem in which new data gathered at any repository are automatically dispatched to other
repositories; new services are easily constructed from a growing set of modular software and
service components; new service capabilities are applied automatically to appropriate data
streams; and new machine learning studies are easily bootstrapped from data gathered with a
single query from dozens of repositories, and analyzed with models from multiple sources.
MDF supports this vision by providing an interconnection point that allows producers of

materials data to dispatch their results broadly and data consumers to discover and aggregate

data from independent sources. It streamlines and automates data sharing, discovery, access,
and analysis by: 1) enabling data publication, regardless of data size, type, and location; 2)
automating metadata extraction from submitted data into MDF metadata records (i.e., JSON
formatted documents following the MDF schema [21]) using open-source materials-aware
extraction pipelines and ingest pipelines; and 3) unifying search across many materials data
sources, including both MDF and other repositories with potentially different vocabularies and
schemas. Currently, MDF stores 30 TB of data from simulation and experiment, and also
indexes hundreds of datasets contained in external repositories, with millions of individual MDF

metadata records created from these datasets to aid fine-grained discovery.
3.1 Collecting and Sharing Data with MDF

The diversity and scale of materials data can pose challenges for both data producers and data
consumers. Data producers can find it difficult to determine which repository best suits their
dataset, or they may have specialized requirements (e.g., support for large datasets, advanced
curation flows, or varying access control across the dataset lifecycle) that are not met by any
single repository. Consumers attempting to locate data face yet more difficulties, as in order to
collect data, they must often first navigate differing web and programmatic interfaces, and then
merge data cataloged and described by different metadata schemas. MDF takes important
steps towards addressing these challenges by supporting collection of data from many
locations, enriching and transforming those data in materials-aware ways, and managing
interactions with many data services.

MDF consists of three modular services: MDF Publish, MDF Discover, and MDF
Connect. MDF Publish is a decentralized dataset repository. It allows a user to publish a
dataset to any Globus endpoint [20], identify the published dataset with a permanent identifier,

and implement user-driven dataset curation flows. MDF Discover provides a scalable, access-

controlled, cloud-hosted, materials-specific search index, coupled with software tools to
enable advanced user queries and data retrieval. MDF Connect is the central element that
connects not only MDF Publish and Discover, but also external services (Figure 1). It supports
three primary actions: 1) submission via user requests from programmatic or web interfaces
triggers the MDF Connect service to collect from many common sources; 2) enrichment of
collected data through general and materials-specific metadata extraction, combination of
extracted and user-provided metadata into MDF metadata records, and transformation of
dataset contents (e.g., from proprietary to open formats); and 3) dispatch of data to MDF
Publish, metadata to MDF Discover, and combinations of data and metadata to other
community data services selected by the user. MDF Connect can collect data from cloud
storage providers (Google Drive, Box, Dropbox), distributed storage systems accessible via
Globus [20], community repositories (NIST Materials Data Repository [6], Figshare, Zenodo),

and materials-specific data services (e.g., 4CeeD [4]).

Interfaces Data sources
(1) Submit Web ‘ Google Drive Eb
Programmatic | _______ 23 Dropbox
REST API and 7. 4CeeD tx)
Python SDK x
(2) Enrich L User Request 1 Collect
Extract: Transform:
MDF * Crystal structure - File format
= Composition * Representations
Connect » File information » Vocabularies

. * Other metadata
(3) Dispatch / 1 \
MDF Publish MDF Discover N
« Support for large datasets + Cloud-hosted metadata index N -t
« Persistent storage for dataset | | * Advanced search capabilities £
« DOI for referencing « Access-controlled searches NIST MRR CIT RINE E

+ Globus endpoint for access * MDF Forge client / REST API

Other community data services

Figure 1: Materials Data Facility (MDF) overview. (1) Users submit data to MDF by
specifying the data’s location, title, authors, and more. (2) MDF Connect collects data
from the specified location and applies materials-specific extractors and
transformations to enrich the data. (3) Processed data and metadata are dispatched to
any supported community data service(s) specified by the user. Other users can then

discover, interact with, and access the data using any of those services.

As described earlier, when a user submits a dataset to MDF Connect, the MDF Connect
service collects the data, enriches the data by extracting further information from the files, and
dispatches that information to the wider ecosystem. MDF Connect enriches data by invocation
of a series of extractors that extract general information (e.g., file name and size) and scientific
information (e.g., crystal structure or material composition) from the files provided by the user
to facilitate discovery. Subsequently, this extracted information is merged with user-provided
metadata to create an MDF metadata record following the MDF schema [21]. For example,
MDF Connect is able to extract the inputs and outputs of electron microscopy images and DFT
codes, among others, to generate descriptions of the material being studied, identify
instrument settings, or capture computed properties and convert these into MDF metadata
records that are dispatched to the MDF Discover index. Advanced users can build new data
extractors for the ecosystem or provide additional information to help MDF Connect make
sense of the data provided (e.g., by providing a mapping between fields in a custom comma-
separated values file and the MDF schema [21]). MDF Connect also allows optional dispatch of
this information to other host services, such as Citrination and MRR. Thus, with minimal effort
from the researcher, MDF Connect provides enriched descriptions of the submitted data and

makes it available in many forms.
3.2 Data Discovery with MDF

The rapidly growing quantities of data contained within both MDF Publish and other
community repositories makes discovery of datasets based on their attributes or contents a
challenging problem. No single schema can cover all data types, yet users want to be able to
search across these diverse data. MDF Discover addresses these needs by operating a flexible

search index in which registered datasets and associated files are described by key-value pair

metadata records (e.g., JSON documents) created by MDF Connect that follow a metadata
schema extending the DataCite and NIST Materials Resource Registry conventions [21]. For
added flexibility, MDF Discover also allows for addition of up to 10 user-defined metadata
fields per dataset on which searches can be performed. This search index is operated in the
cloud for scalability and availability, with a REST API permitting both programmatic and web
access.[22]

MDF Discover aims to allow simple data discovery while also permitting advanced
querying and data faceting when required. To this end, it implements a query syntax that
supports full-text matching (i.e., matching of query text against the value of any key in the
registered metadata), direct querying against user-specified keys, typed range queries for
dates and numeric fields, fuzzy matching, and wildcard matching. Additionally, users may
discover data through faceting operations that allow users to retrieve summary statistics,
partition matching data into buckets, and drill down into these buckets with subsequent
queries. For example, a user may facet data by elemental composition to determine how many
records are available for different elements, and then select a single element of interest to
investigate further.

Another important feature of MDF Discover is the ability to define access controls on
each registered record. While most data and metadata registered with MDF are publicly
accessible, access control mechanisms allow users to define which users or groups of users
can access certain metadata. Multiple metadata records may be associated with a single
dataset or the contained files, with differing permissions allowing for different users to see
different views depending upon the user permissions. These capabilities promote an open,
participatory environment where users can contribute to the description of a dataset

incrementally, with assurance that only authorized users can see metadata records until they

are ready for broader sharing. When a user searches MDF, their search results reflect only the
metadata records that they are authorized to access.

Many materials scientists interact with data, and share analysis methods, by writing
Python programs. To support these users, MDF provides the MDF Forge Python client to make
it easy to write Python programs that use MDF Discover capabilities to perform common
search and data collection tasks, such as searching by dataset name, author names, or

elemental composition, and that then use Globus or HTTPS methods to retrieve data records

identified by such searches. For example, Figure 2 shows a user first querying by dataset
name (i.e., source_name) and elemental composition and then retrieving results, including all
referenced files, with Globus. A similar data retrieval mechanism allows MDF Forge users to
retrieve data by HTTPS, although this route can be significantly less performant for data
aggregations that include large files or many files. Users can install MDF Forge on various

operating systems via the Python Package Index (PyPlI).

from import
Forge()

search_by_elements ([, 1, source_names=|[1)
globus_transfer(res)

Figure 2: Example showing a query and data retrieval operation using the MDF Forge
Python client. A Forge Python client is instantiated, and a search is performed to find
records from the Open Quantum Materials Database (OQMD) that contain cobalt or
vanadium. The result set is then passed to the globus_transfer function to transfer the
files associated with the matching results, including the full simulation output for each
record, to the user’s local Globus Connect Personal endpoint.

4 The Data and Learning Hub for Science (DLHub)

A key factor slowing the adoption of data-driven materials science approaches is that few

machine learning models and other related codes developed by materials scientists are easily

accessible. Even when open-source codes are shared via mechanisms such as GitHub, they
can be difficult to install, train, and run. The commercial use of machine learning has benefited
from the availability of web interfaces that provide simple routes for employing common
machine learning tasks (e.g., the Rekognition tools from Amazon). Similar capabilities are
required for research models.

We created DLHub to make it possible for scientists to make models accessible via
web interfaces with minimal effort. Much as MDF connects data providers and consumers
across the materials science community, DLHub [3] connects data with reusable data
transformation and model serving capabilities, allowing producers of such capabilities to make
them easily available, and permitting consumers to quickly discover the latest AlI/ML
developments and to apply those developments to their research projects. Thus, for example,
a researcher working with scanning transmission electron microscopy images may be able to
easily discover and apply a model to assess image quality or to detect loop defects.

DLHub seeks to overcome inefficiencies in the ML life cycle by providing facilities that
allow researchers to describe, publish, discover, and run ML models and associated data
transformation and analysis codes with minimal overhead. Using DLHub, a researcher can
discover, for example, that a model exists for prediction of materials structure and phase from
x-ray coherent diffraction data (see Section 5.2), that this model is accessible at a persistent
DLHub web address (URL), and that the model expects as input images of shape 32x32 pixels
and produces as output images of shape 32x32 pixels. The researcher can then use the
DLHub SDK to call this model from any network-connected computer without needing to
download, configure, and run the model on their local PC. By eliminating the need to install
complex software, DLHub greatly reduces the overheads associated with reusing and
programmatically incorporating models and other software into analyses, services, or other

code.

Under the hood, the DLHub service organizes user-supplied metadata and software
(models, custom functions, etc.) to create portable and scalable Docker container servables;
registers servables along with descriptive metadata in a catalog to support discovery; and
deploys servables onto scalable computing systems to permit rapid execution in response to

user requests. Chard et al. [3] provide a full description of the DLHub service and architecture.
4.1 DLHub Capabilities

The DLHub service and SDK allow researchers to perform four key actions (see Figure 3): 1)
describe a software tool by providing the information that the DLHub service needs to create
and to permit discovery and use of the associated servable; 2) publish a servable, sending files
and metadata to DLHub to create the servable and register it in the servable catalog; 3) search
the catalog to discover interesting servables and to learn how to use them; and 4) run a
servable against provided input data on DLHub-provided computing infrastructure. Users can
access each of these capabilities through the DLHub SDK, a REST API, or a command line
interface (CLI).

Describe: A researcher first uses DLHub SDK functions to specify the models, code,
and data (e.g., neural network weights) that will be used to construct a new servable, and to
provide descriptive metadata such as author names, links to source code, input types and
shapes, and domain of application. The initial DLHub schema leverages and extends work
from Kipoi [23] and DataCite [24]. This information allows other scientists to determine whether
the servable is applicable to their problem and what information to provider when invoking it.
The DLHub SDK provides utilities that, for common types of servables (e.g., Keras, Tensorflow,
ScikitLearn, and Torch, model objects), can extract automatically much of the information
needed to describe and recreate the servable (e.g., input and output shapes, neural network

architecture, locations of important files, software dependencies). Because scientific software

often involve custom libraries, DLHub is not limited to only common libraries and can serve
arbitrary Python functions.

A researcher who describes a model to DLHub can also specify whether access to the
created servable and its metadata is to be fully open or, alternatively, constrained to a group or
a defined list of users. Access policies for a servable and its metadata can be different: thus,
for example, metadata may be open, permitting discovery, while access to the servable itself
constrained to specified individuals. A user can thus discover that a servable exists and
proceed to request access.

Publish: A user can then send a request to DLHub to publish the servable. A publish
request collects the metadata and files specified when the user describes their model and
dispatches this information to the DLHub service. Upon receiving the model description, the
DLHub service builds the servable into a portable container (e.g., Docker or Singularity) and
loads the combined metadata into the servable catalog. Note that the container is constructed
automatically by the DLHub service; the user need not install any software on their system for
that purpose. Once the build process is complete, a unique DLHub service endpoint is
constructed to which users can send requests to invoke the newly published model.
Optionally, a user can choose to associate a unique identifier, like a digital object identifier
(DOI), with the servable to enhance citability.

Discover: Users can discover published servables, for which they are authorized to
view metadata, by querying the associated metadata. The full set of fields are described in the
DLHub schema which can be found from the DLHub web page linked in the Code and Data
Availability section. A servable query, like the data queries used by the MDF (Section 3), can
combine full-text search, range queries, pattern matching, and wildcards. Query results provide
added context about how to use the servable(s) located. For example, the user might learn that

the model accepts images of a specific size, find a link to associated journal articles, or be

directed to a test set of data they can use with the servable. This functionality is accessed
through the DLHub SDK, CLlI, or a web interface that is under development.

Run: Once a user has found a servable that they want and are authorized to run, they
can invoke it on input data that they supply, and receive the resulting output in response. The
servable itself runs remotely on services that execute on a 200-processor cluster at Argonne
National Laboratory, Amazon Web Services, or other supported resources. Requests can be
synchronous (i.e., the reply from DLHub service contains the outputs) or asynchronous (i.e., the
reply contains a key used to retrieve the results later). These two modes allow DLHub to

support servables with both fast and slow execution times.

Describe » Publish ——— Discover
Specify the model file_s } ' : Regisjer _'mh_ DLHub for » Discover servables with advanced search
Mark up the model with information to make contalnenza_tlon as a servgble capabilities through Python SDK or web Ul
it discoverable and usable * DLHub service creates unique
from dlhub_sdk.mode rvables.tensorflow import endpoint for servable Run
TensorFlowMode from dU . import DLHub .t * Make predictions by sending data to DLHub
dl = DLHubClient() and specifying the servable to use

m = TensorFlowModel.create_model() i
m.set_name () dl.publish(m) from

set_title() = DLHubClient()

m.set_domains(,) red = dl.run(, data)

1t import DLHu

Figure 3: DLHub usage pattern. A user describes a model or custom code to make it discoverable and
reusable. The user submits a publish request to DLHub, triggering a transfer of the required files and
registration of the model metadata with the DLHub service. A servable is created to hold the model
and custom code, and the associated metadata are loaded into a registry for later discovery.
Subsequently, users can run the servable with new inputs to receive the defined output from the
servable.

4.2 DLHub Service

The DLHub service is designed to support the publish, discover, and run capabilities just
discussed with high availability, scalability, security, and performance. (The describe capability
is handled by the DLHub SDK.) To this end, the DLHub service’s implementation comprises
multiple components: a cloud-hosted DLHub service that accepts user publish, discover, and
run requests; a cloud-hosted servable creation service; a cloud-hosted metadata catalog used

to serve discover requests; and potentially many servable execution environments that are able

to run on cloud resources, Kubernetes clusters, high-performance computing systems or
elsewhere.

DLHub packages servables as Docker or Singularity containers, a computing
technology that facilitates portability across different computing resources and provides a
sandboxed execution environment. DLHub uses Parsl [25] to manage scalable computing
resources by deploying servable containers on provisioned nodes or cloud instances. It sets up
a high-performance connection between the DLHub service and the deployed servable. When
a user executes a servable, the DLHub service retrieves the servable metadata and validates
the input parameters. The request is packaged with servable metadata and serialized for
transmission to an execution node capable of running the servable; the servable is deployed
on one or more nodes; the DLHub service transmits the input data to the servable for

execution; and the servable sends results back to the DLHub service when complete.

5 Science Use Cases

To illustrate the power of these approaches, and how DLHub and MDF capabilities can be
included in scientific workflows, we describe three science use cases. The first combines data
hosted and indexed within MDF Publish and Discover, respectively, with ML models published
as servables to DLHub to rapidly predict band gap based on an input image. The second uses
a DLHub servable to extract the corresponding material structure from a set of input X-Ray
coherent diffraction images. The third uses several different DLHub servables to make more
accurate atomization energy predictions using low fidelity simulations as input, with the training
and test data indexed and hosted in MDF Publish and Discover. Code for each example is

accessible as described in the Code and Data Availability section.

5.1 Combining DLHub and MDF to Facilitate Band Gap Prediction

Stein et al. [26] recently described ML methods for predicting material band gap and spectra
from optical images obtained experimentally. The dataset used to train their ML model
contained optical absorption spectra and optical images of samples prepared via high-
throughput techniques [27]. They also described methods for training a variational autoencoder
(VAE) model and for training an ML model on the resultant encoder latent space to predict a
sample’s optical absorption spectrum. The band gap can then be determined from these
predicted spectra by using the multiple adaptive regression splines (MARS) algorithm to locate
the absorption onset [28].

To make this work easily reusable, we submitted the training dataset to MDF Connect,
dispatched the extracted metadata in MDF Discover, and published the models referencing
those data in DLHub. The Stein dataset consists of MDF metadata records describing 180,902
individual optical images and output spectrum files, so as to enable creation of different
training and test datasets by sub-selecting data by index or materials composition as needed.
The experimental dataset used in this study had previously been available only as a single,
large HDF5 file. Now, with MDF, the dataset can be partitioned via user queries, immediately
enabling new applications and data mixing opportunities. Second, we published several
models into DLHub (as servables) based on, and extending, the models of Stein et al. [26],
including a first model that resembles the optical image VAE described in the paper, a second
optical image autoencoder (AE) model, and a third model that instead uses color clustering
techniques to predict the material bandgap. We then used the dataset, as available in MDF
Discover, to streamline the process of retrieving data (Figure 4a) and running servables within
DLHub on the retrieved data (Figure 4b). We demonstrated autoencoding of the original images
(Figure 4c) and examination of the latent space of the trained VAE (Figure 4d) with respect to

image color and bandgap, all with only a few lines of code.

(@) MDF Data Retrieval (c) Model Outputs
__Original AE VAE

from mdf ‘orge import

= Forge()

= mdf.search(q, advanced=)
“.globus_transfer(res)

20 0 20 0 20

(b) DLHub to Encode Images (d) VAE Latent Space

75 -

from dlhub_sdk.client import HubClient =
= DLHubClient() ® g a e

; = dl.run(,
inputs=[images]) s

-80 —60 —40 -20 ©0 20 40 60

Figure 4: Retrieving test data through MDF and passing data to DLHub for prediction of
absorption onset (band gap). (a) Using the Forge Python client, the input image and
absorption spectrum are aggregated from the stored dataset. (b) The retrieved data are sent
as input to the encoder model in DLHub to produce a latent representation of the image. (c)
Two original input images and corresponding AE and VAE model outputs. (d) A sampling of
the VAE latent space clustered by the TSNE algorithm [29], with each circle color
representing the image color and with size proportional to band gap for a subset of the data.
Links to the code to reproduce this work can be found in the Code and Data Availability
section.

5.2 Coherent Diffraction Imaging Prediction

X-Ray coherent diffraction imaging (CDI) is an experimental technique that allows for
determination of material structure and phase, with the phase encoding many interesting
material properties, such as strain state [30]. To enable rapid phase and structure predictions
from CDI data, Cherukara et al. [30] built a deep convolutional neural network to predict phase
and structure, using a set of simulated CDI images of varying structures with varying strains for
model training. Given the importance of CDI in materials science, especially at the Advanced

Photon Source at Argonne National Laboratory, the widespread availability and deployment of

such a model would be of great value, enhancing the ability to gather information quickly on
samples and to assess the state of an experiment in a control loop.

In this case, we first submitted the available test data to MDF. Next, as the trained
model is freely available via GitHub, we simply described it with metadata to credit the authors
and enhance discovery, and then published it into DLHub using the DLHub Python SDK to
pass the model’s GitHub location and metadata to DLHub. The DLHub service then collected
the model files, here comprising a set of Keras saved weights and the model architecture, and
created a servable and an associated servable endpoint automatically. Researchers can thus
test and run this servable on data with minimal coding knowledge or software installation
overhead. In fact, only three lines of code, as shown in Figure 5(a), in addition to the data
retrieval code (omitted for brevity) are needed to run this servable. Two examples of an input

CDI and the predicted output structure are shown in Figure 5(b).

@ from dlhub_sdk.client import DLHubClient
dl = DLHubClient()

struct = dl.run(, X)

CDI Intensity Predicted Structure
(via DLHub)

(b)

Figure 5: Predicting material structure based on CDI
data, via DLHub. (a) Using the DLHub Python client, the
input X-ray diffraction data (32x32 pixel CDI intensities)
are run with the cherukara_structure servable in DLHub.

(b) Example CDI intensity (left) input and (right) predicted
structures from the DLHub servable. Links to the code to
reproduce this work can be found in the Code and Data
Availability section.

5.3 Fast, High-Quality Estimates of Molecular Atomization Energies

The ability to predict the energy of a molecule accurately from first-principles calculations
forms the core of many approaches for the discovery and rational design of materials.
However, while ab initio methods exist that can predict the energy of molecules with
accuracies comparable to the uncertainty in corresponding experimental data (e.g., G4MP2
[31]), the computational expense of these high-accuracy methods limits their widescale use. To
address this issue, Ward et al. [32] built machine learning models that use a recently-published
MDF dataset to predict high-accuracy, G4MP2 energies from the outputs of faster, but
inaccurate calculations (B3LYP). The authors used DLHub to make this capability available to
the wider community.

Ward et al. [32] used well-established techniques from the materials literature to build
this capability. The models were trained using a deep learning approach by Schiitt et al.
(SchNet [33]) to learn the differences between B3LYP- and G4MP2-level atomization energy
calculations (i.e., A-learning [34]). The best resulting models predict G4MP2-level molecular
atomization energies with an accuracy of around 10 meV, far below the difference between
G4MP2 and experimental values. The models produced in this work are available in DLHub so
that others in the community can use them without needing to install any software. As shown
in Figure 6, it is possible to correct the BSLYP atomization energies for hundreds of molecules
per second by using the model from Ward et al. through DLHub - putting the ability to quickly

estimate high-fidelity atomization energies in the hands of any molecular modeler. This

capacity can be scaled elastically with demand by increasing or decreasing the number of

servable replicas running in DLHub.

B

[@®]

w
1

® 0%0g00%00
o0

Evaluation Time (ms)
[N

o

5 10 15 20 25 30
Number of Atoms

Figure 6: Time to predict the G4MP2-level atomization energy of
100 molecules given input B3LYP energies and relaxed structure
using a machine learning model produced by Ward et al. [32] as a
function of molecule size. Timings were measured over 64
identical runs with one servable container running in the DLHub
service. Throughput may be scaled elastically by varying the
number of container replicas. Error bars representing the standard
error of the mean are within the size of the markers. Links to the
code to reproduce this work can be found in the Code and Data
Availability section.

6 Conclusion

We have described key MDF and DLHub capabilities that we argue are critical to building a
materials data ecosystem that is optimized to enable the widespread application of machine
learning and artificial intelligence methods. These capabilities include automation of data
sharing (even for large datasets) among heterogenous data services; enrichment of data with
both general and materials-specific metadata to promote discovery and reuse; software tools
to simplify data discovery, aggregation, and use; and a library of curated machine learning

models and processing logic that can easily be applied to new data streams. Each capability is

provided as a service, greatly reducing the work required for users to access these powerful
capabilities and enabling other data services to leverage them in a modular fashion. We
presented three examples to showcase some of the many ways in which MDF and DLHub
capabilities can be used to deliver the results of machine learning studies in materials science
to a broad audience. In future work, we plan to build connections between MDF and other
data services to encourage broader and more simple dissemination and discovery of datasets.
Towards improving data discovery, we see a clear opportunity for various projects to combine
efforts to collaboratively build the software necessary to automate the extraction of metadata
from hundreds of common file types used in materials science, since much of this work is
currently fragmented across several code bases. Further, we are encouraged to see that many
data repositories now enable open and automated harvesting and access to their collected
results through REST APIs, although lack of a shared authentication strategy is a remaining
challenge. With DLHub, we will soon enable execution of models and servables on distributed
resources (e.g., Jetstream, Amazon Web Services, DOE Leadership Computing Facilities), and
will enable the linking of servables to better represent the often-complex logic seen in machine
learning applications. These and other efforts continue to move the community forward to the
ultimate goal of realizing a complete data ecosystem to support the application of machine
learning in materials science. In the meantime, the examples presented in this article highlight
how cohesive infrastructure services, such as MDF and DLHub, can streamline complex

materials discovery tasks.

Code and Data Availability

As DLHub and MDF are both evolving projects, the code presented in this article will change
over time. To best enable researchers to reproduce and build upon this work, we provide a

growing repository of worked examples from various scientific domains, accessible via

https://www.dlhub.org. Access to all code, packages (e.g., Forge and other clients),
documentation, and interfaces related to MDF can be found via
https://www.materialsdatafacility.org. Access to all code, packages (e.g., DLHub SDK and

CLlI), documentation, and interfaces related to DLHub can be found at https://www.dlhub.org.

Acknowledgements
MDF: This work was performed under financial assistance award 70NANB14H012 from U.S.

Department of Commerce, National Institute of Standards and Technology as part of the
Center for Hierarchical Material Design (CHiMaD). This work was performed under the following
financial assistance award 70NANB19H005 from U.S. Department of Commerce, National
Institute of Standards and Technology as part of the Center for Hierarchical Materials Design
(CHiMaD).This work was also supported by the National Science Foundation as part of
the Midwest Big Data Hub under NSF Award Number: 1636950 “BD Spokes: SPOKE:
MIDWEST: Collaborative: Integrative Materials Design (IMaD): Leverage, Innovate, and
Disseminate.” DLHub: This work was supported in part by Laboratory Directed Research and
Development funding from Argonne National Laboratory under U.S. Department of Energy
under Contract DE-AC02-06CH11357. We also thank the Argonne Leadership Computing
Facility for access to the PetrelKube Kubernetes cluster and Amazon Web Services for

providing research credits to enable rapid service prototyping. This research used resources of
the Argonne Leadership Computing Facility, a DOE Office of Science User Facility supported under
Contract DE-AC02-06CH11357.

The authors would also like to acknowledge and thank the researchers who made their

datasets and/or models and codes openly available [26,30,32].

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

A. White, The Materials Genome Initiative: One year on, MRS Bull. 37 (2012) 715-716.
doi:10.1557/mrs.2012.194.

B. Blaiszik, K. Chard, J. Pruyne, R. Ananthakrishnan, S. Tuecke, |. Foster, The Materials
Data Facility: Data Services to Advance Materials Science Research, JOM. 68 (2016)
2045-2052. doi:10.1007/s11837-016-2001-3.

R. Chard, Z. Li, K. Chard, L. Ward, Y. Babuji, A. Woodard, S. Tuecke, B. Blaiszik, M.J.
Franklin, I. Foster, DLHub: Model and Data Serving for Science, (2018).
http://arxiv.org/abs/1811.11213 (accessed March 8, 2019).

P. Nguyen, S. Konstanty, T. Nicholson, T. OBrien, A. Schwartz-Duval, T. Spila, K.
Nahrstedt, R.H. Campbell, |. Gupta, M. Chan, K. Mchenry, N. Paquin, 4CeeD: Real-Time
Data Acquisition and Analysis Framework for Material-Related Cyber-Physical
Environments, in: 2017 17th IEEE/ACM Int. Symp. Clust. Cloud Grid Comput., IEEE,
2017: pp. 11-20. doi:10.1109/CCGRID.2017.51.

J. O’Mara, B. Meredig, K. Michel, Materials Data Infrastructure: A Case Study of the
Citrination Platform to Examine Data Import, Storage, and Access, JOM. 68 (2016)
2031-2034. doi:10.1007/s11837-016-1984-0.

A. Dima, S. Bhaskarla, C. Becker, M. Brady, C. Campbell, P. Dessauw, R. Hanisch, U.
Kattner, K. Kroenlein, M. Newrock, A. Peskin, R. Plante, S.-Y. Li, P.-F. Rigodiat, G.S.
Amaral, Z. Trautt, X. Schmitt, J. Warren, S. Youssef, Informatics Infrastructure for the
Materials Genome Initiative, JOM. 68 (2016) 2053-2064. doi:10.1007/s11837-016-2000-
4.

S. Kirklin, J.E. Saal, B. Meredig, A. Thompson, J.W. Doak, M. Aykol, S. Rihl, C.
Wolverton, The Open Quantum Materials Database (OQMD): assessing the accuracy of
DFT formation energies, Npj Comput. Mater. 1 (2015) 15010.

doi:10.1038/npjcompumats.2015.10.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter,
D. Skinner, G. Ceder, K.A. Persson, Commentary: The Materials Project: A materials
genome approach to accelerating materials innovation, APL Mater. 1 (2013) 011002.
doi:10.1063/1.4812323.

C. Draxl, M. Scheffler, NOMAD: The FAIR concept for big data-driven materials science,
MRS Bull. 43 (2018) 676-682. doi:10.1557/mrs.2018.208.

J. Carrete, W. Li, N. Mingo, S. Wang, S. Curtarolo, Finding Unprecedentedly Low-
Thermal-Conductivity Half-Heusler Semiconductors via High-Throughput Materials
Modeling, Phys. Rev. X. 4 (2014) 011019. doi:10.1103/PhysRevX.4.011019.

S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R.H. Taylor, L.J. Nelson, G.L.W.
Hart, S. Sanvito, M. Buongiorno-Nardelli, N. Mingo, O. Levy, AFLOWLIB.ORG: A
distributed materials properties repository from high-throughput ab initio calculations,
Comput. Mater. Sci. 58 (2012) 227-235. doi:10.1016/j.commatsci.2012.02.002.

A. Mannodi-Kanakkithodi, A. Chandrasekaran, C. Kim, T.D. Huan, G. Pilania, V. Botu, R.
Ramprasad, Scoping the polymer genome: A roadmap for rational polymer dielectrics
design and beyond, Mater. Today. (2017). doi:10.1016/j.mattod.2017.11.021.

R.B. Tchoua, K. Chard, D.J. Audus, L.T. Ward, J. Lequieu, J.J. De Pablo, |.T. Foster,
Towards a Hybrid Human-Computer Scientific Information Extraction Pipeline, in: 2017
IEEE 13th Int. Conf. e-Science, IEEE, 2017: pp. 109-118. doi:10.1109/eScience.2017.23.
B. Puchala, G. Tarcea, E.A. Marquis, M. Hedstrom, H. V. Jagadish, J.E. Allison, The
Materials Commons: A Collaboration Platform and Information Repository for the Global
Materials Community, JOM. 68 (2016) 2035-2044. doi:10.1007/s11837-016-1998-7.
Materials Simulation Toolkit for Machine Learning (MAST-ML), (n.d.).
https://github.com/uw-cmg/MAST-ML (accessed June 27, 2019).

D. Wheeler, D. Brough, T. Fast, S. Kalidindi, A. Reid, PyMKS: Materials Knowledge

[17]

[18]

[19]

[20]

[21]

[22]

[23]

System in Python, 2014.

L. Ward, A. Dunn, A. Faghaninia, N.E.R. Zimmermann, S. Bajaj, Q. Wang, J. Montoya, J.
Chen, K. Bystrom, M. Dylla, K. Chard, M. Asta, K.A. Persson, G.J. Snyder, I. Foster, A.
Jain, Matminer: An open source toolkit for materials data mining, Comput. Mater. Sci.
152 (2018) 60-69. doi:10.1016/j.commatsci.2018.05.018.

S.P. Ong, W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V.L.
Chevrier, K.A. Persson, G. Ceder, Python Materials Genomics (pymatgen): A robust,
open-source python library for materials analysis, Comput. Mater. Sci. 68 (2013) 314—
319. doi:10.1016/j.commatsci.2012.10.028.

J. Schneider, J. Hamaekers, The atomic simulation environment-a Python library for
working with atoms Related content ATK-forceField: a new generation molecular
dynamics software package, J. Phys. Condens. Matter Top. Rev. (2017).
doi:10.1088/1361-648X/aa680e.

I. Foster, K. Chard, S. Tuecke, The Discovery Cloud: Accelerating and Democratizing
Research on a Global Scale, in: 2016 IEEE Int. Conf. Cloud Eng., IEEE, 2016: pp. 68-77.
doi:10.1109/IC2E.2016.46.

Materials Data Facility Schema Repository, (n.d.). https://github.com/materials-data-
facility/data-schemas (accessed June 27, 2019).

R. Ananthakrishnan, B. Blaiszik, K. Chard, R. Chard, B. McCollam, J. Pruyne, S. Rosen,
S. Tuecke, |. Foster, Globus Platform Services for Data Publication, in: Proc. Pract. Exp.
Adv. Res. Comput. - PEARC ’18, ACM Press, New York, New York, USA, 2018: pp. 1-
7.doi:10.1145/3219104.3219127.

Z. Avsec, R. Kreuzhuber, J. Israeli, N. Xu, J. Cheng, A. Shrikumar, A. Banerjee, D.S. Kim,
L. Urban, A. Kundaje, O. Stegle, J. Gagneur, Kipoi: accelerating the community

exchange and reuse of predictive models for genomics, BioRxiv. (2018) 375345.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

doi:10.1101/375345.

DataCite Schema, (n.d.). https://schema.datacite.org/ (accessed March 8, 2019).

Y. Babuiji, A. Brizius, K. Chard, I. Foster, D.S. Katz, M. Wilde, J. Wozniak, Introducing
Parsl: A Python Parallel Scripting Library, (2017). doi:10.5281/ZENODO.891533.

H.S. Stein, D. Guevarra, P.F. Newhouse, E. Soedarmadiji, J.M. Gregoire, Machine
learning of optical properties of materials — predicting spectra from images and images
from spectra, Chem. Sci. 10 (2019) 47-55. doi:10.1039/C8SC03077D.

S. Mitrovic, E. Soedarmadiji, P.F. Newhouse, S.K. Suram, J.A. Haber, J. Jin, J.M.
Gregoire, Colorimetric Screening for High-Throughput Discovery of Light Absorbers,
ACS Comb. Sci. 17 (2015) 176-181. doi:10.1021/co500151u.

M. Schwarting, S. Siol, K. Talley, A. Zakutayev, C. Phillips, Automated algorithms for
band gap analysis from optical absorption spectra, Mater. Discov. 10 (2017) 43-52.
doi:10.1016/J.MD.2018.04.003.

L. van der Maaten, G. Hinton, Visualizing data using t-SNE, J. Mach. Learn. Res. 9
(2008) 2579-2605.

M.J. Cherukara, Y.S.G. Nashed, R.J. Harder, Real-time coherent diffraction inversion
using deep generative networks, Sci. Rep. 8 (2018) 16520. doi:10.1038/s41598-018-
34525-1.

L.A. Curtiss, P.C. Redfern, K. Raghavachari, Gaussian-4 theory using reduced order
perturbation theory, J. Chem. Phys. 127 (2007) 124105. doi:10.1063/1.2770701.

L. Ward, B. Blaiszik, |. Foster, R.S. Assary, B. Narayanan, L. Curtiss, Machine Learning
Prediction of Accurate Atomization Energies of Organic Molecules from Low-Fidelity
Quantum Chemical Calculations, MRS Commun. (2019).

K.T. Schitt, H.E. Sauceda, P.-J. Kindermans, A. Tkatchenko, K.-R. Mller, SchNet — A

deep learning architecture for molecules and materials, J. Chem. Phys. 148 (2018)

241722. doi:10.1063/1.5019779.
[34] R. Ramakrishnan, P.O. Dral, M. Rupp, O.A. von Lilienfeld, Big Data Meets Quantum
Chemistry Approximations: The A-Machine Learning Approach, J. Chem. Theory

Comput. 11 (2015) 2087-2096. doi:10.1021/acs.jctc.5b00099.

	1 Introduction
	2 The Materials Data Ecosystem
	3 Materials Data Facility (MDF)
	3.1 Collecting and Sharing Data with MDF
	3.2 Data Discovery with MDF

	4 The Data and Learning Hub for Science (DLHub)
	4.1 DLHub Capabilities
	4.2 DLHub Service

	5 Science Use Cases
	5.1 Combining DLHub and MDF to Facilitate Band Gap Prediction
	5.2 Coherent Diffraction Imaging Prediction
	5.3 Fast, High-Quality Estimates of Molecular Atomization Energies

	6 Conclusion
	Code and Data Availability
	Acknowledgements

