
Hierarchical Filter and Refinement System over
Large Polygonal Datasets on CPU-GPU

Yiming Liu
Computer Science Dept.

Marquette University

yiming.liu@marquette.edu

Jie Yang
Computer Science Dept.

Marquette University

jie.yang@marquette.edu

Satish Puri
Computer Science Dept.

Marquette University

satish.puri@marquette.edu

Abstract—In this paper, we introduce our hierarchical filter
and refinement technique that we have developed for parallel
geometric intersection operations involving large polygons and
polylines. The inputs are two layers of large polygonal datasets
and the computations are spatial intersection on a pair of cross-
layer polygons. These intersections are the compute-intensive
spatial data analytic kernels in spatial join and map overlay
computations. We have extended the classical filter and refine
algorithms using PolySketch Filter to improve the performance of
geospatial computations. In addition to filtering polygons by their
Minimum Bounding Rectangle (MBR), our hierarchical approach
explores further filtering using tiles (smaller MBRs) to increase
the effectiveness of filtering and decrease the computational
workload in the refinement phase.

We have implemented this filter and refine system on CPU
and GPU by using OpenMP and OpenACC. After using R-tree,
on average, our filter technique can still discard 69% of polygon
pairs which do not have segment intersection points. PolySketch
filter reduces on average 99.77% of the workload of finding line
segment intersections. PNP based task reduction and Striping
algorithms filter out on average 95.84% of the workload of Point-
in-Polygon tests. Our CPU-GPU system performs spatial join on
two shapefiles, namely USA Water Bodies and USA Block Group
Boundaries with 683K polygons in about 10 seconds using NVidia
Titan V and Titan Xp GPU.

Index Terms—HPC, Parallel algorithm, OpenACC, OpenMP

I. INTRODUCTION

In Geographic Information Systems (GIS) and spatial

databases, vector geometries like polygons and polylines are

used to represent real-world objects. The input to map overlay

and spatial join queries are two layers of geo-spatial data.

Spatial query operations often require expensive computational

geometry algorithms. For computational efficiency, query op-

erations are carried out in two phases. The first phase is

a filter phase where complex geometries are approximated

by their minimum bounding rectangle (MBR). Filter phase

employs spatial data structures like R-tree built using MBRs

of geometries. Working with MBR representation is faster

compared to actual geometries that may contain thousands of

vertices. Geometries that could not possibly satisfy the query

condition are removed. The output of filter phase consists of

candidate pairs that may or may not be part of the final output.

The drawback of filtering using MBR is that it produces many

false hits because of MBR approximation. As such, in the

second phase of refinement, actual geometries are used to

produce correct results by detecting and removing false hits.

With two layers R and S as inputs, the output of spatial join

is a collection of pairs (r, s) such that r ∈ R, s ∈ S, and r and

s overlap spatially. An example of spatial join query is “Find

all the places where roads cross rivers”. Overlap is one of the

spatial relations between r and s. Other spatial relations are

Intersects, Touches, Contains, etc. Spatial databases and GIS

support such topological relations on two layers of geometries.

In this paper, we extend the classical filter and refine strategy

by introducing PolySketch technique. The basic idea is to

represent a large geometry using its sketch that is made up

of a collection of tiles. Each tile is a subset of contiguous

vertices with the corresponding MBR induced by the subset.

Our PolySketch filter not only reduces the candidate pairs

but also reduces the workload in the refinement phase.

Refinement phase involves computational geometry algo-

rithms on a variety of shapes. Computing the topological rela-

tions and geographic map overlay requires two kernels namely,

line segment intersection (LSI) and Point-in-Polygon (PNP).

An example of polygon intersection is shown in Figure 1.

There are two overlapping polygons P1 and Q1. The first step

is to find line segment intersection vertices (black) among line

segments from the two polygons as shown in Figure 1(a). The

second step requires PNP function to find polygon vertices

that are inside another polygon e.g., one vertex (red) of Q1

is inside P1 and two vertices (blue) of P1 are inside Q1 as

shown in Figure 1(b). Finally, output polygon(s) are produced

by combining the output of LSI and PNP functions. An output

polygon is shown in Figure 1(c).

(a) (b) (c)

Fig. 1. (a) Line segment intersection vertices, (b) Vertices inside another
polygon, and (c) Output polygon (Best Viewed in Color)

It has been shown that as geometries are getting larger in

size, the refinement phase is taking most of the time [1]. De-

creasing the number of candidates produced in the filter phase

also reduces the workload in the refinement phase. Therefore,
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we propose applying a hierarchy of MBR and PolySketch
filter to improve the filter efficiency. Not all segments of a

polygon will intersect with the segments of another polygon.

Expensive polygon intersections in the refinement phase can

be possibly eliminated by using the sketch of a polygon.

Further improvement is possible by the GPU-acceleration of

computational geometry algorithms in the refinement phase.

We illustrate the benefit of our new approach using an

example that shows how hierarchical filtering reduces the

overall workload. Let us consider we have two layers of

polygons L1 and L2. L1 and L2 consist of 310 and 500

polygons respectively. Table I shows nine candidate pairs and

each pair has two polygons (P and Q) from L1 and L2 whose

MBRs overlap with each other. The number of vertices in

a polygon is also shown below the polygon ID. As shown

in Table II, the application of PolySketch Filter eliminates

some line segments that can be safely ignored from further

refinement. Moreover, in case of polygons from a few of the

candidates, MBR-based Filter eliminates all the line segments.

As a result, we can discard the pairs that have zero line

segments after applying hierarchical filtering. Since, polygon

intersection with n and m line segments is an O(n ∗m) time

algorithm, reducing the line segments by filtering is beneficial.

TABLE I
CANDIDATE PAIRS BEFORE HIERARCHICAL FILTERING

1 2 3 4 5 6 7 8 9

L1
P3 P3 P21 P24 P88 P88 P99 P236 P300
35 35 199 652 998 998 152 4652 52

L2
Q5 Q7 Q56 Q3 Q5 Q12 Q5 Q5 Q457
65 22 659 832 65 529 65 65 1526

TABLE II
ELIMINATING LINE SEGMENTS BY HIERARCHICAL FILTERING

1 2 3 4 5 6 7 8 9

L1
P3 P3 P21 P24 P88 P88 P93 P236 P427
35 0 156 0 0 451 112 324 52

L2
Q5 Q7 Q56 Q3 Q5 Q12 Q5 Q5 Q637

0 0 34 0 65 256 32 30 0

The contributions of this paper are as follows:

1) We have introduced a new filtering technique based on

PolySketch concept which can speedup LSI function used

by spatial join and map overlay computations involving

large polygons and polylines.

2) Our OpenACC-based GPU implementation performs spa-

tial join on two shapefiles, namely USA Water Bodies and

USA Block Boundaries in about 10 seconds using NVidia

Titan V and Titan Xp GPU.

The rest of the paper is organized as follows. Section II

provides the background and related work. Section III in-

troduces PolySketch Filter. Section IV provides design and

algorithm details on our hierarchical filter and refine system.

The experimental results are discussed in Section V. Finally,

we conclude in Section VI.

II. BACKGROUND AND RELATED WORK

Plane-sweep is a fundamental technique in computational

geometry and it has been parallelized on multi-core and

manycore architectures [2]–[4]. Boolean set operations like

union and intersection on polygons require line segment inter-

sections and point-in-polygon test [5]. GPU-based acceleration

of segment intersections and point-in-polygon test have been

studied in the domain of GIS and spatial databases [1], [6]–[9].

We have designed theoretical PRAM algorithms and multi-

threaded implementations for polygon clipping [10], [11].

We used the intersection of two cross-layer polygonal MBRs

(CMBR) earlier in our GPU-based spatial join system called

GCMF [12] to filter out candidate pairs that do not need

further refinement. CMBR is effective in cases where it can

filter out the majority of the line segments. This leads to a

reduction in workload. It was observed that in some cases

CMBR was not effective in workload reduction. So, CMBR

technique was further improved by creating grid inside the

area of CMBR for further filtering [13]. As opposed to

CMBR, PolySketch is a hierarchical technique. However,

our PolySketch system can employ CMBR technique in a

hierarchical manner to weed out the pairs of cross-layer tiles

that do not need further refinement. Other approaches used in

literature include PixelBox where geometries represented as

co-ordinates are converted to raster format (pixels) to leverage

image processing using a GPU [14].

Spatial partitioning of geometries using techniques like uni-

form grid [9], quadtree and binary space partitioning has been

studied in literature. In our system, we do not explicitly do

spatial partitioning. Instead, we use data partitioning by tiling.

Tiling induces spatial partitioning. We do not use uniform or

adaptive grid partitioning of input layers of spatial data.

Different methods employed in filter and refine based spatial

query processing have been discussed in [15]. R-tree is used

for building a spatial index and MBR query [16]. Partitioning

a polygon by decomposing its area into smaller and simpler

geometries has been studied earlier [17]. Existing tools in GIS

invoke computational geometry algorithms on shapes made

of 2D co-ordinate data. In computer graphics, a complicated

shape is often decomposed by triangulation. For efficiency,

triangulations are used instead of actual geometry. In con-

trast, PolySketch is a recursive tiling of polygon boundary

only; the interior of a polygon is disregarded altogether.

As such, sketch of a polygon does not work in the same

way as a polygonal MBR or classical polygon partitioning

because PolySketch approximates the boundary only. In

short, PolySketch is not a replacement for MBR in classical

filter and refine scenario. It must be used in conjunction with

point-in-polygon test (PNP) to implement standard intersects
predicate in spatial join.

In addition to representing geometries using MBRs, convex

and concave hull can also be used. Convex hull can be

used as a replacement for MBR in spatial queries. Creat-

ing a PolySketch is a linear time operation, on the other

hand, convex hull algorithms require O(nlogn) time. Douglas-
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Peucker line simplification algorithm and its variants reduce

the number of points to represent a curve [18]. Line simpli-

fication is primarily used for visualization on a map. In case

of geometries like polygons, using the simplified version may

not yield correct results for spatial queries. PolySketch is

similar to hierarchical bounding technique used for line-curve

intersection and curve-curve intersection [19].

We have used compiler directives for GPU-based paral-

lelization of computational geometry algorithms earlier [4].

In our OpenACC-based spatial join implementation, we used

classical filter and refine technique where filter phase was done

on a CPU using R-tree query and refinement phase was done

on a GPU. The performance for large data was unsatisfactory

when compared to sequential implementation of spatial join

on a CPU. This basically motivates the present work.

Fig. 2. PolySketch of polyline data composed of tiling at three different
levels.

III. POLYSKETCH AND CMBR FILTER

Sketch of a polygon/polyline is made by tiling its boundary

in such a way that one tile represents an MBR of the vertices in

that tile. These tiles are contiguous and two adjacent tiles share

a vertex. A sketch is designed as a lightweight representation

to be used in the filter phase of a filter-and-refine algorithm in

a spatial computation, e.g., join, overlays. Figure 2 shows the

hierarchical tiling approach. A tile is defined as a C structure.

When compared to MBR of a geometry, a sketch of a geometry

has less dead-space. As such, better filter efficiency is possible

at the cost of additional space requirement.

Listing 1. Tile Data Structure

s t r u c t T i l e {
i n t s t a r t , end ;

v e r t e x *v ; / / v e r t e x a r r a y

MBR mbr ; / /MBR of v [ s t a r t ] t o v [ end ]

} ;

A PolySketch for a geometry with n vertices and tile length

set as b consists of
⌈
n
b

⌉
tiles. Since, in each tile, an MBR

for the vertices in that tile needs to be computed, building

a sketch of a polygon is O(n) operation. An MBR of an

entire geometry is also O(n) operation. As will see later in the

experimental results, sketching provides a space-time tradeoff

because of its hierarchical nature.
A tree can be constructed to represent a hierarchy of

PolySketches at different levels. Using the leaf-level tiles,

internal nodes of the tree can be constructed using union of

two successive tiles. An MBR of a polygon can be thought of

as its level 0 sketch with its start index as 0 and end index as

the number of vertices in the polygon. For a polygon with N

vertices, there are O(log N) sketches possible in a tree-based

representation. However, it suffices to use a few levels only as

shown in Figure 2 for space-efficiency.

Fig. 3. Polygon intersection using PolySketch. Tiles for each polygon is
shown in different colors.

As shown in Figure 3, there are two polygons P1 from

layer1 and Q1 from layer 2. The tile-size is set as six line

segments. Q1 consists of twenty-one line segments, so it is

divided into five tiles. For polygon intersection between P1 and

Q1, we first check if their corresponding tile-MBRs overlap

or not. If some tile-MBRs from P1 and Q1 overlap, we record

those tile pairs and use LSI function for those pairs. If there is

no tile-MBR overlap, we discard this task for LSI function. In

Figure 3, we can see that there are three pairs of tiles that have

overlap. A tile located in the lower left corner of Q1 overlaps

with two tiles located in the right-side corner of P1. Similarly,

another tile located in the upper left corner of Q1 overlaps

with one tile located in the upper right corner of P1. Other

tiles and their corresponding vertices can be safely ignored in

LSI function.
Checking if two tile-MBRs overlap is computationally

cheaper than finding the segment intersection between two line

segments. In one of the datasets that we have used, about 13%

of polygons have more than 500 vertices. Since, a tile’s MBR

contains a fraction of the vertices of a polygon, using it in

place of actual vertices in the filter phase is a cost-effective

strategy.
CMBR Filter: Common Minimum Bounding Rectan-

gle (CMBR) is a method which is based on Minimum Bound-

ing Rectangle (MBR) of a polygon. For a pair of polygons,

the CMBR is an area where the two MBRs overlap. Figure 4

shows two examples of CMBR. Black rectangles are two

polygons’ MBRs and the red rectangle is their CMBR. When

two MBRs overlap as shown in Figure 4(b), it is possible that

these two polygons do not overlap. Such cases can be safely

ignored in the refinement phase. This particular case can be

detected in the filter phase itself by checking if the vertices

143



(a) (b)

Fig. 4. Common minimum bounding rectangle examples (Red rectangle is
CMBR; Best viewed in color.)

of a polygon lie in the CMBR area or not. Line segments

that do not occupy the CMBR area can be safely ignored for

LSI function. CMBR of a polygon has been used in earlier

work [12] to improve the performance of spatial join on GPU.

In some cases, common MBR area may contain most of

the vertices of the overlapping polygons. This particular case

is shown in Figure 4(a). This limitation of CMBR approach

makes it less effective [13]. A filter based on PolySketch
provides an alternative way of reducing the workload in LSI

function. In general, there are not many segment intersections

in polygon overlay [11], so even when the CMBR is less effec-

tive, PolySketch can provide significant workload reduction.

In addition, the strengths of CMBR and PolySketch can be

combined to get better performance.

In spatial join, the output polygon produced by polygon

intersection is not required. Spatial join is based on a boolean

predicate, e.g., Intersects. Intersects predicate returns true

if two polygons have line segment intersection or a polygon

is inside another polygon. In polygon overlay, output polygon

needs to be computed as well. This requires finding all line

segment intersections as well as vertices of the polygon that

are inside another polygon. Because of this difference, polygon

overlay is computationally more expensive than spatial join.

In our work, we compute all the segment intersections and the

vertices of a polygon that are inside another one. The number

of segment intersections (can be quadratic in the worst case)

is variable for each candidate pair, so handling it on GPU

either requires redundant computation because of counting the

number of intersections a priori or using atomic locks while

storing them.

IV. HIERARCHICAL FILTER AND REFINEMENT SYSTEM

When two layers of geometries are overlaid or superimposed

in a geographic map, there can be millions of candidate pairs

whose MBRs have overlap and need further refinement using

computational geometry algorithms. Even though there are

PRAM based parallel algorithms available in literature [10],

[11], optimal O(nlogn) algorithms for geometric intersection

are not available on GPUs. On CPUs, sequential plane-sweep

based algorithms are used. For practical parallel implementa-

tions, naive O(n2) algorithms or grid partitioning are used [9],

[14]. Even on massively parallel hardware, the quadratic

runtime of the naive algorithms results in unacceptable high

latency [4]. Grid partitioning may not handle skewed data

efficiently. Moreover, partitioning polygons in a uniform or

adaptive grid has the disadvantage of a polygon spanning

multiple grid cells, thereby increasing redundancy due to

duplication of geometries across grid lines.

For the original data, we do not use spatial partitioning

using grids. Our approach is to use a combination of filter

techniques to reduce the workload in the refinement phase. The

input to CMBR and PolySketch Filters is the list of candidate

pairs produced by querying R-tree data structure built using

the MBRs of the input geometries. We refer to these candidate

pairs as tasks because we process them concurrently on a GPU.

Algorithm 1 Hierarchical Filter-based Segment Intersection

1: Input: Two polygon layers L1 and L2

2: Build R-tree using MBRs of polygons from L1

3: tasks ← Rtree Query using MBRs of polygons from L2

4: newTasks ← Apply CMBR Filter on tasks

5: Apply PolySketch Filter for each newTask

6: Refine: Line Segment Intersection Function

A. System Design Overview

In this section, we present how our hierarchical filter and

refinement system works. Given two layers of polygons, Algo-

rithm 1 shows the order of application of different filters to find

cross-layer line segment intersections in the refine phase. At

first, we check which polygon’s MBR overlaps with others by

using R-tree. If some MBRs overlap, we store these polygon

pairs as tasks (T) and every task has two polygons. Then we

use CMBR Based Task Reduction Algorithm to check which

tasks are valid tasks (T1) or invalid tasks (T2) for LSI function.

After this, we fix the tile-size for creating tiles for the valid

tasks (T1) and use PolySketch Filter to reduce the number

of line segments and workload. In the last step, we use LSI

function to detect the tasks where two polygons have line

segment intersection(s).

PNP operation for Polygon: There are some cases when

a polygon is contained inside another polygon completely. In

spatial database, these cases belong to the within or contains
spatial relations. Finding if a point is inside another polygon

is O(n) operation because all the n segments of the polygon

need to be examined. As such, a brute-force check for an entire

polygon is quadratic in the number of vertices of a polygon.

When a polygon A is contained inside another polygon B,

then MBR of A is also contained inside MBR of B. However,

the reverse is not always true. Our algorithm for PNP can

detect these contains relation without resorting to a quadratic

algorithm. Our algorithm can also detect those cases where

MBR of A is contained inside MBR of B, but A and B

are disjoint polygons. As a result, our system can safely

ignore these tasks from expensive refinement operation later.

Identifying these cases correctly is possible because we take

advantage of the CMBR filter for optimizing PNP operations

as well. More details for PNP-based Task Reduction Algorithm

are in Subsection IV-D.
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Now we will discuss the hierarchy of filters that our system

employs to reduce the number of tasks and overall workload.

B. CMBR Filter Based Task Reduction

The input to this filter is the list of candidate pairs generated

by R-tree queries. Each candidate consists of a pair of MBR-

overlapping geometries. However, by virtue of CMBR Fil-

ter [12], those cross-layer pairs of polygons whose Minimum

Bounding Rectangles (MBRs) intersect but their rectangular

intersection does not contain line segments from both layers

can be safely ignored because those pairs will not have

segment intersections. We call such tasks invalid tasks and save

computation time by discarding them from further processing

in LSI function. An example of an invalid task is shown in

Figure 4(b).

Our system classifies the pairs that have line segments inside

or across CMBR from two cross-layer polygons as valid tasks;

both polygons have segments that are contained inside or

across the CMBR boundary. We store this task because the

polygons can potentially intersect and need further refinement.

An example of a valid task is shown in Figure 4(a).

CMBR Filter works well in eliminating some tasks from fur-

ther refinement. In Subsection V-C, we compare the execution

time performance and filter efficiency of using PolySketch
vs CMBR w.r.t. LSI function.

C. Workload Reduction by PolySketch Filter

As shown in Figure 3, a polygon can be represented as a

collection of tiles. The tile-size is user-defined. Intersection

of two polygons can be expressed as intersection of their

PolySketches. Since, tile-MBR in a PolySketch captures the

actual area covered by line segments in that tile, line segment

intersection can be carried out in two phases: 1) filter phase

where tile-MBRs are used for intersection test and 2) refine

phase where we only consider the line segments from those

tiles that have overlap in LSI function. This is the essence of

PolySketch Filter.

In CMBR Filter, we need to compare all segments inside

CMBR of one polygon with all segments inside CMBR of

another polygon. If CMBR is large as shown in Figure 4(a),

we cannot decrease a lot of segments from both polygons

which affects workload in LSI function. However, by using

PolySketch, a line segment in tile A needs to be compared

against the segments of only those tiles which overlap with tile

A. Algorithm 2 shows how to apply PolySketch Filter and

Refine for polygon intersection tasks using compiler directives

supported by OpenACC.

There are certain scenarios where two polygons overlap but

it is not detected by LSI function. Therefore, we use PNP

function for further filtering of tasks.

D. PNP Based Task Reduction Algorithm

In this algorithm, we find out the vertices of a polygon

that are contained inside another polygon. This is required

to construct the output polygon for each task. We also find

out those tasks where one polygon is entirely inside another

Algorithm 2 Segment Intersections using PolySketch Filter

1: #pragma acc data copyin(layer1Polygons, layer2Polygons)

copyout(line segment intersections)

2: #pragma acc parallel

3: #pragma acc loop

4: for each taskID ∈ taskArray do
5: get polygon pair (p,q) using taskID

6: #pragma acc loop

7: for each tile tp ∈ p.tiles do
8: Calculate tp.MBR

9: end for
10: #pragma acc loop

11: for each tile tq∈ q.tiles do
12: Calculate tq .MBR

13: end for
14: #pragma acc loop reduction (numSegIntersections)

15: for each tile tp ∈ p.tiles do
16: #pragma acc loop

17: for each tile tq ∈ q.tiles do
18: if (tp.MBR overlaps tq .MBR) then
19: Call LSI(tp.segments, tq .segments)

20: #pragma acc atomic

21: store segment intersections

22: end if
23: end for
24: end for
25: end for

polygon in an optimized way. These tasks result in valid output

pairs for spatial join or polygon overlay operation. We also

want to discard those tasks where polygons are disjoint so

that we do not have to invoke quadratic PNP tests for an entire

polygon. Figure 5 shows the flow chart of this algorithm.

PNP based algorithm is used after the LSI Function. The

intention of this algorithm is to discard invalid tasks for PNP

function, divide valid tasks into two different types, do some

pre-processing steps and use appropriate PNP functions for

them. Before we use LSI Function, we use CMBR Filter to

preprocess data to discard some invalid tasks for LSI function.

However, we cannot discard these tasks for PNP function. We

need to check all tasks (T) for PNP function.

Based on the output of CMBR Filter results, we classify

the overall tasks so that we can treat them differently in

order to reduce the PNP computation time. We divide all

tasks (T) into three different types of tasks (S1, S2 and S3).

S1 includes the tasks where two polygons have line segment

intersections. S2 includes the tasks where two polygons do not

have line segment intersection and guaranteed not to intersect.

S3 includes the tasks where two polygons do not have line

segment intersection but one polygon may be inside another

polygon. Then, we use Striping Algorithm to preprocess data

for the tasks in S1 which will be used in Stripe-based PNP

function. Furthermore, we use constant vertex PNP function

only for the tasks in S3 category. We discard the tasks in S2

category. This helps in reducing a lot of PNP workload. For
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Fig. 5. Classifying PNP tasks after CMBR Filter

implementing filter and refinement steps, we use OpenMP and

OpenACC to parallelize them on CPU-GPU system.

Valid tasks for Stripe-based PNP function: If two poly-

gons have line segment intersection(s) (e.g. Figure 6(a)), we

store the pair for Striping algorithm and Stripe-based PNP

Function. Moreover, we also store special cases as shown in

Figure 6(b) and Figure 6(c) for further processing.

Valid tasks for constant vertex PNP function: If two

polygons do not have any line segment intersection, we check

their MBRs. If one MBR of a polygon is inside another MBR,

we store this task for constant vertex PNP function. The reason

is that the smaller polygon may be totally inside the larger

polygon when they do not have line segment intersection.

In other words, all vertices of the smaller polygon may be

inside the larger polygon. We also store which MBR includes

another MBR because we only need to check whether the

smaller polygon is inside the larger polygon. In addition, we

do not need to check all vertices of the smaller polygon. It

suffices to check a few vertices of smaller polygon whether

they are inside or outside the larger polygon. Then, we know

the smaller polygon is inside or outside the polygon. For

illustration, Figure 6(e) and Figure 6(f) are two examples

where we invoke PNP function for only a few vertices. In

the experiments, we consider the output of PNP test for any

five contiguous vertices to handle this special case.

Invalid tasks for PNP function: If two polygons intersect,

there are two cases - a) there are line segment intersection(s)

(a) (b)

(c) (d)

(e) (f)

Fig. 6. PNP cases: (a) Two polygons have line segment intersections, (b) and
(c) Two polygons touch each other, (d) Two polygons’ MBRs overlap but
there is no actual intersection, (e) One polygon is inside another polygon but
there is no line segment intersection, (f) The smaller polygon is not inside
another polygon but the smaller MBR is inside another MBR.

and b) there is no line segment intersection but one polygon is

totally inside another polygon. Therefore, if two polygons do

not have line segment intersection and no polygon’s MBR is

inside another polygon’s MBR, they do not intersect. As such,

we will discard this task. The reason is that if one polygon is

inside another polygon, its MBR should be also inside another

polygon’s MBR. As shown in Figure 6(d), two polygons do

not have line segment intersection and no MBR of a polygon

is inside another MBR, so they cannot intersect.

E. Striping algorithm and Stripe-based PNP function
We have used striping to speedup PNP tasks. Striping is

a filter technique used to optimize PNP function. Once the

segments of the polygon are partitioned into stripes, PNP test

for a vertex needs to consider only the line segments contained

in or crossing a stripe. This reduces the workload for PNP

function.

Fig. 7. An example of striping for Stripe-based PNP function

The area divided into stripes is the red rectangle as shown

in Figure 7. We divide the area occupied by the red rectangle
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into 8 cells. Striping algorithm considers all the line segments

belonging to a task and maps a line segment to the cells where

there is an overlap. In case a line segment overlaps with two

or more cells, the segment is replicated in those cells. This

is carried out by comparing y co-ordinates of vertices of a

line segment with the cell boundaries. For Stripe-based PNP

function, we need to check the vertices inside a cell only with

another polygon’s line segments inside or across the same

cell. Therefore, the vertices need to be compared only with

those line segments which overlap with the same cell. For

GIS datasets with large polygons, this can potentially reduce

a lot of workload.

Multi-GPUs: After the geometries have been partitioned

into multiple cells, parallel processing of PNP tests can be

carried out over multiple GPUs. As shown in Figure 7, there

is no dependency among those eight cells. In order to utilize

four GPUs, we can assign two cells to each GPU in a round-

robin fashion. In our experiments, we have leveraged multiple

GPUs to distribute PNP-based computations.

V. EXPERIMENTAL RESULTS

A. Datasets

We have used three datasets to evaluate our

system: (1) Urban, (2) Water, and (3) Lakes.

The details are shown in Table III. Urban and

Water are from http://www.naturalearthdata.com and

http://resources.arcgis.com. The third dataset (Lakes) is

from http://spatialhadoop.cs.umn.edu/datasets.html.

TABLE III
THREE REAL DATASETS USED IN OUR EXPERIMENTS

Label Dataset Polygons Segments Size

Urban
ne 10m urban areas
ne 10m states provinces

11,878
4,647

1.1M
1.3M

20MB
50MB

Water
USA Water Bodies
USA Block Boundaries

463,591
219,831

24M
60M

520MB
1300MB

Lakes
Lakes
Sports

7.5M
1.8M

277M
20M

9GB
590MB

B. Hardware Description

We have used Intel Xeon E5-2695 multi-core CPU with

45MB cache and base frequency of 2.10GHz. We have used

two different kinds of GPU to run the experiments, namely,

Titan V and Titan Xp. Titan V is more powerful GPU and

its architecture is NVidia Volta. It has 640 Tensor Cores,

12 GB HBM2 memory, 5120 CUDA Cores and its memory

bandwidth is 652.8GB/s. Architecture of Titan Xp is Pascal.

It has 12 GB GDDR5X memory, 3840 CUDA Cores and its

memory bandwidth is 547.7GB/s. For experiments on a single

GPU, we have used Titan V. When using multi-GPUs, we used

one Titan V and three Titan Xp. The PGI compiler version is

18.10.

First, we used classical filter and refine technique using a

CPU-GPU system for LSI and PNP functions accelerated by

OpenACC pragmas. R-tree is used for filtering on a CPU.

Table IV shows the results. Even with a powerful GPU, it

takes about 44 seconds in total for the larger dataset. This

is the motivation behind developing a hierarchical filter and

refinement system.

TABLE IV
RUNNING TIMES BY USING DIFFERENT GPUS WITHOUT FILTERS

Water Urban

Titan V
LSI function (s) 10.47 0.4
PNP function (s) 33.44 0.99
Total time (s) 43.91 1.39

Titan XP
LSI function (s) 22.16 0.82
PNP function (s) 92.99 2.51
Total time (s) 115.15 3.33

C. PolySketch and CMBR Results
For analysis, let us consider that each task has two polygons;

P from layer 1 and Q from layer 2. For one task, P has m line

segments and Q has n line segments. For LSI function, every

line segment from P should be compared with all line segments

from Q. The workload is m ∗ n for every task. Therefore, the

total workload for LSI function is the summation of workload

of individual tasks. The Application of CMBR or PolySketch
filter decreases the line segments in each task. This leads to

workload reduction.
Tables V, VI, and VII show PolySketch and CMBR’s

effect on reducing the workload and the number of line

segments for the LSI function for different datasets. (In the

tables, Sketch means PolySketch) We can see that both

CMBR and PolySketch can reduce a lot of line segments and

the workload. PolySketch works better than CMBR overall

to reduce the total workload which is directly related to the

running time. Therefore, we can get better execution time

results by using PolySketch.
Another advantage of PolySketch is that it is easier

to implement using compiler directives. We only need to

record overlapping tiles. Therefore, we implemented both

PolySketch and LSI function together using OpenACC. For

implementing CMBR, we need to calculate their CMBRs, test

and store the line segments that overlap with the CMBRs. We

implemented CMBR to preprocess data on CPU and run LSI

function on GPU.
To be fair, we show CMBR time and its LSI function

time separately for CMBR Filter so that we can see how

much time LSI function took. We show execution time

for PolySketch construction and LSI function together for

PolySketch Filter. For the bigger data, PolySketch method’s

time which includes PolySketch time and its LSI function

time is better than CMBR method’s LSI function time which

does not include CMBR time. For other data sets, PolySketch
method’s times are similar to CMBR method’s LSI function

times which do not include CMBR time.
Table V shows the result for Water dataset. We can see

that PolySketch is more effective in reducing the workload

compared to CMBR. As we mentioned before, for some

polygon pairs, their CMBRs can be very large. This leads

to less effective filtering of line segments in those CMBRs,

which in turn increases the workload in the refinement phase.
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TABLE V
SKETCH AND CMBR EFFECT ON THE LSI FUNCTION FOR WATER

DATASET

Water No filters With CMBR With Sketch
Time(s) 10.47 10.36 + 4.53 1.39
workload 411,876,982,358 16,327,012,938 1,789,226,826
# of
segments (L1)

1,036,879,194 26,844,066 242,685,263

# of
segments (L2)

1,996,217,931 30,765,554 145,134,707

# of tasks 1,020,458 274,283 321,658

If we only consider the number of line segments present in

each individual layer after the application of CMBR filter, we

can see that CMBR is quite effective in this scenario. This

is due to the fact that when the overlap area between two

polygons is small, their CMBR will have fewer line segments.

When we consider line segment reduction in a single layer

case, PolySketch is less effective, even though it is quite

effective in workload reduction compared to CMBR. This dis-

crepancy can be explained by the way we count the number of

line segments in a tile after the filter phase. For PolySketch,

since one tile of a polygon may overlap with more than one tile

of another polygon. Therefore, when counting the number of

line segments in a tile after using PolySketch filter, we count

those line segments more than once. However, to calculate the

workload, we need to consider the line segments in all the

candidate pairs from both layers. Workload in LSI function

directly affects the execution time. Table V also shows that the

execution time of using PolySketch + LSI function is even

smaller than the execution time of CMBR + LSI function.

TABLE VI
SKETCH AND CMBR EFFECT ON THE LSI FUNCTION FOR URBAN

DATASET

Urban No filters With CMBR With Sketch
Time(s) 0.4 0.23 + 0.03 0.06
workload 6,453,160,088 25,737,640 7,489,801
# of segments (L1) 3,497,270 914,074 834,146
# of segments (L2) 65,476,891 78,492 847,581
# of tasks 28,687 8,166 9,729

TABLE VII
SKETCH AND CMBR EFFECT ON THE LSI FUNCTION FOR LAKES DATASET

Lakes No filters With CMBR With Sketch
Time(s) 2.20 9.4 + 0.51 1.17
workload 29,289,344,523 260,210,378 37,464,000
# of segments (L1) 1,932,905,302 4,061,067 7,716,460
# of segments (L2) 76,801,765 1,763,838 6,143,938
# of tasks 692,435 132,888 201,107

Table VI shows the results for Urban dataset. We can see

that PolySketch works better than CMBR in reducing the

total workload. For PolySketch method, the running time

which includes PolySketch time and LSI time is similar to

the time of LSI function after using CMBR Filter. Table VII

shows the results for Lakes dataset. For Lakes dataset as

well, PolySketch reduces a considerable amount of workload

compared to CMBR.

One of the intentions of these two filters is to discard the

invalid tasks for LSI function so we can use GPU efficiently

only for the valid tasks where two polygons may have line

segment intersection(s). To see our filter’s efficiency in dis-

carding invalid tasks for LSI function, we define its efficiency

as

DTask =
The number of tasks discarded

The original number of tasks
(1)

TABLE VIII
SKETCH AND CMBR EFFECT ON REDUCING TASKS OF THE LSI FUNCTION

FOR DIFFERENT DATASETS

Water Urban Lakes
CMBR 73.13% 71.53% 80.81%
Sketch 68.48% 66.09% 70.96%

Table VIII shows CMBR and PolySketch efficiency per-

centage for discarding invalid tasks. We can see that both

CMBR and PolySketch can discard most of the tasks for LSI

function and CMBR is more effective in comparison. However,

we use PolySketch to reduce tasks as well as workload. This

is due to the fact that our compiler directive based CMBR

filter implementation is slower compared to PolySketch filter

implementation.

For quantitative evaluation, here we describe the equations

for workload and line segment reduction. In the equations

below, C is the candidate set (task), for a candidate pair (i,j),

Ei and Ej are the number of the line segments in ith and jth

polygons. The symbols with hat notation show the reduced

number of line segments due to hierarchical filtering. Using

these symbols, we define the workload reduction percentage

and line segment reduction percentage as

RPWorkload =

⎛
⎝1−

∑
(i,j)∈C

∣∣∣Êi

∣∣∣ ∗ ∣∣∣Êj

∣∣∣∑
(i,j)∈C |Ei| ∗ |Ej |

⎞
⎠ ∗ 100% (2)

and

RPLine-Segment =

⎛
⎝1−

∑
i∈C

∣∣∣Êi

∣∣∣∑
i∈C |Ei|

⎞
⎠ ∗ 100% (3)

TABLE IX
SKETCH EFFECT ON REDUCING WORKLOAD AND LINE SEGMENTS BY THE

LSI FUNCTION FOR THREE DATASETS USING PERCENTAGE.

Sketch for
LSI
Function

The workload
reduction
percentage

The segments
reduction
percentage for L1

The segments
reduction
percentage for L2

Water 99.57% 76.59% 92.73%
Urban 99.88% 76.15% 98.7%
Lakes 99.87% 99.6% 92%

Tables IX and X show the effect of PolySketch and CMBR

Filter in reducing workload and line segments of each layer
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TABLE X
CMBR EFFECT ON REDUCING WORKLOAD AND LINE SEGMENTS BY THE

LSI FUNCTION FOR THREE DATASETS USING PERCENTAGE.

CMBR
for LSI
Function

The workload
reduction
percentage

The segments
reduction
percentage for L1

The segments
reduction
percentage for L2

Water 96.04% 97.41% 98.46%
Urban 99.6% 73.86% 99.88%
Lakes 99.11% 99.79% 97.7%

for the LSI function for three datasets. PolySketch Filter also

reduces the number of line segments from both layers. In some

cases, it can discard more line segments from a layer where

CMBR Filter is not so effective. In addition, PolySketch
Filter can also reduce more workload compared to CMBR

which is more related to the execution time.

Fig. 8. The workload in LSI function after using CMBR or Sketch.

Figure 8 shows the workload for LSI function after using

CMBR or PolySketch Filter. As we can see that PolySketch
Filter works well in reducing more workload compared with

CMBR Filter. For the Water dataset, we can see that the

workload after using PolySketch is 11% of the workload

after using CMBR. For the Urban dataset, the workload after

using PolySketch is 29% of the workload after using CMBR.

For the Lake dataset, the workload after using PolySketch is

14% of the workload after using CMBR.

For the Water dataset, the number of thread blocks chosen

by PGI compiler was 65535 and the number of threads in a

block was 128 for PolySketch with LSI function. Even when

the number of tasks was greater than 65535, PGI compiler

generated the grid with 65535 thread blocks.

D. Different PolySketch size Results

The real-world datasets include small as well as large

polygons. Finding an ideal tile-size for a PolySketch Filter

is difficult. Tile-size of a sketch means the number of line

segments in a tile for PolySketch Filter algorithm. Table XI

shows the performance of using different tile-size for the

Water dataset. We can either use the same tile-size for both

polygons or use different tile-size. Based on our experience,

we recommend different tile-size for small and large polygons

TABLE XI
THE PERFORMANCE OF USING DIFFERENT TILE-SIZE FOR WATER DATASET

Water Current workload Current tasks Time(s)
15 (5) 1,789,226,826 321,658 1.39
15 (10) 1,875,845,026 340,303 1.49
15 1,970,120,151 355,172 1.55
20 (10) 2,554,936,706 356,818 1.62
20 2,772,593,129 385,327 1.82
30 4,460,548,392 442,279 2.29

in a task. For example, in our experiments, we set tile-size

as 15 for large polygons and 5 for small polygons. In our

experiment, we found that if the number of line segments of

a polygon is smaller than 400, tile-size of 5 worked well. For

larger polygons, the tile-size of 15 worked well in reducing

the workload and execution time. As shown in Table XI, in

the first column, the first number is a tile-size. If there is a

bracket, it means we used two tile-sizes and the number in the

bracket is the tile-size used for the small polygon. The second

column shows the current workload for LSI function after

using PolySketch Filter. The third column shows the number

of valid tasks for LSI function after using PolySketch. The

fourth column is the execution time of running PolySketch
and LSI function together. We can see that smaller tile-size

works better. It can reduce more workload and discard more

invalid tasks. The execution time is also less. In general, if

the tile-size is small enough, we can discard more tile overlap

pairs and only use LSI function for the overlapping tile pairs.

Finally, for Water and Lakes, we set tile-size as 15 for large

polygons and 5 for small polygons. For Urban dataset, we set

tile-size as 10.

E. PNP Based Task Reduction Algorithm and Striping Algo-
rithm Results

TABLE XII
PNP BASED TASK REDUCTION ALGORITHM AND STRIPING EFFECT ON

REDUCING WORKLOAD OF THE PNP FUNCTION FOR BOTH THE DATASETS

AND THE REDUCTION PERCENTAGE

Original workload Current workload
Reduction
percentage

Water 411,876,982,358 15,653,774,431 96.2%
Urban 6,453,160,088 291,816,678 95.48%

Table XII shows PNP based task reduction algorithm and

striping effect on reducing workload of the PNP function

for both the datasets and the reduction percentage. We can

see that it reduced most of the workload. One reason is

that we can discard some tasks where two polygons do not

have any line segment intersection and the bigger MBR does

not contain the smaller MBR. Otherwise, there are only two

types of tasks where we need to use PNP function. One case

is two polygons have line segment intersection(s) so there

should be some vertices which are inside another polygon.

Another case is when two polygons do not have any line

segment intersection but the bigger MBR contains the smaller

MBR so one polygon may be totally inside another polygon.
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Although we need to use PNP function for these tasks, we

have appropriate filters and refinement steps for them. For the

first case, we use Striping method to reduce the vertices, line

segments and workload. Striping can be effective when the

CMBR of two polygons is large. For the second case, we check

only a few vertices of two polygons to see which polygon is

inside or outside another polygon based on our analysis. We

only need to check a few vertices of only one polygon for

PNP function because the bigger polygon cannot be inside

the smaller polygon.

(a) (b)

Fig. 9. The percentage of different types of tasks after using PNP based task
reduction algorithm

Figure 9 shows the percentage of different types of tasks

after using PNP based task reduction algorithm. We can see

that PNP based task reduction algorithm is very efficient. For

Water dataset, we need to check all vertices of polygons only

for 12% of the tasks because the polygons of these tasks have

line segment intersection(s). However, we can use Striping

method which is very helpful to reduce the workload of these

tasks and discard some vertices which cannot be inside another

polygon. Then, we use Stripe-based PNP function. In addition,

for 75% of the tasks, we can only use constant vertex PNP

function (5 vertices) of a polygon to determine whether they

are inside or outside another polygon and then we know

whether this polygon is inside or outside of another polygon

according to our analysis. We can also discard 13% of the tasks

and do not need to do PNP tests for these tasks. PNP based

task reduction algorithm also works well for Urban dataset.

We can discard 11% of the tasks and perform constant vertex

PNP function for 72% of the tasks. Then, we use Stripe-based

PNP function for the remaining 17% of the tasks.

TABLE XIII
STRIPING EFFECT ON REDUCING WORKLOAD FOR THE STRIPE-BASED

PNP FUNCTION FOR BOTH THE DATASETS

Original workload Current workload
Reduction
percentage

Water 156,443,271,335 5,301,138,126 96.61%
Urban 1,254,513,546 14,321,168 98.86%

Table XIII shows Striping algorithm effect on reducing

the workload of the Stripe-based PNP function for both the

datasets. Stripe-based PNP function is applied to the tasks

where two polygons have line segment intersection(s). We

can see that it can reduce most of the workload for both the

datasets. The vertices inside a stripe need to be tested against

the line segments only within the same stripe and crossing the

stripe boundary, instead of all the line segments of a polygon.

This leads to workload reduction. Even the area where we

want to do striping is very large, we can still get benefit.

TABLE XIV
PNP BASED TASK REDUCTION ALGORITHM EFFECT ON REDUCING

WORKLOAD WHEN A POLYGON MBR IS INSIDE ANOTHER POLYGON MBR

Original workload Current workload
Reduction
percentage

Water 152,287,577,854 10,352,636,305 93.2%
Urban 4,788,726,632 277,495,510 94.2%

In case when a polygon is inside another polygon, the MBR

of small polygon is inside the MBR of larger polygon. Our

PNP-based task reduction algorithm detects these cases. So,

we do not apply the quadratic time PNP tests in these cases.

This results in workload reduction compared to the naive

cases. Table XIV shows PNP based task reduction algorithm’s

effect on reducing workload of these cases. We only check five

vertices of the smaller polygon to see whether these vertices

are inside or outside of another polygon. Then, we determine

whether the smaller polygon is inside or outside of the bigger

polygon.

F. Execution time details

TABLE XV
EXECUTION TIME IN SECONDS

Dataset
1 CPU
thread and
1 GPU

32 CPU threads,
1 GPU for
LSI and PNP

32 CPU threads,
1 GPU for LSI,
multi-GPUs for PNP

Urban 1.39 0.35 0.30
Water 43.92 10.63 7.71

Table XV shows the total running times for two datasets.

The first column’s result is using 1 thread on CPU and 1

GPU without using our hierarchical filtering. For testing our

system, we used one or more threads on CPU and one or

multiple GPUs to see the difference. The second column’s

result is using 32 threads on CPU to preprocess data and 1

GPU for LSI and PNP function. The third column’s result is

using 32 threads on CPU to preprocess data, 1 GPU for LSI

function and multi-GPUs for PNP function. We can see that

our system works well using multi-core CPU and multiple

GPUs. Although we only use multi-GPUs for PNP function,

we can still get benefit, especially for the larger dataset.

Tables XVI and XVII show the details of execution time

breakdown for the two datasets. We can see that our filters are

very efficient and we can get benefit by using multi-GPUs. If

the dataset is larger, we can get more benefit by using multi-

GPUs. For Water dataset, the time taken by R-tree filter on

CPU is 2.27s. Therefore, the end-to-end time of the system is

9.98s.
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TABLE XVI
EXECUTION TIME BREAKDOWN DETAILS FOR WATER DATASET. (NA

MEANS IT IS NOT APPLICABLE.)

Water
Sketch and
LSI Function
on GPU (s)

Pre-process
for PNP
on CPU(s)

PNP Function
on GPU (s)

Final
Time
(s)

No filters 8.82 NA 35.1 43.92
One GPU
for LSI
and PNP

1.39 4.56 4.68 10.63

One GPU
for LSI,
multi-GPUs
for PNP

1.39 4.55 1.77 7.71

TABLE XVII
EXECUTION TIME BREAKDOWN DETAILS FOR URBAN DATASET. (NA

MEANS IT IS NOT APPLICABLE.)

Urban
Sketch and
LSI Function
on GPU (s)

Pre-process
for PNP
on CPU(s)

PNP Function
on GPU (s)

Final
Time
(s)

no filters 0.4 NA 0.99 1.39
One GPU
for LSI
and PNP

0.08 0.19 0.08 0.35

One GPU
for LSI,
multi-GPUs
for PNP

0.07 0.19 0.04 0.30

VI. CONCLUSION AND FUTURE WORK

We have developed a hierarchical PolySketch-based filter

and refine system for GPUs and evaluated its performance

using real-world datasets. Even though the system was im-

plemented using compiler directives, the performance is very

good. Spatial join on two large datasets can be performed

in about 10 seconds. This is an order of magnitude better

performance than our previous work where we did not leverage

hierarchical filtering [4].

We plan to integrate our GPU-accelerated system to MPI-

GIS and MapReduce implementations which we have built as

an HPC system for geospatial analytics [11], [20]–[23]. PNP

algorithm can be further improved by doing the pre-processing

on GPU. We also plan to improve PolySketch by making the

tile-size adaptive.
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