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Abstract

Words in different languages rarely cover the
exact same semantic space. This work charac-
terizes differences in meaning between words
across languages using semantic relations that
have been used to relate the meaning of En-
glish words. However, because of transla-
tion ambiguity, semantic relations are not al-
ways preserved by translation. We intro-
duce a cross-lingual relation classifier trained
only with English examples and a bilingual
dictionary. Our classifier relies on a novel
attention-based distillation approach to ac-
count for translation ambiguity when trans-
ferring knowledge from English to cross-
lingual settings. On new English-Chinese and
English-Hindi test sets, the resulting models
largely outperform baselines that more naively
rely on bilingual embeddings or dictionaries
for cross-lingual transfer, and approach the
performance of fully supervised systems on
English tasks.

1 Introduction

Natural Language Processing (NLP) often uses
translation lexicons for projecting models and data
from one language to another under the assump-
tion that words and their translations in these
lexicons are synonyms (Mayhew et al., 2017;
Tsvetkov et al., 2014). However, translation lex-
icons include semantic relations other than syn-
onymy in practice, as can be seen (Table 1) in ex-
amples drawn from the MUSE dictionary (Lam-
ple et al., 2018). Peirsman and Padé6 (2011) show
that distributional translation lexicons contain hy-
ponyms and co-hyponyms, and that treating all
translations as synonyms hurts cross-lingual pro-
jection performance. In the Paraphrase Database
(Ganitkevitch et al., 2013), Pavlick et al. (2015)
find that the diversity of semantic relations discov-
ered in word-aligned parallel corpora yields para-
phrases that span the lexical relations defined in
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Lexicon Entry \ Semantic Relation

writer is more specific than

writer, TIATRIT (creator)

o council is more general than
council, 73 gfye | . ..
(council of ministers)
T=T father is mutually exclusive to
father, =T (father’s brother)

Table 1: Semantic relations between word pairs in an
English-Hindi lexicon (Lample et al., 2018)

the natural logic framework of MacCartney and
Manning (2009). These non-synonymous transla-
tions are not just noise. They can be found even in
high-quality parallel corpora, since the strategies
used by professional translators to deal with words
that do not have a direct equivalent in the target
language include replacement by near-synonyms,
hypernyms or negated antonyms (Baker, 2011;
Venuti, 2012; Chesterman, 2016).

In this work, we classify semantic relations be-
tween words in different languages. Given a word
pair (water, 99), the classification task is to select
one of the five entailment classes (Figure 1) de-
fined under the natural logic framework of Mac-
Cartney and Manning (2009). This cross-lingual
task cannot be solved by translation, as transla-
tion does not preserve semantic relations. We also
cannot assume that labeled examples exist for all
language pairs and learning from English labeled
examples is complicated by translation ambiguity
(Figure 1).

We introduce BILEXNET, a neural classifier
for semantic relations based on cross-lingual dis-
tributional and path-based features inspired by
the monolingual LEXNET model (Shwartz and
Dagan, 2016a,b) (Section 3). We then design
a novel training procedure for BILEXNET that
leverages weak supervision in the form of ex-
amples translated from English via a knowledge
distillation technique guided by translation dic-
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Figure 1: On the left, we illustrate cross-lingual seman-
tic relation classification: given the pair (water, 99)
as input, the task is to select the Equivalence class
(in bold/green) from the five possible relations. On the
right, we show that semantic relations change by trans-
lation. 97 translates to liquid and water, and their re-
spective semantic relations with water differ.

tionaries (Hinton et al., 2014) (Section 4). We
collect and release MULTILEXREL, a crowd-
sourced benchmark to evaluate models for this
task on a high-resource (English-Chinese) and a
low-resource (English-Hindi) language pair (Sec-
tion 5). Experiments show that BILEXNET sub-
stantially outperforms translation baselines and
approaches the performance of a fully super-
vised English semantic relation classifier (Sec-
tion 7). Code for BILEXNET and the MUL-
TILEXREL dataset are available at https://
github.com/yogarshi/BiLexNet/.

2 Related Work

Cruse (1986) describes how lexical relations
can be organized into congruence relations of
identity (synonymy: dog-canine), inclusion (hy-
ponymy: dog-animal), overlap (compatibility:
dog-pet), disjunction (incompatibility: cat-dog),
and antonyms (open-shut), and how these rela-
tions can be used to characterize differences in
meaning. Variations on these fundamental rela-
tions have been used within semantic networks
such as WordNet (Fellbaum, 1998), or as the ba-
sis of a framework for inference without formal
logic representations (MacCartney and Manning,
2009). Recent work on semantic relation pre-
diction largely focuses on a single relation be-
tween words in the same language (mostly En-
glish) (Nastase et al., 2013; Vuli¢ and MrkSié,
2018; Glavas and Ponzetto, 2017; Ono et al.,
2015). Methods that deal with multiple seman-
tic relations are fewer (Pantel and Pennacchiotti,
2006; Pennacchiotti and Pantel, 2006; Turney,
2008), and recent shared tasks have shown that this

is a challenging problem, especially when ontolo-
gies and other structured resources are not avail-
able, and models are trained only on raw cor-
pora (Santus et al., 2016).

In cross-lingual settings, studies of semantic re-
lations between words are mostly limited to the
translation equivalence relation. Dictionary induc-
tion aims to automatically discover words that are
translations of each other using monolingual or
comparable corpora (Rapp, 1995; Fung and Yee,
1998; Irvine and Callison-Burch, 2017). The task
is typically framed as unsupervised learning, and
models rely on distributional properties to dis-
cover words that have the same meaning in the two
languages. Recently, dictionary induction has also
been used to evaluate multilingual word embed-
dings (Lample et al., 2018; Artetxe et al., 2018;
S@gaard et al., 2018), leading to significant ad-
vances on the state-of-the-art.

However, Peirsman and Pad6 (2011) show that
automatically induced bilingual lexicons exhibit
multiple semantic relations including not only
synonymy, but also hypernymy and co-hyponymy.
This has prompted work on identifying hyper-
nymy in cross-lingual settings (Vyas and Carpuat,
2016; Upadhyay et al., 2018). This paper broad-
ens the scope of relations studied in cross-lingual
settings, and addresses for the first time the task
of distinguishing between multiple semantic rela-
tions for words in different languages.

Previous work studying semantic relations in
multiple languages has focused on the different
task of cross-lingual transfer. In such settings,
the focus is on identifying semantic relations be-
tween two words in the same language, without
training data in that language. There are broadly
two strategies to solve this problem. One line
of work (Glavas and Vuli¢, 2018; Mrksié et al.,
2017) uses model transfer, where a single model
is trained on data from a high-resource language,
and is then ported to the target language using
cross-lingual embeddings. In contrast, Roth and
Upadhyay (2019) translate training data from En-
glish into a target language using a combination of
unsupervised cross-lingual embeddings (Artetxe
et al., 2018) and monolingual information from the
target language.

Our approach for cross-lingual semantic rela-
tion classification builds on the monolingual clas-
sifier LEXNET (Shwartz and Dagan, 2016a,b),
which achieved the highest performance (45 F1)
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among participating teams on the CogALex-V
shared task on identification of semantic rela-
tions (Santus et al., 2016) without ontologies
or structured information. We adapt LEXNET
to make cross-lingual predictions by proposing
to model cross-lingual relations using lexico-
syntactic paths from both languages.

Finally, our training procedure uses knowledge
distillation (Hinton et al., 2014) to alleviate the
lack of annotated cross-lingual pairs. Knowl-
edge distillation has been proposed to compress a
model with many parameters (the feacher model)
to a model with fewer parameters (the student
model). It has also been used successfully to
learn mappings between languages (Nakashole
and Flauger, 2017) or to transfer knowledge from
models trained on one language to a different tar-
get language for text classification (Xu and Yang,
2017) and belief tracking (Chen et al., 2018a), in
settings where the classification labels are transla-
tion invariant. This work adapts distillation to a
setting where labels might change when samples
are translated.

3 BILEXNET: a Classifier for
Cross-Lingual Semantic Relations

The task of classifying semantic relations is
a multi-class classification problem, where the
classes are the set of five semantic relations
from Pavlick et al. (2015): Equivalence (X
is the same as Y), Forward Entail (X is
more specific than/ is a type of Y), Backward
Entail (Xis more general than/encompasses Y),
Exclusion (X is mutually exclusive with/is op-
posite to Y), and Other (X is not related or re-
lated in other ways to Y). We choose these rela-
tions as they have been useful in describing lexi-
cal relations between English paraphrases (Pavlick
et al., 2015), and in downstream natural lan-
guage inference systems (MacCartney and Man-
ning, 2007, 2009).

Our classifier, BILEXNET, adapts the LEXNET
English classifier (Shwartz and Dagan, 2016a,b) to
cross-lingual settings. BILEXNET represents the
input word pair (z, y) by a feature vector v, con-
sisting of complementary distributional and path-
based features i.e. Viy= [V2iVyiVpaths(az,y)]- The
distributional semantic properties of x and y are
captured by bilingual word embeddings v, and
Vy. Vpaths(z,y) €ncodes lexico-syntactic paths that
represent the relation between words x and y in

PGP

.. different species of animals including pigs ..

root l nmod
nmod

Figure 2: The English path  between
animals and pigs has three edges:
[X/NOUN/nmod/ >, species/NOUN/root /A,

and Y/NOUN/nmod/>]. The path between animals
and §AYT is defined as a combination of the English

path and the Hindi path between STTTa <1 and g

context (Hearst, 1992; Snow et al., 2004; Shwartz
et al., 2016). For classification, v, is input to
a multi-class classifier, parameterized as a feed-
forward neural network with a single hidden layer.

lout :WQ * RCLU(Wl * sz)

i‘ — exp(lout,i)
551 exp(lou,j)
lpred =argmax Zz (D

W, and Wy are the weights of the network, and
the biases have been omitted for simplicity.

3.1 Cross-lingual Paths

In LEXNET, a lexico-syntactic path is the se-
quence of edges that lead from z to y in the depen-
dency tree of a sentence. Each edge contains the
word and part-of-speech tag of the source node,
the dependency label of the edge, and the edge di-
rection between two subsequent nodes (see Fig-
ure 2 for an example of the path connecting pigs
and animals). The vector representation of each
edge is formed by the concatenation of the vec-
tors of these four components. Vyqps(z,y) 1S 0b-
tained by encoding the sequence of edges using an
LSTM (Hochreiter and Schmidhuber, 1997).

In English, these paths are extracted from sen-
tences where = and y co-occur. However, when x
and y are in different languages, a new path defi-
nition is required. For a cross-lingual pair (z.,y ),
we extract cross-lingual paths viq¢ps(z. ,y ) from a
word-aligned parallel corpus (Figure 2). We first
extract all parallel sentences which contain z. on
the source side and y; on the target side. For each
sentence, using word alignments, we can extract
x ¢, the target word aligned to z., and . the source
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word aligned to yy. We then extract a path con-
necting the two word in the source sentence i.e. x
and y.. Similarly, we also extract a corresponding
path connecting the two word in the target sen-
tence i.e. wy and yy, since different languages
can encode the same information differently due
to structural divergences (Dorr, 1994). Thus, if the
parallel corpus contains m sentence pairs where
x. occurs on the source side and y; on the target
side, we extract a total of 2m paths. All of the 2m
paths paths are encoded using a single LSTM, and
averaged to form vyqtns(zey 1)

Two special cases arise from this definition.
First, a path can be a single alignment link if x,
and y are aligned to each other i.e. z; = y; and
Ye = Te. Second if no path is found in the corpus,
Vpaths(ze,yy) is set to the zero vector.

4 Weakly Supervised Training via
Knowledge Distillation

Cross-lingual examples that would enable fully su-
pervised training of BILEXNET are hard to obtain:
examples of relations such as synonymy or hy-
pernymy can be derived from multilingual Word-
Nets (Bond and Foster, 2013), but such resources
are not available for many languages, and only
cover a subset of semantic relations. Instead, we
introduce a dictionary-guided variant of knowl-
edge distillation to train BILEXNET. This proce-
dure only relies on a set of monolingual labeled
examples that are readily available for various lex-
ical relations in English, and a translation dictio-
nary that maps words in the source language to the
target language.

Our approach transfers knowledge from a
monolingual teacher model to a cross-lingual stu-
dent model. The teacher model is a monolingual
LEXNET model (say M.) trained on the source-
language examples S = {(Z¢:i, Ye:i, i) }. Here, z¢;
and y..; are a pair of words in the same language
and 1; € R€ is a one-hot encoding of the relation
between x.; and y..; (the number of possible rela-
tions is ¢). Given (Ze:i, Ye:i, 1i) € S, M, is trained
by minimizing the cross-entropy loss between the
predicted outputi €7¢ and the gold label 1;:

C
Ly=—) ljloglf™* )
j=1

BILEXNET plays the role of the student model
(denoted M) and is trained to make predic-
tions that agree with those of the teacher model.

The student model is trained using weak super-
vision which is obtained by using a bilingual
dictionary D to translate the right side of each
training pair into the target language S to obtain
S = {(iﬁeﬂ', Ti, li)}, where TZ = {tﬂ, tig, ey tm} is
the set of translations of y,.; in D. S’ serves as
weak supervision because semantic relations are
not translation invariant (Figure 1), and hence the
label 1; is not correct for every (., t;;) pair.

To extract useful training signals from the weak
supervision, we use an attention mechanism
which guides the model to attend to translations
that preserve the monolingual label. The atten-
tion component constructs the input representa-
tion for the cross-lingual model M,; in Equa-
tion 1 by averaging representations for all trans-
lation candidates, giving more weight to those
that are likely to preserve the monolingual label.
Given a training sample (z.;, T;, ;) € S’ with
T; = {ti,tia,..,tin}, the score for a candidate
translation ¢, is calculated using the word embed-
dings of z..; and t;;, along with 1, an embedding of
the gold label 1; as features to a feed-forward net-
work f (with one hidden layer). 1 is provided to
help select translations that are consistent with the
correct label for the monolingual pair. The scores
for all translations are converted to probabilities
using the softmax function, and the input features
Voo, fOr the student model M,y are a sum of the
features obtained from each of these translations,
weighted by the probabilities.

score((Tei, tik), L) = f([xs5 tir; 1]) )
. exp(score(ti)
p(tir) = Z?:l exp(score(ti;))

n
vlwe;iye;i = Zp(tik)vxe;itik (4)
k=1

The student model is then trained to maximize the
distillation objective:

Ly=—[(1—a)ljlogl 7+
j=1
re—f

al7¢ log(L—)] 5)

e—e
lj

where 1¢7¢ is calculated using M., 17/ is cal-
culated using the attended representation V;:e'iye'i
as input to M.y and « is an interpolation param-

eter. The first term is again a cross-entropy loss
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Figure 3: Illustration of weakly supervised training: For a given English example (cat, animal), we generate predic-

tions1 7€

using the monolingual English teacher model. Simultaneously, we also generate predictions 1/ using

the cross-lingual student model after translating one of the two English words using a dictionary. The cross-lingual
classifier attends to all translation candidates and predicts a class based on a weighted average of their features. The
loss is defined as CROSS-ENTROPY(1 €€, 1) + CROSS-ENTROPY(l ¢/, 1) + KL-DIVERGENCE(l ¢/, 1 ¢7¢).

that aims to measure how well the cross- lingual
model M, predicts the relation given vgcezyez

The second term uses KL-Divergence (Kullback
and Leibler, 1951) to penalize differences in pre-
dictions by M, s on the cross-lingual input v, _ e
and the predictions by M, on the monohngual in-
put vy, .y..,- As is typical in distillation, we flatten
the softmax of both inputs to the KL-Divergence
term with a temperature parameter 7.

5 MULTILEXREL: A Dataset for
Cross-lingual Semantic Relations

Existing resources containing annotated cross-
lingual lexical relations are limited in scope, qual-
ity, and quantity. For instance, in previous
work (Upadhyay et al., 2018), we provide datasets
annotated cross-lingual hypernymy, but do not
consider other relations. On the other hand, re-
sources such as bilingual dictionaries or the Open
Multilingual WordNet (Bond and Foster, 2013)
can be mined for examples of synonyms, hyper-
nyms and hyponyms, but these are likely to be
noisy as these resources are created in a semi-
automatic way.

In this work, we crowdsource! MULTILEXREL,
a set of new high-quality annotations for English-
Hindi (En-Hi) and English-Chinese (En-Zh) word
pairs using the natural logic relations laid out in
Section 3. We leverage monolingual annotations

'"Wiahttp://figure-eight.com/

Relation En-Hi En-Zh
Equivalence 158 174
Forward Entail 220 240
Backward Entail 215 236
Exclusion 124 154
Other 323 94
Total 1040 898

Table 2: Distribution of the five semantic relations for
the two crowdsourced test sets.

to speed up the process and enable comparisons
between monolingual and cross-lingual models.
We use Google Translate to translate one side of
a randomly sampled subset of the gold-standard
dataset of semantic relations created by Pavlick
et al. (2015), and ask crowdworkers whether the
semantic relation holds after translation. Each ex-
ample is annotated by five annotators and anno-
tations are aggregated using MACE (Hovy et al.,
2013), a Bayesian model that estimates the trust-
worthiness of annotators and accordingly assigns
a label to each instance. The distributions of the
five relations for each language pair are shown in
Table 2. 40-45% of the examples shown to annota-
tors were deemed to not preserve the monolingual
relation after translation. The final test sets consist
of the remaining 55-60% examples.’

2A detailed description is in the appendix.
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6 Experimental Settings

MULTILEXREL is used as a test set to evaluate our
models. Training only requires English labeled
examples, and other resources derived from raw
monolingual and parallel corpora.

6.1 Data

English Supervision The English training sam-
ples are derived from the English Lexical-XXXL
PPDB. After filtering away pairs containing non-
alphabetic characters, we choose a random sam-
ple as training pairs. The number of samples for
all classes is balanced, except Exclusion (since
there are fewer examples of this class in PPDB).
All in all, the size of the training set is ~20K pairs.
Like previous work (Levy et al., 2015), we ensure
a lexical split where the English words in the test
data are not seen in the training data. This makes
the task challenging as it prevents the model from
memorizing patterns of words such as their “proto-
typicality” for certain relations i.e. whether certain
words are likely to appear in specific relations.

Validation data Since we assume no access to
labeled cross-lingual examples, we need to define
a validation set using the resources available to us.
We construct a validation set by randomly remov-
ing 1000 pairs from the training data, and auto-
matically translating the right side of each exam-
ple with the bilingual dictionary used for training.
This process yields a noisy validation set, which is
solely used for tuning hyper-parameters.

Unlabeled Resources The bilingual dictionary
for knowledge distillation is obtained from the
MUSE project (Lample et al., 2018) for En-
Hi, while the MDBG dictionary is used for En-
Zh.> We use FastText bilingual embeddings (Bo-
janowski et al., 2017).* We extract English paths
for the monolingual model from a dump of the
English Wikipedia.> Cross-lingual paths are ex-
tracted from a random sample of the WMT18 par-
allel corporal6 for En-Zh (~5M sentences) and the
IIT Bombay English-Hindi corpus (Kunchukut-
tan et al., 2018) for En-Hi (~1M sentences). All
corpora are parsed using YaraParser (Rasooli and

Shttps://www.mdbg.net/chinese/
dictionary?page=cc-cedict
*https://fasttext.cc/docs/en/aligned-vectors.html
Shttps://dumps.wikimedia.org/enwiki/
Shttp://statmt.org/wmt18/
translation—-task.html

Tetreault, 2015) trained on the treebank of the cor-
responding language from the Universal Depen-
dencies (v2.2) project (McDonald et al., 2013).
Tokenization is performed using the Moses tok-
enizer for English (Koehn et al., 2007), the Indic
NLP tokenizer for Hindi,” and the Jieba word seg-
menter for Chinese.?

6.2 Model Configurations and Baselines

Model Configuration The path-encoder LSTM
has two layers with 60 hidden units each, with
dropout (Srivastava et al., 2014) applied after the
first layer. All feed-forward neural networks have
a single hidden layer with 50 hidden units and
dropout regularization. All models are trained
in mini-batches of size 4 using the Adam opti-
mizer (Kingma and Ba, 2015) with initial learn-
ing rate set to 1073, The temperature parameter 7
for knowledge distillation is tuned over {1.0, 1.5,
2.0, 5.0}, and the interpolation parameter « over
{0.75, 0.90}.

English-only Model: EnLexNet We also use
a vanilla LEXNET model applied to a monolin-
gual test set in order to measure the gap between
cross-lingual performance and monolingual per-
formance. ENLEXNET is trained on the same
English samples used for training the BILEXNET
model, and evaluated on the En-En examples used
to generate cross-lingual examples in Section 5.°

Baselines Our experiments aim to assess how
the direct cross-lingual modeling of semantic re-
lations in BILEXNET impacts predictions, and to
isolate the impact of key training components:
knowledge distillation and translation selection
via attention. We compare against the following
baselines:

RANDOM BASELINE: Randomly assign one of
the five semantic relations to each word pair.

TRANSLATION BASELINE: This baseline com-
bines dictionary translation and the English-only
system ENLEXNET to gauge the relative difficulty
of predicting semantic relations across languages
rather than in English only. Each pair (z.,yy) in
the test set is translated into English using the
bilingual dictionary D. Since y; can have multiple

71'1ttps ://github.com/ancopkunchukuttan/
indic_nlp_library

$https://github.com/fxsjy/jieba

"We re-implement the LEXNET model and verify its ac-
curacy by replicating results on the CogALex dataset.
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translations, we pair x, with each of these transla-
tions, and use ENLEXNET to predict the relation
for each of these pairs. The relation for (z.,yy)
is then chosen as the most general relation among
those predicted for the translated pairs according
to the order in which they appear in Table 2.'°

BILEXNET (NO DISTILLATION) A simple
strategy for cross-lingual transfer consists of seed-
ing a vanilla LEXNET model with bilingual em-
beddings in the source and target languages before
training. This strategy has been successfully used
for other NLP tasks (Klementiev et al., 2012; Guo
et al., 2015, inter alia). By keeping the embed-
dings fixed, we can use source language data to
train the monolingual LEXNET model using fea-
tures based on source embeddings and source lan-
guage paths as usual. At inference time, the model
uses both the source and target embeddings as in-
put, and the cross-lingual paths defined above.

SPECIALIZED TENSOR MODEL (STM) How
does a model that has primarily been used for
comparing words in the same language perform
on cross-lingual comparisons? Our final base-
line aims to answer this question. Proposed by
Glavas and Vuli¢ (2018), STM is a neural ar-
chitecture for identifying semantic relations that
achieves state-of-the-art performance on two En-
glish dataset. STM is based on the hypothesis that
specialized word embeddings are necessary to ac-
curately disambiguate between semantic relations.
More precisely, STM assumes that different
specializations of generic word embeddings are
needed to recognize different relations and that
interactions between the specialized vectors can
be used to identify the semantic relations. These
different specializations are implemented using K
feed-forward neural networks. Given a word pair,
STM takes in as input a pair of generic word em-
beddings for the word pair which are then special-
ized by the K transformations. Each pair of corre-
sponding specialized embeddings is used to calcu-
late a score based on a non-linear transformation
of their bilinear product. Finally, the K scores ob-
tained from K pairs of specialized embeddings are
used as features to train a multi-class classifier.
Besides English, STM has also been used for
cross-lingual transfer, where a model trained on
one language (say English) is used to test on word-

0We also experimented with a voting based approach for
combination, but it generally performed worse.

pairs in another language (say German). Here, we
use STM in a new setting to predict the semantic
relation between two words in different languages.

We use the official implementation of STM!!
with the same bilingual embeddings used by
BILEXNET. We tune three hyperparameters on
the validation set (a) The size of the specialized
tensors {100, 200, 300, 500} (b) The number of
specialization functions {3, 5, 7}, and (c) The
learning rate {0.0001, 0.0003}. Default values are
used for all other hyper-parameters.

7 Results

Tables 3 summarizes results obtained on the MUL-
TILEXREL test sets. BILEXNET achieves F1
scores that are roughly double of those obtained
by the random baseline for 5-way classification.

Impact of cross-lingual modeling We assess
the impact of direct cross-lingual modeling in
BILEXNET by comparing against the TRANSLA-
TION BASELINE. Using a translation dictionary to
naively convert cross-lingual relation prediction to
an English-only task, the translation baseline F1
scores are 8 to 13 points higher than RANDOM
for both language pairs. This difference can be at-
tributed to easy examples where English semantic
relations are preserved by simple dictionary trans-
lation. BILEXNET further improves F1 by 8 to
15 points over the TRANSLATION BASELINE, pri-
marily by improving recall.

Supervised English system Without -cross-
lingual training samples, we cannot compare
weakly supervised and fully supervised training
for BILEXNET in a controlled fashion. However,
the supervised monolingual ENLEXNET model
(Section 6) evaluated on the En-En test set of-
fers a reference point: remarkably the F1 scores of
BILEXNET are only 1 to 3 points lower than those
obtained by the supervised English model (~44 on
the En-En test set).

Impact of knowledge distillation We compare
the full BILEXNET model to the naive baseline
(BILEXNET (NO DISTILLATION)) that only re-
lies on embeddings for cross-lingual transfer and
does not perform cross-lingual distillation. This
approach performs on par with or a little better
than the translation baseline, but ~9 points worse
than the full BILEXNET model, losing on both

Uhttps://github.com/codogogo/stm
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En-Hi En-Zh
Model p P p R P
RANDOM BASELINE 229 +13 209 +25 214 +14 229 +13 209 +25 21.4 £14
TRANSLATION BASELINE 30.1 £17 263 +13 283 +15 50.1 £22 32.8 £08 33.0+10
STM (Glavas and Vulié, 2018) 32.0 33.0 29.0 20.0 15.0 16.0
BILEXNET (No distillation) 349 +12 343 +t06 32.2+08 41.7 £64 33.5+62 32.6 £72
BILEXNET (No attention) 472 +10 429 +18 41.9+23 450 +15 40.8 £18 39.8 +038
BILEXNET (Full) 477 +12 442 +08 433 +10 483 +16 41.6 £11 41.1 +o09

Table 3: Precision (P), Recall (R) and F1-score (F) for BILEXNET and contrastive baselines on the two MULTI-
LEXREL test sets. All configurations (except STM) are trained with five random seeds. We report the mean score
and standard deviation. The full BILEXNET model performs best and is consistently better with attention.

precision and recall. This result confirms the ben-
efit of aligning training and test conditions for our
model with knowledge distillation and not relying
solely on embeddings. These results are consis-
tent with prior findings on distributional represen-
tations:

e Distributional representations have difficul-
ties in discriminating between multiple se-
mantic relations (Chersoni et al., 2016). As
such, relying solely on word embeddings
for cross-lingual transfer can cause loss of
knowledge during transfer.

e Syntactic divergences cause differences in
paths in the source and target languages. This
can cause a distribution shift between the fea-
tures seen by the classifier during training
and test time, thereby affecting performance.
Again, word embeddings are not sufficient to
bridge the gap between the distributions of
the two languages (Chen et al., 2018b).

Impact of attention We test the impact of the at-
tention model in BILEXNET by removing it, and
instead translating training samples for distillation
using the single most frequent translation. Remov-
ing attention yields small but consistent degrada-
tions, suggesting that attending to multiple trans-
lations is beneficial, but leaves room for improve-
ment. We analyze the behavior of the attention
model in the next section.

Specialization Finally, we observe F1 scores
of STM are significantly worse than those of
BILEXNET. In fact, it is the weakest model for
En-Zh, and is only 3 points better than the trans-
lation baseline for En-Hi. The relatively poor per-
formance of STM highlights that our cross-lingual

task, which directly compares words in two lan-
guages, is fundamentally different from the cross-
lingual transfer task, where models trained in one
language are ported to other languages. Thus,
models such as STM, which have been designed
for transfer, may not be directly suitable for our
task.

8 Analysis

This section further breaks down the results,
and highlight some successes and failures of
BILEXNET to guide future work on cross-lingual
semantic relation classification.

Performance Per Class We break down the
performance of the BILEXNET model per tar-
get relation (Table 4). The Equivalence and
Exclusion classes are the hardest to predict cor-
rectly, which is consistent with our monolingual
results and those from prior work (Shwartz and
Dagan, 2016a): distributional models have trou-
ble distinguishing synonyms from antonyms (Yih
et al.,, 2012) and synonyms rarely occur in the
same sentence, and hence path-based methods are
less useful for this class. However, in BILEXNET,
words of the Equivalence class can occur in
a parallel sentence pair where they are aligned to
each other. Thus, there is a direct signal for exam-
ples of this class which helps discriminate between
Equivalence and Exclusion.

The largest fraction of errors are caused by the
model predicting Other instead of a specific re-
lation. This suggests that special treatment of this
class might improve performance, perhaps by us-
ing a multi-step process which filters out pairs not
related under the relations that we are targeting,
and then performs 4-way classification for the re-
maining examples. This is similar to the the Co-
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Class En-Hi En-Zh En-En
Equivalence 33 30 31
Exclusion 33 28 23
Forward Entail 47 48 48
Backward Entail 45 58 48
Other 51 29 53

Table 4: Per-class F1 scores for median En-Hi and En-
Zh BILEXNET model and the ENLEXNET model.

gAlLex shared task (Santus et al., 2016), where the
first part of the task is to eliminate completely un-
related pairs, before predicting relations on the re-
maining pairs. However, filtering out unrelated
pairs is an easier task than filtering pairs in the
Other category.

Missing cross-lingual paths Cross-lingual
paths might not exist for all word pairs, particu-
larly for language pairs with limited parallel data
such as En-Hi. BILEXNET would then only rely
on word embeddings as features to predict se-
mantic relations. We assess the impact of missing
paths by comparing the classification performance
on pairs which have cross-lingual paths (70% of
the test), against pairs which do not have paths in
the En-Hi setting. The former subset has a higher
F1 score (44.6) than the latter (40.2), mainly
due to differences in recall. This difference in
performance also confirms that the cross-lingual
paths complement word embeddings, in the same
way that monolingual paths do.

Attention Analysis We complement ablation
experiments in Table 3 by examining a random
sample of 25 monolingual training pairs (., y.)
where y. has multiple translations in the bilin-
gual dictionary. We manually check for how many
pairs the model places the highest attention weight
on a translation that preserves the relation label of
the monolingual pair. This happens in 64% of the
cases (16 out of 25). The attention model is of-
ten able to modulate the choice of the right trans-
lation of y. based on the context provided by z.
and the gold label. For example, given the mono-
lingual example (drop, fall, Forward Entail)
the model places the highest weight on the Hindi
word fT¥T, which captures the “moving down-
ward” sense. On the other hand, for the example
(autumn, fall, Equivalence), the model cor-
rectly identifies Td=T$ as the right translation.

There still remains a lot of overhead for improv-

ing the attention component. Some failure cases
in the 25 examples occur for pairs where the set of
translations of y. contains an incorrect translation
which is totally unrelated to x, or y.. For exam-
ple, given (country, uganda), the model chooses
the word #gT (transliteration for candle) and not
?El:fl'i@T (transliteration for uganda). Of course, this
is an extreme example, but such errors are also
more likely to occur when the noisy translation is
in the same domain as x. and y.. Fixing such er-
rors can help improve the training process.

9 Conclusion

This work contributes data and models to the task
of classifying semantic relations between words
in different languages with only monolingual En-
glish supervision. We introduced MULTILEXREL,
a dataset of about 1000 English-Hindi and 900
English-Chinese word pairs annotated with the
natural logic lexical entailment classes of Mac-
Cartney and Manning (2007), and BILEXNET, a
cross-lingual relation classification model.

We also proposed a knowledge distillation algo-
rithm for BILEXNET, which only needs annotated
monolingual examples and a bilingual dictionary.
Unlike previous uses of knowledge distillation for
cross-lingual transfer, our approach does not as-
sume that labels are translation invariant, and re-
lies on an attention mechanism to select transla-
tions that best explain a given label. Experiments
show that this method largely outperforms base-
lines that use bilingual embeddings or dictionar-
ies more naively for cross-lingual transfer, and that
it approaches the performance of fully supervised
systems on an English-only version of the task.
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