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Abstract—We consider an unstable scalar linear stochastic
system, Xn+1 = aXn + Zn − Un, where a ≥ 1 is the system
gain, Zn’s are independent random variables with bounded α-
th moments, and Un’s are the control actions that are chosen
by a controller who receives a single element of a finite set
{1, . . . ,M} as its only information about system state Xi. We
show that M = ⌊a⌋ + 1 is necessary and sufficient for β-
moment stability, for any β < α. Our achievable scheme is a
uniform quantizer of the zoom-in / zoom-out type. We analyze
its performance using probabilistic arguments. We prove a
matching converse using information-theoretic techniques. Our
results generalize to vector systems, to systems with dependent
Gaussian noise, and to the scenario in which a small fraction
of transmitted messages is lost.

I. INTRODUCTION

We study the tradeoff between stabilizability of a linear

stochastic system and the coarseness of the quantizer used to

represent the state. The evolution of the system is described

by

Xn+1 = aXn + Zn − Un, (1)

where constant a ≥ 1; X1 and Z1, Z2, . . . are independent

random variables with bounded α-th moments, and Un is

the control action chosen based on the history of quantized

observations. More precisely, an M -bin causal quantizer-

controller for X1, X2, . . . is a sequence {fn, gn}
∞
n=1, where

fn : R
n 7→ [M ] is the encoding (quantizing) function, and

gn : [M ]n 7→ R is the decoding (controlling) function, and

[M ] , {1, 2, . . . ,M}. At time i, the controller outputs

Un = gn(f1(X1), f2(X
2), . . . , fn(X

n)). (2)

The fundamental operational limit of quantized control this

paper looks at is the minimum number of quantization bins

to achieve β-moment stability:

M⋆
β , min

{

M : ∃M -bin causal quantizer-controller

such that lim sup
n

E
[

|Xn|
β
]

< ∞

}

, (3)
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where 0 < β < α is fixed.

The main result of the paper is the following theorem.

Theorem 1. Let X1, Zn in (1) be independent random

variables with bounded α-moments. Then for any 0 < β < α,

the minimum number of quantization points to achieve β-

moment stability is

M⋆
β ≤ ⌊a⌋+ 1. (4)

The result of Theorem 1 is tight, as the following converse

shows.

Theorem 2. Let X1, Zn in (1) be independent ran-

dom variables. Let h(X1) > −∞, where h(X) ,

−
∫

R
fX(x) log fX(x)dx is the differential entropy. Then, for

all β > 0,

M⋆
β ≥ ⌊a⌋+ 1. (5)

In the special case of unstable scalar systems with bounded

disturbances, i.e. |Zn| ≤ B a.s., the results of Theorem 1

and Theorem 2 are well known from [1], [2], where it was

shown that a simple uniform quantizer with the number

of quantization bins in (4) stabilizes such systems. That

corresponds to the special case α = β = ∞.

The converse in the special case of β = 2 was proved in

[3], where it was shown that it is impossible to achieve sec-

ond moment stability in the system in (1) using a quantizer-

controller with the number of bins < ⌊a⌋ + 1. This implies

the validity of Theorem 2 for β ≥ 2.

Nair and Evans [3] showed that time-invariant fixed-rate

quantizers are unable to attain bounded cost if the noise is

unbounded [3], regardless of their rate. The reason is that

since the noise is unbounded, over time, a large magnitude

noise realization will inevitably be encountered, and the

dynamic range of the quantizer will be exceeded by a large

margin, not permitting recovery. This necessitates the use

of adaptive quantizers of zooming type originally proposed

by Brockett and Liberzon [4]. Such quantizers “zoom out”

(i.e. expand their quantization intervals) when the system

is far from the target and “zoom in” when the system is

close to the target. They are also known to achieve input-to-

state stability for linear systems with bounded disturbances

[5]. Nair and Evans [3] proposed a stabilizing quantization

scheme in which the number of quantization levels is finite

at each step but varies with time, and showed that it suffices

to use log2 a bits on average to achieve second moment

stability, as long as the system noise has bounded 2 + ǫ
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moment, for some ǫ > 0. In this paper, we do not allow the

communication rate to vary with time: our communication

channel noiselessly transmits one of M messages at each

time step.

The stabilizing performance of fixed-rate quantizer-

controller pairs that fit the setting of this paper was studied

by Yüksel [6], who proved that for Gaussian system noises,

M⋆
2 ≤ ⌊a⌋+ 2. (6)

Yuksel’s result leaves a gap of 1 between the upper and lower

bounds. The gap might seem insignificant, especially if the

gain a is large, but the gain of many realistic systems is

in [1, 2). The state of the art thus leaves open the question

of whether such systems are stabilizable with a single-bit

quantizer.

This paper resolves that question in the affirmative. We

construct a controller that stabilizes linear systems with a ∈
[1, 2) while using only 1 bit per sample to choose its control

action. We show that β-moment stability is achievable as long

as system noise has bounded α-moment, for some α > β.

The scheme and its analysis extend naturally to higher a’s.

Note that both schemes [3], [6] rely on the special treat-

ment of the overflow bins of the quantizer, which are its

unbounded leftmost and rightmost bins. Once the quantizer

overflows, the controllers of [3], [6] enter their zoom-out

modes. Such controller strategies cannot be used with single-

bit quantizers, because single-bit quantizers are always in

overflow. Furthermore, as Yüksel [6] discusses, the special

treatment of the overflow bin is what causes the extra 1 in (6).

In Section II, we describe our achievable scheme and

present a roadmap to its technical analysis. In Section III,

we give a proof of the converse in Theorem 2. Our results

generalize to constant-length time delays, to control over

communication channels that drop a small fraction of packets,

to systems with dependent Gaussian noise, and to vector

systems. These extensions are presented in Section IV. Due

to space considerations most proofs are relegated to the Arxiv

version [[7]]1; wherever possible we provide the main ideas

behind those proofs and point to the mathematical tools that

we use.

We conclude the introduction with a technical remark.

Remark 1. The assumptions in Theorem 2 that the differential

entropy of X1 is not −∞ implies that X1 must have a density.

That assumption is not superficial. For example, consider

Zi ≡ 0 and X1 uniformly distributed on the Cantor set, and

a = 2.9. Clearly this system can be stabilized with 1 bit,

by telling the controller at each step the undeleted third of

the interval the state is at. This is lower than the result of

Theorem 1, which states that M⋆
β would be 3 if X1 had a

density. Beyond distributions with densities, we conjecture

that M⋆
β will depend on the Hausdorff dimension of the

probability measure of X1.

1We use double brackets [[7]] to refer to the full version of this paper.
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Fig. 1. The binary quantizer uses two kinds of tests on a schedule determined
by the previous ±’s to produce the next + or −.

II. ACHIEVABLE SCHEME

A. The idea

Here we explain the idea of our achievable scheme. For

readability we focus on the case a ∈ [1, 2) and show that

the system can be controlled with 1 bit. In this case we will

be able to restrict to two types of tests, a sign test and a

magnitude test (see Fig. 1), simplifying the description of our

scheme. The straightforward extension to an arbitrary a ≥ 1,

in which the sign test is replaced by a uniform quantizer, is

found in Section II-E below.

In the case of bounded noise a uniform time-invariant quan-

tizer deterministically keeps Xn bounded [1], [2]. Indeed,

when |Zn| ≤ B, n = 1, 2, . . . and |X1| ≤ C1, if C1 ≥ B
1−a/2

one can put

C2 , (a/2)C1 +B ≤ C1, (7)

and putting further Cn+1 , (a/2)Cn+B, we obtain a mono-

tonically decreasing to B
1−a/2 sequence numbers {Cn}

∞
n=1.

Setting

Un = (a/2)Cn sgn(Xn) (8)

requires only 1 bit of knowledge about Xn (i.e., its sign). If

|Xn| ≤ Cn then

|Xn+1| ≤ (a/2)Cn +B = Cn+1, (9)

and

lim sup
n→∞

|Xn| ≤
B

1− a/2
. (10)

Actually, this is the best achievable bound on the uncertainty

about the location of Xn, as a volume-division argument

shows [8], [9].

When Zn merely have bounded α-moments the above does

not work because a single large value of Zn will cause the

system to explode. However we can use the idea of the

bounded case with the following modification. Most of the

time, in normal, or zoom-in, mode, the controller assumes

the Xn are bounded by constants Cn and runs the above

procedure, but occasionally, on a schedule, the controller

performs a magnitude test and sends a bit whose sole purpose

is to test whether the Xn are staying within desired bounds.
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If the answer is affirmative, the controller reverts back to

the normal mode, and otherwise, it enters the emergency,

or zoom-out, mode, whose purpose is to look for the Xn

in exponentially larger intervals until it is located, at which

point it returns to the zoom-in mode while still occasionally

checking for anomalies. We will show that all this can be

accomplished with only 1 bit per controller action.

The intuition behind our scheme is the following. At any

given time, with high probability Xn is not too large. Thus,

the emergencies are rare, and when they do occur, the size of

the uncertainty region tends to decrease exponentially. The

zoom-in mode operates almost exactly as in the bounded

case, except that we choose B large enough to diminish

the probability that the noise exceeds it. We now proceed

to making these intuitions precise in Section II-B.

B. The Algorithm

Here we describe the algorithm precisely and then outline

the proof of why it works. Specifically, we consider the

setting of Theorem 1 with a ∈ [1, 2) and Zn with bounded

α-moments. We find Un - a function only of the sequence

of bits received from the quantizer - that achieves β-moment

stability, for 0 < β < α.

First we prepare some constants. We fix B ≥ 1 large

enough. We set the probing factor P = P (α, β) - a large

positive constant (how large will be explained below, but

roughly P blows up as β ↑ α). We fix a small δ > 0 and a

large enough k = k(a) so that

(a/2)k−1a ≤ 1− 3δ. (11)

We proceed in “rounds” of at least k + 1 moves, k moves

in normal (zoom-in) mode and k + 1’th move to perform

a magnitude test to see whether Xn escaped the desired

bounds. If that magnitude test comes back normal, the round

ends; otherwise the controller enters the emergency (zoom-

out) mode, whose duration is variable and which ends once

the controller learns a new (larger) bound on Xn. In normal

mode, we use the update rule in (8), where Cn ≥ B is

positive. In the emergency mode, Un ≡ 0 while Cn grows

exponentially. A precise description of the operation of the

algorithm is given below.

1) At the start of a round at time-step m, |Xm| ≤ Cm, the

controller is silent, Um = 0, and Xm+1 = aXm + Zm.

Set

Cm+1 = aCm +B, (12)

and for each i ∈ {2, . . . , k},

Cm+i =
a

2
Cm+i−1 +B. (13)

In this normal mode operation, the quantizer sends

a sequence of signs of Xn (see Fig. 1(a)), while

the controller applies the controls (8) successively to

Xm, . . . , Xm+k−1. This normal mode operation will

keep Xm+i bounded by Cm+i unless some Zm+i is

atypically large.

2) The quantizer applies the magnitude test to check

whether |Xm+k| ≤ Cm+k (see Fig. 1(b)). If |Xm+k| ≤
Cm+k, we return to step 1. If |Xm+k| > Cm+k, this

means some Zm+i was abnormally large; the system

has blown up and we must do damage control. In this

case we enter emergency (zoom-out) mode in Step 3

below.

3) In emergency mode, we repeatedly perform silent

(Um+k+j ≡ 0) magnitude tests via

Cm+k+j = P Cm+k+j−1 = P jCm+k j ≥ 0 (14)

until the first time τ that the magnitude test is passed,

i.e.

τ , inf {j ≥ 0: |Xm+k+j | ≤ Cm+k+j} . (15)

We then set m ← m+ k + τ and return to Step 1.

The controller is silent at the start of a round because it

does not know the sign of Xm. Each round thus includes

one silent step at the start, and τ ≥ 0 silent steps of the

emergency mode.

C. Overview of the Analysis

We analyze the result of each round. At the start of each

round m we know that Xm is contained within interval

[−Cm, Cm]. We will show that when Cm is large, the

uncertainty interval tends to decrease by a constant factor

each round.

At the start of the round, |Xm| ≤ Cm. Assume that for

each i ∈ {0, 1, . . . , k}, we have

|Zm+i| ≤ B. (16)

and thus

|Xm+i| ≤ Cm+i. (17)

In particular, applying (11), (12) and (13), we bound the state

at the end of the round as

|Xm+k| ≤ Cm+k (18)

≤ (1− 3δ)Cm +
B

1− a/2
, (19)

which means that Cm+k ≤ Cm, provided that Cm ≥
B

3δ(1−a/2) . Thus, even starting with the silent step we

have successfully decreased Cm, provided that it was large

enough.

What if (16) fails to hold? Because the Zi have bounded

α-moments, by the union bound and Markov’s inequality, the

chance (16) fails is at most

P
[

∪k
i=0 {|Zm+i| > B}

]

≤ (k + 1)E [|Z|α]B−α. (20)

In this case, we show that we can control the blow-up

to avert a catastrophe. Recall that in emergency mode our

procedure will take exponentially growing Cn (see (14)) so

that we will soon observe that |Xn| ≤ Cn. The controller

then exits emergency mode and returns to the normal mode,
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starting a new round at time step n. Using boundedness of

α-moments of Zi, we would like to show that the chance

that on step n = m+ k + j this fails is exponentially small

in j. This will allow us to see that in each round starting

at Xm ∈ [−Cm, Cm], there is a high chance to shrink the

magnitude of the state and a small chance to grow larger. In

the next section we outline how to obtain precise moment

control.

D. Technical tools and proof roadmap

Here we introduce the technical tools and give the roadmap

to the proof of Theorem 1 for the case a ∈ [1, 2). Due

to space considerations full details are given in the Arxiv

version [[7]].

The tools in Proposition 1 and Lemma 1 below, that will be

instrumental in controlling the tails of the accumulated noise,

are proved in [[7]] using elementary probability arguments.

Proposition 1. If the random variable Z has finite α-moment,

then

tαP[|Z| > t] (21)

are bounded in t. Conversely, if (21) are bounded in t then

Z has a finite β-moment for any 0 < β < α.

Lemma 1. Suppose a > 1 is fixed and Zi are (arbitrarily

coupled) random variables with uniformly bounded absolute

α moments. Then the random variables

Z̃j ,

j
∑

i=0

a−iZi (22)

also have uniformly bounded absolute α-moments.

The bound in Lemma 2 below is proved in [[7]] by

considering the evolution of the system over k+1+ τ steps,

where τ (15) determines the end of the round. Note that τ
is a stopping time of the filtration generated by {Xn}.

Lemma 2. Fix B,P > 0 and consider our algorithm

described in Section II-B with these parameters. Suppose that

time-step m is the start of a round, so that the round ends on

time-step m+k+τ . For all 1 < a < 2 and for all 0 ≤ j ≤ τ ,

it holds that

max {|Xm+1|, . . . , |Xm+k+j |, Cm+k+j} (23)

≤ Pak+j

(

2Cm +
aB

(2− a)(a− 1)
+

k+j−1
∑

ℓ=0

a−ℓ−1|Zm+ℓ|

)

,

Recalling the choices of k and δ in (11), we prepare some

additional constants.

• Fix ∆ < α − β an arbitrary fixed constant, e.g. ∆ =
α−β
3 , so that

β = α− 3∆. (24)

• Fix P large enough so that

P/a ≥ max

{

(

a

1− δ

)α−∆

, 2k,
ak+1

2(a− 1)

}

. (25)

Suppose that time-step m is the start of a round, so that

the round ends on time-step m+ k + τ , with stopping time

τ = 0 usually.

We define a modified sequence X̃n through, for 1 ≤ i ≤
k + τ ,

X̃m+i ,

(

1

1− δ

)τ−|i−k|+

(26)

max {|Xm+k|, . . . , |Xm+k+τ |, Cm+k+τ} ,

where | · |+ , max{0, ·}. Clearly this definition ensures that

|Xm+k+j | ≤ X̃m+k+j 0 ≤ j ≤ τ. (27)

Furthermore, for all 1 ≤ i ≤ k − 1, there exists universal

constants K1,K2,K3 that depend on a, k and B such that

[[7]]

E
[

|Xm+i|
β
]

≤ K1 E

[

X̃β
m+k

]

+K2 E

[

X̃β
m

]

+K3. (28)

Inequalities (27) and (28) together mean that to establish

lim supn E
[

|Xn|
β
]

< ∞, it is sufficient to prove

lim sup
n

E[X̃β
n ] < ∞. (29)

To establish (29), we will show that

E[X̃β
m+1] ≤ (1− δ)βE[X̃β

m] +K, (30)

where K = K(P, k, δ) is a constant that may depend

on P, k, δ (but is independent of m). Since by definition

(26), X̃m+i ≤ X̃m+1 i = 2, . . . , k + τ , (30) ensures that

lim supn E[X̃
β
n ] is bounded above by K

1−(1−δ)β .

The intuition behind the definition for X̃n is as follows.

We want to construct a dominating sequence X̃n with the

expected decrease property in (30). During emergency mode,

the original sequence Xn may increase on average during

rounds. The sequence X̃n in (26) takes the potential increase

during each round up front, achieving the desired expected

decrease property. We will see that P in (25) is chosen so

that the constant-factor decrease of the system is preserved

when switching between rounds.

To show (30), we define the filtration Fn as follows: Fn is

the σ-algebra generated by the sequences Z1, Z2, . . . , Zn−1

and X̃1, X̃2, . . . , X̃n. Unless n is the end of a round,

knowledge of X̃n involves a peek into the future, so Fn

encompasses slightly more information than the naive notion

of “information up to time n”.

Define

Yn ,
X̃n+1

X̃n + B
(1−a/2)(1−3δ)

. (31)

We show (30) by the means of the following two state-

ments, where m is the transition between rounds:

(a) For sufficiently large k and P in (11) and (25), respec-

tively, it holds that 2

P [Ym ≥ t|Fm] = O
(

t−(α−∆)
)

, (32)

2Throughout this section, the implicit constants O () may depend on
P, k, δ (but are independent of n and B ≥ 1).
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(b) As B → ∞,

P [Ym ≤ 1− 3δ | Fm] → 1. (33)

The statement (33) is shown as follows. By Markov’s in-

equality (20), with probability converging to 1 as B → ∞,

all terms Zm, . . . , Zm+k are within [−B,B], and τ = 0. In

such a case, applying (19) and recalling (26), we get

X̃m+1 = max{|Xm+k|, Cm+k} (34)

≤ (1− 3δ) X̃m +
B

1− a/2
, (35)

which implies that Ym ≤ 1− 3δ, establishing (33).

The proof of (32) is lengthy [[7]] and relies on Proposi-

tion 1, Lemma 1 and Lemma 2; it is omitted here.

We use (32) and (33) to show (30) as follows. First, ob-

serve that by (32) and Proposition 1, {Ym|Fm} has bounded

β + ∆ - moment since we assumed (24) when choosing ∆.

Furthermore, since the right side of (32) is independent of

Fm, the β + ∆ - moment of Ym is bounded uniformly in

m. Now, pick p > 1 so that βp ≤ β + ∆, and let q satisfy
1
p + 1

q = 1. Write

E
[

Y β
m | Fm

]

≤ (1− 3δ)β + E
[

Y β
m 1 {Ym > 1− 3δ} | Fm

]

(36)

≤ (1− 3δ)β +
(

E
[

Y βp
m | Fm

])

1
p (P [Ym > 1− 3δ | Fm])

1
q

(37)

→ (1− 3δ)β , B → ∞, (38)

where (37) is by Hölder’s inequality, and the second term

in (37) vanishes as B → ∞ due to (33) and uniform

boundedness of the β + ∆ - moment of {Ym | Fm}. Note

that convergence in (38) is uniform in m. It follows that for a

large enough B (how large depends on the values of P, k, δ),

E
[

Y β
m | Fm

]

≤ (1− 2δ)β . (39)

Rewriting (39) using (31) yields

E[X̃β
m+1 | Fm] ≤ (1 − 2δ)β

(

X̃m +
B

(1 − a/2)(1− 3δ)

)β

(40)

≤ (1 − δ)βX̃β
m +K, (41)

which implies (30).

E. Finer Quantization

For a ≥ 2, the controller receives an element of an ⌊a⌋+1-

element set instead of a single bit. In this case we restrict

our attention to order-statistic tests, meaning that we split

the real line into ⌊a⌋+ 1 intervals

(−∞, w1,n), [w1,n, w2,n), . . . , [w⌊a⌋,n,∞), (42)

and the controller receives the index bn ∈ {0, 1, . . . , ⌊a⌋}
of the interval containing Xn. The only real issue is for the

quantizer and the controller to agree upon a rule for the values

of wi. However, this is easy; in the obvious generalization

of our algorithm to higher a, the estimate Cn of the state

magnitude will still be shared knowledge at all times; the

(uniform) quantizer simply breaks up the interval [−Cn, Cn]
into ⌊a⌋+ 1 equal parts.

In the case a < 1, the controller does nothing, which by

Lemma 1 achieves β-moment stability.

III. CONVERSE

In this section, we prove the converse result in Theorem 2

using information-theoretic arguments similar to those em-

ployed in [3], [10].

Proof of Theorem 2. Conditional entropy power is defined as

N(X |U) ,
1

2πe
exp (2h(X |U)) (43)

where h(X |U) = −
∫

R
fX,U (x, u) log fX|U=u(x)dx is the

conditional differential entropy of X .

Conditional entropy power is bounded above in terms of

moments (e.g. [11, Appendix 2]):

N(X) ≤ κβE
[

|X |β
]

2
β (44)

κβ ,
2

πe

(

e
1
β Γ

(

1 +
1

β

)

β
1
β

)2

, (45)

Thus,

κβE
[

|Xn|
β
]

2
β ≥ N (Xn) (46)

≥ N
(

Xn|U
n−1

)

, (47)

where (47) holds because conditioning reduces entropy. Next,

we show a recursion on N
(

Xn|U
n−1

)

:

N
(

Xn|U
n−1

)

= N(AXn−1 + Zn−1|U
n−1) (48)

≥ a2N(Xn−1|U
n−1) +N(Zn−1) (49)

≥ a2N(Xn−1|U
n−2) exp (−2r) +N(Zn−1),

(50)

where (49) is due to the conditional entropy power inequal-

ity:3

N(X + Y |U) ≥ N(X |U) +N(Y |U), (51)

which holds as long as X and Y are conditionally inde-

pendent given U , and (50) is obtained by weakening the

constraint |Un−1| ≤ M to a mutual information constraint

I(Xn−1;Un−1|U
n−2) ≤ logM = r and observing that

min
PU|X : I(X;U)≤r

h(X |U) ≥ h(X)− r. (52)

It follows from (50) that r > log a is necessary to keep

N
(

Xn|U
n−1

)

bounded. Due to (47), it is also necessary to

keep β-th moment of Xn bounded.

3Conditional EPI follows by convexity from the unconditional EPI [12],
[13].
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IV. GENERALIZATIONS

In this section, we state the generalizations of our results

in several directions. To show these generalizations we can

still use our tools in Section II-D with gentle modifications.

The proofs are omitted here and are found in [[7]].

A. Constant-Length Time Delays

Many systems have a finite delay in feedback. To model

this, we can force Un to depend on only the feedback up to

round n− ℓ, i.e.

Un = gn(f1(X1), f2(X
2), . . . , fn−ℓ(X

n−ℓ)), (53)

where fn(X
n) is the quantizer’s output at time n, as before.

We argue here that this makes no difference in terms of

the minimum number of bits required for stability. We state

the modified result next.

Theorem 3. Let X1, Zn in (1) be independent random vari-

ables with bounded α-moments. Assume that h(X1) > −∞.

The minimum number of quantization points to achieve β-

moment stability, for any 0 < β < α and with any constant

delay ℓ is given by ⌊a⌋+ 1.

B. Packet drops

Suppose that the encoder cannot send information to the

controller at all time-steps. Instead, the encoder can only send

information at a deterministic set T ⊆ N of times. Formally,

Un = gn({fn(X
n) : n ∈ T }). (54)

As long as the density of T is high enough on all large,

constant-sized scales, the same results go through.

Definition 1. A set T ⊆ N is strongly p-dense if there exists

N such that for all n we have

|n+ i : n+ i ∈ T , i = 0, . . . , N − 1|

N
> p. (55)

Note that the constant delay scenario in Section IV-A

amounts to control on a strongly p-dense set, with p ∈ [0, 1)
as close to 1 as desired.

Theorem 4. Let X1, Zn in (1) be independent random vari-

ables with bounded α-moments. Assume that h(X1) > −∞.

The minimum number of quantization points to achieve β-

moment stability is ⌊a⌋+ 1, for any 0 < β < α and on any

strongly p-dense set with some p ∈ [0, 1] large enough so

that

(⌊a⌋+ 1)
p
> a. (56)

C. Dependent Noise

Here we address a modification in which the noise is

correlated rather than independent.

Theorem 5. The results in Theorems 1, 3, 4 extend to

the case when {Zn} is correlated Gaussian noise whose

covariance matrix has bounded spectrum.

D. Vector systems

The results generalize to higher dimensional systems

Xn+1 = AXn + Zn − BUn, (57)

where A is a d × d matrix and Zn, Un are vectors. The

dimensionality of control signals Un can be less than d, in

which case B is a tall matrix.

The idea behind our generalization to the vector case,

previously explored in e.g. [3], is that we can decompose

R
d into eigenspaces of A and rotate attention between these

parts.

Theorem 6. Consider the stochastic vector linear system in

(57) with (A,B) stabilizable. Let X1, Zn be independent

random R
d-valued random vectors with bounded α-moments.

Assume that h(X1) > −∞. Let (λ1, ..., λd) be the eigenval-

ues of A, and set

a ,

d
∏

j=1

max(1, |λj |). (58)

Then for any 0 < β < α, the minimum number of quantiza-

tion points to achieve β-moment stability is

M⋆
β = ⌊a⌋+ 1. (59)
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[6] S. Yüksel, “Stochastic stabilization of noisy linear systems with
fixed-rate limited feedback,” IEEE Transactions on Automatic Control,
vol. 55, no. 12, pp. 2847–2853, 2010.

[7] V. Kostina, Y. Peres, G. Ranade, and M. Sellke, “Exact mini-
mum number of bits to stabilize a linear system,” ArXiv preprint

arXiv:1807.07686, July 2018.
[8] S. Tatikonda and S. Mitter, “Control under communication constraints,”

IEEE Transactions on Automatic Control, vol. 49, no. 7, pp. 1056–
1068, 2004.

[9] B. G. N. Nair, F. Fagnani, S. Zampieri, and R. J. Evans, “Feedback
control under data rate constraints: An overview,” Proceedings of the

IEEE, vol. 95, no. 1, pp. 108–137, 2007.
[10] V. Kostina and B. Hassibi, “Rate-cost tradeoffs in control,” ArXiv

preprint, Oct. 2016.
[11] R. Zamir and M. Feder, “On universal quantization by randomized

uniform/lattice quantizers,” IEEE Transactions on Information Theory,
vol. 38, no. 2, pp. 428–436, Mar. 1992.

[12] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.

Tech. J., vol. 27, pp. 379–423, 623–656, July and October 1948.
[13] A. J. Stam, “Some inequalities satisfied by the quantities of information

of Fisher and Shannon,” Information and Control, vol. 2, no. 2, pp.
101–112, 1959.

458


