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Exact minimum number of bits
to stabilize a linear system

Victoria Kostina, Yuval Peres, Gireeja Ranade, Mark Sellke

Abstract—We consider an unstable scalar linear stochastic
system, X,,+1 = aX, + Z, — Uy, where a > 1 is the system
gain, Z,’s are independent random variables with bounded -
th moments, and U,,’s are the control actions that are chosen
by a controller who receives a single element of a finite set
{1,..., M} as its only information about system state X;. We
show that M = |a] + 1 is necessary and sufficient for (-
moment stability, for any 8 < a. Our achievable scheme is a
uniform quantizer of the zoom-in / zoom-out type. We analyze
its performance using probabilistic arguments. We prove a
matching converse using information-theoretic techniques. Our
results generalize to vector systems, to systems with dependent
Gaussian noise, and to the scenario in which a small fraction
of transmitted messages is lost.

I. INTRODUCTION

We study the tradeoff between stabilizability of a linear
stochastic system and the coarseness of the quantizer used to
represent the state. The evolution of the system is described
by

XnJrl - aXn + Zn - Una (1)

where constant ¢ > 1; X; and Z;, Zs, ... are independent
random variables with bounded a-th moments, and U, is
the control action chosen based on the history of quantized
observations. More precisely, an M-bin causal quantizer-
controller for X1, Xo, ... is a sequence {f,,g,}>2, where
fn: R™ — [M] is the encoding (quantizing) function, and
gn: [M]" — R is the decoding (controlling) function, and
[M] £ {1,2,...,M}. At time i, the controller outputs

Un = gn(f1(X1), 2(X?), ..., fu(X™). )

The fundamental operational limit of quantized control this
paper looks at is the minimum number of quantization bins
to achieve S-moment stability:

Mp £ min {M : 4 M-bin causal quantizer-controller
such that limsupE [|Xn|5} < oo}, 3)
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where 0 < 8 < a is fixed.
The main result of the paper is the following theorem.

Theorem 1. Let Xy, Z, in (1) be independent random
variables with bounded o-moments. Then for any 0 < f < q,
the minimum number of quantization points to achieve [3-
moment stability is

Mj < |a] +1. 4)

The result of Theorem 1 is tight, as the following converse
shows.

Theorem 2. Let Xy, Z, in (1) be independent ran-
dom variables. Let h(Xi) > —oo, where h(X) £
— Jg fx(x)log fx (x)dx is the differential entropy. Then, for
all B >0,

Mj > |a] +1. (5)

In the special case of unstable scalar systems with bounded
disturbances, i.e. |Z,| < B as., the results of Theorem 1
and Theorem 2 are well known from [1], [2], where it was
shown that a simple uniform quantizer with the number
of quantization bins in (4) stabilizes such systems. That
corresponds to the special case o = = oc.

The converse in the special case of 3 = 2 was proved in
[3], where it was shown that it is impossible to achieve sec-
ond moment stability in the system in (1) using a quantizer-
controller with the number of bins < |a| + 1. This implies
the validity of Theorem 2 for 5 > 2.

Nair and Evans [3] showed that time-invariant fixed-rate
quantizers are unable to attain bounded cost if the noise is
unbounded [3], regardless of their rate. The reason is that
since the noise is unbounded, over time, a large magnitude
noise realization will inevitably be encountered, and the
dynamic range of the quantizer will be exceeded by a large
margin, not permitting recovery. This necessitates the use
of adaptive quantizers of zooming type originally proposed
by Brockett and Liberzon [4]. Such quantizers “zoom out”
(i.e. expand their quantization intervals) when the system
is far from the target and “zoom in” when the system is
close to the target. They are also known to achieve input-to-
state stability for linear systems with bounded disturbances
[5]. Nair and Evans [3] proposed a stabilizing quantization
scheme in which the number of quantization levels is finite
at each step but varies with time, and showed that it suffices
to use log, a bits on average to achieve second moment
stability, as long as the system noise has bounded 2 + ¢
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moment, for some € > 0. In this paper, we do not allow the
communication rate to vary with time: our communication
channel noiselessly transmits one of M messages at each
time step.

The stabilizing performance of fixed-rate quantizer-
controller pairs that fit the setting of this paper was studied
by Yiiksel [6], who proved that for Gaussian system noises,

M} < |a] +2. (6)
Yuksel’s result leaves a gap of 1 between the upper and lower
bounds. The gap might seem insignificant, especially if the
gain a is large, but the gain of many realistic systems is
in [1,2). The state of the art thus leaves open the question
of whether such systems are stabilizable with a single-bit
quantizer.

This paper resolves that question in the affirmative. We
construct a controller that stabilizes linear systems with a €
[1,2) while using only 1 bit per sample to choose its control
action. We show that S-moment stability is achievable as long
as system noise has bounded c-moment, for some o« > /.
The scheme and its analysis extend naturally to higher a’s.

Note that both schemes [3], [6] rely on the special treat-
ment of the overflow bins of the quantizer, which are its
unbounded leftmost and rightmost bins. Once the quantizer
overflows, the controllers of [3], [6] enter their zoom-out
modes. Such controller strategies cannot be used with single-
bit quantizers, because single-bit quantizers are always in
overflow. Furthermore, as Yiiksel [6] discusses, the special
treatment of the overflow bin is what causes the extra 1 in (6).

In Section II, we describe our achievable scheme and
present a roadmap to its technical analysis. In Section III,
we give a proof of the converse in Theorem 2. Our results
generalize to constant-length time delays, to control over
communication channels that drop a small fraction of packets,
to systems with dependent Gaussian noise, and to vector
systems. These extensions are presented in Section IV. Due
to space considerations most proofs are relegated to the Arxiv
version [[7]]'; wherever possible we provide the main ideas
behind those proofs and point to the mathematical tools that
we use.

We conclude the introduction with a technical remark.

Remark 1. The assumptions in Theorem 2 that the differential
entropy of X is not —oo implies that X; must have a density.
That assumption is not superficial. For example, consider
Z; =0 and X uniformly distributed on the Cantor set, and
a = 2.9. Clearly this system can be stabilized with 1 bit,
by telling the controller at each step the undeleted third of
the interval the state is at. This is lower than the result of
Theorem 1, which states that M 5 would be 3 if X; had a
density. Beyond distributions with densities, we conjecture
that M7 will depend on the Hausdorff dimension of the
probability measure of X;.

'We use double brackets [[7]] to refer to the full version of this paper.
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(a) Sign test

(b) Magnitude test

Fig. 1. The binary quantizer uses two kinds of tests on a schedule determined
by the previous £’s to produce the next + or —.

II. ACHIEVABLE SCHEME
A. The idea

Here we explain the idea of our achievable scheme. For
readability we focus on the case a € [1,2) and show that
the system can be controlled with 1 bit. In this case we will
be able to restrict to two types of tests, a sign test and a
magnitude test (see Fig. 1), simplifying the description of our
scheme. The straightforward extension to an arbitrary a > 1,
in which the sign test is replaced by a uniform quantizer, is
found in Section II-E below.

In the case of bounded noise a uniform time-invariant quan-
tizer deterministically keeps X,, bounded [1], [2]. Indeed,
when |Z,| < B,n=1,2,...and |X;| < C1, if C1 > 1575
one can put

Ch 2 (a/2)Ci + B <y, ©

and putting further C,, 41 £ (a/2)C,,+ B, we obtain a mono-
tonically decreasing to sequence numbers {C,,}52 ;.

) 1—a/2
Setting

U, = (a/2)C, sgn(X,,) ®)

requires only 1 bit of knowledge about X,, (i.e., its sign). If
| X,| < C, then

| Xn+1| < (a/2)Cpn + B = Cpy1, )
and
B
li X, < —. 1
msup | Xal < 7075 (10)

Actually, this is the best achievable bound on the uncertainty
about the location of X,, as a volume-division argument
shows [8], [9].

When Z,, merely have bounded a-moments the above does
not work because a single large value of Z,, will cause the
system to explode. However we can use the idea of the
bounded case with the following modification. Most of the
time, in normal, or zoom-in, mode, the controller assumes
the X,, are bounded by constants C,, and runs the above
procedure, but occasionally, on a schedule, the controller
performs a magnitude test and sends a bit whose sole purpose
is to test whether the X,, are staying within desired bounds.
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If the answer is affirmative, the controller reverts back to
the normal mode, and otherwise, it enters the emergency,
or zoom-out, mode, whose purpose is to look for the X,
in exponentially larger intervals until it is located, at which
point it returns to the zoom-in mode while still occasionally
checking for anomalies. We will show that all this can be
accomplished with only 1 bit per controller action.

The intuition behind our scheme is the following. At any
given time, with high probability X,, is not too large. Thus,
the emergencies are rare, and when they do occur, the size of
the uncertainty region tends to decrease exponentially. The
zoom-in mode operates almost exactly as in the bounded
case, except that we choose B large enough to diminish
the probability that the noise exceeds it. We now proceed
to making these intuitions precise in Section II-B.

B. The Algorithm

Here we describe the algorithm precisely and then outline
the proof of why it works. Specifically, we consider the
setting of Theorem 1 with a € [1,2) and Z,, with bounded
a-moments. We find U,, - a function only of the sequence
of bits received from the quantizer - that achieves S-moment
stability, for 0 < 8 < a.

First we prepare some constants. We fix B > 1 large
enough. We set the probing factor P = P(«, () - a large
positive constant (how large will be explained below, but
roughly P blows up as 8 1 «). We fix a small § > 0 and a
large enough k = k(a) so that

(a/2)*1a <1 - 36. (a1

We proceed in “rounds” of at least £ + 1 moves, k£ moves
in normal (zoom-in) mode and k 4 1’th move to perform
a magnitude test to see whether X,, escaped the desired
bounds. If that magnitude test comes back normal, the round
ends; otherwise the controller enters the emergency (zoom-
out) mode, whose duration is variable and which ends once
the controller learns a new (larger) bound on X,,. In normal
mode, we use the update rule in (8), where C,, > B is
positive. In the emergency mode, U,, = 0 while C,, grows
exponentially. A precise description of the operation of the
algorithm is given below.
1) At the start of a round at time-step m, | X,,| < C,,, the
controller is silent, U,, = 0, and X,;,+1 = a X, + Zpn-

Set
Cms1 = aCy, + B, (12)
and for each i € {2,...,k},
Cryi = Ecmﬂ'ﬂ + B. (13)

2
In this normal mode operation, the quantizer sends
a sequence of signs of X, (see Fig. 1(a)), while
the controller applies the controls (8) successively to
Xmy-ooy Xm+k—1. This normal mode operation will
keep X,,+; bounded by C,,; unless some Z,,; is
atypically large.

2) The quantizer applies the magnitude test to check
whether | X, 11| < Crqr (see Fig. 1(b)). If | Xpik| <
Cintk, we return to step 1. If | X,k > Chypg, this
means some Z,,+; was abnormally large; the system
has blown up and we must do damage control. In this
case we enter emergency (zoom-out) mode in Step 3
below.

3) In emergency mode, we repeatedly perform silent
(Um+k+; = 0) magnitude tests via

Contktj = PCmirijo1 =P Crmyr >0 (14)

until the first time 7 that the magnitude test is passed,
ie.

T2inf{j > 0: [Xinintj] < Comarast. (19

We then set m <— m + k + 7 and return to Step 1.

The controller is silent at the start of a round because it
does not know the sign of X,,. Each round thus includes
one silent step at the start, and 7 > 0 silent steps of the
emergency mode.

C. Overview of the Analysis

We analyze the result of each round. At the start of each
round m we know that X,, is contained within interval
[-C, Cr]. We will show that when C,, is large, the
uncertainty interval tends to decrease by a constant factor
each round.

At the start of the round, | X,,| < Cy,. Assume that for

each i € {0,1,...,k}, we have
| Zm+il < B. (16)
and thus
| Xmtil < Cri (17)

In particular, applying (11), (12) and (13), we bound the state
at the end of the round as

| Xoti| < Crngi (18)

<(1-30)Cp + (19)

1—a/2’
which means that C,,yr < C,,, provided that C,, >
ﬁ. Thus, even starting with the silent step we
have successfully decreased C,,, provided that it was large
enough.

What if (16) fails to hold? Because the Z; have bounded
a-moments, by the union bound and Markov’s inequality, the

chance (16) fails is at most

P Uy {|Zm+il > B} < (k+ DE[|Z]*] B~ (20)

In this case, we show that we can control the blow-up
to avert a catastrophe. Recall that in emergency mode our
procedure will take exponentially growing C,, (see (14)) so
that we will soon observe that | X,,| < C,,. The controller
then exits emergency mode and returns to the normal mode,
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starting a new round at time step n. Using boundedness of
a-moments of Z;, we would like to show that the chance
that on step n = m + k + j this fails is exponentially small
in j. This will allow us to see that in each round starting
at X,,, € [-C,,,Cy,), there is a high chance to shrink the
magnitude of the state and a small chance to grow larger. In
the next section we outline how to obtain precise moment
control.

D. Technical tools and proof roadmap

Here we introduce the technical tools and give the roadmap
to the proof of Theorem 1 for the case a € [1,2). Due
to space considerations full details are given in the Arxiv
version [[7]].

The tools in Proposition 1 and Lemma 1 below, that will be
instrumental in controlling the tails of the accumulated noise,
are proved in [[7]] using elementary probability arguments.

Proposition 1. If the random variable Z has finite c-moment,

then
Pl Z| > ¢t 21

are bounded in t. Conversely, if (21) are bounded in t then
Z has a finite -moment for any 0 < 3 < a.

Lemma 1. Suppose a > 1 is fixed and Z; are (arbitrarily
coupled) random variables with uniformly bounded absolute
o moments. Then the random variables

Zj é i aiiZl-
=0

also have uniformly bounded absolute c:-moments.

(22)

The bound in Lemma 2 below is proved in [[7]] by
considering the evolution of the system over k + 1 + 7 steps,
where 7 (15) determines the end of the round. Note that 7
is a stopping time of the filtration generated by {X,,}.

Lemma 2. Fix B,P > 0 and consider our algorithm
described in Section II-B with these parameters. Suppose that
time-step m is the start of a round, so that the round ends on
time-step m~+k+7. Forall 1 < a < 2andforall0 <j <,
it holds that

max {| Xomy1ls -+ [ Xonthrsls Cmgbrs } (23)

B k+j—1
< Pa*t (20, 4+ —— 4 a Y Zonsdl |
< 2-a)(a—1) ;

Recalling the choices of £ and § in (11), we prepare some
additional constants.

e Fix A < a — (8 an arbitrary fixed constant, e.g. A =
ﬂ, so that

3

B=a—3A. (24)

o Fix P large enough so that

a a—A . k1
P/aZmaX <1—6) ,2, 2(T_1) . (25)

Suppose that time-step m is the start of a round, so that
the round ends on time-step m + k -+ 7, with stopping time
7 = 0 usually.

We define a modified sequence f(n through, for 1 < ¢ <
k+T,

T—‘i—k}|+
8 1
Xm+i £ (1 — 5)

max {| Xkl [ Xt ksrls Contkar f 5

(26)

where | - |+ £ max{0, -}. Clearly this definition ensures that
| Xnthrj] € Xongrgy 0<j<T (27)

Furthermore, for all 1 < 7 < k£ — 1, there exists universal
constants K, Ko, K3 that depend on a, k and B such that
(711

E[|Xmiil?] < KiE [XQM} + KGR [X[,ﬂ + Ks. (28)

Inequalities (27) and (28) together mean that to establish
limsup,, E [| X, |?] < oo, it is sufficient to prove

lim sup E[X?] < oc. (29)
To establish (29), we will show that
E[X), ] < (1-0)’E[X]}] + K, (30)

where K = K(P,k,0) is a constant that may depend
on P k,§ (but is independent of m). Since by definition
(26), XmH < Xm+1 1 =2,...,k+ 7, (30) ensures that
lim sup,, E[X/?] is bounded above by ﬁ

The intuition behind the definition for X,, is as follows.
We want to construct a dominating sequence X, with the
expected decrease property in (30). During emergency mode,
the original sequence X,, may increase on average during
rounds. The sequence X, in (26) takes the potential increase
during each round up front, achieving the desired expected
decrease property. We will see that P in (25) is chosen so
that the constant-factor decrease of the system is preserved
when switching between rounds.

To show (30), we define the filtration JF,, as follows: F,, is
the o-algebra generated by the sequences 21, Zsa, ..., Zn_1
and Xl,Xg, .. ,f(n. Unless n is the end of a round,
knowledge of Xn involves a peek into the future, so F,
encompasses slightly more information than the naive notion
of “information up to time n”.

Define

Y. Y Xn+1

= 31

X+ e Y
We show (30) by the means of the following two state-

ments, where m is the transition between rounds:

(a) For sufficiently large k£ and P in (11) and (25), respec-

tively, it holds that 2
R O ) R )

2Throughout this section, the implicit constants O () may depend on
P, k,d (but are independent of n and B > 1).
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(b) As B — o0,

P[Y,, <1—36| Fp] — 1. (33)

The statement (33) is shown as follows. By Markov’s in-
equality (20), with probability converging to 1 as B — oo,
all terms Z,,, ..., Zyyr are within [—B, B], and 7 = 0. In
such a case, applying (19) and recalling (26), we get

Xm+1 = max{le+k|7 Cm-i—k}

< (1—38) X, +

(34)

1—a/2’ (35)
which implies that Y,,, <1 — 34, establishing (33).

The proof of (32) is lengthy [[7]] and relies on Proposi-
tion 1, Lemma 1 and Lemma 2; it is omitted here.

We use (32) and (33) to show (30) as follows. First, ob-
serve that by (32) and Proposition 1, {Y;,,|F,,} has bounded
8+ A - moment since we assumed (24) when choosing A.
Furthermore, since the right side of (32) is independent of
Fm, the B+ A - moment of Y,,, is bounded uniformly in
m. Now, pick p > 1 so that Sp < g+ A, and let ¢ satisfy
L2 =1 Write

E[Y) | F
<(1-30)° +E[VE1{Y,, > 136} | Fpn] (36)

< (1-38)° + (E[YEP | F)? (P[Yn > 1— 38| Ful)i
(37)

— (1-36)", B — oo, (38)

where (37) is by Holder’s inequality, and the second term
in (37) vanishes as B — oo due to (33) and uniform
boundedness of the 5 + A - moment of {Y;, | 7, }. Note
that convergence in (38) is uniform in m. It follows that for a
large enough B (how large depends on the values of P, k, ),

E V2| Fn] < (1-20)°. (39)

Rewriting (39) using (31) yields

) . B ’
E[X 1 | Fn] < (1-26)° <Xm T 36))
(40)

<(1-0)°X8 +K, (41

which implies (30).

E. Finer Quantization

For a > 2, the controller receives an element of an |a|+1-
element set instead of a single bit. In this case we restrict
our attention to order-statistic tests, meaning that we split
the real line into |a] + 1 intervals

(42)

and the controller receives the index b, € {0,1,...,|a|}
of the interval containing X,,. The only real issue is for the
quantizer and the controller to agree upon a rule for the values

(—OO, wl-,n)a [wlﬂla w2-,n)a ey [wl_aj,nv OO),

of w;. However, this is easy; in the obvious generalization
of our algorithm to higher a, the estimate C,, of the state
magnitude will still be shared knowledge at all times; the
(uniform) quantizer simply breaks up the interval [—C,,, C,,]
into |a] 4+ 1 equal parts.

In the case a < 1, the controller does nothing, which by
Lemma 1 achieves S-moment stability.

III. CONVERSE

In this section, we prove the converse result in Theorem 2
using information-theoretic arguments similar to those em-
ployed in [3], [10].

Proof of Theorem 2. Conditional entropy power is defined as

N(X|U) & . exp (2h(X|U)) (43)
2me
where h(X|U) = — [; fx,u(z,u)log fxju—y(x)ds is the
conditional differential entropy of X.
Conditional entropy power is bounded above in terms of
moments (e.g. [11, Appendix 2]):

i

N(X) < rgE [|X]7] (44)
A 2 1 1 1\ 2
ﬁB:E<€ﬂF<1+E)ﬁﬁ> ; (45)
Thus,
kB [|Xal?]F = N (X,) (46)
> N (XU, (47)

where (47) holds because conditioning reduces entropy. Next,
we show a recursion on N (X, |U"~1):

N (Xp|U™ ') = N(AX, 1 + Z, 1 [U" ) 48)
> a®N(Xp1|U") 4+ N(Zp—1) (49)

> a?N(Xn 1|U"?) exp (=2r) + N(Z, 1),
(50)

where (49) is due to the conditional entropy power inequal-

ity:?

N(X +Y|U) > N(X|U) + N(Y|U), 51)

which holds as long as X and Y are conditionally inde-
pendent given U, and (50) is obtained by weakening the
constraint |U,—1| < M to a mutual information constraint
I(X,_1;U,_1|U™2) < log M = r and observing that

WX|U) > h(X) =1 (52)

min
Py x: I(X;U)<r
It follows from (50) that » > loga is necessary to keep
N (Xn|U"’1) bounded. Due to (47), it is also necessary to
keep [-th moment of X,, bounded. o

3Conditional EPI follows by convexity from the unconditional EPI [12],
[13].
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IV. GENERALIZATIONS

In this section, we state the generalizations of our results
in several directions. To show these generalizations we can
still use our tools in Section II-D with gentle modifications.
The proofs are omitted here and are found in [[7]].

A. Constant-Length Time Delays

Many systems have a finite delay in feedback. To model
this, we can force U,, to depend on only the feedback up to
round n — /, i.e.

Un :gn(fl(Xl)va(Xz)a"-afn*l(Xnig))a (53)

where f,,(X™) is the quantizer’s output at time n, as before.

We argue here that this makes no difference in terms of
the minimum number of bits required for stability. We state
the modified result next.

Theorem 3. Let X1, Z,, in (1) be independent random vari-
ables with bounded a-moments. Assume that h(X1) > —oo.
The minimum number of quantization points to achieve 3-
moment stability, for any 0 < 8 < « and with any constant
delay { is given by |a] + 1.

B. Packet drops

Suppose that the encoder cannot send information to the
controller at all time-steps. Instead, the encoder can only send
information at a deterministic set 7 C N of times. Formally,

U,=g.({fn(X™):neT}. (54)

As long as the density of 7 is high enough on all large,
constant-sized scales, the same results go through.

Definition 1. A set 7 C N is strongly p-dense if there exists
N such that for all n we have
[n+i:n+ieT,i=0,...,N —1|
N

> p. (55)

Note that the constant delay scenario in Section IV-A
amounts to control on a strongly p-dense set, with p € [0,1)
as close to 1 as desired.

Theorem 4. Let X1, Z, in (1) be independent random vari-
ables with bounded o-moments. Assume that h(X;) > —oo.
The minimum number of quantization points to achieve (-
moment stability is |a] + 1, for any 0 < 8 < « and on any
strongly p-dense set with some p € [0,1] large enough so
that

(la] + 1) > a. (56)

C. Dependent Noise

Here we address a modification in which the noise is
correlated rather than independent.

Theorem 5. The results in Theorems 1, 3, 4 extend to
the case when {Z,} is correlated Gaussian noise whose
covariance matrix has bounded spectrum.

D. Vector systems

The results generalize to higher dimensional systems

Xn+1 =AX,+Z, - BUn7 (57)

where A is a d X d matrix and Z,,, U, are vectors. The
dimensionality of control signals U,, can be less than d, in
which case B is a tall matrix.

The idea behind our generalization to the vector case,
previously explored in e.g. [3], is that we can decompose
R? into eigenspaces of A and rotate attention between these
parts.

Theorem 6. Consider the stochastic vector linear system in
(57) with (A,B) stabilizable. Let X1, Z, be independent
random R%-valued random vectors with bounded o-moments.
Assume that h(X1) > —oo. Let (A1, ..., \q) be the eigenval-
ues of A, and set

d
a = ] max(1, |x]). (58)

J=1

Then for any 0 < 8 < «, the minimum number of quantiza-
tion points to achieve 3-moment stability is

Mj; = |a] + 1. (59)
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