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Abstract—This paper provides a precise error analysis for the
maximum likelihood estimate G(u) of the parameter a given
samples u = (u1,...,u,)' drawn from a nonstationary Gauss-
Markov process U; = aU;—1 + Z;, i > 1, where a > 1,
Up = 0, and Z;’s are independent Gaussian random variables
with zero mean and variance 2. We show a tight nonasymptotic
exponentially decaying bound on the tail probability of the
estimation error. Unlike previous works, our bound is tight
already for a sample size of the order of hundreds. We apply the
new estimation bound to find the dispersion for lossy compression
of nonstationary Gauss-Markov sources. We show that the
dispersion is given by the same integral formula derived in
our previous work [1] for the (asymptotically) stationary Gauss-
Markov sources, i.e., |a| < 1. New ideas in the nonstationary case
include a deeper understanding of the scaling of the maximum
eigenvalue of the covariance matrix of the source sequence, and
new techniques in the derivation of our estimation error bound.

1. INTRODUCTION

A scalar Gauss-Markov process {U; }$2, is a random process
defined as

U;=aU;_1 + Zi, 1> 1, (1)
where Uy = 0 and Z;’s are independent Gaussian random
variables with zero mean and variance o2, Z; ~ N(0,02).
We assume without loss of generality that a > 0. We
make the distinctions between the following three cases: the
(asymptotically) stationary case refers to 0 < a < 1 in (1); the
unit-root case to @ = 1 !; and the nonstationary case to a > 1.
This paper mostly focuses on the nonstationary case.

Our primary motivation for studying the Gauss-Markov
process is to understand the role of memory in nonasymptotic
rate-distortion theory. The Gauss-Markov process in (1) is
one of the simplest models for information sources with
memory. The rate-distortion function (RDF) [2] captures
the rate-distortion tradeoff when the coding length tends to
infinity. The central question in nonasymptotic rate-distortion
theory is to characterize the rate-distortion tradeoff when the
coding length is constrained to be finite, and the dispersion
is the main quantity of interest. The dispersion of stationary
memoryless sources was found in [3, 4]. The dispersion of
information sources with memory is largely unknown. Our
previous work [1] found the dispersion of the stationary Gauss-
Markov source.
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One of the key ideas in [1] is to construct a typical set based
on a(u), the maximum likelihood estimate (MLE) of a given
samples uw = (u1,...,u,) . For a typical u, a(u) is close to
a. The MLE a(u) of the parameter a can be easily obtained
as (see [5, Eq. (352)-(356)] for a derivation):

S ity
i 11 ui
For 0 < a < 1, our previous work [5, Th. 5] provided a
tight bound on the tail probability of the estimation error
|a(U) — a|. Using different tools, for a > 1, this paper derives
an exponentially decaying upper bound on the tail probability of
a(U) — a. This result complements the large body of works [6—
10] studying various aspects of the MLE a(w). Our bound is
nonasymptotic and tighter than existing bounds, see Fig 1 in
Section III-A below for a comparison. As an application of the
error bound, we find the dispersion for the nonstationary Gauss-
Markov source. Although the dispersion is represented by the
same formula as the one we derived for the stationary case [1,
Th. 1], there is a subtle difference between the analyses of the
two scenarios. In fact, after the RDF of the stationary Gauss-
Markov source was derived [11] (see also [12, Th. 4.5.3)), it
still took several decades to completely understand the RDF
of the nonstationary one [13—15]. Throughout the paper, all
logarithms and exponents are base e. All detailed proofs are

given in the long version [16].

a(u) =

2

II. PREVIOUS WORKS
A. Parameter estimation

The estimator a(u) in (2) has been extensively studied in
the statistics [6, 7] and economics [17, 18] communities. It
is well known [7, 17, 18] that the estimation error a(U) — a
converges to 0 in probability for any a € R, as n tends to
infinity. To better understand how the error a(U) — a scales
as n tends to infinity, researchers turned to study the limiting
distribution of the normalized estimation error h(n)(a(U) —a)
for a careful choice of the standardizing function h(n):

h(n) £ 2 la| = 1, 3)
% el >1

Mann and Wald [17] and White [6] showed that the distribution
of the normalized estimation error h(n)(a(U) — a) converges
to N (0,1) for |a| < 1; to the Cauchy distribution with the
probability density function for |a| > 1; and for |a| =

where {B(t) : t € [0, 1]}

1
271'(14»%2)
1, to the distribution of %

is a Brownian motion.
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This paper presents a nonasymptotic fine-grained large
deviations analysis of the estimation error. Given an error
threshold 1 > 0, define the error exponents P and P, as

pHa —% logP[a(U) —a > 1), 4)
p A —%mgp[a(U) —a< —1]. (5)
We also define P,, as
P, 2 7% logP[|a(U) — a| > n]. (6)
For 0 < a < 1, Bercu et al. [8] showed that
lim P, = L(n), @)

n—oo

where the rate function Is(n) is given in [8, Prop. 8]. For a > 1,
Worms [9, Th. 1] proved that

liminf P, > I(n),

n—oo

®)

where Is(n) is specified in [9, Th. 1] as the optimal value of an
optimization problem. A bound similar to (8) for the unit-root
case was also presented in [9, Th. 1]. To our knowledge, there
are two nonasymptotic lower bounds on P and P, . For any
a € R, Rantzer [10, Th. 4] showed that

1
Pl (and P;) > 5 log(1 + n?). )
Bercu and Touati [19, Cor. 5.2] proved that
2
PF(and Py)> ——1 (10)
2(1+ yn)

where y,, is the unique positive solution to (1+x)log(1+x)—
z —n? = 0 in z. Both bounds (9) and (10) do not depend on
a and n, and are the same for P, and P, .

This paper shows tight nonasymptotic bounds on P}, P~
and P,. Our nonasymptotic lower bounds on P} and P,
depend on @ and n, and are distinct for P, and P, . For
larger a, our lower bound becomes larger, which suggests
that unstable systems are easier to estimate than stable ones,
an observation consistent with [20]. The proof is inspired by
Rantzer [10, Lem. 5], but our result significantly improves (9)
and (10), see Fig. 1 for a comparison.

B. Nonasymptotic rate-distortion theory

Given a distortion threshold d > 0, an excess-distortion
probability € € (0,1) and M € N, an (n,M,d,¢) lossy
compression code for a random vector U = (Uy,...,U,)" of
length n consists of an encoder f,,: R™ — [M], and a decoder
gn: [M] — R", such that P[d(U,g, (f.(U))) >d] < e,
where d(-, -) is the distortion measure. In this paper, we consider
the mean squared error (MSE) distortion: V u,v € R",

aly 2
d(u,v) = - Z(uZ v;)°.

i=1

(1D

The minimum achievable code size and source coding rate are
defined respectively by

M*(n,d,e) a min{M € N: 3 (n, M,d,¢) code}, (12)

1
R(n,d,e) & ~log M*(n,d,e). (13)

The core problem in the nonasymptotic rate-distortion theory is
to characterize R(n,d, €). For stationary memoryless sources,
Ingber and Kochman [3] (finite-alphabet and Gaussian sources)
and Kostina and Verdd [4] (abstract sources) showed that
R(n,d, ) satisfies a Gaussian approximation of the form (42)
in Section III-C below. This paper extends our previous
analyses [1] on the stationary Gauss-Markov sources to the
nonstationary case. One of the key ideas behind that extension
is to construct a typical set using the MLE of a, and to use
our estimation error bound to probabilistically characterize that
set.

III. MAIN RESULTS
A. Parameter estimation

We first present our nonasymptotic bounds on P and P,
using two sequences {cy}sen and {5 }sen defined as follows.
Throughout the paper, 2 > 0 and a > 1 are fixed. For n > 0
and a parameter s > 0, let {cy }ren be the following sequence

A 0282 —2ns

o 2 ) (14)
2 4+ 202 _
DO e e i ) T e T P S
1-— 20’2C¥(,1
Similarly, let {5;}sen be the following sequence:
2.2
-2
Bléasz ns7 (16)
2 2 2.(_ B
g = 2 sCatnlfeath sy gy
1—2026,4

Note the slight difference between (15) and (17). We analyze
the convergence properties of ay and 5, in Appendix A-B
below. For any 7 > 0 and n € N, we define the following sets

1
S:é{SERZS>O, ozg<2727
o

Ve [n]}, (18)

1
S:80seR:s>0, fr<—, VWeny. (19
202
Theorem 1. For any constant n > 0, the estimator (2) satisfies

for any n > 2,

n—1
1
+ 2
Pf > sup o > log (1 —20%y) (20)
seS, /=1
1 n—1
- . 2
P> sup o Z log (1 — 20 ﬂg) , 21)
seS, =1

where {ay}oen and {Bi}ien are defined in (15) and (17),
respectively, and S;7 and S, are defined in (18) and (19),
respectively.

Proof. Appendix A-A. |

The proof is a detailed analysis of the Chernoff bound using
the tower property of conditional expectations. The proof is
motivated by [10, Lem. 5], but our analysis is more accurate
and the result is significantly tighter, see Fig. 1 for a comparison.
Theorem 1 gives the best bound that can be obtained from
the Chernoff bound. In view of the Girtner-Ellis theorem [21,
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Th. 2.3.6], we conjecture that the bounds (20) and (21) can be
reversed in the limit of large n.
The exact characterization of S;” and S, for each n using

o?,a and 7 is involved. However, the limits?
SL & lim SF =S/, (22)
n—o00 n>1
Se & lim S, =S, (23)
n— o0 n>1
can be characterized in terms of the interval Z,:
7, 2 (0, 2n/0?). (24)

Lemma 1. For any constant 1 > 0, we have for any n € N,
S5 =T, u{2n/0%}, (25)

S 2Ty U{2n/0%}. (26)
The proof of Lemma 1 can be found in the long version [16].
One recovers Rantzer’s lower bound (9) by setting s = /o>
and bounding oy as ay < oy (due to the monotonicity of ay,

see Appendix A-B) in Theorem 1. Using Lemma 1 and taking
limits in Theorem 1, we obtain the following result.

Theorem 2. For any constant n > 0, we have

liminf P > log(a + 2n) (27)
n—oo

1
liminf P, > sup 51og(1 —20%t), (28)
n—oo

s€Zy,

where t1 is the smaller root of the quadratic equation (59) in
Appendix A-B below.
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Fig. 1: Numerical simulations for a = 1.2 and 7 = 1073, See
the full paper for more comparisons.

In the case where n = n,, > 0 is a sequence decreasing to
0, one can show that Theorem 1 still holds. For Theorem 2
to remain valid, we require that the speed of 7, decreasing
to zero is no smaller than % which essentially ensures that

2t is easy to see from (18) and (19) that Sytrl C S and S;H cS,.

the right side of (20) and (21) still converges to the right side
of (27) and (28), respectively. Let 7,, be a positive sequence

such that
1
n=0—].
! (ﬁ)

Theorem 3. For a > 1, Theorem 1 and Theorem 2 still hold
even when 1 = ny, > 0 is a sequence satisfying (29).

(29)

The following corollary to Theorem 3 is used in Section III-C
below to derive the dispersion of nonstationary Gauss-Markov
sources.

Corollary 1. For any 0> > 0 and a > 1, there exists a constant
c> %loga such that for all n large enough,

P [&(U) —a| > ,/logijw] <2 (30)

Remark 1. Theorem 1-3 generalize to the case where Z;’s
in (1) are o-subgaussian. See details in the full paper.

B. Nonasymptotic rate-distortion theory: preliminaries

We review some definitions before we discuss our main
results on the dispersion of nonstationary Gauss-Markov
processes. For a random process {X;}$2,, the n-th order rate-
distortion function Rx (d) is defined as

Rx(d) 2  inf
Y|X*
E[d(X,Y)]<d

Lixy), 31)
n

where X = (X1,...,X,)" is the n-dimensional random
source vector. The rate-distortion function Rx (d) is

Rx(d) £ limsup Rx (d).

n—r oo

(32)

Closed-form expressions for Rx (d) and Rx (d) are known only
in a few special cases. Specializing Gray’s result [13, Eq. (22)]
for Gaussian autoregressive processes to our Gauss-Markov
source (1), we write down the n-th order reverse waterfilling
solution for the n-th order informational rate-distortion function
RU (d) .

Ro(d) = ~ f Do mas s, & (33)
U - n v 2 ogmax | fh, 9n )
1 n 0_2)
d=— min | 6,, — |, (34)

where 6,, > 0 is the water level and p;’s are the eigenvalues
of ATA, and A is the n x n lower triangular matrix:

1L, i=y
Aij =1 —a, i=j+1, (35)
0, otherwise.

The rate-distortion function of the Gauss-Markov source is
given by the limiting reverse waterfilling:

T 2
Ry (d) = % / %logmax (g(w), "0) dw,  (36)

—T

1 s ) 0.2
d= o » min (97 g(w)) dw, 37
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where for w € [—m, 7],

g(w) £ 1+ a® — 2acos(w). (38)
Gray [13, Th. 2] showed that
lim R(n,d,¢) = Ry(d), Ve € (0,1). (39)

n—oo

The operational dispersion [4, Def. 7] is defined as

(o) w

which captures the convergence rate of R(n,d,¢€) to Ry (d).
We refer to the transformed random vector X 2 STU as
the decorrelation of U, where S is the orthornomal matrix
that diagonalizes (ATA)~!. We can easily see that X has
independent coordinates X; ~ N (0, 0?), where o2 = Z—Z The
d-tilted information [4, Def. 6] for the Gauss-Markov source

in w € R™ is given by [5, Th. 2]: ju(u,d) = y3x(x,d) and
min(f,,, o2
ix (@ d) = 3 2inbn.00)

L)+
P 20, (U?

1 < max(6,,0?)
il WA} i
P

Vi (d) £ lim limsup n
=0 pooo

n

(41)

where 6, > 0 is given by (34) and x 2 STy In lossy
compression of i.i.d. sources, the mean and the variance of the
d-tilted information are equal to the rate-distortion function and
the dispersion, respectively [4, Th. 12]. This paper provides
a natural extension of the above fact to nonstationary Gauss-
Markov sources.

C. Dispersion of the nonstationary Gauss-Markov process

Theorem 4. Consider the Gauss-Markov source (1) with
a > 1. For any fixed excess-distortion probability € € (0,1)
and distortion threshold d > 0, the minimum achievable
source coding rate R(n,d,€) admits the following Gaussian
approximation:

R(n,d,¢) = Ry(d) + Ql(e)\/W+ 0 (\/15) , (42)

where Q™' denotes the inverse Q-function; Ry (d) is given
in (36); the informational dispersion Vi (d) (defined as the
variance of juy(U,d)) is given by

Vu(d) = i /:r min [1, (0;(1))21 dw, (43)

and g(w) is in (38).

The main ideas in the proof of Theorem 4 are similar to
those in proving [5, Th. 1]. In particular, by defining a typical
set 7 in the form of [5, Def. 1] using the MLE a(u), we prove
a lossy asymptotic equipartition property (AEP) in the form
of [5, Lem. 3] for nonstationary Gauss-Markov processes.

One of the key differences between the proofs of the
asymptotically stationary (a € (0, 1)) and nonstationary (a > 1)
cases is the scaling of the eigenvalues p;’s of ATA, where A

is defined in (35). For any a € (0, 1), our previous work [5,
Lem. 1, Eq. (71)] showed that for all : =1, ..., n,

(1—a)?® <pu <(14a) (44)

However, in the case of a > 1, we show that (44) holds only
for i = 2,...,n, while for i = 1, we have

1
2loga— = < ——logu < 2loga+ 2, (45)
n n n

where ¢; > 0 and ¢, are constants. That is, the minimum
eigenvalue of AT A decreases to 0 in the order of y; = O(a=2")
as n tends to infinity. See [16] for the details.

IV. CONCLUSION

In this paper, we obtain a nonasymptotic bound (Theorem 1)
on the estimation error of the maximum likelihood estimator
of the parameter a of the nonstationary scalar Gauss-Markov
process. An asymptotic bound (Theorem 2) follows imme-
diately. Numerical simulations confirm the tightness of our
bounds compared to previous works. As an application of the
estimation error bound (Corollary 1), we find the dispersion for
lossy compression of the nonstationary Gauss-Markov sources
(Theorem 4). As a future work, we are interested in generalizing
the estimation error bounds to system identification of vector
dynamical systems and in finding the dispersion of the Wiener
process (a = 1).

APPENDIX A
A. Proof of Theorem 1
We present the proof of (20). The proof of (21) is similar,
which we omit here. For any n > 2, denote by F,, the o-

algebra generated by Z,,...,Z,. For any s > 0, n > 0, and
n > 2, let W,, be the following random variable

n—1
W, £ exp {s > (UiZig - nUf)} : (46)
i=1
By the Chernoff bound, we have
P[a(U) —a > 7] < inf E[W,]. @7)

To compute E [IW,,], we first condition on F,,_1. Since Z, is
the only term in W,, that does not belong to F,,_1, we have

E [W,]
=E {Wn,l -Elexp(s(Up-12Zn, —
=E [W,_1 - exp(alUﬁ_l)}

(48)
(49)

where o is the deterministic function of s and 7 defined in (14)
and (49) follows from the moment generating function of Z,,.
To obtain a recursion, we condition on JF,,_». Since U2_; and
Un_2Z,_1 are the only two terms in W, _; 'exp(alUgfl)
that do not belong to F,_o, we use the relation U,_1 =
aUy,_2 + Z,_1 and we complete squares in Z,,_; to obtain

W1 - exp(arUZ_y)

7IU72171))|]:n71}}

2
=Wp—2 - exp {061 (Zn—l + (a+ S)Un—z) +
20[1

2
s
(aay —sn)U%_ 5 — oy <a + M) Ui_Q}. (50)
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Furthermore, using the formula for the moment generating
function of the noncentral y2-distributed random variable

(Zn_l + (a + 2;) U,,,_2>2 (51)
with 1 degree of freedom, we have
E [Wy—1 - exp(a1U2_y)]
-1 [Wh—2 - exp(a2UZ_,)], (52)

\/1 — 202CY1

where as is given by (15). Repeating the above recursion, we
obtain

n—1

E [W,] = exp {—; > log(1 — 2020@)} SN CX)

=1
Finally, if s ¢ S then E [W,,] = 4+o0. Therefore,

inf E[W,]= inf E[W,].
5>0 sEST

(54)

B. Properties of {cy} and {5}

We list the essential properties of the sequence ay, see [16]
for the counterparts for 5, and their proofs. We find the two
fixed points r; < ro of the recursive relation (15) by solving
the following quadratic equation in x:

20222 + [a® + 20%s(a+7n) — 1z + a1 =0.  (55)

1) For any s > 0 and n > 0, (55) always has two distinct
solutions r; and r3. Moreover, 71 < 0.

2) For any % # s> 0and 7 > 0, the sequence {{*=1} is

a geometric sequence with common ratio ¢ given by

a [a* +20%s(a+n)] + 207

. 56
[a? + 202s(a+n)] + 2027y (56)

q

We show that ¢ is always in (0, 1). Hence, we have the
following expression for a;:

ro —1r
1 —T2
and its limit:
lim ay =7ry. (58)
£—00

3) For any s € (0,2n/0%), ay < 0 and decreases to rq
monotonically. For s = 2n/02, we have oy = 0, V{. For
s > 2n/02, (58) still holds but the convergence is not
monotone.

4) For any n > 0, r; is a decreasing function in s.

Finally, in the analysis of {3;}, we denote ¢; and 5 the two
fixed points of the recursive relation (17), which are the two
solutions of the following quadratic equation:

20222 + [a® + 20%s(—a +1n) — 1]z + B = 0. (59)

(1]
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[11]
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