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Abstract—This paper provides a precise error analysis for the
maximum likelihood estimate â(uuu) of the parameter a given
samples uuu = (u1, . . . , un)

> drawn from a nonstationary Gauss-
Markov process Ui = aUi−1 + Zi, i ≥ 1, where a > 1,
U0 = 0, and Zi’s are independent Gaussian random variables
with zero mean and variance σ2. We show a tight nonasymptotic
exponentially decaying bound on the tail probability of the
estimation error. Unlike previous works, our bound is tight
already for a sample size of the order of hundreds. We apply the
new estimation bound to find the dispersion for lossy compression
of nonstationary Gauss-Markov sources. We show that the
dispersion is given by the same integral formula derived in
our previous work [1] for the (asymptotically) stationary Gauss-
Markov sources, i.e., |a| < 1. New ideas in the nonstationary case
include a deeper understanding of the scaling of the maximum
eigenvalue of the covariance matrix of the source sequence, and
new techniques in the derivation of our estimation error bound.

I. INTRODUCTION

A scalar Gauss-Markov process {Ui}∞i=1 is a random process
defined as

Ui = aUi−1 + Zi, i ≥ 1, (1)

where U0 = 0 and Zi’s are independent Gaussian random
variables with zero mean and variance σ2, Zi ∼ N (0, σ2).
We assume without loss of generality that a ≥ 0. We
make the distinctions between the following three cases: the
(asymptotically) stationary case refers to 0 < a < 1 in (1); the
unit-root case to a = 1 1; and the nonstationary case to a > 1.
This paper mostly focuses on the nonstationary case.

Our primary motivation for studying the Gauss-Markov
process is to understand the role of memory in nonasymptotic
rate-distortion theory. The Gauss-Markov process in (1) is
one of the simplest models for information sources with
memory. The rate-distortion function (RDF) [2] captures
the rate-distortion tradeoff when the coding length tends to
infinity. The central question in nonasymptotic rate-distortion
theory is to characterize the rate-distortion tradeoff when the
coding length is constrained to be finite, and the dispersion
is the main quantity of interest. The dispersion of stationary
memoryless sources was found in [3, 4]. The dispersion of
information sources with memory is largely unknown. Our
previous work [1] found the dispersion of the stationary Gauss-
Markov source.
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1Technically, the unit-root case is also nonstationary.

One of the key ideas in [1] is to construct a typical set based
on â(u), the maximum likelihood estimate (MLE) of a given
samples u = (u1, . . . , un)>. For a typical u, â(u) is close to
a. The MLE â(u) of the parameter a can be easily obtained
as (see [5, Eq. (352)-(356)] for a derivation):

â(uuu) =

∑n−1
i=1 uiui+1∑n−1
i=1 u

2
i

. (2)

For 0 < a < 1, our previous work [5, Th. 5] provided a
tight bound on the tail probability of the estimation error
|â(U)− a|. Using different tools, for a > 1, this paper derives
an exponentially decaying upper bound on the tail probability of
â(UUU)−a. This result complements the large body of works [6–
10] studying various aspects of the MLE â(u). Our bound is
nonasymptotic and tighter than existing bounds, see Fig 1 in
Section III-A below for a comparison. As an application of the
error bound, we find the dispersion for the nonstationary Gauss-
Markov source. Although the dispersion is represented by the
same formula as the one we derived for the stationary case [1,
Th. 1], there is a subtle difference between the analyses of the
two scenarios. In fact, after the RDF of the stationary Gauss-
Markov source was derived [11] (see also [12, Th. 4.5.3]), it
still took several decades to completely understand the RDF
of the nonstationary one [13–15]. Throughout the paper, all
logarithms and exponents are base e. All detailed proofs are
given in the long version [16].

II. PREVIOUS WORKS

A. Parameter estimation

The estimator â(u) in (2) has been extensively studied in
the statistics [6, 7] and economics [17, 18] communities. It
is well known [7, 17, 18] that the estimation error â(U)− a
converges to 0 in probability for any a ∈ R, as n tends to
infinity. To better understand how the error â(U)− a scales
as n tends to infinity, researchers turned to study the limiting
distribution of the normalized estimation error h(n)(â(U)−a)
for a careful choice of the standardizing function h(n):

h(n) =∆


√

n
1−a2 , |a| < 1,

n√
2
, |a| = 1,

|a|n
a2−1 , |a| > 1.

(3)

Mann and Wald [17] and White [6] showed that the distribution
of the normalized estimation error h(n)(â(U)− a) converges
to N (0, 1) for |a| < 1; to the Cauchy distribution with the
probability density function 1

π(1+x2) for |a| > 1; and for |a| =
1, to the distribution of B2(1)−1

2
∫ 1
0
B2(t) dt

, where {B(t) : t ∈ [0, 1]}
is a Brownian motion.
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This paper presents a nonasymptotic fine-grained large
deviations analysis of the estimation error. Given an error
threshold η > 0, define the error exponents P+

n and P−n as

P+
n =∆ − 1

n
logP [â(U)− a > η] , (4)

P−n =∆ − 1

n
logP [â(U)− a < −η] . (5)

We also define Pn as

Pn =∆ − 1

n
logP [|â(U)− a| > η] . (6)

For 0 < a < 1, Bercu et al. [8] showed that

lim
n→∞

Pn = Is(η), (7)

where the rate function Is(η) is given in [8, Prop. 8]. For a > 1,
Worms [9, Th. 1] proved that

lim inf
n→∞

Pn ≥ Ins(η), (8)

where Ins(η) is specified in [9, Th. 1] as the optimal value of an
optimization problem. A bound similar to (8) for the unit-root
case was also presented in [9, Th. 1]. To our knowledge, there
are two nonasymptotic lower bounds on P+

n and P−n . For any
a ∈ R, Rantzer [10, Th. 4] showed that

P+
n (and P−n ) ≥ 1

2
log(1 + η2). (9)

Bercu and Touati [19, Cor. 5.2] proved that

P+
n (and P−n ) ≥ η2

2(1 + yη)
, (10)

where yη is the unique positive solution to (1+x) log(1+x)−
x− η2 = 0 in x. Both bounds (9) and (10) do not depend on
a and n, and are the same for P+

n and P−n .
This paper shows tight nonasymptotic bounds on P+

n , P−n
and Pn. Our nonasymptotic lower bounds on P+

n and P−n
depend on a and n, and are distinct for P+

n and P−n . For
larger a, our lower bound becomes larger, which suggests
that unstable systems are easier to estimate than stable ones,
an observation consistent with [20]. The proof is inspired by
Rantzer [10, Lem. 5], but our result significantly improves (9)
and (10), see Fig. 1 for a comparison.

B. Nonasymptotic rate-distortion theory
Given a distortion threshold d > 0, an excess-distortion

probability ε ∈ (0, 1) and M ∈ N, an (n,M, d, ε) lossy
compression code for a random vector UUU = (U1, . . . , Un)> of
length n consists of an encoder fn : Rn → [M ], and a decoder
gn : [M ] → Rn, such that P [d (UUU, gn (fn(UUU))) > d] ≤ ε,
where d(·, ·) is the distortion measure. In this paper, we consider
the mean squared error (MSE) distortion: ∀ uuu,vvv ∈ Rn,

d(uuu,vvv) =∆
1

n

n∑
i=1

(ui − vi)2. (11)

The minimum achievable code size and source coding rate are
defined respectively by

M?(n, d, ε) =∆ min {M ∈ N : ∃ (n,M, d, ε) code} , (12)

R(n, d, ε) =∆
1

n
logM?(n, d, ε). (13)

The core problem in the nonasymptotic rate-distortion theory is
to characterize R(n, d, ε). For stationary memoryless sources,
Ingber and Kochman [3] (finite-alphabet and Gaussian sources)
and Kostina and Verdú [4] (abstract sources) showed that
R(n, d, ε) satisfies a Gaussian approximation of the form (42)
in Section III-C below. This paper extends our previous
analyses [1] on the stationary Gauss-Markov sources to the
nonstationary case. One of the key ideas behind that extension
is to construct a typical set using the MLE of a, and to use
our estimation error bound to probabilistically characterize that
set.

III. MAIN RESULTS

A. Parameter estimation

We first present our nonasymptotic bounds on P+
n and P−n

using two sequences {α`}`∈N and {β`}`∈N defined as follows.
Throughout the paper, σ2 > 0 and a > 1 are fixed. For η > 0
and a parameter s > 0, let {α`}`∈N be the following sequence

α1 =∆
σ2s2 − 2ηs

2
, (14)

α` =
[a2 + 2σ2s(a+ η)]α`−1 + α1

1− 2σ2α`−1
, ∀` ≥ 2. (15)

Similarly, let {β`}`∈N be the following sequence:

β1 =∆
σ2s2 − 2ηs

2
, (16)

β` =
[a2 + 2σ2s(−a+ η)]β`−1 + β1

1− 2σ2β`−1
, ∀` ≥ 2. (17)

Note the slight difference between (15) and (17). We analyze
the convergence properties of α` and β` in Appendix A-B
below. For any η > 0 and n ∈ N, we define the following sets

S+
n =∆

{
s ∈ R : s > 0, α` <

1

2σ2
, ∀` ∈ [n]

}
, (18)

S−n =∆
{
s ∈ R : s > 0, β` <

1

2σ2
, ∀` ∈ [n]

}
. (19)

Theorem 1. For any constant η > 0, the estimator (2) satisfies
for any n ≥ 2,

P+
n ≥ sup

s∈S+
n

1

2n

n−1∑
`=1

log
(
1− 2σ2α`

)
, (20)

P−n ≥ sup
s∈S−n

1

2n

n−1∑
`=1

log
(
1− 2σ2β`

)
, (21)

where {α`}`∈N and {β`}`∈N are defined in (15) and (17),
respectively, and S+

n and S−n are defined in (18) and (19),
respectively.

Proof. Appendix A-A. �

The proof is a detailed analysis of the Chernoff bound using
the tower property of conditional expectations. The proof is
motivated by [10, Lem. 5], but our analysis is more accurate
and the result is significantly tighter, see Fig. 1 for a comparison.
Theorem 1 gives the best bound that can be obtained from
the Chernoff bound. In view of the Gärtner-Ellis theorem [21,
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Th. 2.3.6], we conjecture that the bounds (20) and (21) can be
reversed in the limit of large n.

The exact characterization of S+
n and S−n for each n using

σ2, a and η is involved. However, the limits2

S+
∞ , lim

n→∞
S+
n =

⋂
n≥1

S+
n , (22)

S−∞ , lim
n→∞

S−n =
⋂
n≥1

S−n , (23)

can be characterized in terms of the interval Iη:

Iη =∆
(
0, 2η/σ2

)
. (24)

Lemma 1. For any constant η > 0, we have for any n ∈ N,

S+
∞ = Iη ∪ {2η/σ2}, (25)

S−∞ % Iη ∪ {2η/σ2}. (26)

The proof of Lemma 1 can be found in the long version [16].
One recovers Rantzer’s lower bound (9) by setting s = η/σ2

and bounding α` as α` ≤ α1 (due to the monotonicity of α`,
see Appendix A-B) in Theorem 1. Using Lemma 1 and taking
limits in Theorem 1, we obtain the following result.

Theorem 2. For any constant η > 0, we have

lim inf
n→∞

P+
n ≥ log(a+ 2η) (27)

lim inf
n→∞

P−n ≥ sup
s∈Iη

1

2
log(1− 2σ2t1), (28)

where t1 is the smaller root of the quadratic equation (59) in
Appendix A-B below.
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Fig. 1: Numerical simulations for a = 1.2 and η = 10−3. See
the full paper for more comparisons.

In the case where η = ηn > 0 is a sequence decreasing to
0, one can show that Theorem 1 still holds. For Theorem 2
to remain valid, we require that the speed of ηn decreasing
to zero is no smaller than 1√

n
, which essentially ensures that

2It is easy to see from (18) and (19) that S+
n+1 ⊆ S+

n and S−n+1 ⊆ S−n .

the right side of (20) and (21) still converges to the right side
of (27) and (28), respectively. Let ηn be a positive sequence
such that

ηn = Ω

(
1√
n

)
. (29)

Theorem 3. For a > 1, Theorem 1 and Theorem 2 still hold
even when η = ηn > 0 is a sequence satisfying (29).

The following corollary to Theorem 3 is used in Section III-C
below to derive the dispersion of nonstationary Gauss-Markov
sources.

Corollary 1. For any σ2 > 0 and a > 1, there exists a constant
c ≥ 1

2 log a such that for all n large enough,

P

[
|â(U)− a| ≥

√
log log n

n

]
≤ 2e−cn. (30)

Remark 1. Theorem 1-3 generalize to the case where Zi’s
in (1) are σ-subgaussian. See details in the full paper.

B. Nonasymptotic rate-distortion theory: preliminaries
We review some definitions before we discuss our main

results on the dispersion of nonstationary Gauss-Markov
processes. For a random process {Xi}∞i=1, the n-th order rate-
distortion function RX(d) is defined as

RX(d) =∆ inf
PY |X :

E[d(X,Y )]≤d

1

n
I(X;Y ), (31)

where X = (X1, . . . , Xn)> is the n-dimensional random
source vector. The rate-distortion function RX(d) is

RX(d) =∆ lim sup
n→∞

RX(d). (32)

Closed-form expressions for RX(d) and RX(d) are known only
in a few special cases. Specializing Gray’s result [13, Eq. (22)]
for Gaussian autoregressive processes to our Gauss-Markov
source (1), we write down the n-th order reverse waterfilling
solution for the n-th order informational rate-distortion function
RU (d):

RU (d) =
1

n

n∑
i=1

1

2
log max

(
µi,

σ2

θn

)
, (33)

d =
1

n

n∑
i=1

min

(
θn,

σ2

µi

)
, (34)

where θn > 0 is the water level and µi’s are the eigenvalues
of A>A, and A is the n× n lower triangular matrix:

Aij =


1, i = j,

−a, i = j + 1,

0, otherwise.
(35)

The rate-distortion function of the Gauss-Markov source is
given by the limiting reverse waterfilling:

RU (d) =
1

2π

∫ π

−π

1

2
log max

(
g(w),

σ2

θ

)
dw, (36)

d =
1

2π

∫ π

−π
min

(
θ,

σ2

g(w)

)
dw, (37)
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where for w ∈ [−π, π],

g(w) =∆ 1 + a2 − 2a cos(w). (38)

Gray [13, Th. 2] showed that

lim
n→∞

R(n, d, ε) = RU (d), ∀ε ∈ (0, 1). (39)

The operational dispersion [4, Def. 7] is defined as

VU (d) , lim
ε→0

lim sup
n→∞

n

(
R(n, d, ε)− RU (d)

Q−1(ε)

)2

, (40)

which captures the convergence rate of R(n, d, ε) to RU (d).
We refer to the transformed random vector X =∆ S>U as

the decorrelation of U , where S is the orthornomal matrix
that diagonalizes (A>A)−1. We can easily see that X has
independent coordinates Xi ∼ N (0, σ2

i ), where σ2
i =∆ σ2

µi
. The

d-tilted information [4, Def. 6] for the Gauss-Markov source
in u ∈ Rn is given by [5, Th. 2]: U (u, d) = X(x, d) and

X (x, d) =
n∑
i=1

min(θn, σ
2
i )

2θn

(
x2
i

σ2
i

− 1

)
+

1

2

n∑
i=1

log
max(θn, σ

2
i )

θn
, (41)

where θn > 0 is given by (34) and x =∆ S>u. In lossy
compression of i.i.d. sources, the mean and the variance of the
d-tilted information are equal to the rate-distortion function and
the dispersion, respectively [4, Th. 12]. This paper provides
a natural extension of the above fact to nonstationary Gauss-
Markov sources.

C. Dispersion of the nonstationary Gauss-Markov process

Theorem 4. Consider the Gauss-Markov source (1) with
a > 1. For any fixed excess-distortion probability ε ∈ (0, 1)
and distortion threshold d > 0, the minimum achievable
source coding rate R(n, d, ε) admits the following Gaussian
approximation:

R(n, d, ε) = RU (d) +Q−1(ε)

√
VU (d)

n
+ o

(
1√
n

)
, (42)

where Q−1 denotes the inverse Q-function; RU (d) is given
in (36); the informational dispersion VU (d) (defined as the
variance of UUU (U, d)) is given by

VU (d) =
1

4π

∫ π

−π
min

[
1,

(
σ2

θg(w)

)2
]
dw, (43)

and g(w) is in (38).

The main ideas in the proof of Theorem 4 are similar to
those in proving [5, Th. 1]. In particular, by defining a typical
set T in the form of [5, Def. 1] using the MLE â(uuu), we prove
a lossy asymptotic equipartition property (AEP) in the form
of [5, Lem. 3] for nonstationary Gauss-Markov processes.

One of the key differences between the proofs of the
asymptotically stationary (a ∈ (0, 1)) and nonstationary (a > 1)
cases is the scaling of the eigenvalues µi’s of A>A, where A

is defined in (35). For any a ∈ (0, 1), our previous work [5,
Lem. 1, Eq. (71)] showed that for all i = 1, ..., n,

(1− a)2 ≤ µi ≤ (1 + a)2. (44)

However, in the case of a > 1, we show that (44) holds only
for i = 2, ..., n, while for i = 1, we have

2 log a− c1
n
≤ − 1

n
log µ1 ≤ 2 log a+

c2
n
, (45)

where c1 > 0 and c2 are constants. That is, the minimum
eigenvalue of A>A decreases to 0 in the order of µ1 = Θ(a−2n)
as n tends to infinity. See [16] for the details.

IV. CONCLUSION

In this paper, we obtain a nonasymptotic bound (Theorem 1)
on the estimation error of the maximum likelihood estimator
of the parameter a of the nonstationary scalar Gauss-Markov
process. An asymptotic bound (Theorem 2) follows imme-
diately. Numerical simulations confirm the tightness of our
bounds compared to previous works. As an application of the
estimation error bound (Corollary 1), we find the dispersion for
lossy compression of the nonstationary Gauss-Markov sources
(Theorem 4). As a future work, we are interested in generalizing
the estimation error bounds to system identification of vector
dynamical systems and in finding the dispersion of the Wiener
process (a = 1).

APPENDIX A
A. Proof of Theorem 1

We present the proof of (20). The proof of (21) is similar,
which we omit here. For any n ≥ 2, denote by Fn the σ-
algebra generated by Z1, . . . , Zn. For any s > 0, η > 0, and
n ≥ 2, let Wn be the following random variable

Wn =∆ exp

{
s

n−1∑
i=1

(UiZi+1 − ηU2
i )

}
. (46)

By the Chernoff bound, we have

P [â(U)− a ≥ η] ≤ inf
s>0

E [Wn] . (47)

To compute E [Wn], we first condition on Fn−1. Since Zn is
the only term in Wn that does not belong to Fn−1, we have

E [Wn]

=E
{
Wn−1 · E[exp(s(Un−1Zn − ηU2

n−1))|Fn−1]
}

(48)

=E
[
Wn−1 · exp(α1U

2
n−1)

]
(49)

where α1 is the deterministic function of s and η defined in (14)
and (49) follows from the moment generating function of Zn.
To obtain a recursion, we condition on Fn−2. Since U2

n−1 and
Un−2Zn−1 are the only two terms in Wn−1 · exp(α1U

2
n−1)

that do not belong to Fn−2, we use the relation Un−1 =
aUn−2 + Zn−1 and we complete squares in Zn−1 to obtain

Wn−1 · exp(α1U
2
n−1)

=Wn−2 · exp
{
α1

(
Zn−1 + (a+

s

2α1
)Un−2

)2

+

(a2α1 − sη)U2
n−2 − α1

(
a+

s

2α1

)2

U2
n−2

}
. (50)
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Furthermore, using the formula for the moment generating
function of the noncentral χ2-distributed random variable(

Zn−1 +

(
a+

s

2α1

)
Un−2

)2

(51)

with 1 degree of freedom, we have

E
[
Wn−1 · exp(α1U

2
n−1)

]
=

1√
1− 2σ2α1

E
[
Wn−2 · exp(α2U

2
n−2)

]
, (52)

where α2 is given by (15). Repeating the above recursion, we
obtain

E [Wn] = exp

{
−1

2

n−1∑
`=1

log(1− 2σ2α`)

}
. (53)

Finally, if s 6∈ S+
n then E [Wn] = +∞. Therefore,

inf
s>0

E [Wn] = inf
s∈S+

n

E [Wn] . (54)

B. Properties of {α`} and {β`}

We list the essential properties of the sequence α`, see [16]
for the counterparts for β` and their proofs. We find the two
fixed points r1 < r2 of the recursive relation (15) by solving
the following quadratic equation in x:

2σ2x2 + [a2 + 2σ2s(a+ η)− 1]x+ α1 = 0. (55)

1) For any s > 0 and η > 0, (55) always has two distinct
solutions r1 and r2. Moreover, r1 < 0.

2) For any 2η
σ2 6= s > 0 and η > 0, the sequence {α`−r1α`−r2 } is

a geometric sequence with common ratio q given by

q ,
[a2 + 2σ2s(a+ η)] + 2σ2r1

[a2 + 2σ2s(a+ η)] + 2σ2r2
. (56)

We show that q is always in (0, 1). Hence, we have the
following expression for α`:

α` = r2 +
r2 − r1

α1−r1
α1−r2 q

`−1 − 1
(57)

and its limit:

lim
`→∞

α` = r1. (58)

3) For any s ∈ (0, 2η/σ2), α` < 0 and decreases to r1

monotonically. For s = 2η/σ2, we have α` = 0, ∀`. For
s > 2η/σ2, (58) still holds but the convergence is not
monotone.

4) For any η > 0, r1 is a decreasing function in s.

Finally, in the analysis of {β`}, we denote t1 and t2 the two
fixed points of the recursive relation (17), which are the two
solutions of the following quadratic equation:

2σ2x2 + [a2 + 2σ2s(−a+ η)− 1]x+ β1 = 0. (59)
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