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Optimal Causal Rate-Constrained Sampling of the Wiener Process

Nian Guo and Victoria Kostina

Abstract— We consider the following communication sce-
nario. An encoder causally observes the Wiener process and
decides when and what to transmit about it. A decoder makes
real-time estimation of the process using causally received
codewords. We determine the causal encoding and decoding
policies that jointly minimize the mean-square estimation error,
under the long-term communication rate constraint of R bits
per second. We show that an optimal encoding policy can be
implemented as a causal sampling policy followed by a causal
compressing policy. We prove that the optimal encoding policy
samples the Wiener process once the innovation passes either

% or —\/%, and compresses the sign of the innovation
(SOI) using a 1-bit codeword. The SOI coding scheme achieves
the operational distortion-rate function, which is equal to
D°P(R) = %. Surprisingly, this is significantly better than the
distortion-rate tradeoff achieved in the limit of infinite delay
by the best non-causal code. This is because the SOI coding
scheme leverages the free timing information supplied by the
zero-delay channel between the encoder and the decoder. The
key to unlock that gain is the event-triggered nature of the
SOI sampling policy. In contrast, the distortion-rate tradeoffs
achieved with deterministic sampling policies are much worse:
we prove that the causal informational distortion-rate function
in that scenario is as high as Dper(R) = . It is achieved
by the uniform sampling policy with the sampling interval %.
In either case, the optimal strategy is to sample the process as
fast as possible and to transmit 1-bit codewords to the decoder

without delay.

I. INTRODUCTION
A. System Model

Consider the system in Fig. 1. A source outputs a
continuous-time standard Wiener process {W;}_,, within
the time horizon [0,7]. An encoder observes the process
and decides to disclose information about it at a sequence of
non-decreasing codeword-generating time stamps

0<m << <7y <T. (D

These time stamps can be random and they can causally de-
pend on the Wiener process. Consequently, the total number
of time stamps N can also be random. At time 7;, the encoder
chooses to generate a binary codeword U;, with a length
¢; € 7", based on the past observed process {W; }/-,. Then,
the codeword Uj is passed through a noiseless digital channel
to the decoder without delay. Upon receiving the codeword
U, at time 7;, based on all the received codewords U? and the
codeword-generating time stamps {71,...,7;}, the decoder
updates its running estimate of the Wiener process, yielding
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{ Wt}tT:n. The decoder updates its estimate {VA[/,E},/TZWrl once
the next codeword U, is received at 7;41.
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Fig. 1: System Model.

The communication between the encoder and the decoder
is subject to a constraint on the long-term average transmis-
sion rate,

N
1 .
T]E Eﬂ l; | < R (bits per sec). 2)

The distortion is measured by the long-term mean-square
error (MSE) between W; and W;, 0 <t < T,

1
—E

T
/ (Wy — Wy)2dt | < d. (3)
T 0

We aim to find the jointly optimal encoding and decoding
policies that achieve the best tradeoffs between the rate in
(2) and the MSE in (3).

B. Literature Review

Finding sampling policies at the encoder and estimation
policies at the decoder to jointly minimize the end-to-end
distortion under transmission constraints falls into the area
of optimal scheduling and sequential estimation problems.
Astrom and Bernhardsson [1] compared uniform and sym-
metric threshold sampling policies (referred to as Riemann
and Lebesgue sampling, respectively) in continuous-time
first-order stochastic systems with a Wiener process dis-
turbance, and showed that the Lebesgue sampling gives a
lower distortion than the Riemann sampling under the same
average sampling frequency. Imer and Bagar [2] considered
the problem of causally estimating i.i.d and Gauss-Markov
discrete-time processes under the constraint on the total
number of transmissions over a finite time horizon, and
showed via dynamic programming that the optimal sampling
policy is event-triggered. For causal estimation of multidi-
mensional discrete-time Gauss-Markov processes, Cogill et
al. [3] proved that the sampling policy that samples when
the squared error exceeds some constant, leads to a cost that
is within a factor of 6 of the optimal achievable cost. Using
dynamic programming and majorization theory, Lipsa and
Martins [4] proved that a time-varying symmetric threshold
policy and a Kalman-like filter jointly minimize a discounted
cost function consisting of MSE and a communication cost,
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for scalar discrete-time Gauss-Markov processes over a finite
time horizon. For partially observed discrete-time Gauss-
Markov processes, Wu et al. [5] derived the accurate and
approximate minimum MSE (MMSE) estimator for an event-
triggered sampler, and showed the relation between the trans-
mission frequency and the threshold of the event-triggered
policy. Rabi et al. [6] formulated the problem of causal
estimation of the Wiener process under the constraint on the
total number of transmissions over a finite time horizon as
an optimal stopping time problem, and solved it iteratively
to show that a time-varying symmetric threshold policy is
optimal. Nar and Basar [7] extended the optimal stopping
time problem in [6] to the multidimensional Wiener process,
and proved that a symmetric threshold policy remains opti-
mal over both finite and infinite time horizons. In particular,
Nar and Basar [7] showed that the optimal threshold in the
infinite time horizon is a constant depending on the average
sampling frequency. Sun et al. in [8] further proved that a
symmetric threshold policy remains optimal even when the
samples of the Wiener process experience an i.i.d random
transmission delay, but the threshold for this symmetric
threshold policy depends on the channel delay, and is differ-
ent from the one in [7]. For autogressive Markov processes
driven by an i.i.d. process with a unimodal and symmetric
distribution, Charkravorty and Mahajan [9] showed that a
symmetric threshold sampling policy and a Kalman-like
estimator jointly achieve the optimal tradeoff between the
estimation distortion and transmission cost in the infinite
time horizon. Kipnis et al. [10] considered the non-causal
lossy source coding of a uniformly sampled Wiener process,
and derived the tradeoffs between the frequency, bitrate and
the estimation MSE. Kofman and Braslavsky [11] designed
a quantized event-triggered controller for noiseless partially
observed continuous-time LTI systems with an unknown
initial state to ensure asymptotic convergence of the system
to the origin with zero average rate, seemingly violating
the data-rate theorem. Event-triggered control schemes to
guarantee stabilization were designed for continuous-time
LTI systems in [11]-[13].

C. Contribution

In this paper, we adopt an information-theoretic approach
to continuous-time causal estimation, by considering the
optimal tradeoff between the achievable MSE and the av-
erage number of bits communicated. This is different from
the models studied in [1]-[9], where communication cost
is measured by the number of transmissions, and each
infinite-precision transmission can carry an infinite amount
of information. For communication over digital channels, a
bitrate constraint, routinely considered in information theory,
is more appropriate. Our setting is also different from [10]
in that we do not ignore delay: our distortion at time ¢ is
measured with respect to the actual value of the process at
time ¢; whereas [10] permits an infinite delay, following a
standard assumption in information theory.

We first show that an optimal encoding policy that
achieves the operational distortion-rate function (ODRF)

can be implemented as a causal sampling policy coupled
with a compressing policy. Then, we prove that the op-
timal encoding policy is a symmetric threshold sampling

policy with threshold i\/g and a 1-bit SOI compressor.
The optimal decoding policy causally estimates the Wiener
process by summing up the received innovations. This coding
scheme, termed the SOI coding scheme, achieves the ODRF
D°P(R) = &.

In the SOI coding scheme, the encoder continuously tracks
the process, generating a bit once the process passes the
threshold. To reconstruct the process, both those bits and
their time stamps are required at the decoder. In the scenario
where, due to implementation constraint, the sampler is
process-agnostic, or the decoder has no access to timing
information, one has to adopt a deterministic sampling
policy. We prove that a uniform sampling policy with the
sampling interval % achieves the informational distortion-
rate function (IDRF), which is equal to Dpgr(R) = %.
To define the IDRF for the deterministic sampling policies,
we change the rate constraint (2) to a directed mutual
information rate constraint, which serves as an information-
theoretic lower bound to (2). This is a consequence of our
real-time distortion constraint. Had we allowed delay, coding
gains would have been possible by, for example, jointly
compressing blocks of those bits. To confirm that the IDRF is
a meaningful gauge of what is achievable in the zero-delay
causal compression, we implement the greedy Lloyd-Max
compressor [20] to compress the innovations W, — VAVTFI,
and verify that the performance of the resulting scheme is
close to the IDRF.

To study the tradeoffs between the sampling frequency and
the rate per sample under a rate per second constraint R, we
define operational and informational distortion-frequency-
rate function (ODFRF and IDFRF). The ODFRF and the
IDFRF are both minimized by the maximum sampling
frequency R and the minimum rate 1 bit/sample, implying
that sampling the process as fast as possible under the rate
constraint and transmitting 1-bit codewords to the decoder
without delay is optimal.

Surprisingly, the distortion achieved by the SOI coding
scheme is smaller than the distortion achieved by the best
non-causal codes. The reason is that in the SOI coding
scheme, the encoder and the decoder know the random
sampling time stamps perfectly, whereas in classical non-
causal coding, this free timing information is not considered.

We also show that the SOI coding scheme with a different
sampling threshold continues to be optimal when there is a
random i.i.d. channel delay between the codeword-generating
time and the codeword-delivery time. Finally, we show that
if the decoder is allowed to wait for only the next codeword
before decoding, the MSE can be further decreased.

In this paper, we provide the proof sketches, with detailed
proofs relegated to the long version [25].

D. Paper organization

In Section II, we define causal codes, distortion-rate
and distortion-frequency-rate functions. In Section III, we
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state the main results of this paper, including the optimal
causal sampling and compressing policies and the tradeoffs
between the sampling frequency and the rate per sample.
In Section IV, we discuss the distortion-rate tradeoffs when
delays are allowed at both the encoder and the decoder, at
the decoder only, and at the communication channel.

E. Notations
We denote by {W,};=" the parts of the Wiener process

t=1;
within time intervals [r;,7;11]. For a possibly infinite se-
quence z = {x1,xo,...}, we write &' = {x1,22,...,2;}
to denote the vector of its first ¢ elements. For M € Z™,

M]2{1,..., M)
II. DISTORTION-RATE FUNCTIONS

In this section, we define the operational and the informa-
tional causal distortion-rate functions, and we show that an
optimal encoder can be separated into a sampler followed by
a compressor.

A. Encoding and decoding policies
The standard Wiener process is defined as follows.

Definition 1. (standard Wiener process, e.g. [17]) A stan-
dard Wiener process {Wy}>¢ is a stochastic process char-
acterized by the following three properties:

(i) time-homogeneity: for all non-negative s and t, W
and Wiy — W, have the same distribution (Wy = 0);

(ii) independent increments: W;, — W, (i > 1) are
independent whenever the intervals (s;,t;] are disjoint;

(iii) Wy follows the Gaussian distribution N (0,1).

Throughout, we assume that both encoder and decoder
know the initial state Wy = 0 at 75 = 0.

Next, we formally define the encoding and decoding
policies!. Denote the set of continuous functions on the time
interval [0, ¢] by Cjo 4. Define the Wiener process stopped at
a stopping time 7 (e.g. [21, Eq. 3.9]) as:

Wt ift<r
W, (1) = = 4
o) {WT ift> T @)

Definition 2. (An (R, d,T) causal code) An (R,d, T) causal
code for the Wiener process {W;}L_, is a pair of encoding
and decoding policies defined as follows.

The encoding policy consists of

(i) the causal sampling policy mp = {11,72,...} that
decides the codeword-generating time stamps in (1) that are
stopping times of the filtration c({W;}L_,), and

(ii) the compressing policy fr = {f1,f2,...}?,

fi: Cpor) — [2]. (5)

The codeword generated at time T1; is U; =
f; ({Wt(Ti)}tho)- The codewords’ lengths must satisfy
the long-term average rate constraint (2).

'We refer to encoding and decoding policies to emphasize their causal
nature.

2In some scenarios, we allow randomness in the mapping f;, replacing
the deterministic mapping f; in (5) by a transition probability kernel.

The decoding policy causally maps the received codewords
and the codeword-generating time stamps to a continuous-
time process estimate {W;}L_ using

W, = W,, 2 E(W,|U*, %) = E(W,,|U*,7%), t € [15,Tis1)-
(6)

Together, the encoding and the decoding policies must
satisfy the long-term MSE constraint in (3).

The decoding policy in (6) forces the estimate W, to be
equal to the conditional expectation of W, given all the
received information, which is constant between two con-
secutive codeword-generating time stamps. Allowing more
freedom in the design of a decoding policy cannot yield a
lower MSE because (6) is the MMSE estimator of W; during
t € [7i,7i+1). This is a consequence of the zero-delay MSE
constraint (3) at the decoder. As we explain in Section IV-
B below, had we allowed delay at the decoder, we could
have improved performance by e.g. using linear interpolation
between recovered samples at the decoder.

B. Operational distortion-rate function

We now define the operational distortion-rate function.

Definition 3. (Operational distortion-rate function (ODRF))
The ODREF is the minimum distortion compatible with rate
R achievable by causal rate-R codes in the limit of infinite
time horizon:

D°P(R) £ limsupinf{d: 3 (R,d,T) causal code}. (7)
T—o0

It turns out that the ODRF can be decomposed into
the distortion due to sampling and the distortion due to
quantization.

Proposition 1. The ODRF for the Wiener process can be
written as

D°P(R) =

N A
1 Tit1
limsup inf {E(Z / (W — Wn)th> (8a)
i=0"Ti

T—oo Tr€llr T

N
+ fTigﬁ‘T;E<Z(Ti+1 - Ti)(W’Ti - Wn)2> }7 (8b)

@ =1

where Ty i1 2 T and Wy, Fr denote the sets of all
sampling and all compressing policies over the time horizon
T respectively.

Furthermore, if randomized compressing policies are al-
lowed, there is no loss of optimality if at time T;, a
compressing policy only takes into account the innovation
W, — anl» past codewords U™ and timing information
7%, rather than the whole process up to time T;, as permitted
by Definition 2.

Proof sketch: The detailed proof is in [25, Appen. A].

|

In (8a), W, is the MMSE estimator of W; at t € [, Ti41),
given the past lossless samples {1V, }§':1 and the codeword-
generating time stamps 7°. The expectation in (8a) is the
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sampling distortion due to causally estimating the Wiener
process from its lossless samples {IW;, };Zl taken under the
sampling policy 7.

The expectation in (8b) is the mean-square quantization
error of the samples, accumulated over sampling intervals of
length 7,41 —7;, e = 1,..., N. According to the compressing
policy described in Proposition 1, the minimization problem
in (8b) is the operational zero-delay causal distortion-rate
function of the discrete-time stochastic process formed by
the samples. Furthermore, the encoding policy can be imple-
mented as a sampler followed by a compressor. See Fig. 2.
The sampler takes measurements of the Wiener process under

Wt WTl?""WTi, Ul,...7Ui
——— sampler

compressor

Fig. 2: Decomposition of the encoder.

a sampling policy and outputs samples without delay to the
compressor. Upon receiving a new sample, the compressor
immediately generates a codeword under the compressing
policy described in Proposition 1.

C. Informational distortion-rate function

The directed information I(X™ — Y™) from a sequence
X™ to a sequence Y is defined as [18]

(X" = Y™ => I(X5 Y[y ). )
i=1
The directed information captures the information due to the
causal dependence of Y™ on X".

A sampling policy np = {71, 72,...} is deterministic if
its sampling time stamps (1) are deterministic. We denote the
set of all deterministic sampling policies by IT?FT. Under a
deterministic sampling policy, the total number of samples
N within the time horizon [0, 7] is constant.

Definition 4. (Informational distortion-rate function (IDRF))
The IDRF for the Wiener process under deterministic sam-
pling policies can be written as

Dpgr(R) £
. L e ,
i e 7 B3 [ 0 )
(10a)
N
inf E(Z(TiJrl — Ti)(Wﬂ- - Wﬁ)2> }7
®Li Py, jwri wrimit \iog
I(W"'N;WTN)SR
(10b)

The minimization problem (10b) in Dpgr(R) is the causal
IDREF for the discrete-time Gauss-Markov process formed by
the samples. Note that (10b) is minimized over the directed
information rate, which gives an information-theoretic lower
bound to the rate considered in (2). Thus, the following
relation holds according to [24, Eq. (43)].

DX (R) > Dpgr(R), (11)

where DY (R) is the ODRF for deterministic sampling
policies defined by (8) with the minimization constraint in
(8a) replaced by w7 € TIRET.

D. Operational and informational distortion-frequency-rate
function

According to Proposition 1, an optimal encoder can be
implemented as a sampler followed by a compressor. To gain
insight into the tradeoffs between the sampling frequency f
at the sampler and the rate per sample R, at the compressor,
we define an (f, Rs,d,T') causal code.

Definition 5. (An (f, Rs,d,T) causal code) An (f, Rs,d,T)
causal code for the Wiener process {W;}L_, is a triplet of
causal sampling, compressing and decoding policies:

(i) the causal sampling policy® w1 = {11, 7o, ...} satisfies
the average sampling frequency constraint
1
—E(N) = f; 12

(ii) the compressing policy fr = {fi,fa,... }* is

fi: Rx R x R — [24]. (13)

The codeword_ generated at time T; is U, =
f; (WTZ.,Ui_l, Tl). The codewords’ lengths must satisfy

N
E <Z &-) < E(N)Rj;
i=1

(iii) the decoding policy causally maps the received
codewords and the codeword-generating time stamps to a
continuous-time process estimate {Wt}tT:o using (6).

Together, the causal sampling, compressing and decoding
policies must satisfy the long-term MSE constraint in (3).

(14)

We define the operational distortion-frequency-rate func-
tion.

Definition 6. (Operational distortion-frequency-rate func-
tion(ODFRF)) The ODFRF is the minimum distortion
achievable by causal frequency-f and rate-Rs codes in the
limit of infinite time horizon:

D°P(f, R,) £ limsupinf{d : 3 (f, Rs,d,T) causal code}.
T—o0 (15)

Using the method used to decompose D°P(R) in Propo-
sition 1, we can write D°P(f, R) as

Dop(f7 RS) =

N Ti+1
limsup inf 1{1@(2 / (Wt—WTi)th> (16a)
i=0 7 Ti

T wp€llp: T
—00 a2

N
+ inf E 1 — )Wy — W )2 | S, 16b
E L |

3The causal sampling policy is defined in Definition 2(i)

“4Here we slightly abuse the notation: we have used fr in Definition 2(ii),
and have shown in Proposition 1 that the compressing policy fr can be
simplified to (13).
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where the expectation in (16a) is the sampling distortion,
and the expectation in (16b) is the mean-square quantization
error of the samples weighted by the lengths of sampling
intervals 7,41 — 7, ¢ =1,..., N.

We define the informational distortion-frequency-rate
function for deterministic sampling policies. The informa-
tional equivalent of D°P(f, R,) replaces (14) by the con-
straint on the directed information, that is, for deterministic
sampling policies,

1 ~
(W™ — W™) < R,.
v - ) <

Definition 7. (Informational distortion-frequency-rate func-
tion (IDFRF)) The IDFRF for the Wiener process under
deterministic sampling policies can be written as

Dper(f, Rs) £
limsup  inf

1 N Tit1 )
—< E Wy — W, )“dt
T— o0 TrTEH?ET: T <§ /-,—1 ( K 1,) )

(12)

amn

(18a)

. inf E(é(nﬂ — ) (Wr, — Wn)2> }

=1 PWT,L’ (Wi WTi—1¢
a7
(18b)

Similar to Dpgr(R) in Definition 3, (18b) is the IDRF
for the Gauss-Markov process formed by the samples, but it
is worth noticing that the rate considered in (18b) is the rate
per sample R rather than the rate per second R considered
in (10b).

III. MAIN RESULTS

The first theorem of this section shows the optimal causal
sampling and compressing policies that achieve D°P(R).

Theorem 1. In causal coding of the Wiener process, the
optimal causal sampling policy is the following symmetric

threshold sampling policy:
/1
> R}’ 1=0,1,2,...

(19)
The optimal compressing policy is a 1-bit sign-of-
innovation (SOI) compressor:

Ti+1 = inf {t Z T ° |Wt - Wq—i

1 g =W >
Ui — lf‘ WT’L+1 WT’L = O (20)
0 if Wr.,—-W;<0.
The SOI coding scheme achieves the ODRF:
1
D°P(R) = —. 21
(R) = o e

Proof sketch: The detailed proof is in [25, Sec. IV-A].
We first prove that the SOI coding scheme in Theorem 1
achieves (21) and satisfies (2) (achievability). We lower
bound D°P(R) in (8) by the sampling distortion in (8a) under
the maximum sampling frequency constraint R, and leverage
the results of [7] to calculate that this lower bound is equal
to (21) (converse). |

Together with the optimal encoding policy in Theorem 1,
the optimal decoding policy (6) accumulates the received
noiseless innovations to estimate the current value of the
process.

The next theorem shows the optimal deterministic sam-
pling policy that achieves Dpgr(R).

Theorem 2. In causal coding of the Wiener process, the
uniform sampling with the sampling interval equal to

1
Ti+1fﬂ-:ﬁ,i:0,1,2,..., (22)
achieves 5
D R) = —. 23
peT(R) R (23)

Proof sketch: The detailed proof is in [25, Sec. IV-D].
The value of Dpgr(R) is found by solving the minimization
problem in (25a). The optimality of the uniform sampling
policy follows by evaluating (18) with that policy. [ ]

Theorem 3. In causal coding of the Wiener process, the
ODRF satisfies

D*(R) = f>on}%in>1. D" (f, Rs), (24a)
fR<R
=D°P(R,1) (24b)

and the IDRF under deterministic sampling policies satisfies

Dpgr(R) = f>01,111%1.3121: Dper(f, Rs) (25a)
fRs<R
=Dpgr(R, 1) (25b)

Proof sketch: The detailed proofs of (24) and (25) are
in [25, Sec. IV-B] and [25, Sec. IV-C] respectively. To prove
(24), using a reasoning similar to the proof of Theorem 1, we
find that D°P(f, R) is equal to the sampling distortion %
for any R; > 1. To prove (25), we leverage the semidefinite
representation [15] of the causal IDRF for the Gauss-Markov
process formed by N samples, and write Dpgrr(R) as a
limit of optimization problems parameterized by N. We show
upper and lower bounds to each problem that coincide in the
limit of N, yielding
1 1
T @R oy

To justify (25a), we use the fundamental theorem of I'-
convergence. Solving the minimization problem in (25a), we
obtain (25b). |

Using Theorem 3, we can formulate the working principle
of an optimal encoding policy as follows. A sampler takes
measurements of the Wiener process as fast as possible
subject to a rate constraint, and the most recent sample is
used to generate a 1-bit codeword, which is transmitted to
the decoder without delay. In the setting of Theorem 1,
the 1-bit SOI compressor associated with the symmetric
threshold sampling policy uses the most recent sample to
calculate the innovation and to produce a 1-bit codeword.
In the setting of Theorem 2, although evaluating Dpgr(R)

Dpgr(R) (26)
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does not give us an operational compressing policy, we
know that the stochastic kernel that achieves the causal
IDREF for discrete-time Gauss-Markov processes formed by
the samples under uniform sampling policies has the form

o0 .
R, PWW Woo =W W, [23, Eq. (5.12)], suggesting
that at the encoder, it is sufficient to compress the quantiza-
tion innovation W,, —W_, | only. The decoder computes the

estimate W, as W,, = W, + qis(W,, — W,,_,), where
q; = giof;, f; (Wn - VAVTF]> € [227‘} is the ¢-th binary
codeword, and g;(c) € R is the quantization representation
point corresponding to ¢ € [251']. In practice, one can use
the greedy Lloyd-Max compressor [20] that runs the Lloyd-
Max algorithm for the quantization innovation in each step
based on the prior probability of the quantization innovation.
Specifically, the prior for (i + 1)-th step is the pdf of the
quantization innovation W, —Wn, which can be computed
as the convolution of the pdfs of the quantization error
W, — Wﬂ. and the process increment W, ., — W, The
globally optimal scheme has a negligible gain over the greedy
Lloyd-Max algorithm even in the finite time horizon [20].

251

Uniform sampling +

\‘ / Greedy Lloyd-Max

MSE

05 AN /

Symmetric threshold sampling +
1-bit SOI compressor D?(R)

0 . . 7 e e e S [ Y|
0 1 2 3 4 5 6 7 8 9 10
R, bits/s

Fig. 3: MSE versus rate

Fig. 3 displays distortion-rate tradeoffs obtained in
Theorems 1 and 2, as well as a numerical simulation of
the uniform sampling in Theorem 2 with the greedy Lloyd-
Max quantization of innovations. The symmetric threshold
sampling policy followed by a 1-bit SOI compressor leads
to a much lower MSE than uniform sampling. Indeed,
according to Theorems 1 and 2, %’fpiT(g) =5, and DL (R)
for the uniform sampling is even higher than Dpgr(R) by
(11). Note that the greedy Lloyd-Max curve is rather close to
the Dpgr(R) curve, indicating that the IDRF is a meaningful
gauge of what is attainable in zero-delay continuous-time
causal compression.

The optimal sampling policies of Theorems 1 and 2, i.e.
the symmetric threshold and the uniform sampling policies,
are the same as the corresponding optimal sampling policies
that achieve the minimum sampling distortion [6, Sec. 3.1]
[7] subject to an average sampling frequency constraint (12)

with f = R. The value of D°P(R) (21) achieved by the sym-
metric threshold sampling policy is the same as the sampling
distortion, since the 1-bit SOI compressor is able to compress
each innovation noiselessly due to the size-2 alphabet of the
innovations, resulting in zero quantization distortion (8b).
In contrast, for deterministic sampling policies, quantization
distortion is unavoidable, since the samples are Gaussian. If
we only consider the constraint on the sampling frequency,
the optimal deterministic sampling policy for the Wiener
process is uniform sampling [6, Sec. 3.1]. Nevertheless, the
result in Theorem 2 implies that uniform sampling is still
optimal in the IDRF sense, whether or not the quantization
distortion is taken into account.

IV. RATE-CONSTRAINED SAMPLING WITH DELAYS

In our communication scenario in Section I-A, the code-
words are delivered from the encoder to the decoder without
delay, and the distortion constraint (3) penalizes any delay
at the encoder or the decoder. While those are realistic as-
sumptions in some scenarios of remote tracking and control,
in this section we consider how the achievable distortion-rate
tradeoffs are affected if those assumptions are weakened.

A. Delay at the encoder and the decoder

In the scenario of encoding the entire process for the pur-
pose of preserving it for future, a large delay is permissible.
In the extreme, the encoder may wait until the whole input
process {W;}L, is observed before coding, and the decoder
is allowed to wait until 7" before estimating the process. This
corresponds to the classical scenario of non-causal (block)
compression. The IDRF for this scenario is given by

Dnoncausal(R) =

17 .
lim inf E| = / (W; — Wy)2dt
Tooo PlynT jiwiT '’ (T 0 >

FIAW o {Wi o) <R
27
Berger [22] derived the distortion-rate function for the
Wiener process using reverse water-filling over the power
spectrum of the process,

2log, e
Dnoncausal (R> = ,H.QR?

bits/s. 28)
The ODRF continues to be lower-bounded by the IDRF in
this non-causal scenario, D?> (R) > Dponcausal (R)
(cf. (11)). As for the achievability, Berger showed that (28)
can be achieved in the following sense: given a rate R > 0,
and e > 0, there exists a code with rate R + € that achieves
the distortion Dponcausal(R) + €. Berger’s coding scheme
operates as follows [22]: the Wiener process is divided into
successive time intervals of a large enough length 7" seconds.
For each interval, the Karhunen-Loeve (KL) coefficients of
the process are calculated, and at most 2T (R+e) codewords
are used to jointly encode these coefficients with a resulting
MSE per second equal to Dyoncausal(R) + €. In parallel
with the KL expansion coefficients encoding scheme, an
integrating delta modulator is employed to encode each

1095



endpoint of the length-7" intervals with MSE per second e
using € bits per second.

Comparing Dyponcausal (R) in (28) with D°P(R) in (21),
we see that, surprisingly, the optimal zero-delay policy
outperforms the best infinite delay one:

D°P(R)

Dnoncausal (R)
This is because in zero-delay causal coding, the timing
information is free. Indeed, the decoder knows the codeword-
generating time stamps that are stopping times of the filtra-
tion generated by the Wiener process. In classical noncausal
(block) lossy compression, no encoder and decoder synchro-
nization is assumed, and thus the encoder is tasked with
encoding both the values of the Wiener process and the time
stamps corresponding to these values. In many operational
scenarios of remote tracking and control, the encoder and
decoder are naturally synchronized, providing free timing
information. Since Berger’s distortion-rate function in (28)
does not take that into account, it cannot adequately charac-
terize the fundamental information-theoretic limits in those
scenarios.

~ 0.57. 29)

B. Delay at the decoder

In the scenario of causal coding where some small delay
is tolerated but the data is not recorded for storage, e.g.
speech communication, one can leverage both the free timing
information and the coding delay to improve distortion-rate
tradeoffs. A one sample look-ahead decoder waits for the
next codeword U, , before estimating Wy, 7; <t < 711,
introducing a maximum average delay of E(7;41 — 7;) = %
at the decoder. As we are about to see, this one sample
look-ahead decoder greatly reduces the MSE compared to
the ODRF obtained in (21) under causal estimation.

With the encoding policy in Proposition 1, the decoder
is permitted to estimate W; at time ¢, t < t' < T
using not only the codewords received before time ¢, but
also the extra codewords received during the time [t,¢']. In
the extreme, ¢/ = T, the decoder can jointly use all the
codewords and codeword-generating time stamps in time
horizon [0, 7] to recover the Wiener process. Using Wolf
and Ziv’s decomposition of MSE in [14], the ODRF with
decoder delay can be decomposed as

Ti+1
D2 R) =1i f —E / (W; — Wy)?
fec ey () = limsup i, 7 (Z (= W)
(2)
_ L\ 2

+ (W - W) dt),
. (30)
where W; = E(W;|UY, 7V) is the MMSE estimator of the

process at the decoder using all the received information, and
W, is the MMSE estimator of the process at the encoder
using the samples and the times that they were taken: for
te [7—1'77'1‘-&-1),

W £ E(Wy[{Wr, 1Ly, ) = B(Wi| W,

TL+1?Tl7Ti+1)7

€29

where (31) holds because W; — (W, , W, 7, Tit1) —
({WTJ}j 17{WTJ}] z+17{T7}g 17{7-7}] 1+1) form a
Markov chain in that order. Therefore, given all the
noiseless samples, W; only depends on the previous
sample and the next sample. In particular, when the
samples are taken under a deterministic sampling policy,
(Wr,, Wy, Wy,,,) is a Gaussian random vector, thus W; in
(31) is the linear interpolation between W, and W, ,.

We append the one sample look-ahead decoder to the
optimal encoding policy in Theorem 1 and calculate the
resulting MSE. Under symmetric threshold sampling poli-
cies, the samples are not necessarily Gaussian, and the linear
interpolation can be suboptimal. Yet, if in (30) we substitute

= . . W +Wo, .

for W; a suboptimal estimate —+5———, then the resulting
the MSE is equal to ﬁ, a two-fold improvement over
(21). We append the one sample look-ahead decoder to
the uniform sampling policy in Theorem 2, and ignore the
potential reduction in quantization distortion brought by the
decoder’s ability to look ahead by one sample. The resulting

sampling distortion is TE<Z7 OfT‘“ Wy — Wy) ) =

@, a 3-fold improvement over the sampling distortion ﬁ
causally attainable with a uniform sampling policy. Thus, the

total MSE is at most 21R, a 1.67-fold improvement over (23).

C. Channel delay

Consider the communication scenario in Fig. 1 with a
random channel delay between the codeword-generating time
stamp and the codeword-delivery time stamp. The decoder
sends an acknowledgement to the encoder once it receives
a codeword, and a new codeword is generated only after
the previous codeword is delivered. A random delay in
the communication channel disrupts the synchronization of
timing information, worsening the achievable distortion-rate
tradeoffs.

Let Y; be the channel delay. Assume that the initial channel
delayis Yo =0,and that 0 < Y; < 741 —7, Vi=1,..., N,
Tnv+1 = 1 and Yny4; = 0. The ODRF under the channel
delay can be written as

Dy, (R)

channel delay

N Ti+1+Y;
1 i+1+Yiq1 N2
JZ;TEGHT T \iZJrv

= limsup inf
T— o0 T
(@)

(32)
where if ¢ € [1i + Y;, 741 + Yit1), the optimal decoding
policy W, is equal to the following MMSE estimator

% A
Weivy, =

i E<Wt‘Uia7-i+Yi) :E(Wﬂ ‘)7
(33)

and the codeword U; is generated based on the past process

{Wi};L, (Definition 2, (ii)), as in the scenario without the

channel delay.

Proposition 2. i) If the delay Y; is independent of the Wiener
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process, then

o o i 1
Dc}?annel delay(R) -D p(R) § Tlgnoo ﬁE

N
v,
i=1

(34)
where N in (34) is the total number of samples taken under
the symmetric threshold sampling policy (19) within the time
duration T.

ii) If the channel delay Y; is independent of the Wiener
process and is i.i.d. distributed as a random variable Y, the
optimal encoding policy is a symmetric threshold policy (6)
with the new threshold /B calculated by solving,
9 1 E [max(82, Wy)]
E [max(,é’, WY)} max 7 23
followed by a 1-bit SOI compressor (20). The optimal decod-
ing policy still recovers the samples noiselessly by summing
up the received innovations.

(35)

Proof sketch: Proposition 2 ii) is proven in the same
way as Theorem 1, leveraging the result of Sun et al.
[8], who proved that the optimal sampling policy for the
Wiener process under a sampling frequency constraint and
an i.i.d. channel delay is the symmetric threshold policy with
threshold /3. For the proof of Proposition 2 i), we upper
bound DZP 1 deray (1) by the distortion achieved by the
SOI coding scheme in Theorem 1. See Appendix G in [25].

|

V. CONCLUSION

The results in this paper contribute to the rich literature
on optimal scheduling and causal sequential estimation prob-
lems by introducing a transmission rate constraint beyond
the popular sampling frequency constraint. The SOI coding
scheme is optimal for causal estimation of the Wiener
process under an expected rate constraint (Theorem 1).
The performance of the SOI coding scheme is much better
than that of the best non-causal code (Section IV-A). This
underscores the power of free information contained in the
codeword arrival times that is not considered in the standard
setting of non-causal (block) compression. The SOI scheme
with a different threshold remains optimal even if the channel
introduces an i.i.d. random delay (Proposition 2). The key to
transmit information via timing is to use process-dependent,
rather than deterministic, sampling time stamps, because the
latter contain zero information. The optimal deterministic
sampling policy is uniform (Theorem 2). In either setting,
the best strategy is to transmit lowest possible rate 1-bit
codewords as frequently as possible (Theorem 3). This is
a consequence of the real-time distortion constraint (3). If
a delay is affordable, the MSE can be further reduced with
only one sample look-ahead at the decoder (Section IV-B).
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