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Absifract—We consider the problem of tracking the state
of Gauss-Markov processes over rate-limited erasure-
prone links. We concentrate first on the scenario in which
several Independent processes are seen by a single
observer. The observer maps the processes into finite-rate
packets that are sent over the erasure-prone links to a state
estimator, and are acknowledged upon packet arrivals. The
alm of the state estimator Is to track the processes with
zero delay and with minimum mean square error (MMSE).
We show that, In the limit of many processes, greedy
quantization with respect to the squared error distortion
Iz optimal. That is, there is no tension between optimizing
the MMSE of the process In the current time Instant and
that of future times. For the case of packet erasures with
delayed acknowledgments, we connect the problem to that
of compression with side Information that Is known at the
observer and may be known at the state estimator—where
the most recent packets serve as side information that may
have been erased, and demonstrate that the loss due to
a delay by one time unit Is rather small. For the scenario
where only one process Is tracked by the observer—state
estimator system, we further show that variable-length
coding techniques are within a small gap of the many-
process outer bound. We demonstrate the usefulness of the
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proposed approach for the simple setting of discrete-time
scalar linear quadratic Gaussian control with a limited
data-rate feedback that Is susceptible to packet erasures.

Index Terms—Networked control systems, packet loss,
sequential coding of correlated sources, source cod-
ing with side Information, state estimation, successive
refinement.

l. INTRODUCTION

RACKING the state of a system from noisy and possibly
T partially observable measurements is of prime importance
in many estimation scenarios, and serves as an important build-
ing block in many control setups.

The recent rapid growth in wireless connectivity and its ad hoc
distributed nature, while offering a plethora of new and exciting
possibilities, introduces new design challenges for control over
such media. These challenges include, among others, the need to
track processes with minimal error over digital links of limited
data rate, which could be prone to (packet) erasures, and joint
processing and reconstruction of distributed processes.

An imporiant scenario, often encountered in practice, de-
picted in Fig. 1, is that of a multi-track system that tracks sev-
eral processes over a single shared communication link. In this
scenario, at each time instant, several processes are observed by
a single observer. The observer, in turn, collects the measured
states of these processes into a single vector state or frame,
and maps them into finite-rate packets. These packets, in turn,
are sent to the state-estimator over a channel which is prone to
packet erasures. The state estimator tracks the latest states of the
different processes, by constructing minimum mean square error
{MMSE) estimates thereof using the available packets received
thus far.

Since these settings incorporate communication components,
we appeal to relevant tools and results from information theory.
The information-theoretic framework for the multi-track setting
with a large number of independent processes (large frames)
and without packet erasures, was provided by Viswanathan and
Berger [1] via the notion of sequential coding for the case of
two time steps and for more steps in [2]-[5]. In these works, the
optimal tradeoff between given (per-process) rates and MM-
SEs (referred to as distortions) were determined when the
number of processes is large, in the form of an optimization
problem.

A similar framework in the context of control was studied
by Tatikonda [6]-{8] and Borkar ef al. [7], who noticed the
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Multi-track of Gauss—Markov processes over a finite-rate

intimate connection to the early works of Gorbunov and Pinsker
[9]. [10]. Subsequent noteworthy efforts in the context of track-
ing include [11], [12] and references therein.

For the special case of Gauss—Markov processes, an explicit
expression for the achievable sum-rate for given distortions was
derived in [2] and [3] via the paradigms of predictive coding
and differential pulse-code modulation (DPCM) [13]-{17] (see
also [18, Ch. 6] and the references therein), and extended for
the case of three time-steps of jointly Gaussian {not necessarily
Markov) processes in [19].

In practice, packet-based protocols are prone to erasures and
possible delays. The multi-track scenario in the presence of
packet erasures was treated under various erasure models. The
case where only the first packet is prone to an erasure was
considered in [20]. A more general approach that trades be-
tween the performance given all previously sent packets and the
performance given only the last packet was proposed in [21].
For random independent identically distributed (i.i.d.) packet
erasures, a hybrid between pulse-code modulation (PCM) and
DPCM, termed leaky DPCM was proposed in [22] and ana-
lyzed for the case of very low erasure probability in [23]. The
scenario in which the erasures occur in bursts was considered in
[24], [25].

These works correspond to UDP-based networks [26], in
which no acknowledgment (ACK) upon packet arrival is avail-
able. That is, the observer does not know whether transmitted
packets successfully arrived to the state estimator or not.

In contrast, in TCP-based networks, packet arrivals are ac-
knowledged via a communication feedback link, in order to ro-
bustify the transmission of the overlying data [26]. Stabilizing
control systems under this scenario has been studied in various
works, [27]-[29], to name a few.

In this paper, we first consider the multi-track scenario
of Gauss—Markov processes, which is defined formally in
Section II. We determine the optimal tradeoff between rates
and distortions when the number of processes (frame length) is
large, in Section III. Specifically, we show, in Section II1, that
creedy quantization that optimizes the distortion at each time
is also optimal for minimizing the distortion of future time in-
stants. This insight allows us to extend the result to the case
where the rate r; available for the transmission of the packet at
time ¢ is determined just prior to its transmission, in Section IV.

The packet-erasure channel with instantaneous ACKs can
be viewed as a special case of the above noiseless channel
with random rate allocation, with r; = (0 corresponding to a
packet-erasure event [30]. The optimal tradeoff between rates
and distortions for the multi-track scenario of Gauss—Markov
processes in the presence of packet erasures and instanta-
neous ACKs thereby follows as a consequence, as is shown in
Section V for both single- and multi-packet per state frame
SCenarios.

We further tackle, in Section VI, the more challenging delayed
ACK setting, in which the observer does not know whether the

most recently transmitted packets have arrived or not. By view-
ing these recent packets as side information (SI) that is available
at the observer, and possibly at the state estimator, and lever-
aging the results of Kaspi [31] along with their specialization
for the Gaussian case by Perron ef al. [32],' we adapt our trans-
mission scheme of Section III to the case of delayed ACKs. We
provide a detailed description of the proposed scheme for the
case where ACKs are delayed by one time unit and demonstrate
that the loss compared to the case of instantaneous ACKs is
small.

In Section VII, we go on and consider the case of track-
ing a single process—single-frack, and a variable-length coding
(VLC) scenario [35], [36, Ch. 5], in which the packet size is
not fixed and is instead constrained to be below a desired rate
on average. We consider a scheme that sequentially applies
entropy-coded dithered quantization (ECD(Q)) [37]-{39], [40,
Ch. 5]. redolent of the scheme in [41], and show that it attains
an MMSE-rate tradeoff that is close to the large-frame outer
bound of Section I1L.

By supplementing the state-tracking task with appropriate
control actions in Section VIII, we demonstrate the applicabil-
ity of the derived results in Sections III and V to the scenario
of linear quadratic Gaussian (LQG) networked control, where
a scalar linear plant driven by an i.i.d. Gaussian process is sia-
bilized by a controller that is not colocated with the observer
and is separated from it, instead, by a packet-erasure (and more
generally, a random-rate budget) channel. We derive inner and
outer bounds on the optimal LG cost that extend those in [42]
and [43] to packet-erasure channels. We conclude the paper with
Section IX, by discussing the cases of large delays, other types
of VLC compression, and single-track with fixed-length coding
(FLC) compression.

A. Notation

Throughout this paper, ||-|| denotes the Euclidean norm.
M is the set of natural numbers. Random variables are
denoted by lower-case possibly accented letters with tem-
poral subscripts {ai,ét}, and random wvectors (frames) of
length N € N by boldface lower-case letters (a, a,). We de-
note temporal sequences by a’ £ (ay,...,a,), where a, £
Transpose {( a1 aga --- agy )}, and [T EX {1,...,T}isthe
interval from 1 to T' M. All other notations represent deter-
ministic scalars.

Il. PROBLEM STATEMENT

The transmission spans the time interval [T'] of horizon T'.

We next describe the state dynamics, and the operations car-
ried by the observer and the state estimator, which communicate
over a finite-rate channel (see Fig. 1).

State dynamics. Consider N € M independent Gauss—
Markov processes {sr1}, {se2}, ... {sw} with identical
statistics. This can be compactly represented in a vector form as

IThe scenario considered in [31] and [32] can also be viewed as special
case of the results of Heegard and Berger [33], where the Sl is not avail-
able at the observer, by adjusting the distortion measure and “aogmenting”
the state [34]. Interestingly, knowing the 51 at the observer allows one to
improve the optimal performance of this scenario in the Gaussian case; see
Remark 11.
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(we assume sy = 0 for convenience)?

B = 81 + Wy, te [T] (I.)

where s, is the vector state or frame at time £, {o; } are known
process coefficients, the entries of w; comprise N jointly inde-
pendent driving noises, the temporal entries of which are i.i.d.
Gaussian of zero mean and variance W;.

Denote the average power of each state at time ¢ by S, £
E [s?,]. n € [N]. Then, (1) implies the following recursive
relation (with Sy = 0):

8 = o} 81 + Wi, te[T]. (2)

Observer. Sees the states {s;.1, ..., s;.v }of all the N process
at time ¢, collects them into the frame &, and applies a causal
function £; to the observed frame sequence s*, to generate the
packet f; € [2VH:]:

fi=& {SE} 1 (3)

where F; is the per-process rafe available for transmission over
the channel at time ¢.

Channel: At time £, a packet f; € [2¥%] is sent over a
noiseless channel of (per-process) finite rate 2.

State estimator: Applies a causal function T, to the sequence
of received packets f°, to construct an estimate & of s, at
time £:

& =" (Jﬂ} )

Distartion: The average quadratic distortion (or MMSE) at
time ¢ is defined as

1 .
D, £ TE lls: - &I”] . ©)

In the important special case of fixed parameters

Oy = o,

W, =W, t e [T, (6)

the average process power, assuming |« < 1, converges to

W
S =———.
¥ 1-a?
In that case, by taking the rate-budget to be fixed too
R, =R, t € [T}, (M)
define the steady-state distortion (assuming the limit exists)
D.. 2 lim D,. (®)
T—nma

Definition 1 (Distortion—rate region): The distortion—rate
region is the closure of all achievable distortion tuples DT £
(Dy,...,Dy) forarate tuple BT £ (R,,...,Ry), forany N,
however large; its inverse is the rafe—disfortion region.

Definition 2 (Average-stage rate and distortion): The
average-stage rate and distortion are defined as

1< 1
Rr %TZR;,
t=1

T

[~] =

Dy & D, &)

=1

The proposed treatment can be generalized to a matrix oy , but is moch more
involved and, therefore, remains outside the scope of this paper.

respectively. We further denote the steady-state average-stage
rate and distortion by

R.. = limsup By ,

T—na

D.. = limsup Dy .

T—na

(10)

lll. DisTORTION—RATE REGION OF Gauss—MaRkow
Process MULTI-TRACKING

The optimal achievable distortions for given rates, under the
model of Section I, are provided in the following theorem.

Theorem 1 (Distortion—rate region): The distortion—rate

rggiun of Gauss—Markov process multi-track for a rate tuple

is given by all distortion tuples D7 that satisfy D, > D¢

with
D} = (g D}y + Wy) 2720 (11a)
D =0. (11b)

Remark 1: The impossibility of Theorem 1 has been es-
tablished in [8, Lemma 4.3]. We provide an alternative simple
proof in Section I11-B that allows us to treat random rates in the
sequel.

Remark 2: The setting of Theorem 1 is referred to as “causal
encoder—causal decoder™ in [2]. We note that [2] provides
an explicit result only for the sum-rate of the Gauss—Markov
model [3]. Torbatian and Yang [19] extend the sum-rate re-
sult to the case of three-step general jointly Gaussian processes
{which do not necessarily constitute a Markov chain). Our work,
on the other hand, fully characterizes the rate—distortion region
for the case of Gauss—Markov processes.

Remark 3: The results and proof (provided in the sequel)
of Theorem | imply that optimal greedy quantization at every
step—which is achieved via Gaussian backward [36, Ch. 10.3]
or forward [36, pp. 338-339] channels—becomes optimal when
N is large. Moreover, it achieves the optimum for all ¢ € [T]
simultanecusly, meaning that there is no tension between mini-
mizing the current distortion and future distortions.

To prove Theorem 1, we first construct the optimal greedy
scheme and determine its performance in Section II-A. We
then show that it is in fact optimal when N goes to infinity in
Section [1I-B.

t e [T

A. Achievability

We construct an inner bound using the optimal greedy
scheme, which amounts to the classical causal DPCM scheme.
In this scheme, all the quantizers are assumed to be MMSE
quantizers, whose quantized values are well known to be uncor-
related with the resulting quantization errors.

Scheme 1 (DPCM).

Observer: At time t:

1) Generates the prediction error

_— .
8 = 8 — 8

(12)

where 5;_;, defined in (4), is the previous frame recon-
struction at the state estimator, and 8y = 0; a linear re-
cursive relation for & is provided in the sequel in (133

2) Generates &, the quantized reconstruction of the predic-
tion error &;, by quantizing &; using the MMSE quantizer
of rate H; and frame length V.

32 ,=E [s:_l |_f"’] and v, 8y = E [.s,|_f"’] are the MMSE esti-
mators of s —1 and a:, respectively, given all outpots until time £ — 1.
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3) Sends f; € [2%¥ ], the corresponding packet to & over
the channel.
State estimator: At time £:
1) Receives f;.
2) Recovers the reconstruction 3, of the prediction error 2.
3) Generates an estimate & of g;:

(13)

Performance analysis: First note that the error between &; and
&, e 28 — &, isequal to e, = 8, — & by (12), (13). Thus,
the distortion (5) is also the distortion in reconstructing &,.

This, along with (1) and (12) means that 8 = o€, 1 + wy.

Since w; is independent of e;_;, the average power of the
entries of &, is equal to

B = o8 + 8.

g; = &?D;_] + Wg, .

Using the property that the rate—distortion function under
mean square error distortion of a process with a given average
variance is upper bounded by that of an i.i.d. Gaussian process
with the same variance (see, e.g., [36, pp. 338-339]), we ob-
tain D; < (of Dy—y + W;) 2721 and hence, (11) is achievable
within an arbitrarily small e = 0, for a sufficiently large N. W

B. Impossibility (Converse)
We now prove that, for any frame length N € I

D, = 2728 ]E'I’:—] [-"H'r {E:Lf:_] = jﬂ_l}] (14a)
= D, t e [T (14b)
by induction, where the sequence { D} } is defined in (11)

1 = - 1 . a
M(Sr,] gﬁg}rhh‘l M{Salfk _ fl‘} gﬁgﬁrﬁ{m”’ =f }

denote the entropy power (EP) and conditional EP of s; given
f* = f*, the expectation Ej []iswrt. ft1, and the random
vector f* is distributed the same as f°.

Basic step (t = 1) Since 8y = 0, and the vector w; consists
of 1.i.d. Gaussian entries of variance W, (14b) is satisfied with
equality. To prove (14a), we use the fact that the optimal achiev-
able distortion I}y for a Gaussian process (8; = w; ) with i.i.d.
entries of power W, and rate B, is dictated by its rate—distortion
function [36, Ch. 10.3.2]: D; > W;2- 21,

Inductive step: Let k > 2 and suppose (14) is true for ¢t =
k — 1. We shall now prove that it holds also for ¢ = k.

1 .
Dy = <E[E [llas — &l 7] (150
1 N - Zh—
= B [E[lse— a7 = 7] asty
> Ef*-’ [M {Eklfk_l _ f”k—l} E—ERE] “5{:)
=Epi [N (axsey +wgf*1 = f271)] 2720
(15d)

> {]Efk_z [IE'.I-,‘_, IV (cxseq|f*71 = ) |fk_ﬂ]]

+ N (we) }2-9“* (15¢)

> {aiEpua [V (86|52 = /72, fia)]

+ Wi pa 28 (15f)
> {ailEfk_z [N (81| f52 = fE2)] 2720

+ Wi pa 28 (15g)
=27 (afDE ) + W) (15h)
= D; (15i)

where (15a) follows from (5) and the law of total expectation;
(15b) holds since f*~! and f*~! have the same distribution;
(15c) follows by bounding from below the inner expectation
{conditional distortion) by the rate—distortion function and the
Shannon lower bound [36, Ch. 10]—this also proves (14a);
(15d) is due to (1); (15e) follows from the EP inequality [36,
Ch. 17]; (15f) holds since w. is Gaussian, the scaling property
of differential entropies and Jensen's inequality:

[2%'“{'* alft =) |fk—2]}2£-—h{ae_1 [F* =% faa };

Ef

(15g) follows from the following standard set of inequalities:
NRey = H (feaa|fF 2 =77
=T (8p1; fea|f0 = F579)

=h(8ealf 7 =) —h(ealf* 7 = 7 fe)s
(15h) is by the induction hypothesis; and (15i) holds by the
definition of { I} } (11)—which also proves (14b). [ ]

Assertion 1 (Outer bound for non-Gaussian noise): Con-
sider the setting of Section II with independent non-Gaussian
noise entries {w;., [t € [T'],n € [N]}. Then, the average achiev-
able distortion D; at time ¢ € [T is bounded from below by
Dy = D¢, with D = 0 and D} given by the recursion

D; = (D, + N (w,)) 272Re,

Proof: The proof is identical to that of the lower bound for
the Gaussian case with W, replaced by " (w, ). [ |

C. Fixed-Paramefer Gauss—Markov Processes

For the case of fixed parameters (6) and fixed rate (7), the
steady-state average distortion is given as follows.

Corollary 1 (Steady-state distortion with fixed rate):
Assume a fixed-parameter (6) fixed-rate budget (7) set-
ting. If o’2 %% < 17 then the steady-state distortion is
given by

WE—ER

D% & Jim D = 1 55w

T—s
and is otherwise unbounded.
Proof: The proof is immediate by noting that (11) con-
stitutes a linear time-invariant (LTT) system and, therefore, is
globally exponentially stable if the (only) pole of its transfer
function lies strictly inside the unit circle, i.e., a*2 2% < 1, and
is unstable otherwise [44, Ch. 6].

4Recall that in the Gaussian setting N wy = W,.
5This is trivial for || < 1.
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Remark 4: As is evident from the proof, the result of
Corollary 1 remains true for any initial value D).

Remark 5: The impossibility part of Corollary 1 can be
traced back to the work of Gorbunov and Pinsker [10].

Interestingly, the optimal steady-state distortion achievable
with a fixed-rate budget (7) is in fact optimal even if we loosen
this restriction to a total rate-budget constraint as was previously
observed, e.g., in [41]. This is a simple corollary of Theorem 1
and is formally proved next. The same conclusion holds if the
frame entries are comrelated Gaussians, as was recently proved
by Tanaka [45].

Corollary 2 (Steady-state distortion with total rate): The
average-siage steady-state distortion (10) D)., under a total
rate-budget constraint (10) R.. < R, is bounded from below
by D.., = D¢, . Consequently, the fixed (a.k.a. uniform) rate al-
location H; = R is optimal in the limit of T — oc.

Proof: Without loss of generality, for a given tuple RT,
it suffices to consider distortion tuples D7 that belong to the
boundary of the rate—distortion region, namely, distortion tuples
satisfying (11) with equality

R; = %]ﬂg {CEED:—] + W-} - %]ﬂgﬂ: . (]6)

For the equivalent problem of minimizing the total rate bud-
get (9) under an average-stage distortion constraint Dy < D,
the total rate budget can be bounded from below as

1 T
Br =23 R (17a)
t=1
11 1
= TZ [E log {O’ED;_] +W_} — Elﬂgﬂ;] (17h)
t=1
L | s W 1 oDy
=;§hg(cr +E) —Elug(l+?)
(17c)

1 g W 1 a?T Dy

== _ — = _—

25 log | o™ + 7 ) 5T log (1 -+ W ) (17d)
1 )

2
Elug(aﬂ+i)—Llug(l+a;;D) (17€)

D ar

where we use (9) in (17a), (17b) holds by substituting (16),
(17d) follows from Jensen's inequality and Dy < T Dy, and
(17e) holds due to the constraint Dy < D.

Evaluating (17) in the limit T — oo concludes the proof. W

IV. RanDom-RATE BUDGETS

In practice, the available transmission rate may vary across
time depending on the quality of service offered by the in-
frastructure, as well as, due to other applications sharing the
same infrastructure. We, therefore, generalize next the results of
Section III to random rates {r; } that are independent of each
other and of {w, }. The rate r; is revealed to the observer just
before the transmission at time t.

Theorem 2 (Distortion—rate region): The distortion—rate
region of Gauss—Markov multi-track with independent rates
is given by all distortion tuples DT that satisfy D; > I} with

D} = (oD +W)E[2™], te[T],  (I8a)
Dy =0. (18b)

Proof: Achievability. Since the achievability scheme in The-
orem | does not use the knowledge of future transmission rates
to encode or decode the packet at time ¢, we have

R (19a)
1 .

= E [Jls: — &l 1] (19)

< (afdi_y + Wi)272" +e (19¢)

for any e = 0, however small, and large enough N.

By taking an expectation of (19¢) with respect to r* and using
the independence of r*~! and r,, we obtain (18).

Impossibility: Revealing the rates to the observer and the state
estimator prior to the start of transmission can only improve the
distortion. Thus, the distortions {d; } conditioned on {r; } (19a)
are bounded from below as in Theorem 1; by taking the expec-
tation w.r.t. {r; }, we attain the desired result. [ |

Remark 6: By applying Jensen's inequality to (13a):
E [2-2%] > 272EI"], we see that using packets of a fixed rate
of E [r;] performs better than using random rates r;.

For the special case of fixed-parameters (6) and i.i.d. rates
{r: }. the steady-state distortion is given as follows.

Corollary 3 (Sfeady siate): Assume a fixed-parameter
setting (6) with iid. rates {r;}. If o B < 1% where B £
E [2727], then the steady-state distortion is given by

BW

Do % fm Di = 7—og

t—o0

and is otherwise unbounded.
Proof: The proof is identical to that of Corollary 1 with 2%
replaced by B. |

(20)

V. PackET ERASURES WITH INSTANTANEOUS ACKS

A. One Packet Per Frame

An important scenario encompassed by the model of
Section IV is that of packet erasures [30]. Since a packet era-
sure at time £ can be viewed as r, = (I, and assuming that the
observer sends packets of fixed rate R and is cognizant of any
packet erasures instantaneously, the packet erasure channel can
be cast as the random rate channel of Section IV with

e =hR (21a)
R, b—1
{0 520 .

where {b; } are the packet-erasure events, such that b, = 1 cor-
responds to a successful arrival of the packet f; at time ¢, and
by = 0 means it was erased. We further denote by

g = befr (22)

the received output where g; = 0 corresponds to an erasure, and
otherwise g; = f;. We assume that {b, } are i.i.d. according to a
Bernoulli distribution #(3) with 3 € [0, 1].

Remark 7: We shall concentrate on the case of packets of
fixed rate R to simplify the subsequent discussion. This way, the
only randomness in rate comes from the packet-erasure effect.
Nevertheless, all the results that follow can be easily extended

& Again, this is trivial for o] < 1.

Authorized licensed use limited fo: CALIFORNIA INSTITUTE OF TECHNOLOGY . Downloaded on Febmary 18,2020 at 05:40:30 UTC from IEEE Xplore. Restrictions apply.



554 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 8, NO. Z, JUNE 2019

to random/varying rate allocations to which the effect of packet
erasures {b; } is added in the same manner as in (21).
Corollary 4 (Distortion—rate region): The distortion—rate
region of Gauss—Markov multi-track with i.i.d. B|V(73) packet
erasures and instantaneous ACKs is given as in Theorem 2 with

BAE[2™]=1-p8(1-27"F). (23)

Corollary 5 (Steady siate): The steady-state distortion is
given as in Corollary 3 with B as in (23).

Remark 8: In contrast to the scenario without packet era-
sures, the uniform rate allocation can be improved by allowing
a dynamic rate allocation that depends on the pattern of packet
erasures b*~!. This setup can be thought of as the source-coding
dual of the fast fading channel coding problem where the fading
coefficient is known at both the transmitter and the receiver prior
to transmission, and the transmitter optimizes the transmission
rate via waterfilling across time [46, Ch. 5.4].

B. Multiple Packets Per Frame

In Section V-A, we assumed that one packet (f;) was sent
per each frame (). Instead, one may choose to transmit mul-
tiple packets of lower rate per one frame. If we assume that
each packet arrival is instantly acknowledged, then the result-
ing scenario falls again in the random-rate budget framework
of Section IV. Interestingly, it turns out that the optimal num-
ber of packets per frame depends on the PDF of the rate, ie.,
increasing the number of packets can either improve or deterio-
rate the performance.

Specifically, assume that the observer uses K packets of equal
rate 2/ K (and hence, a total rate of i) to successively refine [47,
Ch. 13.5] a single state frame ;. Then, the rate probability
distribution amounts to

Tt =%R

with b, denoting the number of successful packet arrivals at time
t, corresponding to state frame =;. Assuming that the erasure
events of all packets are 1.i.d. with probability 1 — 3 implies that
{b; } are i.i.d. according to a Binomial distribution #. (K, 3).

Interestingly, the optimal number of packets K depends on
the (total) rate R and successful packet-arrival probability 3,
since by allocating more lower-rate packets, one trades a lower
probability of receiving the maximal available rate at the state
estimator with a higher probability of receiving intermediate
rates. The optimal K is determined by the number that mini-
mizes E [27™ ], as is demonstrated in Fig. 2.

We note that in the absence of ACKs of intermediate packets,
the successive refinement encoding considered here cannot be
used. One could use repetition coding to trade multiplexing
gain with diversity [46] or multiple description coding [48],
when ACKSs are sent only after all the intermediate packets are
transmitted. We do not discuss such extensions in this paper due
to a lack of space.

Remark 9: We only considered uniform rate allocations for
all the packets. Clearly, one can generalize the same approach
to nonuniform packet rates.

Remark 10: In practice, one might expect longer packets to
be prone to higher erasure probability. This can be taken into
account when deciding on the K that minimizes E [2-2"].

V1. PackeT ERASURES WiTH DELAYED ACKS

We now tackle the case of i.i.d. packet erasures with ACKs
that are delayed by one time unit, i.e., the case where at time

3
2 e
;‘*‘ s
1 ".‘ o
“- ’ L
0 *e e,
ﬁ“‘ ., )
B -1 N
2 ., .
- - -
] -2f TN
-3 *‘\* !
L3 .
_4|| = One packet ‘~,,‘
ol Two packets TN
“?I| =+ Three packets
%0 0.2 0.4 0.6 0.8 1.0
3
Fig. 2. . .2,

d 3 packets, all possible val-
uesof 3 [0,1], R 1.

t, the observer does not know whether the last packet arrived
or not (namely, it does not know b;_4), but knows the erasure
pattern of all preceding packets (knows b*—2). The observer (3)
and state estimator (4) mappings can be written as [recall the

definition of g; £ b f; in (22)]
_f: = £; {3!.1 gt—ﬂ} 5 é: = ID: (gt} .

To construct a transmission scheme for this case, we recall the
following result by Perron ef al. [32, Th. 2], which is a special-
ization to the jointly Gaussian case of the result by Kaspi [31,
Th. 1], who established the rate—distortion region of lossy com-
pression with two-sided 51 where the 51 may or may not be
available at the state estimator.”-*

Theorem 3 ([32, Th. 2]): Let & be an i.i.d. zero-mean Gaus-
sian process of power S, which is jointly Gaussian with 51 y
that is available at the observer and satisfies 8 = y + =z, where
z is an i.i.d. Gaussian noise of power £ that is independent of y.
Denote by 8 and & the reconstructions of & with and without
the SI y, and by D* and D~ —their mean squared error distor-
tion requirements, respectively. Then, the smallest rate required
to achieve these distortions is given by

RX=pi(g 7 D, D")

(0, D >Sand D+ > Z

D <Sand D*|S > D |Z
Dt <=ZandD >Dt4+5-Z2
{D‘{SandD+||S-::D‘||Z

slog(5=),

=4 é’lﬂg(ﬁzi_}a

3 log (=227 ) -

.

and D~ =Dt + 8- Z

where a||b £ L2 denotes the harmonic mean of a and b, and

o VIS Z)(S - D)D" —\/(Z-D¥)(D- - DV)S
AL :
VZ (8§ — D+)

TWe use a backward channel to represent the 51 8 = y + =, as opposed to
the forward channel ¢ = & + = used in [32] and [33].

#Kaspi's result [31, Th. 1] can also be viewed as a special case of [33] with
some adjustments; see [34].
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Remark 11: Surprisingly, as observed by Perron ef al. [32],
if the SI signal y is not available at the observer—a setting
considered in [31, Th. 2], [33]—the required rate can be strictly
higher than that in Theorem 3. This is in stark contrast to the
case where the SI is not available at the observer, and the case
where the 51 is always available at the state estimator studied
by Wyner and Ziv [49], [50]. Knowing the 51 at the observer
allows to (anti)correlate the noise = with the quantization error—
an operation that is not possible when the 51 is not available at
the observer, as the two noises must be independent in that
case. This leads to some improvement, though a modest one, as
implied by the dual channel-coding results [51, Prop. 1], [52].

In our case, at time £, the previous packet f; 1 serves as the
S1. Note that this 51 is always available to the observer; the
state estimator may or may not have access to it, depending on
whether the previous packet arrived or not. Since the ACK is
delayed, during the transmission of the current packet f;, the
observer does not know whether the previous packet was lost.

The tradeoff between D* and D~ for a given rate R will be
determined by the probability of a successful packet arrival 3.

Scheme 2 (Kaspl based).

Observer. At time t:

1) Generates the prediction error 8, £ 8, — a0, 8, 5.

2) Generates f; by quantizing the prediction error &; as in

Theorem 3, where f;_; is available as SI at the observer
and possibly at the state estimator (depending on b;_1)
using the optimal quantizer of rate i and frame length N
that minimizes the distortion averaged over b, _:

D:ln:ight.ed = AD} +(1-B8)D;; (24)

more precisely, since the observer does not know
(bi_1,b) at time £:

a) Denote the reconstruction of &; at the state estima-
tor from f; and g*>—namely given that b, = 1
and b;_y = 0 — by @ (&), and the correspond-
ing distortion by D).

b} Denote the reconstruction from (f;_q, f;) and
g'2—namely given that b, = land b,_; = 1 —
by Q; (&), and the corresponding distortion by
D;.

c) Denote the reconstruction from f; and g*'—
namely given that b; = 1 — by J;(3;), and the
corresponding distortion, averaged over b,_q, by
D:Nei ted

Then, the observer sees o ();_1(8 _1) as possible SI
available at the state estimator to minimize D;"r eighted g
in (24).
(3) Sends f; over the channel.
State estimator. At time £:
a) Receives g;.
b) Generates a reconstruction 8, of the prediction error 3,

Qf (&), be=1Lbi=1
B —{Qr (&), B=Lkh =0 (25
0, by = 0

c) Generates an estimate 8; of 8,: 8; = o 8;_1 + 8.

12

Assumes BC
W prediction

“ ASFUMEE WC
Kaspi-based
0, Tor instant FB
Instant FB

Fig. 3. Distortions [J; asa function of the time ¢ of the various schemes
presented in thiz section, along with that of the instantaneous-ACK
scheme of Section V, fora =07, W =1,8=05 and i = 2.

This scheme is the optimal greedy scheme whose perfor-
mance is stated next, in the limit of large N.

Theorem 4: The following distortions D7 can be ap-
proached arbitrarily closely in the limit N — oo fort € [2,T7:
D, =1k 1=1
D, b=1,b1=0
ﬂ% Diy+W, b=0

Dy =Df =Dy =W, 27"

D, =

where D;" and D; are the distortions that minimize (24), such
that the rate of Theorem 3 satisfies

RX*Pi(o, D | + W,a, D} , + W,D;, D) = R.

Proof: The proof is again the same as that of Theorems 1
and 2, with 8, generated as in (25). [
Remark 12: Here, in contrast to the case of instantaneous
ACKs, evaluating the distortions {D; } in explicit form (recall
Corollary 4) is more challenging. We do it numerically, instead.
Somewhat surprisingly, the loss in performance of the Kaspi-
based scheme due to the ACK delay is rather small compared to
the scenario in Section V where the ACKs are available instan-
taneously, for all values of 3.7 This is demonstrated in Fig. 3,
where the perfomances of these schemes are compared along
with the performances of the following three simple schemes
fora, =07, W=1,8=05R=2:

1) No prediction: A scheme that uses no prediction at all,
as if the state frames were independent. This scheme
achieves a distortion of D, = 35,272% 4 (1 — §8)S;,
where S; is the power of the entries of s, as given in (2).

2) Assumes worst case: Since at time ¢ the observer does not
know b;_;, a “safe” way would be to work as if b,y = (.

9Far 3 values close to 0 or 1, the loss becomes even smaller as in these cases
using the scheme of Section V that assumes that the previous packet amived or
was crased, respectively, becomes optimal.
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This achieves a distortion of
D; = [a'Dya + (1+)W] [8272R + (1 - 8)%];
+B(1-B) Dy + W), t=2,...T;
Dy =0, Dy = W22k,

3) Assumes best case: The optimistic counterpart of the pre-
vious scheme is that, which always works asif b,_; = 1.
This scheme achieves a distortion of

D; = B[’ Dy 1p2272F + W) [B272F + (1 - 8)];

+(1=P) [’ Dy a + W], t=2,...,
Dy 1pa2a®Di s+ W,
Dy=0, D =w2?2E

T;
T;

t=2,...,

VIl. VariaBLE-L ENGTH CODING

In contrast to previous sections where at time instant ¢ exactly
N R, bits were available for the compression of the N-length
vector &, in this section, we consider the less restrictive case,
commonly referred to as VL.C, where the (transmit) rate is con-
strained to R only on average across time [35], [36, Ch. 5]. We
assume again a packet-erasure case, where, as in Section V-A,
the packet at time ¢ is erased with probability 1 — 3, and suc-
cessfully arrives with probability 3. The packet-erasure events
{b } take values in {0, 1} where O corresponds to an erasure
and 1—to a successful arrival; we assume that these events are
i.i.d. We further concentrate on the scalar case, ¥ = 1. The rate
constraint can be, therefore, written as

E[re|by =1] < R,

E [relb — 0] =0, tel

(26)

where, in contrast to previous sections, in this section, r; can
depend on the exact value of &*.

Remark 13: Similarly to the treatment in Section V-B, the
treatment in this section can be extended to the case of multiple
packets per state frame.

We first note that the lower bound of Theorem 2 remains
valid for the VLC case, since Shannon's classical rate—distortion
theorem [53]-[55] extends to the case of VLC (see, e.g., [56]).
We next prove that this lower bound can be closely met by
incorporating ECD() [37]-{39], [40, Ch. 5], which is described
as follows.

Scheme 3 (ECDQ).

Offline: The observer and the state estimator generate a
common random dither = that is uniformly distributed over
[—A/2, Af2).

Observer.

1) Uses a uniform-grid {one-dimensional lattice) quantizer
with quantization step A to quantize ys+z: Qa (ys+z),
where ~ is a predetermined scalar.

2) Applies entropy coding to the output of the quantizer.

3) Sends the output of the entropy coder.

State estimator.

1} Receives the coded bits.

2) Reconstructs the output of the quantizer: Qa (vs + z).

3) Generates the state estimate by subtracting = from the
quantizer's output and multiplies the result by

§=7[Qalys +2) —2].

Theorem 5 (ECDQ performance [39], [40, Ch. 5]): The
average rate 1 needed by the ECD() scheme (for N = 1) to

achieve a distortion I for a state = with variance S and - set to
7 =+/1 — D/ is bounded from above by

1 s 1 2we
< _ N —
R< lugD+E‘ng B (27)
where the first element in (27) is the Gaussian rate—distortion
function and the second element is the “shaping loss.”
Equivalently, the average distortion IJ of ECD{} under an
average rate constraint 1 (26) is bounded from above by

dre _OR
D < 19 §27°F,
Remark 14 (One-fo-one source coding): The entropy cod-
ing employed here is assumed to be one-to-one, that is, we do
not require the resulting code to be prefix free. For a more thor-
ough discussion of one-to-one versus prefix-free coding and the
rationale behind using each, see Section IX-C.
Remark 15 (ECDQ for N > 1): For N = 1, one may re-
place the uniform scalar quantizer with a lattice-based one; the
resulting distortion in this case is bounded from above by

1 g 1
R< EIDE_D + Elug{heﬂ';.,—]

where ) is the normalized second moment of the lattice [40,
Ch. 3.2]. For the special case of a scalar lattice, &y = 1/12.
It is known, by the isoperimetric inequality [40, Ch. 7], that
Gy = Lﬁ for any lattice of any dimensions N. Moreover, it is
known that a sequence of lattices of growing dimensions N can
be devised that attains this lower-bound in the limit of ¥ — oo
see [40] for a thorough account of lattices and their application
to ECD(Q.

We next incorporate ECD() in the DPCM scheme of
Section I1-A: we apply ECDQ) (with i.i.d. dither =, across time)
to s, to generate s; at the observer and recover it at the state
estimator; the rest of the scheme remains exactly the same. We
note that a similar scheme in the context of networked control
(albeit without packet erasures) was previously proposed and
analyzed in [41]. The performance of Scheme 3 is stated next.

Theorem 6 (ECDQ-based DPCM scheme performance):
The ECD(Q)-based DPCM scheme (for N = 1) under an average
rate constraint /£ (26) achieves a distortion ) at time ¢ that
satisfies the recursion

(28)

D, < il;.g (af Dy + W)
with Dy = 0 and B as in (23).

Theorem 6 suggests that the gap in performance of scalar sys-
tems compared to their N-dimensional counterparts is bounded
by a multiplicative factor of 2we /12 in each recursive step (29).

Proof: The proof is identical to that in Section I1I-A and of
Theorem 2, with D; < (a? D;_; + W)B replaced with D; <
22(0f D, _; + W)B, due to the shaping loss of ECDQ. W

Remark 16 (ECDQ-based DPCM scheme for N = 1): Fol-
lowing Remark 15, for the case of N' > 1 the resulting distortion
when applying ECDQ for N = 1 with an N-dimensional lattice

(29)
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is bounded from above by
D, < 2meGy B (af Dy—y + W)

where again Dy = 0, Gy is the normalized second moment of
the lattice and B is given in (23).

In the limit of large T', we attain the following steady-state
distortion.

Corollary 6 (ECDQ-based DPCM scheme In steady-
state): If Z2a®B < 1, then the steady-state distortion of the
ECDQ)- DPCM scheme (for N = 1) under an average rate
constraint R (26) is bounded from above by

ey B

De < m0p (30)

where B is given in (23).
Remark 17 (Stabilizability): The stabilizability condition
21242 B = 1 is distant from that of the case of large frames

12
by the shaping loss 2X2. This can be alliviated by applying

downsampling, ie., sé%dling « R bits (on average) every x &

™ samples and remaining silent during the rest; the resulting
stabilizability condtion in this case becomes 4/ %QEE < 1.

Wil ApPLICATION TO NETWORKED CONTROL

An important application of state tracking is to networked
control, namely, to the scenario where, in contrast to traditional
control, the observer is not colocated with the controller, and
communicates with it instead via a noiseless (packeted) chan-
nel. Hence, the controller assumes the additional role of a state
estimator.

We concentrate on the following simple setting, also depicted
in Fig. 4. The channel is the noiseless random-rate budget chan-
nel of Section IV.

We consider a stochastic system with linear scalar plant evo-
lution, which is the same as in (1) (with s = 0):

S = eS| + Uy + Upq

where the coefficient o (which is usually assumed to be fixed
across time in control applications) can be greater than 1 in its
absolute value, corresponding to an unstable open-loop process,
with the additional term u; 4 serving as the control action that
is generated by the controller from all past packets f*~, and is
used to stabilize the system.

We consider the random-rate budget scenario of Section IV.

The goal of the system is to minimize the average-stage LQG
cost upon reaching the horizon T':

S T
Jr £ ZE |3 (Qsf +Ref) +Qrsy [ 6D
t=1

where {Q,} and {R, } are known nonnegative scalars, respec-
tively, that penalize the cost for state deviations and control
actuations, respectively.

In order to derive bounds on the LOQG cost for this setting,
we use a result by Fischer [57] and by Tatikonda ef al. [8] that
extends the celebrated control-theoretic separation principle to
networked control systems.

Lemma 1 ([8], [57]): The optimal controller is given by

uy = —K; 5

e S
——— 3 & = sy bouy g >
]
L
Y
Controller Ohbserver
R,

bits

Fig. 4. Linear conftrol system with a finite-rate feedback.

where 5; £ E [s,|f*], K is the optimal linear quadratic regula-
tor (LQR) control gain

_ Liyy o
Ri+ Liys

and L, satisfies the dynamic backward Riccati recursion [58]
Ly = Q +aR K,

with Ly, 1 = 0.!° Moreover, this controller achieves a cost of

K

Jp = % g {WLI +aK, L E [{s: - gt}ﬂ] }

where we use the convention Hy = 0 and fr = 0 for the defi-
nition of &p, as no transmission or control action are performed
at time T'.

A. Lower Bound

By substituting the result of Theorem 2 into Lemma 1, we
attain the following lower bound for the achievable LOG cost,
which extends the result of [43] to the case of random-rate
budgets (packet-erasure scenario included).

Theorem 7 (LQG cost lower bound): The optimal LQG
cost (31) with rate tuple BT is bounded from below by

T
1
Ir = T > {WL: + aK,L;;1 D}

t=1

where K; and L, are given in Lemma 1, and I} is given in (18).

Proof: The proof is immediate by noting that, similarly to
the Performance Analysis of Section ITI-A, at time ¢, given f°,
all the past control actions u*~' —being a deterministic function
of f*~!'—can be absorbed into . [ |

B. Variable-Length Coding

Similarly to the proof of Theorem 7, by combining the results
of Theorem 6 and Lemma 1 we attain the following upper bound
for the achievable LQG cost, in the VL.C scenario; following the
exposition in Section VII, we concentrate here on the packet-
erasure channel.

Theorem 8 (VLC LOQG cost upper bound): The LQG
cost (31) for the VLC scenario under an average-rate constraint
R (26), is bounded from above by

T
1 )
Ir < T E {WL; + K L1 Iy}

=1

where K; and L; are given in Lemma 1, and I; is bounded
from above as in (29).

01y case Ry = 0, define K = 0.
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Proof: Again, the proof is immediate by noting that, simi-
larly to the impossibility proof of Section I1I-B, at time ¢, given
f*, all the past control actions u’~'—being a deterministic func-
tion of f*~'—are fully determined. [ |

C. Sfeady Stale
We consider here the fixed-parameter fixed-rate case

Q:=Q (32a)
R, =R (32b)

and similarly to the steady-state distortion (8) and average-stage
steady-state distortion (10), we wish to determine the optimal
steady-state average-stage cost

1. & limsupJy .
T—nma
Corollary 7 (LQG cost lower bound): The steady-state
LQG cost for the fixed-parameter fixed-rate case (32) is bounded
from below by

Joo > WL + oK Lo D2, (33)
where D7 is given in (20):
Lo
K. = 3
a0 R+ Lmﬂ: (34)
and L., is the positive solution of
L —[(e* -1)R+Q] L, —QR=0. (35)

Remark 18: As noted in Section VII, the result of Corol-
lary 7 holds true for VL.C and, hence, also for the more restrictive
FLC.

Remark 19 (Comparison fo separation-based bounds):
In [43], it is shown that the optimal steady-state LQG cost
must satisfy (33) with the distortion D7, dictated by the
source—channel separation between the causal rate—distortion
He(D..) [6]. [9] and the directed capacity (maximal directed
information) [59]. Since in our case the directed capacity is up-
per bounded by the regular capacity of the channel, C' = E [rq],
and the causal rate—distortion function (which is in itself a lower
bound) is given by [6], [10]

Re(Dz,) = o (o2 + 5 )

the source—channel separation-based bound Rq(D? ) < C re-
duces to the expression in (20) with B £ E [2-2"1] replaced
with Bs,, £ 9~ 2EIn] By applying Jensen's inequality we see
that B < Bsp for any nondeterministic rate budget distirub-
tion. Thus, the joint source and channel treatment offered in this
work strengthens the separation-based adaptation of the resulis
in [43]. The difference becomes especially pronounced in the
packet-erasure and instantaneous ACKs scenario of Section V-
A with an infinite transmission rate R [recall (21)]—A setting
extensively studied in the past two decades [26], [60], [61].
In this case, Bsqp, and consequently also the lower bound on
D, reduces to the trivial zero bound, whereas B =1 - 3 =0
unless 3 = 1.

Corollary 8 (VLC LQG cost upper bound): The steady-
state LOQG cost for the packet-erasure fixed-parameter case

(32a), (32b) under an average rate constraint 1 (26) is bounded
from above by

Joo € WL+ aKoLaoDy

where D, K., L., are given in (30), (35) and (34), respec-
tively.

IX. DIScUssIoN

A. ACKs With Larger Delays

To extend the scheme of Section VI for the case of delayed
ACKSs by one time instant to larger delays, a generalization of
Theorem 3 is needed. Unfortunately, the optimal rate—distortion
region for more than two S1 options (e.g., with or without cor-
related 51 y) remains an open problem and is only known for
the (degraded) case when the state and the possible 51s form a
Markov chain. Nonetheless, achievable regions for multiple SI
options have been proposed in [33], which can be used for the
construction of schemes that accommodate larger delays.

B. Scalar FLC

In this paper, we derived lower bounds and proved that they
are tight in the limit of large values of N. In the case of scalar
FLC quantization, both design and analysis of good schemes
are more involved and remain beyond the scope of this paper.
For a treatment of the case of logarithmically-concave noise
distributions (Gaussian included), see [62].

C. Prefix-Free Veersus One-Shot Lossless Compression

The VLC ECDQ-based schemes throughout this paper
employed one-to-one lossless coding. This is a reasonable
assumption since, in packeted communications, the descriptions
of subsequent symbols may be assumed to be parsed by the
underlying protocol, which allows, in turn, to part with the
prefix-free constraint and attain better performance [63].
Specifically, the one-bit loss with respect to the entropy of the
process of prefix-free coding is circumvented by one-to-one
coding [64]. Nonetheless, the results of this paper can be easily
adjusted to the prefix-free coding case by adding an extra bit
on the right-hand side of (27)}—the maximal loss of prefix-free
entropy coding above the entropy, and replacing the factor
2mwe /12 in (28)30) by 2me /3.

D. Packet-Erasure Modeling

In this paper, we modeled the packet erasures by an ii.d.
process. Nonetheless, the derived results can be extended far
beyond this setting, as is evident from the proof of Theorem 2.

In the VLC setting, the erasure probability is likely to be
higher for longer packets, and calls for further investigation.

E. Non-Gaussian

Following Assertion 1, the lower bounds in this paper can be
extended to the case of a non-Gaussian driving process w; ina
straightforward fashion, with the variance of the elements of w,
in (18) replaced by its EP (recall that the two are equal in the
Gaussian case), resulting in lower bounds reminiscent of those
in [43].
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