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Control Over Gaussian Channels With and
Without Source–Channel Separation
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Abstract—We consider the problem of controlling an un-
stable linear plant with Gaussian disturbances over an ad-
ditive white Gaussian noise channel with an average trans-
mit power constraint, where the signaling rate of commu-
nication may be different from the sampling rate of the
underlying plant. Such a situation is quite common since
sampling is done at a rate that captures the dynamics of
the plant and that is often lower than the signaling rate of
the communication channel. This rate mismatch offers the
opportunity of improving the system performance by us-
ing coding over multiple channel uses to convey a single
control action. In a traditional, separation-based approach
to source and channel coding, the analog message is first
quantized down to a few bits and then mapped to a channel
codeword whose length is commensurate with the num-
ber of channel uses per sampled message. Applying the
separation-based approach to control meets its challenges:
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first, the quantizer needs to be capable of zooming in and
out to be able to track unbounded system disturbances, and
second, the channel code must be capable of improving
its estimates of the past transmissions exponentially with
time, a characteristic known as anytime reliability. We im-
plement a separated scheme by leveraging recently devel-
oped techniques for control over quantized-feedback chan-
nels and for efficient decoding of anytime-reliable codes.
We further propose an alternative, namely, to perform ana-
log joint source–channel coding, by this avoiding the digital
domain altogether. For the case where the communication
signaling rate is twice the sampling rate, we employ ana-
log linear repetition as well as Shannon–Kotel’nikov maps
to show a significant improvement in stability margins and
linear-quadratic costs over separation-based schemes. We
conclude that such analog coding performs better than sep-
aration, and can stabilize all moments as well as guarantee
almost-sure stability.

Index Terms—Channel coding, combined source–
channel coding, Gaussian channel, Lloyd–Max algorithm,
networked control systems, quantization, tree codes.

I. INTRODUCTION

THE current technological era of ubiquitous wireless con-
nectivity and the Internet of Things exhibits an ever-

growing demand for new and improved techniques for stabi-
lizing cyber-physical and networked control systems, which as
a result have been the subject of intense recent investigations
[1]–[4]. Unlike traditional control with colocated plant, observer
and controller, the components of such systems are separated by
unreliable communication links. In many of these systems, the
rate at which the output of the plant is sampled and observed, as
well as the rate at which control inputs are applied to the plant,
is different from the signaling rate with which communication
occurs. The rate at which the plant is sampled and controlled is
often governed by how fast the dynamics of the plant is, whereas
the signaling rate of the communication depends on the band-
width available, the noise levels, etc. As a result, there is no
inherent reason why these two rates should be related and, in
fact, the communication signaling rate is almost always higher
than the control sampling rate.
This latest fact clearly gives us the opportunity to improve the

performance of the system by conveying the information about
each sampled output of the plant, and/or each control signal,
through multiple uses of the communication channel.

The standard information-theoretic approach suggests quan-
tizing the analog messages (the sampled output or state signal)
and then protecting the quantized bits with a channel error-
correcting code whose block length is commensurate with the
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number of channel uses available per sample. This approach
relies on the source–channel separation principle, which prof-
fers that quantization of the messages and channel coding of the
quantized bits can be done independently of one another.
Nonetheless, while source–channel separation-based

schemes become optimal in communication systems where
large blocks of the message and the channel code are processed
together (necessitating noncausal knowledge of all the message
signals and entailing large delays)—a celebrated result [5], [6,
Ch. 3.9]—it is not true for control systems that require real-time
(low-delay) communication of causally available messages.
Furthermore, since any error made in the past is magnified
in each subsequent time step due to the unstable nature of
the plant, the source–channel separation principle requires a
stronger notion of error protection, termed anytime reliability
by Sahai and Mitter [7]. Anytime reliability guarantees that the
error probability of causally encoded quantized (“information”)
bits decays faster than the inflation factor at each step. Sahai
and Mitter [7] further observed that anytime-reliable codes
have a natural tree code structure reminiscent of the codes de-
veloped by Schulman [8] for the related problem of interactive
communication.
Sukhavasi and Hassibi [9] showed that anytime reliability can

be guaranteedwith high probability by concentrating on the fam-
ily of linear time-invariant (LTI) codes and choosing their co-
efficients at random. Unfortunately, maximum-likelihood (ML)
(optimum) decoding of tree codes is infeasible.1 To overcome
this problem, a sequential decoder [10], [11, Ch. 6.4], [12,
Ch. 10], [13, Sec. 6.9], [14, Ch. 6], [15, Ch. 6] for tree codes
was proposed in [16] and was shown to achieve anytime reliabil-
ity with high probability while maintaining bounded expected
decoding complexity, albeit with some loss of performance.
Tree codes transform the control task over a noisy channel

to that over a noiseless channel with finite-capacity C, imply-
ing that the channel code needs to be supplemented with an
adequate fixed-rate quantizer (a.k.a. fixed-length lossy source
coder). Such a quantizer compresses the analog signal to pack-
ets of exactly C bits to be communicated from the observer to
the controller at every time step. As unstable systems with dis-
turbances that have distributions with unbounded support can-
not be stabilized by a static quantizer [17, Sec. III-A], adaptive
uniform and logarithmic quantizers that establish stabilizability
guarantees were devised by Yüksel [18] and Minero et al. [19]
(and others), respectively. A greedy algorithm that re-calculates,
at every time step, the probability density function (PDF) of the
source conditioned on the previously transmitted packets (a
la sequential Bayesian filtering [20]) and applies Lloyd–Max
quantization [21, Ch. 6] with respect to this PDF, was proposed
by Bao et al. [22] (albeit without any optimality claims). For
the scenario of Gaussian disturbances and scalar measurements,
this algorithm has been recently shown to be greedily optimal
in [23], i.e., it minimizes the linear-quadratic cost at each time
step; it was further shown there to be nearly globally optimal.
An obvious alternative strategy to separated source/channel

coding is to simply repeat the transmitted (analog) signal—this
adds a linear factor to the signal-to-noise ratio (SNR) (3 dB
for a single repetition). This strategy maps the analog control
signals directly into analog communication signals, avoiding

1Except over erasure channels, over which ML decoding amounts to solving
linear equations [9].

the digital domain altogether, and can therefore be viewed as a
simple instance of joint source–channel coding (JSCC) [24].
Surprisingly, in the Gaussian rate-matched case, in which one

additive white Gaussian noise (AWGN) channel use is avail-
able per one white Gaussian source sample, a simple amplifier
achieves the Shannon limit with zero delay [25], [26]. The op-
timality of linear schemes extends further to the case where
KC > 1 uses of an AWGN channel with perfect instantaneous
feedback are available per one white Gaussian source sam-
ple [26]–[30], the reason being that a Gaussian source is prob-
abilistically matched to a Gaussian channel [31]—uncommon
coincidence. Tatikonda andMitter [32] exploited a special prop-
erty of the erasure channel with feedback, in which a retransmis-
sion scheme attains its capacitywithout delay.A related example
is control over a packet-drop channel, considered by Sinopoli
et al. [33]. There, a simple retransmission scheme attains the
optimum, as long as the packet drop probability is not too high.
Coding of Gauss–Markov sources over a packet erasure channel
with feedback is studied in [34].
JSCC in the absence of probabilistic matching is challenging.

In the Gaussian rate-mismatched case with no communication
feedback, in which KC > 1 AWGN channel uses are available
per one source sample, repetitive transmission of the source sam-
ple is suboptimal. Non-linear mappings are known to achieve
better performance, as noted originally by Shannon [35] andKo-
tel’nikov [36], and in the context of control—in [37]–[39] (and
is akin to Witsenhausen’s celebrated counterexample [40]).
In this paper, we concentrate on the simple case of stabilizing

a scalar discrete-time linear quadratic Gaussian (LQG) control
system over an AWGN channel with KC = 2 channel uses per
control sample, with a fixed SNR. As we show in the sequel,
this SNR imposes an upper limit on the size of the maximum
unstable eigenvalue of the plant that can be stabilized.
We develop end-to-end separation-based and JSCC schemes

and compare their LQG costs, as well as the minimum required
SNR for stabilizing the system; to the best of our knowledge,
this is the first time the latter is devised for the scenario of
LQG control over an AWGN channel (cf., [7]), whereas the
former (in the absence of instantaneous feedback) was offered
in the conference version of this paper [41]. We show that JSCC
schemes achieve far better performance while requiring far less
computational and memory resources. We further observe that
an inherent advantage of JSCC schemes is that they allow a
graceful improvement in performance with the SNR, while the
performance of separation-based schemes saturates due to their
digital nature.Moreover, whereas separation-based schemes can
guarantee only a finite number of bounded moments, certain
JSCC schemes, e.g., linear ones (repetition-based included),
can stabilize all moments (as well as guarantee almost-sure
stability).
Another important product of this paper is the implemen-

tation and simulation of all the aforementioned schemes and
algorithms along with a comparison of their performance; the
Python 3 code is available online in [42].
An outline of the rest of the paper is as follows. We formu-

late the problem setup in Section II. Three different ingredients
that are used to construct the schemes for control over noisy
channels of this paper, namely, a quantizer for control over a
noiseless finite-rate channel, an anytime-reliable tree code, and
an Archimedean bi-spiral-based JSCC map, are described in
Sections III, IV, andV, respectively. They are subsequently used
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Fig. 1. Scalar control system with an AWGN driving disturbance and
an AWGN communication channel. The dashed line represents the as-
sumption that the past control signals are available at the transmitter.

in Sections VI and VII to develop source–channel separation-
based and JSCC-based schemes for LQGcontrol over anAWGN
channel, and are compared in terms of their LQG cost in
Section VIII. We conclude the paper with Section IX, by dis-
cussing the principal differences between the proposed schemes
along with possible extensions.

II. PROBLEM SETUP

We now formulate the control–communications setting that
will be treated in this paper, depicted in Fig. 1. We concentrate
on the simple case of a scalar linear fully observable system.
In contrast to traditional control settings, the observer and the
controller are not colocated in this setting, and are connected
instead via a scalar AWGN channel.

Remark 2.1: The model and solutions can be extended
to more complex cases of vector states and channels; see
Section IX-B.
The control and transmission duration spans the time interval

[T ] � {1, . . . , T}.
Plant: A scalar discrete-time linear system dynamics

xt+1 = αxt + wt + ut, t ∈ [T − 1], (1)

where xt is the (scalar) state at time t, wt is an AWGN of power
W , α is a known scalar satisfying |α| > 1, and ut is the control
signal. We further assume that x0 = 0 for simplicity.2

Channel:We assume KC ∈ N channel uses are available per
each control sample. Hence, at each time instant t, we can use
the channel

bt;i = at;i + nt;i , i ∈ [KC ], t ∈ [T − 1] (2)

KC times, where bt;i is the ith channel output corresponding to
control sample t, at;i is the corresponding channel input subject
to a unit power constraint

E
[
a2

t;i
] ≤ 1, (3)

and nt;i is an AWGN of power 1/SNR.3 We collect all the KC

channel uses in a column vector and denote it, with a slight abuse

2This assumption can be replaced with an initial state x0 with a Gaussian
PDF.

3This representation is without loss of generality since the case of an average
power PC and noise powerN can always be transformed to an equivalent chan-
nel with average power 1 and noise power N/PC � 1/SNR by multiplying
both sides of (2) by 1/

√
PC .

of notation, by at � (at;1 , . . . , at;KC
)T , where “T” denotes the

transpose operation. The corresponding channel output vector
is denoted by bt � (bt;1 , . . . , bt;KC

)T .
Causal Transmitter: At time t, generates KC channel inputs

by applying a causal function Et : Rt ×Rt−1 → RKC to the
measured states xt � (x1 , . . . , xt) and all past control signals
ut−1 � (u1 , . . . , ut−1):

at = Et

(
xt, ut−1) , (4)

where the input is subject to an average power constraint (3).
Remark 2.2: In this paper, we assume that the ob-

server/transmitter knows all past control signals ut−1 ; for a
discussion of the scenario when such information is not avail-
able at the observer, see Section IX-C.
Causal Receiver: At time t, observes KC channel outputs

and generates a control signal ut by applying a causal function
Dt : RtKC → R to all the available channel outputs

ut = Dt

(
bt
)
, (5)

where bt � (bT1 , . . . , bTt )T .
Cost: Similarly to the classical LQG control setting (in which

the controller and the observer are colocated), we wish to mini-
mize the average-stage LQG cost at the time horizon T ,

J̄T � 1
T
E

[

QT x2
T +

T −1∑

t=1

(
Qtx

2
t + Rtu

2
t

)
]

,

for known non-negative weights {Qt} and {Rt}, by designing
appropriate operations at the observer, which also plays the role
of the transmitter over the channel (2); and the controller, which
also serves as the receiver over the channel (2).
For the important special case of fixed parameters,

Qt ≡ Q,Rt ≡ R,

we further define the infinite-horizon cost

J̄∞ � lim
T →∞

J̄T , (6)

assuming the limit exists.
We recall next recently developed schemes for quantization

and channel coding for control as well as results from informa-
tion theory for JSCC design with low delay.

III. CONTROL WITH NOISELESS FINITE-RATE FEEDBACK

In this section, we consider the model of Section II with the
AWGN channel (2) replaced with a noiseless channel of finite
capacity C, depicted in Fig. 2. That is, in this case, the channel,
transmitter, and receiver are as follows.
Channel: At time t, a packet �t ∈ {0, . . . , 2C − 1} is sent

over a noiseless channel of capacityC, meaning that the receiver
obtains �t at time t.

Transmitter: The function Et (4), in this case, has a discrete
codomain {0, . . . , 2C − 1} (with no power constraints).
Receiver: The domain of Dt (5) is {0, . . . , 2C − 1}.
Thus, the transmitter–receiver design amounts, in this case,

to fixed-length sequential quantization.
A recent result [23] shows that an adaptive quantizer that suc-

cessively calculates the PDF of xt given �t and applies Lloyd–
Max quantization with respect to it is greedily optimal and
close-to-globally optimal whenever fw is log-concave.
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Fig. 2. Scalar control system with a driving white Gaussian distur-
bance and a noiseless finite-capacity channel (“bit pipe”). The dashed
line represents a bit-pipe of capacity C .

Definition 3.1 (Log-concave function; see [43]): A function
f : R → R≥0 is said to be log-concave if its logarithm log ◦f
is concave; we use the extended definition that allows f(x) to
assign zero values, i.e., log f(x) ∈ R ∪ {−∞} is an extended
real-value function that can take the value −∞.
We recall the Lloyd–Max algorithm and its optimality guaran-

tees in Section III-A; the appropriate adaptive networked control
system is described in Section III-B.

A. Quantizer Design

The exposition in this section is based on [21, Part II].
Definition 3.2 (Quantizer): A scalar quantizer Q of rate C

is described by an encoder EQ : R → {0, . . . , 2C − 1} and a
decoder DQ : {0, . . . , 2C − 1} → {c[0], . . . , c[2C − 1]} ⊂ R.
With a slight abuse of notation, we shall define the quantization
operationQ : R → {c[0], . . . , c[2C − 1]} as the composition of
the encoding and decoding operations: Q = DQ ◦ EQ.4 The re-
production points are assumed, without loss of generality, to be
ordered:5

c[0] < c[1] < · · · < c[2C − 1].

We denote by I[�] the collection of all points that are mapped
to index � (equivalently to the reproduction point c[�]):

I[�] � {x|x ∈ R, EQ = �} = {x|x ∈ R,Q = c[�]}.
We shall concentrate on the following class of quantizers.
Definition 3.3 (Regular quantizer): A scalar quantizer is

regular if every cell I[�] (� = 0, . . . , 2C − 1) is a contiguous
interval that contains its reproduction point c[�]:

c[�] ∈ I[�] = [p[�], p[� + 1]) , � = 0, . . . , 2C − 1,

where p �
{
p[0], . . . , p[2C ]

}
is the set of partition levels—

the cells boundaries. Hence, a regular scalar quantizer can be
represented by the input partition-level set and the reproduction-
point set c �

{
c[0], . . . , c[2C − 1]

}
.

Cost: The cost we wish to minimize is the mean squared error
distortion between a sourcew with a given log-concave PDF fw

4The encoder and decoder that give rise to the same quantizer are unique up
to a permutation of the labeling of the index �.

5If some inequalities are not strict, then the quantizer can be reduced to
another quantizer of lower rate.

and its quantization Q(w)

D � E
[
(w −Q(w))2] (7a)

=
2C −1∑

�=0

∫ p [�+1]

p [�]
(w − c[�])2fw (w)dw. (7b)

Denoted by D∗, the minimal achievable distortion D; the
optimal quantizer is the one that achieves D∗.

Remark 3.1: Since fw is log-concave, it is continuous [43].
Hence, the inclusion/exclusion of the boundary points of each
cell does not affect the distortion of the quantizer, meaning that
the boundary points can be broken systematically.

Remark 3.2: We concentrate, in this paper, on input PDFs
with an infinite support. Consequently, p[0] = −∞ and p[2C ] =
∞, and the leftmost and rightmost intervals are open.
The optimal quantizer satisfies the following necessary con-

ditions [21, Ch. 6.2].
Proposition 3.1 (Nearest neighbor condition): For a fixed

reproduction-point set c (fixed decoder), the partition-level set
p (encoder) that minimize the distortion D (7) is

p[�] =
c[� − 1] + c[�]

2
, � = 1, 2, . . . , 2C − 1, (8)

and p[0] = −∞ and p[2C ] = ∞.
Proposition 3.2 (Centroid condition): For a fixed partition-

level set p (fixed encoder), the reproduction-point set c (decoder)
that minimizes the distortion D (7) is

c[�] = E
[
w
∣
∣ p[�] ≤ w < p[� + 1]

]
, � = 0, . . . , 2C − 1. (9)

The optimal quantizer must simultaneously satisfy both (8)
and (9); iterating between these two necessary conditions gives
rise to the Lloyd–Max algorithm.

Algorithm 3.1 (Lloyd–Max): Initialization. Pick an initial
reproduction-point set c.
Iteration. Repeat the two steps
1) fix c and set p as in (8),
2) fix p and set c as in (9),
interchangeably, until the decrease in the distortion D per

iteration goes below a desired threshold.
Propositions 3.2 and 3.1 suggest that the distortion at every

iteration decreases; since the distortion is bounded from below
by zero, the Lloyd–Max algorithm is guaranteed to converge to
a local optimum.
Unfortunately, multiple local optima may exist in general

(e.g., Gaussian mixtures with well-separated components), ren-
dering the algorithm sensitive to the initial choice c.
Nonetheless, sufficient conditions for the existence of a

unique global optimum were established in [44]–[46]. These
guarantee the convergence of the algorithm to the global opti-
mum for any initial choice of c. An important class of PDFs that
satisfy these conditions is that of the log-concave PDFs.

Theorem 3.1 (see [44]–[46]): Let the source PDF fw be log-
concave. Then, the Lloyd–Max algorithm converges to a unique
solution that minimizes the quadratic distortion (7).

B. Controller Design

We now describe the optimal greedy control pol-
icy, the implementation of which is available in [42,
tree/master/code/separate/control]. To that end,
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we make use of the following lemma that extends the separa-
tion principle of estimation and control to networked control
systems.

Lemma 3.1 (see [47], [29]): The optimal control law is
given by

ut = −Ltx̂t ,

where

Lt =
St+1

Rt + St+1
α (10)

is the optimal linear quadratic regulator control gain, x̂t �
E
[
xt

∣
∣�t

]
, and St satisfies the dynamic Riccati backward re-

cursion [48] with ST = QT and ST +1 = LT = 0:

St = Qt +
St+1Rt

St+1 + Rt
α2 .

Moreover, this controller achieves the cost6

J̄T =
1
T

T∑

t=1

(
StW + GtE

[
(xt − x̂t)2]

)

with Gt = St+1α
2 − St + Qt .

The optimal greedy algorithm minimizes the estimation dis-
tortion E

[
(xt − x̂t)2

]
at time t, without regard to its effect on

future distortions. To that end, at time t, the transmitter and
the receiver calculate the PDF of xt conditioned on �t−1 and
ut−1 , fxt |�t−1 ,u t−1 , and apply the Lloyd–Max quantizer to this
PDF.7 We refer to fxt |�t−1 ,u t−1 and to fxt |�t ,ut−1 as the prior and
posterior PDFs , respectively.
Although the optimal greedy algorithm does not achieve

global optimality [49], its loss is negligible [23].
Algorithm 3.2 (Optimal greedy control):
Initialization. Both the transmitter and the receiver set
1) �0 = x0 = u0 = 0.
2) Prior PDF: fx1 |�0 ,u0 (x1 |0, 0) ≡ fx1 (x).
Observer/Transmitter. At time t ∈ [T − 1]:
1) Observes xt .
2) Runs the Lloyd–Max algorithm (Algorithm 3.1) with re-

spect to the prior PDF fxt |�t−1 ,u t−1 to obtain the quan-
tizer Qt(xt) of rate C; we denote its partition-level and
reproduction-point sets by pt and ct , respectively.

3) Quantizes the system state xt [recall Definition 3.2]:

�t = EQt
(xt),

x̂t = Qt(xt) = DQt
(�t).

4) Transmits the quantization index �t .
5) Calculates the posterior PDF:

fxt |�t ,ut−1 (xt |�t , ut−1)

=

{
fxt |�t−1 ,u t−1 (xt |�t−1 , ut−1)/γ, xt ∈ I[�t ]
0, otherwise

6We set RT = 0 and �T = 0 for the definition of x̂T , as no transmission or
control action are performed at time T .

7Since ut−1 is a deterministic function of �t−1 , it suffices to condition
on �t−1 . However, when incorporating Algorithm 3.2 into a separation-based
scheme, this distinction becomes useful since ut−1 becomes a function of pos-
sibly corrupted channel outputs in this case.

where I[�t ] � [pt [�t ], pt [�t + 1]) as in Definition 3.3, and

γ �
∫ pt [�t +1]

pt [�t ]
fxt |�t−1 ,u t−1 (α|�t−1 , ut−1)dα.

6) Calculates the next prior PDF using (1) and ut = −Ltx̂t

fxt + 1 |�t ,ut (xt+1 |�t , ut)

=
1
|α|fxt |�t ,ut−1

(
xt+1 − ut

α

∣
∣
∣
∣
∣
�t , ut−1

)

∗ fw (xt+1)

where “∗” denotes the convolution operation, and the two
convolved terms correspond to the PDFs of the quantiza-
tion error α(xt − x̂t) and the disturbance wt .

Controller/Receiver. At time t ∈ [T − 1]:
1) Runs the Lloyd–Max algorithm (see Algorithm 3.1) with

respect to the prior PDF fxt |�t−1 ,u t−1 as in Step 2 of the
observer/transmitter protocol.

2) Receives the index �t .
3) Reconstructs the quantized value: x̂t = DQt

(�t).
4) Applies the control actuation ut = −Ltx̂t to the system.
5) Calculates the posterior PDF fxt |�t ,ut−1 and the next

prior PDF fxt + 1 |�t ,ut as in Steps 5 and 6 of the ob-
server/transmitter protocol.

Theorem 3.2 (see [23]): Let fw be a Gaussian PDF. Then,
Algorithm 3.2 constitutes the optimal greedy control policy.

IV. ANYTIME-RELIABLE CODES

We now describe causal error-correcting codes that allow us
to meet the assumption of a noiseless finite-capacity channel of
Section III over the AWGN channel (2).
Since any decoding mistake is multiplied by α at every time

step, and the corresponding second moment (power)—by α2 ,
the code should have an error probability that decays exponen-
tially with timewith an exponent that is greater thanα2 ;8 see [7],
[9], and [16] for further details and discussion.
We construct such codes, termed anytime-reliable codes [7],

for memoryless binary-input output-symmetric (MBIOS) chan-
nels and then apply these results for the AWGN channel by
employing appropriate digital constellations.

Definition 4.1 (MBIOS channel): A binary-input channel is
a system with binary input alphabet {0, 1}, output alphabet Z ,
and two probability transition functions: q(z|0) for input c = 0
and q(z|1) for input c = 1. The channel is said to bememoryless
if the probability distribution of the output depends only on the
input at that time and is conditionally independent of previous
and future channel inputs and outputs. It is further said to be
output-symmetric if there exists an involution π : Z → Z , i.e.,
a permutation that satisfies π−1 = π, such that q(π(z)|0) =
q(z|1) for all z ∈ Z .9

The encoder and resulting code need to be causal, in our case,
due to the sequential nature of the information stream. That is, at
time instant t, k new information bits ıt are fed to the encoder;
the encoder, then, produces n coded bits ct by encoding all of
the available information bits ıt ,

ct = E�
t

(
ıt
)
, (11)

8To stabilize higher moments, one needs higher exponents. See the discussion
in Section IX-A below.

9This also extends to additive noise channels, such as the binary-input AWGN
channel.
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Fig. 3. MBIOS channel with reconstructions of all past information bits.

using an encoding function E�
t : {0, 1}kt → {0, 1}n , agreed

upon by the encoder and the decoder before transmission.
The sequential encoding operation can be conveniently

viewed as advancing over a prefix tree (trie) and the corre-
sponding codes are therefore referred to as tree codes.
At time t, the decoder recovers estimates {ıi|t}t

i=1 of all
the past information bits ıt by applying a causal function
D� : Znt → {0, 1}kt to all the received channel outputs ct ,
to produce (see also Fig. 3)

(
ı1|t , ı2|t , . . . , ıt|t

)
= D�

t

(
ct
)
. (12)

One is then assigned the task of choosing a sequence of func-
tion pairs {(E�

t ,D�
t )|t ∈ N} that provides anytime reliability.

We recall this definition as stated in [9].
Definition 4.2 (Anytime reliability): Define the probabil-

ity of the first error event at time t happening d steps back
(delay) as

Pe(t, d) � P
(
ıt−d 
= ı̂t−d|t ,∀δ > d, ıt−δ = ı̂t−δ |t

)
,

where the probability is over the randomness of the information
bits {ıt} and the channel noise. Suppose we are assigned a
budget of n channel uses per time step of the evolution of the
plant. Then, an encoder–decoder pair is called (R, β) anytime
reliable if there exist A ∈ R and d0 ∈ N, such that

Pe(t, d) ≤ A2−βnd ∀t, d ≥ d0 , (13)

where β is called the anytime exponent.
Remark 4.1: The requirement of d ≥ d0 in (13) can always

be dropped by replacing A by a larger constant. Conversely, A
can be replaced with 1 by reducing β by ε > 0, however small,
and taking a large enough d0 . Nonetheless, we use both A and
d0 in the definition for convenience.

A. LTI Anytime-Reliable Codes Under ML Decoding

Following Sukhavasi and Hassibi [9], we now present an LTI
anytime-reliable code ensemble under ML decoding.
When restricted to an LTI (“tree”) code, each function ε�

t
can be characterized by a set of matrices {G1 , . . . ,Gt}, where
Gt ∈ Zn×k

2 . The sequence of quantized measurements at time
t, {bi}t

i=1 , is encoded as

ct = G1ı1 + G2ı2 + · · · + Gtıt (14)

or equivalently in a matrix form

c = Gn ;R ı,

with

Gn,R =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

G1 0 0 · · · · · ·
G2 G1 0 · · · · · ·
...

...
. . .

. . . · · ·
Gt Gt−1 · · · G1 0
...

...
...

...
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(15a)

ıT =
[
ıT1 ıT2 · · · ıTt . . .

]
(15b)

cT =
[
cT1 cT2 · · · cTt . . .

]
. (15c)

We now define the random LTI tree code ensemble.
Definition 4.3 (LTI tree code ensemble): An ensemble of

LTI tree codes of rate R = k/n that map kt information bits
into n bits at every time step t, where the entries in all {Gi} of
Gn ;R of (15a) are i.i.d. and uniform.

Theorem 4.1 (Error exponent under ML decoding): Let q be
an MBIOS channel. Let further ε > 0 and d0 ∈ N. Then, the
probability that a particular code from the random LTI tree
code ensemble of Definition IV.3 has an anytime exponent (13)
of EG (R) − ε, for all t ∈ N and d > d0 , under optimal (ML)
decoding, is bounded from below by

Pr

( ∞⋂

t=1

t⋂

d=d0

{
Pe(t, d) ≤ 2−[EG (R)−ε]nd

}
)

≥ 1− 2−εnd0

1 − 2−εn

where EG is the block random-coding error exponent [50,
Ch. 9], [13, Sec. 5.6], [12, Ch. 7]

EG (R) � max
0≤ρ≤1

[E0(ρ) − ρR] (16a)

E0(ρ) � − log
∑

z∈Z

[
1
2
q

1
1 + ρ (z|0) +

1
2
q

1
1 + ρ (z|1)

]1+ρ

.

(16b)

Thus, for any ε > 0, however small, this probability can be
made arbitrarily close to 1 by taking d0 to be large enough.
Unfortunately, ML decoding requires searching over all pos-

sible codewords—the number of which grows exponentially fast
with time—rendering it infeasible except over erasure chan-
nels [9]. We therefore turn to sequential decoding, which trades
some performance for feasible expected complexity.

B. LTI Anytime-Reliable Codes Under Sequential
Decoding

Instead of an exhaustive search over all possible codewords—
the complexity of which grows as O(2kt)—as is done in ML
decoding, one may restrict the search to only the most likely
codeword paths, such that their per letter complexity does not
grow significantly with time. Such algorithms are known col-
lectively as sequential decoding algorithms.
In this paper, we shall concentrate on one of the two popular

variants of this algorithm—the Stack Algorithm , the other being
theFanoAlgorithm . The former achieves better time complexity
and smaller error probability but is more expensive in terms
of memory, compared to the latter. Nonetheless, the anytime
exponent of both algorithms is the same; for a treatment of the
Fano algorithm, which is similar to the one presented next, the
reader is referred to [16].
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Algorithm 1: Sequential Decoding Stack Algorithm.

Q ← MaxPriorityQueue(node �→ node.metric) � Leaf nodes, ordered by Fano metric
Q.push with priority(root)
while Q.top.depth < t do � Stop at the first sequence to reach full length

node ← Q.pop() � Take the sequence with the largest metric
for child ∈ node.create children() do � Replace it with its 2k extensions

Q.push with priority(child)
return Q.top.input sequence() � Reconstruct the input sequence by backtracking

We next summarize the relevant properties of the stack de-
coding algorithm when using the generalized Fano metric (see,
e.g., [12, Ch. 10]) to compare possible codeword paths

M(c1 , . . . , cN ) =
T∑

t=1

M(ct) (17a)

M(ct) � log
q(zt |ct)∑

c′∈{0,1}n

( 1
2

)n
q(zt |c′)

− nB

(17b)

where B is referred to as the metric bias. It penalizes longer
paths when the metrics of different-length paths are compared.
In contrast to ML decoding, where at time t, all possi-

ble paths (of length kt) are explored to determine the path
with the total maximal metric,10 when using the stack se-
quential decoding algorithm, a list of partially explored paths
is stored in a priority queue, where at each step the path
with the highest metric is further explored and replaced with
its immediate descendants and their metrics. The stack al-
gorithm is outlined in Algorithm 1 and implemented in [42,
tree/master/code/separate/coding], [51]; for a
detailed description of the stack algorithm (as well as the Fano
algorithm and variants thereof), see [11, Ch. 6.4], [12, Ch. 10],
[13, Sec. 6.9], [14, Ch. 6], and [15, Ch. 6].

Theorem 4.2 (Error exponent under sequential decoding):
Let q be an MBIOS channel. Let further ε > 0 and d0 ∈ N.
Then, the probability that a particular code from the random
LTI tree code ensemble of Definition 4.3 has an anytime
exponent (13) of EJ (R) − ε, for all t ∈ N and d > d0 , under
sequential stack decoding, is bounded from below by

Pr

( ∞⋂

t=1

t⋂

d=d0

{
Pe(t, d) ≤ A2−[EJ (R)−ε]nd

}
)

≥ 1− 2−εnd0

1 − 2−εn

where EJ is Jelinek’s sequential decoding exponent

EJ (B,R) � max
0≤ρ≤1

ρ

1 + ρ

{
E0(ρ) + B − (1 + ρ)R

}
,

E0 is given in (16b), and A is finite for B < E0(1) and is
bounded from above by11

A ≤ 1 − e−t[E0 (ρ)−ρB ]

1 − e−[E0 (ρ)−ρB ] ≤ 1
1 − e−[E0 (ρ)−ρB ] < ∞.

Thus, for any ε > 0, however small, this probability can be
made arbitrarily close to 1 by taking d0 to be large enough.

10Note that optimizing (17a) in this case is equivalent to ML decoding.
11Note that E0 (ρ)/ρ is a monotonically decreasing function of ρ, therefore

B < E0 (1) guarantees that E0 (ρ) − ρB > 0.

Since EJ (B,R) is a monotonically increasing function of
B, choosing B = E0(1) maximizes the exponential decay of
P̄e(d) in d.12 Interestingly, for this choice of bias, we have
EJ (E0(1), R) = EG (R) whenever EG (R) is achieved by ρ =
1 in (16a), i.e., for rates below the critical rate. For other values
of ρ, EJ (E0(1), R) is strictly smaller than EG (R).

The choice B = R, on the other hand, is known to minimize
the expected computational complexity (which has a Pareto
distribution; see [16], for details), and is therefore a popular
choice in practice. Moreover, for rates below the cutoff rate
R < E0(1), the expected number of metric evaluations (17b)
at each time instant is finite and does not depend on d, for any
B ≤ E0(1) [13, Sec. 6.9], [12, Ch. 10]. Thus, the only increase
in expected complexity of this algorithm with d comes from an
increase in the complexity of evaluating the metric of a single
symbol (17b). Since the latter increases (at most) linearly with
d, the total complexity of the algorithm grows polynomially
in d. Furthermore, for rates above the cutoff rate, R > E0(1),
the expected complexity is known to grow rapidly with the
code length for any metric [52], implying that the algorithm is
applicable only for rates below the cutoff rate E0(1).

C. Modulation

In order to support the transmission of more than one coded
bit per channel use, we modulate the bits using pulse-amplitude
modulation (PAM). Specifically, we map every n/KC consec-
utive coded bits of ct = (ct;1 , . . . , ct;n )T into a constellation
point of size 2k , where k is the number of information bits
than need to be conveyed at each time step t. We normalize the
constellation to have an average unit power:

at;i =

√
3

2k−1 − 1

k∑

j=1

2j−1(−1)ct ; j + k i , i ∈ [KC ]. (18)

V. LOW-DELAY JSCC
In this section, we review known results from information

theory for transmitting an i.i.d. zero-mean Gaussian source st

of powerPS over an AWGN channel (2). Following the problem
setup of Section II, we consider the casewhereKC ∈ N channel
uses of (2) are available per each source sample st . We suppress
the time index t throughout this section.
The goal of the transmitter is to convey the source s to the

receiver with a minimal possible average distortion, where the
appropriate distortion measure for our case of interest is the
mean square error (MSE) distortion.

12For finite values of d a lower choice of B may be better, since the constant
A might be smaller in this case.
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Transmitter: Similarly to (4), it generates KC channel inputs
by applying a function E : R → RKC to the source sample s,

a = E (s) ,

where a is subject to an average power constraint (3).
Receiver: Observes the KC channel outputs b [defined as in

Section II], and constructs an estimate ŝ of s, by applying a
function D : RKC → R:

ŝ = D (b) .

Cost: The cost, commonly referred to as average distortion in
the context of JSCC, is defined by

D = E

[
(s − ŝ)2

]
,

and the corresponding (source) signal-to-distortion ratio (SDR)
is defined as

SDR � PS

D
.

Our results here are more easily presented in terms of unbi-
ased errors, as these can be regarded as uncorrelated additive
noise in the sequel (when used as part of the developed con-
trol scheme). Therefore, we consider the use of (sample-wise)
correlation-sense unbiased estimators (CUBE), namely, estima-
tors that satisfy

E [s (s − ŝ)] = 0.

We note that any estimator ŝB can be transformed into a CUBE
ŝ by multiplying by a suitable constant:

ŝ =
E
[
s2
]

E [sŝB ]
ŝB . (19)

For a further discussion of such estimators and their use in
communications, the reader is referred to [24].
Shannon’s celebrated result [5] states that theminimal achiev-

able distortion, using any transmitter–receiver scheme, is dic-
tated, in the case of a Gaussian source, by13

1
2

log (1 + SDR) = R(D) ≤ KC C = KC

2 log (1 + SNR) ,

(20)

where R(D) is the rate–distortion function of the source and C
is the channel capacity [5]; this result remains true even in the
presence of feedback—when the channel outputs are available at
the transmitter [31, Ch. 1.5]. Thus, the optimal SDR, commonly
referred to as optimum performance theoretically achievable
(OPTA) SDR, is given by

SDROPTA = (1 + SNR)KC − 1. (21)

Although (21) is attainable via separation forKS source sam-
ples and KS KC channel uses in the limit of large KS , it is
unknown, in general, how closely (21) can be approached at fi-
nite delay. Here, we focus on the scenario of interest to control,
namely, the zero-delay case, in which a single Gaussian sample
is instantaneously mapped to KC channel uses.
We next concentrate on the case of KC > 1 and perfect in-

stantaneous feedback, in Section V-A. We further treat the case
of KC = 2 when no feedback is available, in Section V-B.

13The rate–distortion function here is written in terms of the unbiased SDR,
in contrast to the more common-biased SDR expression log(SDR).

A. With Feedback

When perfect instantaneous feedback is available, the fol-
lowing simple scheme, due to Elias [26] (see also [31, Ch. 3.5]
and the references therein), is known to achieve SDROPTA for
KC ∈ N.
Scheme V.1 (JSCC with feedback):
Transmitter. At channel use i ∈ [KC ]
1) Calculates the MMSE estimation error of the source s

given all past outputs (b1 , . . . , bi−1) (available via the
instantaneous feedback):

s̃MMSE
i−1 = s − ŝMMSE

i−1 ,

where the MMSE estimate ŝi of st given (b1 , . . . , bi) is
equal to (clearly ŝMMSE

0 = 0)

ŝMMSE
i = ŝMMSE

i−1 + SNR

√
PS

(1 + SNR)i+1 bi. (22)

2) Transmits the estimation error s̃i−1 after a suitable power
adjustment:

ai =
(1 + SNR)i−1

PS
s̃MMSE

i−1 . (23)

Receiver. At channel use i ∈ [KC ]
1) Calculates the MMSE estimate ŝMMSE

i of s from
(b1 , . . . , bi) as in (22);

2) Calculates the CUBE estimate ŝi of s from (b1 , . . . , bi)
using (19):

ŝi =
(1 + SNR)i

(1 + SNR)i − 1
ŝMMSE

i .

Theorem 5.1 (see [26]): Scheme V.1 achieves the OPTA
SDR (21).
We provide a short proof, for completeness.
Proof: The transmitter calculates the MMSE estimate from

the channel outputs, which are available to it via the feedback
and transmits the estimation error with a proper power adjust-
ment.
Clearly, ŝMMSE

t;0 = E [st ] = 0.
At channel use i, the MMSE estimate is given by

ŝMMSE
i � E

[
s
∣
∣b1 , . . . , bi

]
(24a)

= E
[
ŝMMSE

i−1 + s̃MMSE
i−1

∣
∣b1 , . . . , bi

]
(24b)

= ŝMMSE
i−1 + E

[
s̃MMSE

i−1

∣
∣b1 , . . . , bi

]
(24c)

= ŝMMSE
i−1 +

SNR
1 + SNR

√
PS

(1 + SNR)i−1 bi (24d)

where (24c) holds since (s̃MMSE
i−1 , bi) are independent of

b1 , . . . , bi−1 due to the structure of ai (23), the fact that the
MMSE estimation error is orthogonal to all the measurements,
and hence also independent by Gaussianity, and (24d) holds
since the MMSE estimator is linear in the Gaussian case.
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TheMMSE is equal to the conditionalMMSE in the Gaussian
case, and is given by

E
[
s̃2

i

∣
∣b1 , . . . , bi

]
= E

[
s̃2

i

]

=
1

(1 + SNR)i
PS .

This concludes the proof. �
Remark 5.1 (Non-Gaussian noise): For the case of an addi-

tive non-Gaussian noise channel with a given SNR, Scheme V.1
achieves an SDR of (1 + SNR)KC − 1. Since linear optimiza-
tion is generally suboptimal in the non-Gaussian case, better
performance can be attained using an appropriate scheme in-
stead of Scheme V.1 (which is the optimal linear scheme); a
notable attempt in this direction was made by Shayevitz and
Feder [53]. In fact, for most noises, OPTA performance can be
attained only in the limit of large information and code blocks,
even in the presence of feedback [31, Ch. 3.5].

B. Without Feedback

We now turn to the more involved case of low-delay JSCC
without feedback. We concentrate on the case of KC = 2. That
is, the case in which one source sample is conveyed over two
channel uses.
A naı̈ve approach is to send the source as is over both channel

uses, up to a power adjustment. The corresponding unbiased
SDR in this case is

SDRlin = 2SNR

i.e., a linear improvement rather than an exponential one as
in (21). This scheme approaches (21) for very low SNRs, but
suffers great losses at high SNRs. Note that the linear factor
2 comes from the fact that the total power available over both
channel uses has doubled, and the same performance can be
attained by allocating all of the available power to the first
channel use while remaining silent during the second channel
use.
This suggests that better mappings that truly exploit the extra

channel use can be constructed. The first to propose an improve-
ment for the 1:2 case were Shannon [35] and Kotel’nikov [36],
in the late 1940s. In their works, the source sample is viewed as a
point on a single-dimensional line, whereas the two channel uses
correspond to a two-dimensional (2-D) space. In these terms,
the linear scheme corresponds to mapping the one-dimensional
(1-D) source line to a straight line in the 2-D channel space (rep-
resented by a dashed line in Fig. 4), and hence clearly cannot
provide any improvement, as AWGN is invariant to rotations.
However, by mapping the 1-D source line into a 2-D curve
that fills the space better, a great boost in performance can be
attained, as was demonstrated in [35], [36], [11, Ch. 8.2], [54]–
[58], and references therein, for different families of mappings.
In this paper, we concentrate on such a family that is

based on the Archimedean spiral, which was considered in
several works [54], [58]–[61] (represented by the solid line
in Fig. 4):

{
areg

1 (s) = creg s cos(ωs) = creg |s| cos(ω|s|) sign(s)

areg
2 (s) = creg |s| sin(ωs) = creg |s| sin(ω|s|) sign(s)

(25)

Fig. 4. Linear and Archimedean bispiral curves.

where ω determines the rotation frequency, the factor creg is
chosen to satisfy the power constraint, and the sign(s) term
is needed to avoid overlap of the curve for positive and nega-
tive values of s (for each of which now corresponds a distinct
spiral, and the two meet only at the origin). This (bi)spiral al-
lows to effectively improve the resolution with respect to small
noise values, since the 1-D source line is effectively stretched
compared to the noise, and hence the noise magnitude shrinks
when the source curve is mapped (contracted) back. However,
for large noise values, a jump to a different branch—referred to
as a threshold effect —may occur, incurring a large distortion.
Thus, the value ω needs to be chosen to be as large as possible to
allowmaximal stretching of the curve for the same given power,
while maintaining a low threshold event probability. The SDRs
for different values of ω are depicted in Fig. 5(a).

Another ingredient that is used in conjunction with (25) is
stretching s prior to mapping it to a bispiral using φλ(s) �
sign(s)|s|λ:
{

astretch
1 (s) = areg

1 (φλ(s)) = cstretch|s|λ cos
(
ω|s|λ) sign(s)

astretch
2 (s) = areg

2 (φλ(s)) = cstretch|s|λ sin
(
ω|s|λ) sign(s)

.

(26)

The choice λ = 0.5 promises a great boost in performance in
the high-SNR regime, as is seen in Fig. 5(b). We further note
that although the optimal decoder E [s|b1 , b2 ] is an MMSE esti-
mator, in this case, the ML decoder p(b1 , b2 |s) achieves similar
performance for moderate and high SNRs. A joint optimization
of λ and ω for each SNR, for both MMSE and ML decoding,
was carried out in [59], with the latter depicted in Fig. 5.

A desired property of the linear JSCC schemes is that their
SDR improves with the channel SNR (“SNR universality”).
Such an improvement is not allowed by the separation-based
technique, as it fails when the actual SNR is lower than the
design SNR, and does not promise (almost) any improvement
for SNRs above it. This motivated much work in designing
JSCC schemes whose performance improves with the SNR,
even for the case of large block lengths [62]–[64]. The schemes
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Fig. 5. Performances of the JSCC linear repetition scheme, OPTA
bound, and the JSCC SK spiral scheme for optimized λ and ω, for the
standard case (β = 1) and distortion-bounded case. The solid lines de-
pict the performance of the standard spiral for various values of ω for two
stretch parameters λ = 0.5 and 1, which perform better at high and low
SNRs, respectively.

in these works achieve optimal performance (21) for a specific
design SNR (21), and improve linearly for higher SNRs. Similar
behavior is observed also in Fig. 5 where the optimal ω value
varies with the (design) SNR, and mimics closely the quadratic
growth in the SDR. Above the design SNR, linear growth is
achieved for a particular choice of ω.

We further note that the distortion component due to the
threshold event grows with |s|. To avoid this behavior, instead
of increasing themagnitude

∥
∥astretch

∥
∥ proportionally to the phase

∠
(
astretch

)
as in (26), we propose to increase it slightly faster at

a pace that guarantees that the incurred distortion does not grow
with |s|:

{
abounded

1 (s) = cbounded|s|λβ cos
(
ω|s|λ) sign(s)

abounded
2 (s) = cbounded|s|λβ sin

(
ω|s|λ) sign(s)

(27)

for some β > 1. This has only a slight effect on the resulting
SDRs, as is illustrated in Fig. 5.
Finally, note that in no way do we claim that the spiral-

based Shannon–Kotel’nikov (SK) scheme is optimal. Various
other techniques exist, most using a hybrid of digital and
analog components [56], [57], [65], which outperform the
spiral-based scheme for various parameters. Nevertheless, this
scheme gives good performance boosts, which suffice for our
demonstration.

VI. CONTROL VIA SOURCE–CHANNEL SEPARATION

The separation-based control scheme, outlined next, applies
Algorithm 3.2 and sends the resulting quantization indices af-
ter encoding with a tree code generated as in Section IV.
The observer/transmitter knowingly ignores any decoding er-
rors made by the controller/receiver by internally simulating the
system without any decoding errors. On the other hand, the con-
troller/receiver, upon detecting an error in the past, recalculates
the steps of Algorithm 3.2 starting from this error and corrects
for it in the following steps. This scheme is implemented in [42,
tree/master/code/separate].
Scheme VI.1 (Separation-based):
Initialization.
1) Selects the number of information bits k that are encoded

at every time step t [recall (11), (14)].
2) Sets the size M of the PAM constellation to be 2k and

the number of coded bits, n, to be KC k.
3) Generates G1 , . . . ,GT as in Definition IV.3.
4) Assigns the noiseless-channel capacity C of Algo-

rithm 3.2 to equal k.
5) Initializes Algorithm 3.2.
Observer/Transmitter. At time t ∈ [T ]:
1) Runs the observer/transmitter steps of Algorithm 3.2with

the control signal ut in Step 6 replaced by the signal
generated by the controller in (28) below.

2) Maps the resulting quantization index �t into the k-bit
input ıt of the tree encoder.

3) Encodes ıt into n coded bits ct according to (14).
4) Maps ct into KC constellation points at as in (18).
5) Transmits the KC constellation points at over the KC

channel uses.
Controller/Receiver. At time t ∈ [T ]:
1) Receives the KC channel outputs bt .
2) Recovers estimates of all information bits until time t,(

ı̂1|t , ı̂2|t , . . . , ı̂t|t
)
as in (12) using Algorithm 1.

3) Maps each ı̂τ |t (for τ ∈ [t]) into a quantization index esti-
mate �̂r

τ |t , where the superscript “r” stands for “receiver.”

4) Finds the earliest time τ ∈ [t − 1] forwhich �̂r
τ |t 
= �̂r

τ |t−1 .
We denote this time instant by t0 . If no such time instant
exists, set t0 = t.

5) Runs the controller/receiver steps of Algorithm 3.2 for
time instants τ = t0 , . . . , t − 1, with �t replaced with
(�̂r

1|t , . . . , �̂
r
t|t) and the used control signals ut−1 .

6) Runs Steps 1 and 3 of the controller/receiver of
Algorithm 3.2 for time instant t with �t replaced
with �̂r

t|t .
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7) Applies the control signal

ut = −Ltx̂
r
t|t +

t−1∑

τ =0

αt−1−τ Lτ

(
x̂r

τ |t − x̂r
τ |t−1

)
(28a)

= −Ltx̂
r
t|t +

t−1∑

τ =t0

αt−1−τ Lτ

(
x̂r

τ |t − x̂r
τ |t−1

)

(28b)

to the system, where x̂r
τ |t denotes the estimate of the

source xτ given
(
�̂r
1|t , �̂

r
2|t , . . . , �̂

r
τ |t

)
at the receiver.

VII. CONTROL VIA LOW-DELAY JSCC
In this section, we construct a Kalman-filter-like solution [48]

by employing JSCC schemes. We note that the additional com-
plication here is due to the communication channel (2) and its
inherent input power constraint.
Denote by x̂r

t1 |t2
, the estimate of xt1 at the receiver given b

t2 .
Denote further its MSE by

P r
t1 |t2

� E

[(
x̃r

t1 |t2

)2
]

,

where x̃r
t1 |t2

� xt1 − x̂r
t1 |t2

.
Then, the scheme works as follows. At time instant t, the con-

troller constructs an estimate x̂r
t|t ofxt . It then applies the control

signal ut = −Ltx̂
r
t|t to the plant, with Lt given in (10). Note

that, since both the controller and the observer know the previ-
ously applied control signals ut , they also know x̂r

t|t and x̂r
t+1|t .

Hence, in order to describe xt , the observer can save transmit
power by transmitting the error signal (xt − x̂r

t|t−1), instead of
xt . The controller can then add back x̂r

t|t−1 to the received signal
to construct x̂r

t|t .
Scheme VII.1:
Observer/transmitter: At time t
1) Generates the desired error signal

st = x̃r
t|t−1 (29a)

= xt − x̂r
t|t−1 (29b)

of average power P r
t|t−1 (determined in the sequel).

2) Since the channel input is subject to a unit power con-
straint (3), st is normalized:

s̄t =
1

√
P r

t|t−1

st . (30)

3) Maps s̄t into KC channel inputs, constituting the en-
tries of at , using a bounded-distortion JSCC scheme of
choice with (maximum given any input) average distor-
tion 1/SDR0 for the given channel SNR.

4) Sends the KC channel inputs at over the channel (2).
Controller/Receiver: At time t ∈ [T ]:
1) Receives the KC channel outputs bt .
2) Recovers a CUBE of the source signal s̄t : ˆ̄st = s̄t + neff

t ,
where neff

t ⊥ s̄t is an additive noise of power of (at most)
1/SDR0 .

3) Unnormalizes ˆ̄st to construct an estimate of st :

ŝt =
√

P r
t|t−1

ˆ̄st (31a)

=
√

P r
t|t−1

(
s̄t + neff

t

)
(31b)

= x̃r
t|t−1 +

√
P r

t|t−1 neff
t . (31c)

4) Constructs an estimate x̂r
t|t of xt given bt . Since ŝt ⊥

x̂r
t|t−1 , the linear MMSE estimate amounts to14

x̂r
t|t = x̂r

t|t−1 +
SDR0

1 + SDR0
ŝt (32)

with an MSE of

P r
t|t =

P r
t|t−1

1 + SDR0
. (33)

5) Generates the control signal ut = −Ltx̂
r
t|t , and the re-

ceiver prediction of the next system state

x̂r
t|t−1 = αx̂r

t−1|t−1 + ut−1 ,

where Lt is given as in Lemma 3.1.
Using (33) and (1), the prediction error at the receiver is given

by the following recursion:

P r
t+1|t =

α2P r
t|t−1

1 + SDR0
+ W. (34)

The recursive relation (34) leads to the following condition
for the stabilizability of the control system and bound on the
achievable cost.

Theorem 7.1 (Achievable): The scalar control system of
Section II is stabilizable using SchemeVII.1 ifα2 < 1 + SDR0 ,
and its infinite-horizon average-stage LQG cost J̄∞ (6) is
bounded from above by

J̄ ≤ Q +
(
α2 − 1

)
S

1 + SDR0 − α2 W. (35)

The following theorem is an adaptation of the lower bound in
[66] to our setting of interest.

Theorem 7.2 (Lower bound): The scalar control system of
Section II is stabilizable only if α2 < 1 + SDROPTA , and the
optimal achievable infinite-horizon average-stage LQG cost is
bounded from below by

J̄ ≥ Q +
(
α2 − 1

)
S

1 + SDROPTA − α2 W. (36)

By comparing (35) and (36), we see that the potential gap
between the two bounds stems only from the gap between the
bounds on the achievable SDR over the AWGN channel (2).

Remark 7.1 (Stabilizability): The stabilizability condition of
Theorem. 7.1 is distant from that of Theorem 7.2 in this case
since SDR0 < SDROPTA . By improving SDR0 , one can im-
prove the achievable stabilizability of the system.

14If the resulting effective noise neff
t is not an AWGN with power that does

not depend on the channel input, then a better estimator than that in (32) may
be constructed.
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It is interesting to note that in this case, in stark contrast to the
classical LQG setting in which the system is stabilizable for any
values of α and W , low values of the SDR render the system
unstable. Hence, it provides, among others, theminimal required
transmit power for the system to remain stable. The difference
from the classical LQG case stems from the additional input
power constraint, which effectively couples the power of the
effective observation noise with that of the estimation error, and
was previously observed in, e.g., [28], [29],[66], and [67]. The
existence of a threshold SDR below which the system cannot be
stabilized parallels the result of Sinopoli et al. [33] for control
over packet drop channels, which shows that the system cannot
be stabilized if the packet drop probability exceeds a certain
threshold.
We next discuss the special cases of KC = 1 in

Section VII-A, KC ∈ N and instantaneous perfect output
feedback—in Section VII-B, and KC = 2 in Section VII-C.

A. Source–Channel Rate Match

In this section, we treat the case of KC = 1, namely, the case
where the sample rate of the control system and the signaling
rate of the communication channel match.
As we have seen in Section V, analog linear transmission

of a Gaussian source over an AWGN channel achieves optimal
performance (even when infinite delay is allowed), namely, the
OPTA SDR (21), for any given input value. Thus, the JSCC
scheme that we use in this case is linear transmission—the
source is transmitted as is, up to a power adjustment [recall (29)
and (30)]

at = s̄t =
1

√
P r

t|t−1

st .

Since in this case SDR0 = SDROPTA , the upper and lower
bounds of Theorems 7.1 and 7.2 coincide, establishing the op-
timum performance in this case.

Corollary 7.1: The scalar control system of Section II with
KC = 1 is stabilizable if only ifα2 < 1 + SNR, and the optimal
achievable infinite-horizon average stage LQGcost satisfies (35)
with equality with SDR0 = SNR.

Remark 7.2: The stabilizability condition and optimum
MMSE performance were previously established in [28] and
[67] and extend also to the noisy-observation case [23].

B. Source–Channel Rate Mismatch With Feedback

When the AWGN channel outputs bt (2) are available to the
transmitter via an instantaneous feedback, we can incorporate
Scheme V.1 in Scheme VII.1 to attain the OPTA SDR and again
establish the optimal LQG cost of this setting.

Corollary 7.2: The scalar control system of Section IIKC ∈
N is stabilizable if only if α2 < (1 + SNR)KC , and the optimal
achievable infinite-horizon average stage LQGcost satisfies (35)
with equality with SDR0 = (1 + SNR)KC − 1.

Remark 7.3 (Non-Gaussian noise): Following Remark V.1,
the achievability of Theorem 7.1 is attainable with SDR0 =
(1 + SNR)Kc − 1 even when the noise is non-Gaussian. In this
case, however, the variance W in the lower bound of Theorem
7.2 should be replaced with its entropy power (which is strictly
lower than the variance for non-Gaussian processes) [66], and
therefore better performance might be achievable. We note that

Fig. 6. Optimal average stage LQG cost J̄ of a single representative
run for KC = KS = 1, α = 2, and SNRs 2 and 4, which correspond
to a stabilizable and an unstabilizable systems. The driving noise and
observation noise powers and the LQG penalty coefficients are Qt ≡
Rt ≡ 1, W = 1.

this lower bound is not achievable in general with or without
feedback, as is implied by [31, Ch. 3.5].

C. Source–Channel Rate Mismatch Without Feedback

We now consider the case of KC = 2 channel uses per sam-
ple. As we saw in Section V, linear schemes are suboptimal out-
side the low-SNR regime. Instead, by using nonlinearmaps, e.g.,
the (modified) Archimedean spiral-based SK maps (27), bet-
ter performance can be achieved. This scheme is implemented
in [42, tree/master/code/joint].
We note that the improvement in the SDRof the JSCC scheme

is substantial when the SDR of the linear scheme is close to
α2 − 1, using an improved scheme with better SDR improves
substantially the LQG cost. Unfortunately, the spiral-based SK
schemes do not promise any improvement for SNRs below 5 dB
under ML decoding.

Remark 7.4: By replacing the ML decoder with an MMSE
one, strictly better performance can be achieved over the linear
scheme for all SNR values.

Remark 7.5: The resulting effective noise at the output of
the JSCC receiver is not necessarily Gaussian, and hence the
resulting system state, xt , is not necessarily Gaussian either.
Nevertheless, for the bounded-distortion scheme (27), this has
no effect on the resulting performance, as is demonstrated next.

VIII. SIMULATIONS

A. Rate-Matched Case

The optimal average-stageLQGcost is illustrated in Fig. 6, for
a systemwithα = 2 and two SNRs—2 and 4. SNR = 4 satisfies
the stabilizability condition α2 < 1 + SNR, whereas SNR = 2
fails to do so. Unit LQG penalty coefficients Qt ≡ Rt ≡ 1 and
unit driving noise power W = 1 are used.

B. JSCC for the Rate-Mismatched Case

The effect of theSDR improvement is illustrated in Fig. 7 for a
systemwithα = 3 andW = 1, forQt ≡ 1 andRt ≡ 0, by com-
paring the achievable costs and lower bound of Theorems 7.1
and 7.2. We note that the JSCC scheme with (intermediate)
feedback always achieves OPTA.
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Fig. 7. Average-stage LQG costs when using the (distortion-bounded)
SK Archimedean bispiral, repetition, and the lower bound of Theorem 7.2
for α = 3, W = 1, Qt ≡ 1, Rt ≡ 0. The vertical dotted lines represent the
minimum SNR below which the cost diverges to infinity.

Fig. 8. Average-stage LQG costs averaged over 256 runs when using
the (distortion-bounded) JSCC SK Archimedean bispiral scheme, linear
(repetition) scheme, separation-based scheme for 2-PAM and 4-PAM,
and the (OPTA) lower bound of Theorem 7.2 for α = 1.2, W = 1, Qt ≡
1, Rt = 0. The SNRs for which the separation based schemes were
simulated are marked with squares and circles for 2-PAM and 4-PAM,
respectively.

C. Comparison of Separation-Based and JSCC
Schemes for the Rate-Mismatched Case

We now compare the performance of the separation-based
scheme of Section VI with the JSCC schemes of Section VII.
The implementations of these schemes are available in [42].
Fig. 8 shows a comparison of the control costs J̄t achieved by

these schemes for a fully observable scalar plant with α = 1.2,
W = 1, Qt ≡ 1, and Rt ≡ 0, over 256 runs.
Clearly, the JSCC-based schemes outperform the separation-

based schemes by a large margin.
Note that while larger constellations perform better for high

SNRs, the situation is reversed when the SNR is low.
We further include a simulation of a single run of each of the

schemes in Fig. 9. For the separation-based scheme, decoding
errors (times when �̂r

t|t 
= �t) are highlighted. Their impact is
clear: while the decoder is in error, it applies the wrong control
signal, causing the cost function to rapidly deteriorate. In the
instance shown, these decoding errors are clearly the major
factor degrading performance.

Fig. 9. LQG cost comparison of the separation-based scheme with
k = 2 (2-PAM constellation), the JSCC SK bispiral scheme, and the
OPTA lower bound for α = 1.2, SNR = 4.5 dB, W = 1, Qt ≡ 1, Rt ≡ 0.
The schemes were simulated for the same disturbance and noise se-
quences and their results are compared to the analytically derived cost
of the JSCC scheme and the OPTA lower bound. Times when decoding
errors in the separation-based scheme occur are marked by a thick line.

IX. DISCUSSION AND FUTURE RESEARCH

A. Separation-Based and JSCC Schemes Comparison

As is evident from the simulation results in Section VIII-C, in
addition to demanding far less computation time and memory,
and being considerably simpler to implement than separation-
based schemes, the JSCC-based schemes also perform much
better in terms of control cost.
A key component behind this improvement is the fact that the

JSCC schemes of Section V allow the (rare) utilization of large
(unbounded) excess transmission power. The separation-based
schemes, on the other hand, are limited by the transmission
power of the maximum constellation point, which increases as
the square root of the average power.15 Namely, these schemes
have a peak power constraint, which is known to have a detri-
mental effect on the performance [68].
Another unfortunate shortcoming of using separation-based

schemes is their incompetence to stabilize higher moments. As
was noted already in the seminal work of Sahai andMitter [7], in
order to stabilize higher moments, increased error exponents are
required, that need to grow linearly with the moment’s order—
this behavior is manifested by the abrupt jumps in the cost of
this scheme in Fig. 9. In contrast, JSCC schemes (which in our
case enjoy an implicit feedback via the control-system loop)
can attain a super exponential decay of the error probability,
when used to send bits [69] (cf., [68]). Thus, such schemes can
stabilize more and even all moments, and guarantee almost-
sure stability (by using, e.g., the simple linear/repetition based
scheme), aswas noted already by Sahai andMitter [7, Sec. III-C]
in the context of anytime reliability.
On the other hand, the JSCC schemes developed in this paper

assumed knowledge of the control objectives at the transmitter
in order to recover the estimates of the controller at the trans-
mitter. The separation-based scheme on the other hand did not

15In the limit of infinite-size constellations, the distribution of the con-
stellation tends to a continuous uniform PDF over [−M/2, M/2] of power
P = M 2 /12.
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require such knowledge and only assumed knowledge of the
control signal ut .

B. Partially Observable Vector Systems

In this paper, we focused on the simplest case of scalar sys-
tems, and KC = 2. As implied by the JSCC theorem (20), an
exponentially large (in KC ) gain in the cost can be achieved.
Furthermore, the results of Theorems 7.1 and 7.2 readily extend
to systems with noisy observations [41] as well as vector states
xt and vector control signals ut but scalar observed outputs yt .
Interestingly, for the case of vector (observation, state and

control) signals, even if the signaling rate of the channel and
the sample rate of the observer are equal (rate-matched case),
conveying several analog observations over a single channel in-
put may be of the essence. This is achieved by a compression
JSCC scheme, e.g., by reversing the roles of the source and
the channel inputs in the SK spiral-based scheme. Similarly to
their expansion counterparts, such compression JSCC schemes
provide exponentially growing gains with the SNR and dimen-
sion [35], [36], [54], [57]–[59], [61], and promise better LQG
costs than their linear counterparts [28].
The vector case is much more challenging, in general.

Beyond the difficulty of designing good higher-dimensional
curves/surfaces (and more general geometric structures) [55],
[57] and lower bounds [66], there is a challenge of even de-
termining and prioritizing the subspaces of the state space of
xt that needs to be conveyed. To make this point more clear,
consider a linear plant

xt+1 = Axt + But + wt

with 2-D state (xt), output (yt), and i.i.d. Gaussian noise (wt)
signals, a scalar control signal (ut), and known 2× 2 and 2× 1
matrices A and B, respectively. Since ut is 1-D, optimizing
the cost of the next step mandates transmitting the information
that is needed to reconstruct/approximate the optimal ut (say
a 1-D linear combination of xt : ut = −KT

t xt , where Kt is a
predetermined column vector). However, since A mixes both
the subspace dictated by KT and its perpendicular, better per-
formance might be attained in future steps (“cost-to-go”) by
transmitting both subspaces.

C. Oblivious Transmitter

In this paper, we assumed that the observer knows all past
control signals. We note that such information is not needed for
the JSCC schemes (without feedback), for the special case of
variance control, i.e., Rt ≡ 0.
For themore general LQG-cost setting (Rt 
≡ 0), this assump-

tion can be viewed as a two-sided side-information scenario.
Nevertheless, although this is a common situation in practice,
there are scenarios in which the observer is oblivious of the
control signal applied or has only a noisy measurement of the
actuation signal generated by the controller. Such settings can
be regarded as a JSCC problem with side information at the
receiver (only), and can be treated using JSCC techniques de-
signed for this case, some of which combine naturally with the
JSCC schemes for rate mismatch [57], [64], [65]. In fact, this
idea was recently applied for the related problem of communi-
cation over an AWGN channel with AWGN feedback channel
in [70].

We further note that for bounded noise (even worst-
case/arbitrary), parallel results can be achieved.

D. Packeted Transmission With Erasures

In the separation-based schemes, following the work of Sahai
and Mitter [7], we used a decoder that ought to make a decision
on all information bits transmitted until that time, even if its
“belief” of a particular bit—quantified by an appropriate metric,
say Fano’s metric—is low.
An alternative to this approach is to allow declaring an era-

sure, for bits of “low belief.” This idea was advocated and ex-
plored in the celebrated work of Fano [71] for block codes,
where a tradeoff between the achievable error erasure exponents
was established.
Furthermore, by substantially increasing the error exponent

(lowering the error probability), at the expense of decreas-
ing the erasure exponent (increasing the erasure probability),
one can drive the separation-based scheme toward that of a
noiseless channel with occasional packet erasures. Interestingly,
Algorithm 3.2 and the lower bound of Theorem 7.2 readily ex-
tend to this case due to their “greedy nature” [34].
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[4] S. Yüksel and T. Başar, Stochastic Networked Control Systems: Stabiliza-
tion and Optimization Under Information Constraints. Boston,MA, USA:
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Commun. Sci., École Polytechnique Fédérale de Lausanne, Lausanne,
Switzerland, Dec. 2002.

[32] S. Tatikonda and S. K. Mitter, “Control over noisy channels,” IEEE Trans.
Autom. Control, vol. 49, no. 7, pp. 1196–1201, Jul. 2004.

[33] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poola, M. I. Jordan, and S.
S. Sastry, “Kalman filtering with intermittent observations,” IEEE Trans.
Autom. Control, vol. 49, no. 9, pp. 1453–1464, Sep. 2004.

[34] A. Khina, V. Kostina, A. Khisti, and B. Hassibi, “Tracking and control
of Gauss–Markov processes over packet-drop channels with acknowledg-
ments,” IEEE Trans. Control Netw. Syst..

[35] C. E. Shannon, “Communication in the presence of noise,” Proc. IRE,
vol. 37, no. 1, pp. 10–21, Jan. 1949.

[36] V. A. Kotel’nikov, The Theory of Optimum Noise Immunity. New York,
NY, USA: McGraw-Hill, 1959.
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