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T h e  Dis p ersi o n of t h e  G a uss – M ar k o v S o ur c e
P ei d a  Ti a n , St u d e nt  M e m b e r, I E E E , a n d  Vi ct ori a  K o sti n a , M e m b e r, I E E E

A bstr a ct —  T h e  G a u ss – M a r k o v s o u r c e p r o d u c es U i = a U i− 1 +
Z i f o r i ≥ 1,  w h e r e U 0 = 0, |a | < 1 a n d Z i ∼ N (0 , σ 2 ) a r e i.i. d.
G a u ssi a n r a n d o m v a ri a bl es.  We c o n si d e r l oss y c o m p r essi o n of a
bl o c k of n s a m pl es of t h e  G a u ss – M a r k o v s o u r c e u n d e r s q u a r e d
e r r o r di st o rti o n.  We o bt ai n t h e  G a u ssi a n a p p r o xi m ati o n f o r t h e
G a u ss – M a r k o v s o u r c e  wit h e x c ess- di st o rti o n c rit e ri o n f o r a n y
di st o rti o n d > 0, a n d  w e s h o w t h at t h e di s p e rsi o n h as a r e v e rs e
w at e r filli n g r e p r es e nt ati o n.  T hi s i s t h e fi rst fi nit e bl o c kl e n gt h
r es ult f o r l oss y c o m p r essi o n of s o u r c es  wit h  m e m or y .  We p r o v e
t h at t h e fi nit e bl o c kl e n gt h r at e- di st o rti o n f u n cti o n R (n , d , )
a p p r o a c h es t h e r at e- di st o rti o n f u n cti o n R ( d ) as R (n , d , ) =

R ( d ) + V ( d )
n Q − 1 ( ) + o 1√

n
, w h e r e V ( d ) i s t h e di s p e rsi o n, ∈

(0 , 1 ) i s t h e e x c es s- di st o rti o n p r o b a bilit y, a n d Q − 1 i s t h e i n v e rs e
Q -f u n cti o n.  We gi v e a r e v e rs e  w at e r filli n g i nt e g r al r e p r es e nt ati o n
f o r t h e di s p e rsi o n V ( d ),  w hi c h p a r all el s t h at of t h e r at e- di st o rti o n
f u n cti o n s f o r  G a u ssi a n p r o c ess es.  R e m a r k a bl y, f o r all 0 < d ≤

σ 2

(1 +| a |) 2 , R (n , d , ) of t h e  G a u ss – M a r k o v s o u r c e c oi n ci d es  wit h

t h at of Z i , t h e i.i. d.  G a u ssi a n n oi s e d ri vi n g t h e p r o c ess, u p t o
t h e s e c o n d- o r d e r t e r m.  A m o n g n o v el t e c h ni c al t o ol s d e v el o p e d
i n t hi s p a p e r i s a s h a r p a p p r o xi m ati o n of t h e ei g e n v al u es of t h e
c o v a ri a n c e  m at ri x of n s a m pl es of t h e  G a u ss – M a r k o v s o u r c e,
a n d a c o n st r u cti o n of a t y pi c al s et u si n g t h e  m a xi m u m li k eli h o o d
esti m at e of t h e p a r a m et e r a b as e d o n n o b s e r v ati o n s.

I n d e x  Ter ms —  L oss y s o u r c e c o di n g,  G a u ss- M a r k o v s o u r c e, di s-
p e rsi o n, fi nit e bl o c kl e n gt h r e gi m e, r at e- di st o rti o n t h e o r y, s o u r c es
wit h  m e m o r y, a c hi e v a bilit y, c o n v e rs e, a ut o r e g r essi v e p r o c ess es,
c o v e ri n g i n p r o b a bilit y s p a c es, p a r a m et e r esti m ati o n.

I. I N T R O D U C T I O N

I N  R A T E- DI S T O R TI O N t h e or y [ 2] [ 3], a s o ur c e,  m o d el e d
a s a dis cr et e st o c h asti c pr o c ess {U i }

∞
i= 1 , pr o d u c e s a r a n d o m

v e ct or UUU (U 1 , . . . , U n ) a n d t h e g o al is t o r e pr e s e nt UUU b y
t h e  mi ni m u m n u m b er of r e pr o d u cti o n v e ct or s VVV s u c h t h at t h e
dist orti o n is n o gr e at er t h a n a gi v e n t hr es h ol d d . F or a n y s u c h
s et of r e pr o d u cti o n v e ct or s, t h e ass o ci at e d r at e is d e fi n e d a s
t h e r ati o b et w e e n t h e l o g arit h m of t h e n u m b er of v e ct or s a n d
n .  T h e r at e q u a nti fi e s t h e  mi ni m u m n u m b er of bits p er s y m b ol
n e e d e d t o d e s cri b e t h e s o ur c e  wit h dist orti o n d .

N u m er o u s st u di e s h a v e b e e n p ur s u e d si n c e t h e s e mi n al
p a p er [ 3],  w h er e S h a n n o n fir st pr o v e d t h e r at e- dist orti o n t h e-
or e m f or t h e dis cr et e st ati o n ar y  m e m or yl ess s o ur c e s ( D M S)

M a n us cri pt r e c ei v e d  M a y 1 4, 2 0 1 8; r e vis e d  N o v e m b er 1 7, 2 0 1 8 a n d
A pril 1 1, 2 0 1 9; a c c e pt e d  M a y 1 1, 2 0 1 9.  D at e of p u bli c ati o n  M a y 2 9, 2 0 1 9;
d at e of c urr e nt v ersi o n S e pt e m b er 1 3, 2 0 1 9.  T his  w or k  w as s u p p ort e d b y t h e
N ati o n al S ci e n c e F o u n d ati o n ( N S F) u n d er  Gr a nt  C C F- 1 5 6 6 5 6 7 a n d  Gr a nt
C C F- 1 7 5 1 3 5 6.  T his p a p er  w as pr es e nt e d at t h e 2 0 1 8 I E E E I nt er n ati o n al
S y m p osi u m o n I nf or m ati o n  T h e or y [ 1].

T h e a ut h ors ar e  wit h t h e  D e p art m e nt of  El e ctri c al  E n gi n e eri n g,  C al-
if or ni a I nstit ut e of  Te c h n ol o g y, P as a d e n a,  C A 9 1 1 2 5  U S A ( e- m ail:
pti a n @ c alt e c h. e d u; v k osti n a @ c alt e c h. e d u).

C o m m u ni c at e d b y S.  Wat a n a b e,  Ass o ci at e  E dit or f or S h a n n o n  T h e or y.
C ol or v ersi o ns of o n e or  m or e of t h e fi g ur es i n t his arti cl e ar e a v ail a bl e
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a n d t h e n s k et c h e d t h e i d e a s o n g e n er ali zi n g t o c o nti n u-
o u s al p h a b ets a n d t h e st ati o n ar y er g o di c s o ur c e s. S h a n n o n’s
r at e- dist orti o n t h e or e m s h o ws t h at t h e  mi ni m u m r at e n e e d e d
t o d es cri b e a  D M S  wit hi n dist orti o n d is gi v e n b y t h e
r at e- dist orti o n f u n cti o n ( R D F) R (d ),  w hi c h is c o m p ut e d as a
s ol uti o n t o a ( si n gl e-l ett er)  mi ni m al  m ut u al i nf or m ati o n c o n v e x
o pti mi z ati o n pr o bl e m.  G o bli c k [ 4] pr o v e d a c o di n g t h e or e m
f or a g e n er al s u b cl ass of str o n gl y  mi xi n g st ati o n ar y s o ur c e s
s h o wi n g t h at t h e  R D F is e q u al t o t h e li mit of n -l ett er  mi ni m al
m ut u al i nf or m ati o n.  T h at li mit h a s e x p o n e nti al c o m p ut ati o n al
c o m pl e xit y i n g e n er al.  C o m p ut a bl e e x pr e ssi o n s f or t h e  R D F
of s o ur c e s  wit h  m e m or y ar e k n o w n o nl y i n t h e f oll o wi n g
s p e ci al c a s e s.  Gr a y [ 5] s h o w e d a cl o s e d-f or m e x pr e ssi o n f or
t h e  R D F f or a bi n ar y s y m m etri c  M ar k o v s o ur c e  wit h bit
err or r at e dist orti o n i n a l o w dist orti o n r e gi m e. F or hi g h er
di st orti o n s, J al ali a n d  Wei ss m a n [ 6] r e c e ntl y s h o w e d u p p er
a n d l o w er b o u n d s all o wi n g o n e t o c o m p ut e t h e r at e- dist orti o n
f u n cti o n i n t hi s c a s e  wit h d e sir e d a c c ur a c y.  Gr a y [ 7] s h o w e d
a l o w er b o u n d t o t h e r at e- dist orti o n f u n cti o n of fi nit e- st at e
fi nit e- al p h a b et  M ar k o v s o ur c es  wit h a b al a n c e d dist orti o n
m e a s ur e, a n d t h e l o w er b o u n d b e c o m e s ti g ht  w h e n d ∈ (0 , d c ]
f or criti c al dist orti o n d c . F or t h e  m e a n s q u ar e d err or dist or-
ti o n  m e a s ur e ( M S E),  D a viss o n [ 8], a n d als o  K ol m o g or o v [ 9],
d eri v e d t h e r at e- dist orti o n f u n cti o n f or st ati o n ar y  G a u ssi a n
pr o c e ss es b y a p pl yi n g a u nit ar y tr a n sf or m ati o n t o t h e pr o c e ss
t o d e c orr el at e it a n d a p pl yi n g r e v er s e  w at er filli n g t o t h e d e c or-
r el at e d  G a u ssi a n s [ 1 0].  B er g er [ 1 1] a n d  Gr a y [ 5], i n s e p ar at e
c o ntri b uti o n s i n t h e l at e 6 0’s a n d e arl y 7 0’s, d eri v e d t h e  M S E
r at e- dist orti o n f u n cti o n f or  G a u ssi a n a ut or e gr essi v e s o ur c es.
S e e [ 1 2] f or a d et ail e d s ur v e y o n t h e d e v el o p m e nt of c o di n g
t h e or e m s f or  m or e g e n er al s o ur c e s.

All of t h e a b o v e  m e nti o n e d  w or k [ 2] –[ 8], [ 1 0], [ 1 1] a p pl y
t o t h e o p er ati o n al r e gi m e  w h er e t h e c o di n g l e n gt h n gr o ws
wit h o ut b o u n d.  As y m pt oti c c o di n g t h e or e m s ar e i m p ort a nt
si n c e t h e y s et a cl e ar b o u n d ar y b et w e e n t h e a c hi e v a bl e a n d
t h e i m p o ssi bl e.  H o w e v er, pr a cti c al c o m pr e ssi o n s c h e m e s ar e of
fi nit e bl o c kl e n gt h.  A n at ur al, b ut c h all e n gi n g, q u e sti o n t o as k
is: f or a gi v e n c o di n g bl o c kl e n gt h n ,  w h at is t h e  mi ni m u m r at e
t o c o m pr ess t h e s o ur c e  wit h dist orti o n at  m o st d ?  A n s w eri n g
t his q u esti o n e x a ctl y is h ar d.  A n e asi er q u esti o n is t h at of
s e c o n d- or d er a n al y sis,  w hi c h st u di e s t h e d o mi n ati n g t er m i n
t h e g a p b et w e e n  R D F a n d t h e fi nit e bl o c kl e n gt h  mi ni m u m r at e.

I n r at e- dist orti o n t h e or e m s, t h e l a n d s c a p e of s e c o n d- or d er
a n al y s es c o n sists of t w o crit eri a: a v er a g e dist orti o n a n d e x c ess
dist orti o n.  T h e a v er a g e dist orti o n c o n str ai nt p o sits t h at t h e
a v er a g e dist orti o n s h o ul d b e at  m o st d ,  w hil e e x c ess dist orti o n
c o n str ai nt r e q uir es t h at t h e pr o b a bilit y of dist orti o n e x c e e di n g
d b e at  m o st . F or a v er a g e dist orti o n crit eri o n,  Z h a n g,  Ya n g
a n d  Wei [ 1 3] pr o v e d t h at f or i.i. d. fi nit e al p h a b et s o ur c e s,
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t h e l e a di n g t er m i n t h e g a p R (n , d ) − R (d ) is l o g n
2 n ,1 w h er e

R (n , d ) d e n ot es t h e  mi ni m u m r at e c o m p ati bl e  wit h a v er a g e
dist orti o n d at c o di n g l e n gt h n .  L at er,  Ya n g a n d  Z h a n g [ 1 4]
e xt e n d e d t h e a c hi e v a bilit y r es ult of [ 1 3] t o a b str a ct s o ur c es.

F or l o ss y c o m pr e ssi o n of i.i. d. s o ur c e s u n d er e x c e ss dis-
t orti o n crit eri o n, t h e  mi ni m u m a c hi e v a bl e fi nit e bl o c kl e n gt h
r at e a d mits t h e f oll o wi n g e x p a n si o n [ 1 5], [ 1 6], k n o w n a s t h e
G a u ssi a n a p pr o xi m ati o n :

R (n , d , ) = R (d ) +
V (d )

n
Q − 1 ( ) + O

l o g n

n
, ( 1)

w h er e V (d ) is r ef err e d t o as t h e s o ur c e dis p er si o n a n d Q − 1 (·)
d e n ot e s t h e i n v er s e Q -f u n cti o n.  E xt e n si o n s of t h e r e s ult i n ( 1)
t o j oi nt s o ur c e- c h a n n el c o di n g [ 1 7], [ 1 8] a n d  m ultit er mi n al
s o ur c e c o di n g [ 1 9], [ 2 0] h a v e als o b e e n st u di e d.

T h e dis p er si o n of l o ss y c o m pr e ssi o n of s o u r c es  wit h  m e m-
o r y is u n k n o w n. I n t h e c o nt e xt of v ari a bl e-l e n gt h l o ss y c o m-
pr e ssi o n  wit h g u ar a nt e e d dist orti o n,  K o nt o yi a n nis [ 2 1,  T h. 6,
T h. 8] est a blis h e d a c o n n e cti o n b et w e e n t h e n u m b er of bits
n e e d e d t o r e pr e s e nt n gi v e n s a m pl e s pr o d u c e d b y a n ar bitr ar y
s o ur c e, a n d t h e l o g arit h m of t h e r e ci pr o c al of dist orti o n d - b all
pr o b a bilit y.  U nf ort u n at el y c o m p ut ati o n of t h at pr o b a bilit y h as
e x p o n e nti al i n n c o m pl e xit y. I n c o ntr a st, t h e dis p er si o n s of
l o ssl e ss c o m pr e ssi o n of s o ur c e s  wit h  m e m or y a n d of c h a n n el
c o di n g o v er c h a n n els  wit h  m e m or y ar e k n o w n i n s o m e c a s e s.
T h e s e c o n d- or d er e x p a n si o n of t h e  mi ni m u m e n c o d e d l e n gt h
i n t h e l o ssl e ss c o m pr e ssi o n of  M ar k o v s o ur c e s is c o m p ut e d
i n [ 2 2] a n d [ 2 3]. P ol y a n s ki y et al. f o u n d t h e c h a n n el dis p er si o n
of t h e  Gil b ert- Elli ott c h a n n el i n [ 2 4,  T h. 4].

I n t his p a p er,  w e d eri v e a n e x p a n si o n of t y p e ( 1) o n
R (n , d , ) f or t h e  G a u ss- M ar k o v s o ur c e, o n e of t h e si m-
pl e st  m o d els f or s o ur c e s  wit h  m e m or y.  We s h o w t h at t h e
dis p er si o n V (d ) f or t h e  G a u ss- M ar k o v s o ur c e is e q u al t o
t h e li miti n g v ari a n c e of t h e d -tilt e d i nf or m ati o n, a n d h as a
r e v er s e  w at er filli n g r e pr es e nt ati o n.  We s h o w t h at t h e dis p er-
si o n V (d ) f or l o w dist orti o n s is t h e s a m e as t h at of t h e
i.i. d.  G a u ssi a n n ois e dri vi n g t h e pr o c e ss, a n d b e c o m e s s m all er
f or dist orti o n s a b o v e a criti c al v al u e d c ,  w hi c h e xt e n d t h e
c orr e s p o n di n g r e s ult of  Gr a y [ 5,  E q. ( 2 4)] t o t h e n o n a s-
y m pt oti c r e gi m e. S e cti o n II pr e s e nts t h e pr o bl e m f or m ul a-
ti o n.  T h e  m ai n r e s ults a n d pr o of t e c hi n q u e s ar e pr e s e nt e d
i n S e cti o n III.  O ur pr o ofs of c o n v ers e a n d a c hi e v a bilit y ar e
pr e s e nt e d i n S e cti o n s I V a n d  V, r e s p e cti v el y.  T h e c o n v er s e
pr o of g e n er ali z e s t o t h e  G a u ssi a n a ut or e gr e ssi v e pr o c e ss es [ 5],
b ut t h e a c hi e v a bilit y pr o of d o es n ot. I n pr o vi n g t h e c o n v er s e
a n d a c hi e v a bilit y,  w e d e v el o p s e v er al n e w t o ols i n cl u di n g
a n o n a s y m pt oti c r e fi n e m e nt of  Gr a y’s r e s ult [ 5,  E q. ( 1 9)]
o n t h e ei g e n v al u e distri b uti o n of t h e c o v ari a n c e  m atri x of
t h e  G a u ss- M ar k o v s o ur c e.  T hi s r e fi n e m e nt r eli es o n a s h ar p
b o u n d o n t h e diff er e n c e s of ei g e n v al u e s of t w o s e q u e n c e s
of tri di a g o n al  m atri c e s, pr o v e d u si n g t h e  C a u c h y i nt erl a ci n g
t h e or e m a n d t h e  G er s h g ori n cir cl e t h e or e m fr o m  m atri x t h e or y.
I n pr o vi n g a c hi e v a bilit y,  we d eri v e a  m a xi m u m li k eli h o o d
esti m at or of t h e p ar a m et er a of t h e  G a u ss- M ar k o v s o ur c e a n d
b o u n d t h e esti m ati o n err or u si n g t h e  H a n s o n- Wri g ht i n e q u alit y
[ 2 5,  T h. 1. 1].  O ur k e y t o ol i n t h e a c hi e v a bilit y pr o of is t h e

1 T his st at e m e nt is tr a nsl at e d fr o m [ 1 3],  w h er e t h e e q ui v al e nt r es ult  w as
st at e d i n t er m s of dist orti o n-r at e f u n cti o n.

c o n str u cti o n of a t y pi c al s et b a s e d o n t h e  m a xi m u m li k eli h o o d
esti m at or. Fi n all y,  w e c o n cl u d e i n S e cti o n  VI  wit h bri ef
dis c u ssi o n s o n s o m e o p e n pr o bl e m s. Fi g. 4 i n  A p p e n di x  A- A
pr e s e nts a r o a d m a p c o nt ai ni n g t h e r el ati o n s of all t h e or e m s,
c or oll ari e s a n d l e m m a s i n t hi s p a p er.

N ot ati o n s: T hr o u g h o ut, l o w er c a s e ( u p p er c a s e) b ol df a c e l et-
t er s d e n ot e v e ct or s (r a n d o m v e ct or s) of l e n gt h n . We o mit
t h e di m e n si o n  w h e n t h er e is n o a m bi g uit y, i. e. uuu ≡ u n ≡
(u 1 , . . . , u n ) a n d UUU ≡ U n ≡ (U 1 , . . . , U n ) .  We  writ e U f or
U ∞ . F or a r a n d o m v ari a bl e X , w e u s e E [ X ] a n d  Var [ X ] t o
d e n ot e its  m e a n a n d v ari a n c e, r es p e cti v el y.  We  writ e  m atri c es
u si n g s a n s s erif f o nt, e. g.  m atri x A , a n d  w e  writ e A F

a n d A t o d e n ot e t h e Fr o b e ni u s a n d o p er at or n or m s of A ,
r e s p e cti v el y.  T h e tr a c e of A is d e n ot e d b y tr(A ). F or a v e ct or vvv ,
w e d e n ot e b y vvv p t h e p - n or m of vvv ( p = 1 or p = 2 i n
t his p a p er).  We als o d e n ot e t h e s u p n or m of a f u n cti o n F
b y F ∞ s u p x ∈ D |F ( x )|, w h er e D d e n ot e s t h e d o m ai n
of F .  We u s e t h e st a n d ar d O (·), o (·) a n d (·) n ot ati o n s t o
c h ar a ct eri z e f u n cti o n s a c c or di n g t o t h eir as y m pt oti c gr o wt h
r at es.  N a m el y, l et f (n ) a n d g (n ) b e t w o f u n cti o n s o n n ,
t h e n f (n ) = O ( g (n )) if a n d o nl y if t h er e e xists p o siti v e r e al
n u m b er M a n d n 0 ∈ N s u c h t h at | f (n )| ≤ M |g (n )| f or a n y
n ≥ n 0 ; f (n ) = o ( g (n )) if a n d o nl y if li mn → ∞ f (n ) / g (n ) =
0; f (n ) = ( g (n )) if a n d o nl y t h er e e xist p o siti v e c o n st a nts
c 1 , c 2 a n d n 0 ∈ N s u c h t h at c 1 g (n ) ≤ f (n ) ≤ c 2 g (n ) f or a n y
n ≥ n 0 . F or a n y p o siti v e i nt e g er m ,  w e d e n ot e b y [m ] t h e
s et of i nt er g er s {1 , 2 , . . . , m }.  We d e n ot e b y {·} t h e i n di c at or
f u n cti o n.  We u s e n !! t o d e n ot e t h e d o u bl e f a ct ori al of n . T h e
i m a gi n ar y u nit is d e n ot e d b y j.  All e x p o n e nts a n d l o g arit h m s
ar e b as e e .

II.  P R O B L E M F O R M U L A T I O N

A.  O p e r ati o n al  D e fi niti o n s

I n si n gl e- s h ot l o ss y c o m pr e ssi o n,  w e c o n si d er s o ur c e a n d
r e pr o d u cti o n al p h a b ets X a n d Y , a n d a gi v e n s o ur c e dis-
tri b uti o n P X o v er X .  T h e dist orti o n  m e a s ur e is a  m a p pi n g
d (·, ·) : X × Y → [ 0 , + ∞ ).  A n e n c o d er f is a  m a p pi n g
f : X → [ M ], a n d a d e c o d er is g : [M ] → Y . T h e i m a g e
s et of a d e c o d er g is r ef err e d t o as a c o d e b o o k c o n sisti n g
of M c o d e w or d s {g (i)} M

i= 1 .  Gi v e n dist orti o n t hr e s h ol d d > 0
a n d e x c ess- dist orti o n pr o b a bilit y ∈ (0 , 1 ), a n ( M , d , )
c o d e c o n sists of a n e n c o d er- d e c o d er p air (f, g ) s u c h t h at
P d ( X , g (f( X )))  > d ≤ .  T h e n o n a s y m pt oti c f u n d a m e nt al
li mit of l o ss y c o m pr essi o n is t h e  mi ni m u m a c hi e v a bl e c o d e
si z e f or a gi v e n dist orti o n t hr es h ol d d a n d a n e x c ess- dist orti o n
pr o b a bilit y ∈ (0 , 1 ):

M (d , ) mi n { M : ∃ a n ( M , d , ) c o d e } . ( 2)

I n t his p a p er, X = Y = R n , a n d t h e dist orti o n  m e as ur e is
t h e  m e a n s q u ar e d err or ( M S E) dist orti o n: ∀ uuu , vvv ∈ R n ,

d (uuu , vvv )
1

n
uuu − vvv 2

2 . ( 3)

We r ef er t o t h e s et B (xxx , d ), d e fi n e d b el o w, as a dist orti o n
d - b all c e nt er e d at xxx :

B (xxx , d ) xxx ∈ R n : d xxx , xxx ≤ d . ( 4)
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We c o n si d er t h e  G a u ss- M ar k o v s o ur c e {U i }
∞
i= 1 ,  w hi c h s atis fi es

t h e f oll o wi n g diff er e n c e e q u ati o n:

U i = a U i− 1 + Z i , ∀ i ≥ 1 , ( 5)

a n d U 0 = 0.  H er e, a ∈ [ 0 , 1 ) is t h e g ai n,2 a n d Z i ’s ar e
i n d e p e n d e ntl y a n d i d e nti c all y distri b ut e d (i.i. d.) N (0 , σ 2 ) t h at
f or m t h e i n n o v ati o n pr o c e ss.  We a d o pt ( 5) as t h e si m pl est
m o d el c a pt uri n g i nf or m ati o n s o ur c es  wit h  m e m or y: g ai n a
d et er mi n es h o w  m u c h  m e m or y ( as  w ell as t h e gr o wt h r at e),
a n d t h e i n n o v ati o n Z i r e pr e s e nts n e w r a n d o m n e ss b ei n g
g e n er at e d at e a c h ti m e st e p. I n st atisti cs, t h e  G a uss- M ar k o v
s o ur c e ( 5) is als o k n o w n a s t h e fir st- or d er  G a u ssi a n a ut or e-
gr essi v e ( A R) pr o c ess.

F or a fi x e d bl o c kl e n gt h n ∈ N , a dist orti o n t hr e s h ol d d > 0
a n d a n e x c ess- dist orti o n pr o b a bilit y ∈ (0 , 1 ), a n (n , M , d , )
c o d e c o n sists of a n e n c o d er fn : R n → [ M ] a n d a d e c o d er
g n : [M ] → R n s u c h t h at P d (UUU , g n (fn (UUU ))) ≥ d ≤ ,
w h er e UUU = (U 1 , . . . , U n ) d e n ot e s t h e s o ur c e v e ct or.  T h e
r at e ass o ci at e d  wit h a n (n , M , d , ) c o d e is R l o g M

n .
T h e n o n a s y m pt oti c o p er ati o n al f u n d a m e nt al li mit, t h at is,
t h e  mi ni m u m a c hi e v a bl e c o d e si z e at bl o c kl e n gt h n , dist orti o n
d > 0 a n d e x c ess- dist orti o n pr o b a bilit y ∈ (0 , 1 ), is

M (n , d , ) mi n { M : ∃ a n (n , M , d , ) c o d e } , ( 6)

a n d t h e c orr e s p o n di n g  mi ni m u m s o ur c e c o di n g r at e is

R (n , d , )
l o g M (n , d , )

n
. ( 7)

T h e o bj e cti v e of t his p a p er is t o c h ar a ct eri z e R (n , d , ) f or t h e
G a u ss- M ar k o v s o ur c e.

B. I nf o r m ati o n al  D e fi niti o n s

T h e pr o bl e m of c h ar a ct eri zi n g t h e o p er ati o n al f u n d a m e nt al
li mit M (d , ) i n ( 2) is cl o s el y r el at e d t o t h e r at e- dist orti o n
f u n cti o n ( R D F) R X (d ) of t h e s o ur c e X ,  w hi c h is d e fi n e d as
t h e s ol uti o n t o t h e f oll o wi n g c o n v e x o pti mi z ati o n pr o bl e m [ 3]:

R X (d ) i nf
P Y |X : E [d ( X ,Y )] ≤d

I ( X ; Y ), ( 8)

w h er e t h e i n fi m u m is o v er all c o n diti o n al distri b uti o n s
P Y |X : X → Y s u c h t h at t h e e x p e ct e d dist orti o n is l ess t h a n or
e q u al d , a n d I ( X ; Y ) d e n ot e s t h e  m ut u al i nf or m ati o n b et w e e n
X a n d Y . I n t hi s p a p er,  w e ass u m e t h at

1) R X (d ) is diff er eti a bl e  wit h r es p e ct t o d ;
2) t h er e e xists a  mi ni mi z er i n ( 8).

T h e p air ( X , Y ) is r ef err e d t o as t h e R D F- a c hi e vi n g p air if
P Y |X i s t h e  mi ni mi z er i n ( 8). F or a n y x ∈ X , t h e d -tilt e d
i nf or m ati o n  X ( x , d ) i n x , i ntr o d u c e d i n [ 1 5,  D e fi niti o n 6], is

 X ( x , d ) − λ d − l o g E e x p − λ d ( x , Y ) , ( 9)

w h er e λ is t h e n e g ati v e sl o p e of t h e c ur v e R X (d ) at
dist orti o n d :

λ − R X (d ). ( 1 0)

2 N ot e t h at if a ∈ (− 1 , 0 ] i n ( 5), t h e n (− 1 )i U i
∞

i= 0
is a  G a uss- M ar k o v

s o ur c e  wit h n o n n e g ati v e g ai n − a a n d t h e s a m e i n n o v ati o n v ari a n c e.  T h us
r estri cti n g t o 0 ≤ a < 1 is  wit h o ut l oss of g e n er alit y.

T h e d -tilt e d i nf or m ati o n  X ( X , d ) h a s t h e pr o p ert y t h at

R X (d ) = E [ X ( X , d )]. ( 1 1)

W h e n X is a fi nit e s et, ( 1 1) f oll o ws i m m e di at el y fr o m t h e
K ar u s h – K u h n – T u c k er ( K K T) c o n diti o n s f or t h e o pti mi z ati o n
pr o bl e m ( 8), s e e [ 2 6,  T h. 9. 4. 1] a n d [ 1 1,  E q. ( 2. 5. 1 6)].  Csis z ár
s h o w e d t h e v ali dit y of ( 1 1)  w h e n X is a n a b str a ct pr o b a bilit y
s p a c e [ 2 7,  C or oll ar y,  L e m m a 1. 4,  E q s. ( 1. 1 5), ( 1. 2 5), ( 1. 2 7) –
( 1. 3 2)], s e e  A p p e n di x  A- C f or a c o n cis e j u sti fi c ati o n. F or  m or e
pr o p erti es of t h e d -tilt e d i nf or m ati o n, s ee [ 1 5,  E q. ( 1 7)-( 1 9)].

N e xt,  w e i ntr o d u c e t h e c o n diti o n al r el ati v e e ntr o p y  mi n-
i mi z ati o n ( C R E M) pr o bl e m,  w hi c h pl a y s a k e y r ol e i n o ur
d e v el o p m e nt.  L et P X a n d P Y b e pr o b a bilit y distri b uti o n s
d e fi n e d o n al p h a b ets X a n d Y , r es p e cti v el y. F or a n y d > 0,
t h e  C R E M pr o bl e m is d e fi n e d as

R ( X , Y , d ) i nf
P F |X : E [d ( X , F )] ≤d

D ( P F |X ||P Y |P X ), ( 1 2)

w h er e F is a r a n d o m v ari a bl e t a ki n g v al u e s i n Y , a n d
D ( P F |X ||P Y |P X ) is t h e c o n diti o n al r el ati v e e ntr o p y:

D ( P F |X ||P Y |P X ) D ( P F |X = x ||P Y )d P X ( x ). ( 1 3)

A  w ell- k n o w n f a ct i n t h e st u d y of l o ss y c o m pr essi o n is t h at
t h e  C R E M pr o bl e m ( 1 2) is r el at e d t o t h e  R D F ( 8) a s

R X (d ) = i nf
P Y

R ( X , Y , d ), ( 1 4)

w h er e t h e i n fi mi z ati o n is o v er all pr o b a bilit y distri b uti o n s
P Y of t h e r a n d o m v ari a bl es Y o v er Y t h at ar e i n d e p e n-
d e nt of X ; a n d t h e e q u alit y i n ( 1 4) is a c hi e v e d  w h e n P Y

is t h e Y - m ar gi n al of t h e  R D F- a c hi e vi n g p air ( X , Y ), s e e
[ 1 0,  E q. ( 1 0. 1 4 0)] a n d [ 2 8,  T h. 4] f or t h e fi nit e al p h a b ets
X ; [ 1 4,  E q. ( 3. 3)] a n d [ 2 1,  E q. ( 1 3)] f or a b str a ct al p h a b ets X .
T h e pr o p ert y ( 1 4) is a f o u n d ati o n of t h e  Bl a h ut – Ari m ot o
al g orit h m,  w hi c h c o m p ut e s it er ati v e a p pr o xi m ati o n s t o R X (d )
b y alt er n ati n g b et w e e n i n n er a n d o ut er i n fi mi z ati o n s i n ( 1 4).
T h e  C R E M pr o bl e m is als o i m p ort a nt i n n o n a s y m pt oti c
a n al y s e s of l o ss y c o m pr e ss or s, s e e [ 1 4,  E q. ( 3. 3)], [ 2 1,
E q. ( 1 3)] a n d [ 1 5,  E q. ( 2 7)].  O p er ati o n all y, it r el at e s t o t h e
mis m at c h e d- c o d e b o o k s pr o bl e m, t h at is, l o ss y c o m pr e ssi o n
of s o ur c e P X u si n g r a n d o m c o d e w or d s dr a w n fr o m P Y

[ 2 9,  T h. 1 2]. Si mil ar t o ( 9), ∀ x ∈ X , δ > 0 , d > 0,
t h e g e n er aliz e d tilt e d i nf o r m ati o n Y ( x , δ, d ), d e fi n e d i n [ 1 5,
E q. ( 2 8)], is

Y ( x , δ, d ) − δ d − l o g E e x p (− δ d ( x , Y )) . ( 1 5)

T h e o pti mi z er P F |X of ( 1 2) s atis fi es t h e f oll o wi n g c o n diti o n:
∀ x ∈ X , y ∈ Y ,

l o g
d P F |X ( y |x )

d P Y ( y )
= Y ( x , δ , d ) − δ d ( x , y ) + δ d , ( 1 6)

w h er e

δ − R ( X , Y , d ). ( 1 7)

W h e n X a n d Y ar e dis cr et e, ( 1 6) c a n b e v eri fi e d b y t h e  K K T
c o n diti o n s f or t h e o pti mi z ati o n pr o bl e m ( 1 2). F or a b str a ct
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al p h a b ets X , s e e [ 2 9,  T h. 2] a n d [ 1 4, Pr o p ert y 1] f or a n e x p o-
siti o n.  B y c o m p ari n g ( 9) a n d ( 1 5) a n d u si n g t h e r el ati o n ( 1 4),
w e s e e t h at

 X ( x , d ) = Y ( x , λ , d ), ( 1 8)

w h er e λ is i n ( 1 0).
F or t h e  G a u ss- M ar k o v s o ur c e d e fi n e d i n ( 5), its n -t h or d er

r at e- dist orti o n f u n cti o n R UUU (n , d ) is d e fi n e d b y r e pl a ci n g X b y
UUU i n ( 8) a n d t h e n n or m ali zi n g b y n :

R UUU (n , d )
1

n
i nf

P VVV |UUU :

E [d (UUU ,VVV )]≤ d

I (UUU ; VVV ). ( 1 9)

T h e r at e- dist orti o n f u n cti o n R U (d ) f or t h e  G a u ss- M a k o v
s o ur c e ( 5) is

R U (d ) li m s u p
n → ∞

R UUU (n , d ). ( 2 0)

It i m m e di at el y f oll o ws fr o m ( 1 1) t h at

R U (d ) = li m s u p
n → ∞

1

n
E [ UUU (UUU , d )] , ( 2 1)

w h er e  UUU (UUU , d ) is t h e d -tilt e d i nf or m ati o n r a n d o m v ari a bl e
d e fi n e d i n ( 9), t h at is,

 UUU (uuu , d ) = − λ n d − l o g E e x p − λ n d uuu , VVV , ( 2 2)

w h er e (UUU , VVV ) f or m s a  R D F- a c hi e vi n g p air i n ( 1 9) a n d

λ = − R UUU (n , d ). ( 2 3)

T h e v ari a n c e of t h e d -tilt e d i nf or m ati o n is i m p ort a nt i n c a p-
t uri n g t h e s e c o n d- or d er p erf or m a n c e of t h e b e st s o ur c e c o d e.
D e fi n e

V UUU (n , d ) Va r [  UUU (UUU , d )] , ( 2 4)

V U (d ) li m s u p
n → ∞

1

n
V UUU (n , d ). ( 2 5)

T h e q u a ntit y V U (d ) is r ef err e d t o as t h e i nf o r m ati o n al dis p e r-
si o n , i n c o ntr a st t o t h e o p er ati o n al dis p er si o n V U (d ) d e fi n e d
i n t h e n e xt s u b s e cti o n.  R e v er s e  w at er filli n g s ol uti o n s f or
r at e- dist orti o n f u n cti o n s of t h e  G a u ss- M ar k o v s o ur c e  w er e
w ell- k n o w n, s e e [ 5,  E q. ( 1 5)] f or R UUU (n , d ), [ 5,  E q. ( 2 2)] f or
R U (d ) a n d o ur dis c u ssi o n s i n S e cti o n II- D b el o w. I n t his p a p er,
w e d eri v e si mil ar p ar a m etri c e x pr e ssi o n s f or b ot h V UUU (n , d )
a n d V U (d ).

C.  O p e r ati o n al  F u n d a m e nt al Li mits

I n t er m s of c o di n g t h e or e m s, t h e e q u alit y b et w e e n R (d )
(t h e  mi ni m u m a c hi e v a bl e s o ur c e c o di n g r at e u n d er a v er a g e
dist orti o n crit eri o n  w h e n t h e bl o c kl e n gt h n g o e s t o i n fi nit y)
a n d R U (d ) (t h e i nf or m ati o n al r at e- dist orti o n f u n cti o n d e fi n e d
i n ( 2 0)) h a s b e e n e st a blis h e d, e. g. [ 1 1,  T h. 6. 3. 4] a n d [ 5,  T h.
2]. F or t h e  G a u ss- M ar k o v s o ur c e, b y t h e  M ar k o v i n e q u alit y,
t h e a c hi e v a bilit y r es ult u n d er a v er a g e dist orti o n crit eri o n,
e. g. [ 5,  T h. 2], c a n b e c o n v ert e d i nt o a n a c hi e v a bilit y r es ult
u n d er t h e e x c e ss dist orti o n crit eri o n.  A  m at c hi n g c o n v er s e
f oll o ws fr o m  Ki eff er’s str o n g c o n v er s e [ 3 0,  T h. 1] f or t h e

st ati o n ar y er g o di c s o ur c e s.  T h er ef or e, f or a n y d > 0 a n d
∈ (0 , 1 ), w e h a v e

li m
n → ∞

R (n , d , ) = R U (d ), ( 2 6)

w h er e R (n , d , ) is d e fi n e d i n ( 7) a n d R U (d ) i n ( 2 0).
T h e  m ai n r es ult of t his p a p er is t h e f oll o wi n g  G a ussi a n

a p pr o xi m ati o n f or t h e  mi ni m u m a c hi e v a bl e r at e R (n , d , ) i n
l o ss y c o m pr essi o n of t h e  G a u ss- M ar k o v s o ur c e ( 5):

R (n , d , ) = R U (d ) +
V U (d )

n
Q − 1 ( ) + o

1
√

n
, ( 2 7)

w h er e Q − 1 (·) d e n ot e s t h e i n v er s e Q -f u n cti o n, a n d t h e t er m
o (·) will b e r e fi n e d i n  T h e or e m s 7 a n d 1 1 i n S e cti o n s I V a n d  V
b el o w.  O ur  m ai n r e s ult ( 2 7) is a n o n a s y m pt oti c r e fi n e m e nt
of ( 2 6), i m pl yi n g t h at t h e c o n v er g e n c e r at e i n t h e li mit ( 2 6)
is of or d er 1√

n
wit h t h e o pti m al c o n st a nt f a ct or gi v e n i n ( 2 7).

F or m all y, t h e r at e- dis p er si o n f u n cti o n V U (d ), i ntr o d u c e d i n
[ 1 5,  D ef. 7] a n d si m pl y r ef err e d t o as ( o p e r ati o n al) dis p e rsi o n,
is

V U (d ) li m
→ 0

li m
n → ∞

n
R (n , d , ) − R U (d )

Q − 1 ( )

2

. ( 2 8)

E q ui v al e ntl y, o ur  m ai n r es ult ( 2 7) est a blis h es t h e e q u alit y
b et w e e n t h e o p er ati o n al a n d i nf or m ati o n al dis p er si o n s f or t h e
G a u ss- M ar k o v s o ur c e :

V U (d ) = V U (d ). ( 2 9)

D.  R el at e d  W o r k

T h e n -t h or d er  R D F R UUU (n , d ) d e fi n e d i n ( 1 9) f or t h e
G a u ss- M ar k o v s o ur c e is gi v e n b y t h e r e v er s e  w at er filli n g
[ 5,  E q. ( 1 7)] a n d [ 1 1,  E q. ( 6. 3. 3 4) –( 6. 3. 3 6)]:

R UUU (n , d ) =
1

n

n

i= 1

m a x 0 ,
1

2
l o g

σ 2
i

θ n
, ( 3 0)

d =
1

n

n

i= 1

mi n ( θ n , σ 2
i ), ( 3 1)

w h er e σ 2
i ’s ar e t h e ei g e n v al u e s of t h e c o v ari a n c e  m atri x ( s e e

t h e dis c u ssi o n s i n S e cti o n III- A b el o w):

UUU E [UUU UUU ], ( 3 2)

a n d θ n > 0 is t h e  w at er l e v el  m at c h e d t o d at bl o c kl e n gt h n .
T h e r at e- dist orti o n f u n cti o n R U (d ) f or t h e  G a u ss- M ar k o v
s o ur c e ( 5) is o bt ai n e d b y p assi n g t o t h e li mit of i n fi nit e n
i n ( 3 0) a n d ( 3 1) vi a i n v o ki n g t h e li miti n g t h e or e m s o n t h e
ei g e n v al u es of t h e c o v ari a n c e  m atri x UUU [ 5,  E q. ( 2 2)] a n d
[ 1 1,  T h. 6. 3. 2], gi v e n b y

R U (d ) =
1

2 π

π

− π
m a x 0 ,

1

2
l o g

S ( w )

θ
d w, ( 3 3)

d =
1

2 π

π

− π
mi n [ θ , S ( w )] d w, ( 3 4)

w h er e t h e p o w er s p e ctr u m of t h e  G a u ss- M ar k o v s o ur c e ( 5) is
gi v e n b y

S ( w ) =
σ 2

g ( w )
, ( 3 5)
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Fi g. 1.  R e v ers e  w at er filli n g ( 3 4) f or a = 0 .5: t h e  w at er l e v el θ is c h os e n s u c h t h at t h e s h a d e d ar e a e q u als 2π d .

a n d t h e f u n cti o n g is d e fi n e d as

g ( w ) 1 + a 2 − 2 a c o s ( w ), ∀ w ∈ [ − π,  π ]. ( 3 6)

We r ef er t o ( 3 0)-( 3 1) a s t h e n -t h or d er r e v er s e  w at er filli n g, a n d
t o ( 3 3)-( 3 4) as t h e li miti n g r e v er s e  w at er filli n g. Fi g. 1 d e pi cts
t h e li miti n g r e v er s e  w at er filli n g ( 3 4).

R es ults si mil ar t o ( 3 0)-( 3 4) h ol d f or t h e st ati o n ar y  G a u ssi a n
pr o c e ss es [ 9,  E q. ( 1 7), ( 1 8)], a s  w ell a s f or t h e hi g h er- or d er
G a u ssi a n  A R pr o c ess es ( n ot n e c ess aril y st ati o n ar y)
[ 5,  E q. ( 2 2)].  We dis c u ss t h e s u btl e diff er e n c e s b et w e e n
t h e r at e- dist orti o n f u n cti o n s of t h e ( a s y m pt oti c all y) st ati o n ar y
a n d n o n st ati o n ar y  G a u ssi a n  A R pr o c e ss es i n S e cti o n  VI
b el o w.  T his p a p er c o n si d er s t h e ( as y m pt oti c all y) st ati o n ar y
G a u ss- M ar k o v s o ur c es, i. e., ( 5)  wit h |a | < 1.

T h e c o n v er s e r es ults i n t his p a p er e xt e n d p artl y t o t h e
hi g h er- or d er  G a u ssi a n  A R pr o c e ss es, st u di e d b y  Gr a y [ 5]
a n d  B er g er [ 1 1, S e c. 6. 3. 2].  T h e  G a u ssi a n  A R pr o c e ss is
[ 5,  E q. ( 1)]

U i =

i

= 1

a U i− + Z i , i ≥ 1 , ( 3 7)

a n d U i = 0 f or i ≤ 0,  w h er e Z i ’s ar e i.i. d. N (0 , σ 2 ), a n d t h e
r e al c o n st a nts a ’s s atisf y [ 5,  E q. ( 1 0)]

∞

= 0

|a | < ∞ . ( 3 8)

T h e  G a u ss- M ar k o v s o ur c e i n ( 5) is a s p e ci al c a s e of ( 3 7)
wit h a 1 = a a n d a = 0 f or ≥ 2.  T h e f oll o wi n g r el ati o n
b et w e e n t h e r at e- dist orti o n f u n cti o n s of t h e  G a u ssi a n  A R
pr o c e ss {U i }

+ ∞
i= 1 i n ( 3 7) a n d t h e i.i. d.  G a u ssi a n pr o c e ss { Z i }

+ ∞
i= 1

i s d u e t o  Gr a y [ 5,  E q. ( 2 4)]:

R U (d ) = R Z (d ), 0 < d ≤ d c ,

R U (d ) > R Z (d ), d c < d ≤ d m a x ,
( 3 9)

w h er e d c is r ef err e d t o as t h e criti c al dist o rti o n , d e fi n e d as
d c θ mi n , w h er e

θ mi n mi n
w ∈[ − π, π ]

S ( w ). ( 4 0)

A c c or di n gl y, d e n ot e t h e  m a xi m u m v al u e of S ( w ) o v er t h e
i n v er v al [ −π,  π ] as

θ m a x m a x
w ∈[ − π, π ]

S ( w ). ( 4 1)

I n ( 3 9), d m a x i s t h e m a xi m u m dist o rti o n a c hi e v a bl e i n ( 3 4)
(t h at is,  w h e n θ ≥ θ m a x ):

d m a x
1

2 π

π

− π
S ( w ) d w, ( 4 2)

a n d R Z (d ) i s t h e  R D F f or i.i. d.  G a u ssi a n s o ur c e s d eri v e d b y
S h a n n o n [ 3,  E q u ati o n b el o w Fi g. 9]:

R Z (d ) = m a x 0 ,
1

2
l o g

σ 2

d
. ( 4 3)

T h e p o w er s p e ctr u m S ( w ) of t h e  G a u ssi a n  A R pr o c e ss is
[ 5,  E q. ( 2 1)]

S ( w ) = σ 2
+ ∞

= 0

a e − j w

− 2

, w ∈ [ − π,  π ]. ( 4 4)

E q u alit y i n ( 3 9) is a d e e p r es ult st ati n g t h at i n a r a n g e of
l o w dist orti o n s, t h e as y m pt oti c r at e- dist orti o n tr a d e off of a
G a u ssi a n  A R pr o c e ss a n d t h at of its dri vi n g i n n o v ati o n pr o c e ss
ar e t h e s a m e. S e e Fi g. 2 f or a n ill u str ati o n of ( 3 9) i n t h e s p e ci al
c as e of a  G a uss- M ar k o v s o ur c e  wit h a = 0 .5.

T h e criti c al dist orti o n d c a n d t h e  m a xi m u m dist orti o n d m a x

c a n b e u n d er st o o d pi ct ori all y a s f oll o ws. I n Fi g. 1 a n d e q ui v-
al e ntl y i n ( 3 4), as t h e  w at er l e v el θ ris es fr o m 0 t o θ mi n , t h e
mi ni m u m o n t h e ri g ht si d e of ( 3 4) e q u als θ ,  m e a ni n g t h at
d = θ f or 0 < θ ≤ θ mi n ( e q ui v al e ntl y, 0 ≤ d ≤ d c ).  A s t h e
w at er l e v el θ ri s es f urt h er, l o w er p art s of t h e s p e ctr u m S ( w )
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Fi g. 2.  T h e r at e- dist orti o n f u n cti o ns f or t h e  G a uss- M ar k o v s o ur c e {U i } wit h a = 0 .5 a n d σ 2 = 1, a n d f or t h e i n n o v ati o n pr o c ess { Z i }
∞
i= 1 , Z i ∼ N (0 , 1 )

dri vi n g t h at s o ur c e.

st art t o pl a y a r ol e i n ( 3 4).  W h e n t h e  w at er l e v el θ ris es a b o v e
t h e p e a k i n Fi g. 1: θ ≥ θ m a x , t h e dist orti o n d i n ( 3 4) r e m ai n s
as d m a x . I n t h e c a s e of t h e  G a u ss- M ar k o v s o ur c e, fr o m ( 3 5),
it is e as y t o s e e t h at d c a n d d m a x ar e gi v e n b y

d c =
σ 2

(1 + | a |)2
, ( 4 5)

d m a x =
σ 2

1 − a 2
. ( 4 6)

N ot e t h at d m a x i n ( 4 6) e q u als t h e st ati o n ar y v ari a n c e of t h e
s o ur c e ( A p p e n di x  B- B), i. e.,

d m a x = li m
n → ∞

Va r [ U n ] . ( 4 7)

F or t h e n o n st ati o n ar y  G a u ss- M ar k o v s o ur c e s ( |a | ≥ 1),
d m a x = + ∞ .

III.  M AI N R E S U L T S

A.  P r eli mi n a r y:  D e c orr el ati o n

We fir st  m a k e a si m pl e b ut i m p ort a nt o b s er v ati o n o n t h e
e q ui v al e n c e b et w e e n l o ss y c o m pr e ssi o n of t h e  G a u ss- M ar k o v
s o ur c e s a n d p ar all el i n d e p e n d e nt  G a u ssi a n s o ur c e s. F or a n y
n ∈ N , t h e r a n d o m v e ct or UUU = (U 1 , . . . , U n ) g e n er at e d b y
t h e  m o d el ( 5) f oll o ws t h e  m ulti v ari at e  G a u ssi a n distri b uti o n
N (000 , UUU ), w h er e UUU = σ 2 (A A )− 1 i s its c o v ari a n c e  m atri x
a n d A is a n n × n l o w er tri a n g ul ar  m atri x  wit h d et A = 1:

A

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 . . . 0
− a 1 0 . . . 0
0 − a 1 . . . 0
...

...
...

...
...

0 . . . 0 − a 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. ( 4 8)

Si n c e ( 5) c a n b e r e writt e n as ZZZ = A UUU , a n d ZZZ ∼ N (0 , σ 2 I),
t h e c o v ari a n c e  m atri x of UUU is gi v e n b y

UUU = E [A − 1 ZZZ ZZZ (A − 1 ) ] = σ 2 (A A )− 1 . ( 4 9)

We r ef er t o t h e r a n d o m v e ct or XXX as t h e d e c o rr el ati o n of UUU :

XXX S UUU , ( 5 0)

w h er e S is t h e u nit ar y  m atri x i n t h e ei g e n d e c o m p o siti o n of
t h e p o siti v e d e fi nit e  m atri x (A A )− 1 :

(A A )− 1 = S S , ( 5 1)

= di a g
1

µ 1
, . . . ,

1

µ n
, ( 5 2)

w h er e 0 < µ 1 ≤ . . . ≤ µ n ar e t h e ei g e n v al u e s of A A .
Fr o m ( 4 9) a n d ( 5 1), it is cl e ar t h at XXX ∼ N (000 , σ 2 ),
i. e., X 1 , . . . , X n ar e i n d e p e n d e nt z er o- m e a n  G a u ssi a n r a n d o m
v ari a bl es  wit h v ari a n c es σ 2

i ’s b ei n g t h e ei g e n v al u e s of UUU :

σ 2
i

σ 2

µ i
, i ∈ [ n ]. ( 5 3)

Si n c e t h e y ar e r el at e d vi a t h e u nit ar y tr a n sf or m ati o n S
w hi c h pr e s er v e s t h e g e o m etr y of t h e u n d erl yi n g  E u cli d e a n
s p a c e, UUU a n d XXX ar e e q ui v al e nt i n t er m s of t h eir f u n d a m e n-
t al li mits. I n d e e d, a n y (n , M , d , ) c o d e f or UUU (r e c all t h e
d e fi niti o n i n S e cti o n II- B a b o v e) c a n b e tr a n sf or m e d, vi a S ,
i nt o a n (n , M , d , ) c o d e f or XXX , a n d vi c e v er s a; t h er ef or e,
t h e fi nit e bl o c kl e n gt h  mi ni m u m a c hi e v a bl e r at e s R (n , d , ) f or
UUU a n d XXX ar e t h e s a m e. Si n c e I (S XXX ; S YYY ) = I ( XXX ; YYY ) a n d
E S XXX − S YYY 2

2 = E XXX − YYY 2
2 , t h eir n -t h or d er a n d li miti n g

r at e- dist orti o n f u n cti o n s ar e t h e s a m e: ∀ n ∈ N , d ∈ (0 , d m a x ),
w e h a v e R XXX (n , d ) = R UUU (n , d ), a n d h e n c e R X (d ) = R U (d ).
B y t h e s a m e tr a n sf or m ati o n, it is e as y t o v erif y t h at t his
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Fi g. 3.  Dis p ersi o n v ers us dist orti o n:  T h e  G a uss- M ar k o v s o ur c e  wit h a = 0 a n d σ 2 = 1 d e g e n er at es t o t h e i.i. d.  G a ussi a n s o ur c e, i. e., t h e i n n o v ati o n pr o c ess
{ Z i }

∞
i= 1 .  T h e dis p ersi o n of t h e  G a uss- M ar k o v s o ur c e  wit h a = 0 .5 a n d σ 2 = 1 is gi v e n b y t h e s oli d li n e.  T w o c or n er p oi nts o n t h e s oli d li n e ar e l a b el e d as

P 1 ( c orr es p o n di n g t o d c ) a n d P 2 ( c orr es p o n di n g t o d m a x ).

e q ui v al e n c e als o e xt e n d s t o t h e d -tilt e d i nf or m ati o n: ∀ uuu ∈ R n ,
l et

xxx S uuu , ( 5 4)

t h e n

 UUU (uuu , d ) =  XXX (xxx , d ). ( 5 5)

D u e t o t h e a b o v e e q ui v al e n c e,  w e  will r ef er t o b ot h UUU a n d its
d e c orr el ati o n XXX i n o ur a n al y sis.  D e c orr el ati o n is a  w ell- k n o w n
t o ol,  w hi c h  w as u s e d t o fi n d t h e r at e- dist orti o n f u n cti o n s f or
t h e g e n er al  G a u ssi a n  A R pr o c e ss es [ 5].

B.  G a u ssi a n  A p p r o xi m ati o n s f o r t h e  G a u ss- M a r k o v S o u r c e s

We n o w f or m all y st at e t h e  m ai n c o ntri b uti o n s of t his p a p er.

T h e o r e m 1. F o r t h e  G a u ss- M a r k o v s o u r c e i n ( 5) wit h a ∈
[0 , 1 ), fi x a n y e x c e ss- di st o rti o n p r o b a bilit y ∈ (0 , 1 ) a n d
dist o rti o n t h r e s h ol d d ∈ (0 , d m a x ), w h e r e dm a x i s d e fi n e d
i n ( 4 6). T h e  mi ni m u m a c hi e v a bl e s o u r c e c o di n g r at e f o r t h e
G a u ss- M a r k o v s o u r c e i n ( 5) s atis fi e s

R (n , d , ) = R U (d ) +
V U (d )

n
Q − 1 ( ) + o

1
√

n
, ( 5 6)

w h er e R U (d ) is t h e r at e- dist o rti o n f u n cti o n of t h e
G a u ss- M a r k o v s o u r c e, gi v e n i n ( 3 3); a n d t h e o p e r ati o n al
dis p ersi o n  V U (d ), d e fi n e d i n ( 2 8), is gi v e n b y

V U (d ) =
1

4 π

π

− π
mi n 1 ,

S ( w )

θ

2

d w, ( 5 7)

w h e r e θ > 0 is t h e  w at er l e v el  m at c h e d t o t h e dist o rti o n d
vi a ( 3 4), a n d t h e p o w e r s p e ctr u m S( w ) is i n ( 3 5).

T h e pr o of of  T h e or e m 1 is i n gi v e n i n S e cti o n s I V ( c o n-
v er s e) a n d  V ( a c hi e v a bilit y).

Pl e asi n gl y, t h e n e w r e v er s e  w at er filli n g s ol uti o n f or t h e
dis p er si o n i n ( 5 7) p ar all els t h e cl assi c al r e v er s e  w at er filli n g
r e pr es e nt ati o n of t h e r at e- dist orti o n f u n cti o n i n ( 3 3). F urt h er-
m or e, j u st li k e t h eir r at e- di st orti o n f u n cti o n s (r e c all ( 3 9)),
t h e dis p er si o n s of t h e  G a u ss- M ar k o v s o ur c e U i n ( 5) a n d its
i n n o v ati o n pr o c ess Z ar e c o m p ar a bl e :

C o r oll a r y 1. L et  V U (d ) a n d  V Z (d ) b e t h e dis p e rsi o n s of t h e
G a u ss- M a r k o v s o u r c e ( 5) a n d t h e  m e m o r yl e ss  G a u ssi a n s o u r c e
{ Z i }

∞
i= 1 , r es p e cti v el y, t h e n

V U (d ) = V Z (d ), 0 < d ≤ d c ,

V U (d ) < V Z (d ), d c < d < σ 2 .
( 5 8)

P r o of. Fr o m [ 1 6,  T h. 2] a n d [ 1 5,  T h. 4 0],  w e k n o w t h at t h e
dis p er si o n of t h e  m e m or yl e ss  G a u ssi a n s o ur c e is

V Z (d ) =
1

2
, ∀ d ∈ (0 , σ 2 ), ( 5 9)

w hi c h is als o s h o w n i n Fi g. 3.  B y t h e d e fi niti o n of d c i n ( 4 5)
a n d t h e dis c u ssi o n ar o u n d ( 4 5) a n d ( 4 6),  w e s e e t h at ( 5 7)
s atis fi es

mi n 1 ,
σ 2

θ g ( w )

2
= 1 , if d ∈ (0 , d c ],

< 1 , if d ∈ (d c , d m a x ),
( 6 0)

fr o m  w hi c h  C or oll ar y 1 f oll o w s.
C or oll ar y 1 p ar all els  Gr a y’s r es ult ( 3 9) [ 5,  E q. ( 2 4)] f or t h e

r at e- dist orti o n f u n cti o n s of U a n d Z , a n d t h e y t o g et h er i m pl y
t h at f or d ∈ (0 , d c ], t h e f u n d a m e nt al li mits of l o ss y c o m-
pr e ssi o n of t h e  G a u ss- M ar k o v s o ur c e a n d t h e i.i. d.  G a u ssi a n
s o ur c e { Z i }

∞
i= 1 ar e t h e s a m e, u p t o t h e s e c o n d- or d er t er m. F or

d ∈ (d c , σ 2 ), t h e  G a u ss- M ar k o v s o ur c e is h ar d er t o c o m pr e ss
i n t h e li mit of n g oi n g t o i n fi nit y si n c e R U (d ) > R Z (d ),
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b ut t h e  G a u ss- M ar k o v s o ur c e a p pr o a c h e s its a s y m pt oti c f u n d a-
m e nt al li mit f ast er si n c e V U (d ) < V Z (d ). S e e t h e dis c u ssi o n s
f oll o wi n g  T h e or e m 2 b el o w f or a n i nt uiti v e e x pl a n ati o n.

T h e dis p er si o n s f or a = 0 a n d a = 0 .5 ar e pl ott e d i n Fi g. 3,
w h er e t h e d ott e d li n e (f or a = 0 , σ 2 = 1) r e c o v er s t h e
dis p er si o n r e s ult ( 5 9) i n [ 1 5] a n d [ 1 6] f or t h e i.i. d.  G a u ssi a n
s o ur c e s { Z i }

∞
i= 1 , a s e x p e ct e d.  T h e s oli d li n e (f or a = 0 .5 ,

σ 2 = 1) c oi n ci d e s  wit h t h e d ott e d li n e i n t h e r e gi o n d ∈
(0 , d c ],  w hi c h  m e a n s t h at t h e  G a u ss- M ar k o v s o ur c e h a s t h e
s a m e dis p er si o n a s its i n n o v ati o n pr o c e ss i n t h e r e gi o n of
l o w d ’s. F or d ∈ (d c , σ 2 ), t h e dis p er si o n of t h e  G a u ss- M ar k o v
s o ur c e is s m all er t h a n t h at of its i n n o v ati o n pr o c ess a n d
d e cr e as es  wit h d , as i n di c at e d b y  C or oll ar y 1.

Usi n g t h e r e si d u e t h e or e m fr o m c o m pl e x a n al y sis,  w e als o
d eri v e t h e c o or di n at es of t h e t w o c or n er p oi nts P 1 a n d P 2 o n
t h e s oli d li n e ( A p p e n di x  B- A):

P 1 = (d c , 1 / 2 ), P 2 = d m a x ,
(1 + a 2 )(1 − a )

2 (1 + a )3
. ( 6 1)

T h e v erti c al s e g m e nt b et w e e n (d m a x , 0 ) a n d P 2 c orr e s p o n d s
t o t h e c as e  w h e n t h e  w at er l e v el θ is a b o v e t h e s p e ctr u m
p e a k θ m a x i n Fi g. 1, a n d t h e dis p er si o n V U (d ) i n ( 5 7) b e c o m e s

V U (d ) =
1

4 π θ 2

π

− π
S ( w )2 d w, ( 6 2)

w hi c h c o nti n u es d e cr e asi n g as θ i n cr e a s e s, e v e n as t h e di st or-
ti o n d r e m ai n s as d m a x , a s s e e n fr o m ( 3 4) a n d ( 5 7).

T h e or e m 2 b el o w gi v e s f or m ul a s f or t h e d -tilt e d i nf or m ati o n
d e fi n e d i n ( 2 2) a n d i nf or m ati o n al dis p er si o n d e fi n e d i n ( 2 5).

T h e o r e m 2. F o r t h e  G a u ss- M a r k o v s o u r c e  U i n ( 5), f o r a n y
d ∈ (0 , d m a x ) a n d n ≥ 1 , t h e d -tilt e d i nf o r m ati o n is gi v e n b y

 UUU (uuu , d ) =  XXX (xxx , d ) =

n

i= 1

mi n ( θ n , σ 2
i )

2 θ n

x 2
i

σ 2
i

− 1 +

1

2
l o g

m a x ( θ n , σ 2
i )

θ n
, ( 6 3)

a n d t h e i nf o r m ati o n al dis p e rsi o n s atis fi e s

V U (d ) =
1

4 π

π

− π
mi n 1 ,

S ( w )

θ

2

d w, ( 6 4)

w h e r e θ n > 0 is t h e  w at er l e v el  m at c h e d t o d vi a t h e n-t h o r d er
r e v ers e  w at er filli n g ( 3 1); θ > 0 is t h e  w at er l e v el  m at c h e d t o
t h e dist o rti o n d vi a t h e li miti n g r e v ers e  w at er filli n g ( 3 4); a n d
t h e p o w e r s p e ct r u m S( w ) is d e fi n e d i n ( 3 5).

P r o of. A p p e n di x  C- D.
T h e or e m 2 c o m p ut e s t h e i nf or m ati o n al dis p er si o n V U (d )

d e fi n e d i n ( 2 5).  T h e f or m ul a ( 5 6) i n  T h e or e m 1 is a n
e q ui v al e nt r ef or m ul ati o n of t h e d e fi niti o n of t h e o p er ati o n al
dis p er si o n V U (d ) i n ( 2 8),  w hil e ( 5 7) t o g et h er  wit h  T h e or e m 2
est a blis h t h e e q u alit y V U (d ) = V U (d ).  T h e or e m 1 a n d
T h e or e m 2 e st a bli s h t h at f or t h e  G a u ss- M ar k o v s o ur c e,
t h e o p er ati o n al  R D F a n d dis p er si o n ar e gi v e n b y ( 2 1)
a n d ( 2 5), r e s p e cti v el y, pr o vi di n g a n at ur al e xt e n si o n t o
t h e f a ct t h at i n l o ss y c o m pr essi o n of i.i. d. s o ur c es { X i },
t h e  m e a n E [ X 1 ( X 1 , d )] a n d t h e v ari a n c e  Var  X 1 ( X 1 , d ) of

t h e si n gl e-l ett er d -tilt e d i nf or m ati o n  X 1 ( X 1 , d ) ar e e q u al t o
t h e  R D F a n d t h e dis p er si o n, r e s p e cti v el y [ 1 5,  T h. 1 2].

T h e or e m 2 als o pr o vi d es i nt uiti o n o n o ur r es ult i n  C or ol-
l ar y 1 f or d > d c . Si n c e ( XXX , YYY ) f or m s a  R D F- a c hi e vi n g p air
i n R XXX (n , d ) (r e c all ( 1 9)), it i s  w ell- k n o w n [ 1 0,  T h. 1 0. 3. 3]
t h at YYY h a s i n d e p e n d e nt c o or di n at es a n d ∀ i ∈ [ n ],

Y i ∼ N (0 , m a x σ 2
i − θ n , 0 ), ( 6 5)

w h er e θ n > 0 is t h e  w at er l e v el  m at c h e d t o t h e dist orti o n
d i n t h e n -t h or d er r e v er s e  w at er filli n g o v er {σ 2

i }n
i= 1 i n ( 3 1).

Si n c e d > d c , t h er e ar e s o m e X i i n ( 6 3)  w hi c h ar e “i n a cti v e ",
t h at is, σ 2

i < θ n ,  w hi c h  m a k e s t h e v ari a n c e of ( 6 3) s m all er.
G e o m etri c all y, si n c e XXX c o n c e ntr at es i n si d e a n elli p s oi d,  w e ar e
c o v eri n g s u c h a n elli p s oi d b y b alls of r a di u s

√
n d .  T h e c e nt er s

of t h es e dist orti o n d - b alls li e o n a n ot h er l o w er di m e n si o n al
elli p s oi d.  T h at l o w er di m e n si o n al elli p s oi d is t h e o n e o n  w hi c h
t h e r a n d o m v e ct or YYY c o n c e ntr at e s. F or d > d c , alt h o u g h
c e nt er e d at a l o w er di m e n si o n al elli p s oi d ( si n c e Y i ≡ 0 f or
i n a cti v e X i ’s), t h e s e d - b alls ar e l ar g e e n o u g h t o als o c o v er
t h o s e “i n a cti v e " di m e n si o n s.

C. Te c h ni c al T o ols

1)  Ei g e n v al u e s of t h e  C o v a ri a n c e  M atri c e s: Alt h o u g h
d e c orr el ati o n si m pli fi es t h e pr o bl e m b y tr a n sf or mi n g a s o ur c e
wit h  m e m or y i nt o a  m e m or yl e ss o n e, t h e r e al c h all e n g e is
t o st u d y t h e e v ol uti o n of t h e v ari a n c es σ 2

i ’s i n ( 5 3), as n
i n cr e as es. F or fi nit e n , t h er e is n o cl o s e d-f or m e x pr e ssi o n f or
t h e ei g e n v al u es of UUU f or a ∈ (0 , 1 ).3 Si n c e t h e i n v er s e of UUU

i s 1
σ 2 A A ,  w hi c h is al m o st a  T o e plit z  m atri x e x c e pt t h e (n , n )-

t h e ntr y, t h e li miti n g distri b uti o n of t h e ei g e n v al u es of UUU c a n
b e d e d u c e d fr o m t h e li miti n g distri b uti o n of ei g e n v al u es of
T o e plit z  m atri c es [ 5,  E q. ( 1 9)].

T h e o r e m 3 ( R ef or m ul ati o n of  Gr a y [ 5,  E q. ( 1 9)]). Fi x a n y
a ∈ [ 0 , 1 ).  F o r a n y c o nti n u o u s f u n cti o n  F(t) o v er t h e i nt er v al

t ∈ [θ mi n , θm a x ] , ( 6 6)

t h e ei g e n v al u es σ 2
i ’s of UUU s atisf y

li m
n → ∞

1

n

n

i= 1

F ( σ 2
i ) =

1

2 π

π

− π
F ( S ( w )) d w, ( 6 7)

w h er e S ( w ) is d e fi n e d i n ( 3 5).

T h er e ar e  m or e g e n er al r e s ults i n t h e f or m of  T h e or e m 3,
k n o w n as S z e g ö’s t h e or e m, s e e [ 3 2,  C h. 5] f or  T o e plit z f or m s
a n d [ 3 3,  C or oll ar y 2. 3] f or as y m pt oti c all y  T o e plit z  m atri c es.
I n t h e c o nt e xt of r at e- dist orti o n t h e or y, a p pl yi n g  T h e or e m 3
t o ( 3 0)-( 3 1) l e a d s t o ( 3 3)-( 3 4).

U nf ort u n at el y,  T h e or e m 3 is i n s uf fi ci e nt t o o bt ai n t h e fi n e
a s y m pt oti cs i n o ur  T h e or e m 1.  T o d eri v e o ur fi nit e bl o c kl e n gt h
r e s ults,  w e n e e d t o u n d er st a n d t h e r at e of c o n v er g e n c e i n ( 6 7).
T o w ar d s t h at e n d,  w e d e v el o p a n o n a s y m pt oti c r e fi n e m e nt of
T h e or e m 3, pr e s e nt e d n e xt.

T h e o r e m 4 ( N o n as y m pt oti c  Ei g e n v al u e  Distri b uti o n of UUU ).
Fi x a n y a ∈ [ 0 , 1 ).  F o r a n y b o u n d e d, L - Li p s c hitz a n d

3 A cl os e d-f or m e x pr essi o n f or t h e ei g e n v al u es of UUU is k n o w n o nl y f or
a = 1 [ 3 1,  E q. ( 2)].
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n o n- d e c r e a si n g f u n cti o n  F (t) o v er t h e i nt er v al i n ( 6 6), a n d
f o r a n y n ≥ 1 , t h e ei g e n v al u e s σ 2

i ’s of UUU s atisf y

1

n

n

i= 1

F ( σ 2
i ) −

1

2 π

π

− π
F ( S ( w )) d w ≤

C L

n
, ( 6 8)

w h e r e  C L > 0 is a c o n st a nt t h at d e p e n d s o n t h e Li p s c hitz
c o n st a nt L a n d t h e s u p n o r m F ∞ of  F, a n d S ( w ) is i n ( 3 5).

P r o of. T h e or e m 4 f oll o w s fr o m  L e m m a 1 b el o w a n d el e-
m e nt ar y a n al y s es o n  Ri e m a n n s u m s. S e e  A p p e n di x  C- B f or
d et ails.

I n t h e c o ur s e of t h e pr o of of  T h e or e m 4,  w e o bt ai n t h e
f oll o wi n g n o n a s y m pt oti c b o u n d s o n e a c h ei g e n v al u e µ i of
A A ,  w hi c h is of i n d e p e n d e nt i nt er e st.

L e m m a 1 ( S h ar p  A p pr o xi m ati o n of t h e  Ei g e n v al u e s of A A ).
Fi x a n y a ∈ [ 0 , 1 ).  F o r a n y n ∈ N , l et 0 < µ 1 ≤ µ 2 . . . ≤ µ n

b e t h e ei g e n v al u es of A A , a n d l et

ξ i g
iπ

n + 1
, ( 6 9)

w h er e g is i n ( 3 6). T h e n,  w e h a v e

0 ≤ ξ i − µ i ≤
2 a π

n
, ∀ i ∈ [ n ]. ( 7 0)

P r o of. T h e i d e a i n pr o vi n g  L e m m a 1 is t h at A A is
al m o st a tri di a g o n al  T o e plit z  m atri x,  w h o s e ei g e n v al u e s ar e
gi v e n b y ( 6 9).  T h e b o u n d ( 7 0) is o bt ai n e d vi a t h e  C a u c h y
i nt erl a ci n g t h e or e m a n d t h e  G er s h g ori n cir cl e t h e or e m. S e e
A p p e n di x  C- A f or d et ails.

R e m a r k 1 . I n vi e w of ( 6 9) a n d ( 7 0) i n  L e m m a 1,  w e h a v e
∀ n ∈ N a n d ∀ i ∈ [ n ],

(1 − a )2 ≤ µ i ≤ (1 + a )2 . ( 7 1)

T h e k e y diff er e n c e b et w e e n t h e a s y m pt oti c all y st ati o n ar y c as e
(a ∈ [ 0 , 1 )) a n d t h e n o n st ati o n ar y c a s e (a ≥ 1) is t h at, i n t h e
l at er c as e, µ 1 d e cr e a s e s t o z er o as n i n cr e as es t o i n fi nit y,
s e e [ 3 4,  L e m m a] a n d [ 3 1,  E q. ( 2)]. I n t h e as y m pt oti c all y
st ati o n ar y c as e, µ 1 i s b o u n d e d a w a y fr o m z er o a c c or di n g
t o ( 7 1).

2)  A n  Esti m ati o n  P r o bl e m: O ur a c hi e v a bilit y pr o of r eli es o n
t h e a n al y sis of t h e f oll o wi n g p ar a m et er esti m ati o n pr o bl e m.
Gi v e n a s o ur c e s e q u e n c e uuu = (u 1 , . . . , u n ) , dr a w n fr o m
t h e  m o d el ( 5)  wit h u n k n o w n a , t h e  m a xi m u m li k eli h o o d
esti m at e ( M L E) of t h e p ar a m et er a is ( A p p e n di x F- A)

â (uuu ) =
n − 1
i= 1 u i u i+ 1

n − 1
i= 1 u 2

i

. ( 7 2)

We s h o w t h at t h e esti m ati o n err or of t h e  M L E d e c a y s e x p o-
n e nti all y i n n f or a n y a ∈ [ 0 , 1 ).

T h e o r e m 5. Fi x a ∈ [ 0 , 1 ). L et η ∈ (0 , 1 ). T h e n, t h e r e e xists
a u ni v e rs al c o n st a nt c > 0 a n d t w o c o n st a nts c 1 , c 2 > 0 ( c1
a n d c 2 o nl y d e p e n d o n a, s e e ( 3 7 7) i n  A p p e n di x  F- C b el o w)
s u c h t h at f o r all n l a r g e e n o u g h, t h e esti m ati o n err o r of t h e
M L E s atis fi es

P |â (UUU ) − a | > η ≤ 2 e x p − c mi n c 1 η 2 n , c 2 η n . ( 7 3)

P r o of. A p p e n di x F- B.
Fi n all y,  w e pr e s e nt a str e n gt h e n e d v er si o n of  T h e or e m 5,

w hi c h is u s e d i n o ur a c hi e v a bilit y pr o of.  L et α > 0 b e a
c o n st a nt.  D e fi n e η n a s

η n
α l o g l o g n

n
. ( 7 4)

T h e o r e m 6. Fi x a ∈ [ 0 , 1 ).  Gi v e n a c o n st a nt α > 0 , l et η n

b e i n ( 7 4). T h e n, f o r all n l a r g e e n o u g h, t h e esti m ati o n err o r
of t h e  M L E s atis fi es

P |â (UUU ) − a | > η n ≤
2

(l o g n )κ α , ( 7 5)

w h e r e κ is a c o n st a nt gi v e n b y

κ
c

8 (1 − a 2 )
, ( 7 6)

a n d c > 0 is t h e c o n st a nt i n T h e o r e m 5.

P r o of. A p p e n di x F- C.
S e e S e cti o n  V- B f or t h e c o n str u cti o n of a t y pi c al s et b a s e d

o n â (uuu ).

I V.  CO N V E R S E

T h e o r e m 7 ( C o n v er s e). F o r t h e  G a u ss- M a r k o v s o u r c e ( 5) wit h
t h e c o n st a nt a ∈ [ 0 , 1 ), f o r a n y e x c e ss- dist orti o n p r o b a bilit y

∈ (0 , 1 ), a n d f o r a n y dist o rti o n t h r e s h ol d d ∈ (0 , d m a x ),
t h e  mi ni m u m a c hi e v a bl e s o u r c e c o di n g r at e s atis fi e s

R (n , d , ) ≥ R U (d ) +
V U (d )

n
Q − 1 ( ) −

l o g n

2 n
+ O

1

n
,

( 7 7)

w h er e R U (d ) is t h e r at e- dist o rti o n f u n cti o n gi v e n i n ( 3 3), a n d
V U (d ) is t h e i nf o r m ati o n al dis p e rsi o n, d e fi n e d i n ( 2 5) a n d
c o m p ut e d i n ( 6 4).

We pr e s e nt t w o c o n v er s e pr o of s i n t h e f oll o wi n g.  T h e
fir st o n e is a v ol u m etri c ar g u m e nt;  w hil e t h e s e c o n d o n e
r eli es o n a g e n er al c o n v er s e d eri v e d i n [ 1 5,  T h. 7] a n d a
n e w c o n c e ntr ati o n r e s ult o n t h e d -tilt e d i nf or m ati o n of t h e
G a u ss- M ar k o v s o ur c e.

A.  A  G e o m etri c  Pr o of

G e o m etri c all y, a n y (n , M , d , ) c o d e i n d u c e s a c o v eri n g of
(R n , P UUU ): t h e u ni o n of d - b alls c e nt er e d at t h e c o d e w or d s h a v e
pr o b a bilit y  m ass at l e ast 1 − .  C o n v erti n g t h e u n d erl yi n g pr o b-
a bilit y t o P ZZZ a n d u si n g t h e s y m m etr y of N (000 , σ 2 I),  w e o bt ai n
t h e f oll o wi n g l o w er b o u n d o n t h e n u m b er of c o d e w or d s M .
T h e ar g u m e nt r eli e s o n d et A = 1,  w h er e A is i n ( 4 8).

T h e o r e m 8. Gi v e n ∈ (0 , 1 ) a n d d ∈ (0 , d m a x ), t h e siz e of
a n y (n , M , d , ) c o d e f o r t h e  G a u ss- M a r k o v s o u r c e ( 5) m u st
s atisf y

M ≥
r (n , )

d

n / 2

, ( 7 8)

w h e r e r (n , ) is s u c h t h at

P ( G < n · r (n , ) / σ 2 ) = 1 − , ( 7 9)
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a n d  G is a r a n d o m v a ri a bl e distri b ut e d a c c o r di n g t o t h e
χ 2 - distri b uti o n  wit h n d e g r e es of fr e e d o m.

P r o of of T h e o r e m 8. A p p e n di x  D- A.

R e m a r k 2 . T h e or e m 8,  w hi c h a p pli es t o t h e  G a u ss- M ar k o v
s o ur c e, p ar all els [ 1 5,  T h. 3 6],  w hi c h a p pli es t o t h e i.i. d.
G a u ssi a n s o ur c e.  B ot h pr o of s r el y o n t h e v ol u m etri c  m et h o d,
t h o u g h t h e pr o of of  T h e or e m 8 r eq uir e s a d diti o n al ar g u m e nt s
r el at e d t o li n e ar tr a n sf or m ati o n s of t h e u n d erl yi n g s p a c e.
T h e or e m 8 yi el d s t h e o pti m al s e c o n d- or d er c o di n g r at e f or
t h e  G a u ss- M ar k o v s o ur c e o nl y i n t h e l o w dist orti o n r e gi m e
( a s  w e  will s e e i n t h e pr o of of  T h e or e m 7 b el o w),  w hil e
a n a n al y sis of [ 1 5,  T h. 3 6] gi v es t h e o pti m al s e c o n d- or d er
c o di n g r at e f or t h e i.i. d.  G a u ssi a n s o ur c e of a n y dist orti o n
[ 1 5,  T h. 4 0].

E q ui p p e d  wit h  T h e or e m 8,  w e ar e r e a d y t o pr o v e t h e
c o n v er s e i n  T h e or e m 7 f or d ∈ (0 , d c ].

Pr o of of T h e o r e m 7 b el o w t h e criti c al dist o rti o n. A p pl yi n g t h e
B err y- E ss e e n  T h e or e m i n  A p p e n di x  A- B t o ( 7 9) yi el d s

r (n , ) ≥ σ 2 1 +
2

n
Q − 1 +

C B E
√

n
. ( 8 0)

Pl u g gi n g ( 8 0) i nt o ( 7 8) a n d t a ki n g l o g arit h m s,  w e o bt ai n

R (n , d , ) ≥
1

2
l o g

σ 2

d
+

1

2 n
Q − 1 ( ) + O

1

n
, ( 8 1)

w h er e  w e u s e t h e  Ta yl or e x p a n si o n s of l o g (1 + x ) a n d t h e
i n v er s e Q -f u n cti o n.  T h e c o n v er s e b o u n d ( 8 1) h ol d s f or a n y

∈ (0 , 1 ) a n d d ∈ (0 , d m a x ).  B y ( 3 9) a n d ( 5 8),  w e s e e t h at ( 8 1)
is t h e s a m e as ( 7 7) f or d ∈ (0 , d c ], u p t o t h e s e c o n d- or d er
t er m. I n a d diti o n, ( 8 1) is sli g htl y str o n g er t h a n ( 7 7) i n t h e
t hir d- or d er t er m. F or d ∈ (d c , d m a x ), ( 8 1) is n ot ti g ht, e v e n

i n t h e fir st or d er si n c e R U (d ) > 1
2 l o g σ 2

d f or d ∈ (d c , d m a x ),
b y ( 3 9) a n d ( 4 3).

R e m a r k 3 . T h e c o n v er s e ( 8 1) h ol d s f or t h e g e n er al  G a u ssi a n
A R pr o c e ss es d e fi n e d i n ( 3 7).  T h e pr o of st a y s t h e s a m e, e x c e pt
t h at t h e  m atri x A i n ( 4 8) i s r e pl a c e d b y

A

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 . . . 0
− a 1 1 0 . . . 0
− a 2 − a 1 1 . . . 0

...
...

...
...

...
− a n − 1 . . . − a 2 − a 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. ( 8 2)

B.  C o n v e rs e  P r o of

T h e s e c o n d pr o of is b a s e d o n a g e n er al c o n v er s e b y  K o sti n a
a n d  Ver d ú [ 1 5], r e st at e d h er e f or c o n v e ni e n c e, a n d a c o n c e n-
tr ati o n r e s ult  w hi c h b o u n d s t h e diff er e n c e b et w e e n  XXX ( XXX , d )
a n d its a p pr o xi m ati o n  XXX ( XXX , d n ), f or d n d e fi n e d i n ( 8 6)
b el o w.

T h e o r e m 9 ( [ 1 5,  T h. 7]). Fi x d ∈ (0 , d m a x ). A n y (n , M , d , )
c o d e  m u st s atisf y

≥ s u p
γ ≥ 0

P  XXX ( XXX , d ) ≥ l o g M + γ − e x p (− γ ). ( 8 3)

T h e c o n v er s e b o u n d i n  T h e or e m 9 a b o v e pr o vi d e s a
l o w er b o u n d o n f or a n y (n , M , d , ) c o d e u si n g t h e
d -tilt e d i nf or m ati o n, a n d is u s e d t o d eri v e a c o n v er s e r es ult
o n t h e dis p er si o n of t h e st ati o n ar y  m e m or yl ess s o ur c e s i n
[ 1 5,  E q. ( 1 0 3) –( 1 0 6)].  T h e k e y st e p i n t h e pr o of of
[ 1 5,  E q. ( 1 0 3)-( 1 0 6)] is t o  writ e t h e d -tilt e d i nf or m ati o n as
a s u m of n i.i. d. r a n d o m v ari a bl es, t o  w hi c h t h e  B err y- E ss e e n
T h e or e m is a p pli e d.

F or t h e  G a u ss- M ar k o v s o ur c e XXX , u si n g ( 2 2), ( 3 1) a n d ( 6 5),
w e c a n  writ e t h e d -tilt e d i nf or m ati o n  XXX ( XXX , d ) a s a s u m of n
i n d e p e n d e nt ( b ut n ot i d e nti c al) r a n d o m v ari a bl es:

 XXX ( XXX , d ) =

n

i= 1

 X i ( X i , mi n ( θ n , σ 2
i )), ( 8 4)

w h er e θ n is gi v e n i n ( 3 1). I n d e e d, ( 8 4) is f urt h er si m pli fi e d
t o ( 6 3) i n t h e pr o of of  T h e or e m 2.  H o w e v er, it is h ar d t o
c o n d u ct n o n a s y m pt oti c a n al y sis u si n g ( 8 4) si n c e u n d er st a n d-
i n g t h e e v ol uti o n of b ot h θ n a n d σ 2

i ’s a s n gr o ws i n ( 8 4) is
c h all e n gi n g.  T h er ef or e,  w e a p pr o xi m at e  XXX ( XXX , d ) u si n g

 XXX ( XXX , d n ) =

n

i= 1

 X i ( X i , mi n ( θ , σ 2
i )), ( 8 5)

w h er e

d n
1

n

n

i= 1

mi n ( θ , σ 2
i ), ( 8 6)

a n d θ is t h e  w at er l e v el  m at c h e d t o d vi a t h e li miti n g r e v er s e
w at er filli n g ( 3 4).  T h e n, θ d o e s n ot d e p e n d e nt o n n i n ( 8 5).
Si n c e o ur  T h e or e m 4 a n d  L e m m a 1 i n S e cti o n III- C. 1 c a pt ur e
t h e e v ol uti o n of σ 2

i ’s a s n gr o ws, ( 8 5) is e a si er t o a n al y z e
t h a n ( 8 4) i n t h e n o n a s y m pt oti c r e gi m e.  T hr o u g h o ut t h e p a p er,
t h e r el ati o n s a m o n g a gi v e n dist orti o n d , t h e w at er l e v els θ ,

θ n , a n d t h e dist orti o n d n d e fi n e d i n ( 8 6), ar e θ n
( 3 1)

← → d
( 3 4)

← →

θ
( 3 1)

← → d n . N ot e t h at t h er e is n o dir e ct r e v er s e  w at er filli n g
r el ati o n b et w e e n d n i n ( 8 6) a n d θ n i n ( 3 1).  As s h o w n b y o ur
c o n c e ntr ati o n r e s ult  T h e or e m 1 0 i n t h e f oll o wi n g, t h e a p pr o x-
i m ati o n  XXX ( XXX , d n ) st a y s  wit hi n a c o n st a nt fr o m  XXX ( XXX , d ) wit h
pr o b a bilit y at l e ast 1 − O 1

n .

T h e o r e m 1 0 ( A p pr o xi m ati o n of t h e d - Tilt e d I nf or m ati o n). F o r
a n y d ∈ (0 , d m a x ), l et θ > 0 b e t h e  w at er l e v el  m at c h e d t o d
vi a t h e li miti n g r e v ers e  w at er filli n g ( 3 4). S u p p o s e  w e h a v e a
s e q u e n c e of dist o rti o n l e v els d n ∈ (0 , d m a x ) wit h t h e p r o p ert y
t h at t h e r e e xists a c o n st a nt h1 > 0 s u c h t h at f o r all n l a r g e
e n o u g h,

|d − d n | ≤
h 1

n
. ( 8 7)

T h e n, t h e r e e xists a c o n st a nt c̃ ∈ (0 , 1 ) s u c h t h at f o r a n y
u > 2 h 1

c̃ θ a n d all n l a r g e e n o u g h,  w e h a v e

P [| XXX ( XXX , d ) −  XXX ( XXX , d n )| ≤ u ] ≥ 1 −
1

n c̃ θ u
2 h 1

− 1
2
. ( 8 8)

P r o of of T h e o r e m 1 0. A p p e n di x  D- B.

I n t h e r e st of t his s e cti o n,  w e pr e s e nt t h e d et ail e d pr o of of
T h e or e m 7 f or a n y d ∈ (0 , d m a x ). T h e d -tilt e d i nf or m ati o n
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 XXX ( XXX , d ) is fir st a p pr o xi m at e d b y  XXX ( XXX , d n ) d e fi n e d i n ( 8 5),
w hi c h is a s u m of i n d e p e n d e nt r a n d o m v ari a bl es  w h o s e
e x p e ct ati o n s a n d v ari a n c e s a p pr o xi m at e t h e r at e- dist orti o n
f u n cti o n R U (d ) a n d t h e i nf or m ati o n al dis p er si o n V U (d ),
r e s p e cti v el y.  C o m bi ni n g t h e s e a p pr o xi m ati o n b o u n d s a n d
T h e or e m 9,  w e o bt ai n t h e c o n v er s e i n ( 7 7).  T h e d et ails
f oll o w.

P r o of of T h e o r e m 7. Fi x d ∈ (0 , d m a x ). L et θ > 0 b e t h e w at er
l e v el  m at c h e d t o d vi a t h e li miti n g r e v er s e  w at er filli n g ( 3 4).
N oti c e t h at d n , d e fi n e d i n ( 8 6), is t h e dist orti o n  m at c h e d t o
t h e  w at er l e v el θ vi a t h e n -t h or d er r e v er s e  w at er filli n g ( 3 1)
o v er σ 2

i ’s.  C o m p ari n g ( 3 1) a n d ( 8 6), a n d a p pl yi n g  T h e or e m 4
t o t h e f u n cti o n t → mi n (θ , t),  w e d e d u c e t h at t h er e e xists a
c o n st a nt C d > 0 s u c h t h at f or a n y n ≥ 1,

|d − d n | ≤
C d

n
. ( 8 9)

L et ȲYY b e t h e n - di m e n si o n al  G a u ssi a n r a n d o m v e ct or s u c h
t h at ( XXX , ȲYY ) f or m s a  R D F- a c hi e vi n g p air i n R XXX (n , d n ) d e fi n e d
i n ( 1 9).  N ot e t h at ȲYY d e fi n e d h er e i s i n d e e d diff er e nt fr o m
YYY i n ( 6 5),  w h er e ( XXX , YYY ) f or m s a  R D F- a c hi e vi n g p air i n
R XXX (n , d ). It is  w ell- k n o w n [ 1 0,  T h. 1 0. 3. 3] t h at ȲYY h a s
i n d e p e n d e nt c o or di n at es a n d si mil ar t o ( 6 5),

Ȳ i ∼ N (0 , m a x σ 2
i − θ , 0 ). ( 9 0)

B y t h e i n d e p e n d e n c e of Ȳ i ’s, ( 1 8) a n d ( 2 2),  w e h a v e

 XXX ( XXX , d n ) =

n

i= 1
Ȳ i

( X i , λ , mi n θ , σ 2
i ), ( 9 1)

w h er e

λ = − R XXX (n , d n ) = − R ( XXX , ȲYY , d n ). ( 9 2)

D e n ot e b y E i a n d V i t h e  m e a n s a n d t h e v ari a n c e s of

Ȳ i
( X i , λ , mi n θ , σ 2

i ) (t h e s u m m a n d s i n ( 9 1)).  B y t h e s a m e
c o m p ut ati o n s l e a di n g t o ( 2 3 3) a n d ( 2 3 4) i n  A p p e n di x  C- D,
w e h a v e

E i = m a x 0 ,
1

2
l o g

σ 2
i

θ
, ( 9 3)

V i = mi n
1

2
,

σ 4
i

2 θ 2
. ( 9 4)

We n o w d eri v e t h e a p pr o xi m ati o n of R U (d ) a n d V U (d )
u si n g t h e  m e a n s E i ’s a n d t h e v ari a n c e s V i ’s, r e s p e cti v el y.
A p pl yi n g  T h e or e m 4 t o t h e f u n cti o n t → m a x 0 , 1

2 l o g t
θ

i n ( 2 1) a n d ( 9 3), a n d t o t h e f u n cti o n t → mi n 1
2 , t2

2 θ 2 i n ( 6 4)

a n d ( 9 4),  w e c o n cl u d e t h at t h er e e xist t w o c o n st a nts c r , c v > 0
( d e p e n di n g o n d o nl y) s u c h t h at

n R U (d ) −

n

i= 1

E i ≤ c r , ( 9 5)

n V U (d ) −

n

i= 1

V i ≤ c v . ( 9 6)

N e xt,  w e c o n si d er t h e s e q u e n c e of dist orti o n l e v els {d n }∞
n = 1 ,

w hi c h s atis fi es t h e c o n diti o n ( 8 7) d u e t o ( 8 9).  D e fi n e t h e e v e nt

E  XXX ( XXX , d ) ≥  XXX ( XXX , d n ) −
4 C d

c̃ θ
, ( 9 7)

w h er e c̃ ∈ (0 , 1 ) is t h e c o n st a nt i n  T h e or e m 1 0 a n d C d > 0
is t h e c o n st a nt i n ( 8 9).  T h e or e m 1 0 i m pli es t h at

P [E ] ≥ 1 −
1

n
. ( 9 8)

L etti n g γ = 1
2 l o g n i n  T h e or e m 9,  w e s e e t h at if a n

(n , M , d , )- e x c e ss- dist orti o n c o d e e xists, t h e n

≥ P  XXX ( XXX , d ) ≥ l o g M +
l o g n

2
−

1
√

n
( 9 9)

≥ P  XXX ( XXX , d ) ≥ l o g M +
l o g n

2
|E P [E ] −

1
√

n
( 1 0 0)

≥ 1 −
1

n
P  XXX ( XXX , d n ) ≥ l o g M +

l o g n

2
+

4 C d

c̃ θ
−

1
√

n
,

( 1 0 1)

w h er e ( 1 0 1) is d u e t o ( 9 8) a n d ( 9 7). F or a n y fi x e d ∈ (0 , 1 ),
d e fi n e n a s

n + e x p (− γ ) +
C B E
√

n
+

1

n
, ( 1 0 2)

w h er e C B E i s t h e c o n st a nt i n t h e  B err y- E ss e e n  T h e or e m i n
A p p e n di x  A- B.  T h e n,  w e h a v e n ∈ (0 , 1 ) f or all n l ar g e
e n o u g h.  We c h o o s e M as

l o g M n R U (d ) + n V U (d ) Q − 1 ( n )

− γ − c r − c v Q − 1 ( n ) −
4 C d

c̃ θ
. ( 1 0 3)

Fr o m ( 9 5), ( 9 6) a n d ( 1 0 3),  w e h a v e

l o g M ≤

n

i= 1

E i + Q − 1 ( n )

n

i= 1

V i − γ −
4 C d

c̃ θ
. ( 1 0 4)

C o nti n ui n g t h e i n e q u alit y i n ( 1 0 1),  w e h a v e

≥ 1 −
1

n
P

n

i= 1
Ȳ i

( X i , λ , mi n θ , σ 2
i ) ≥

n

i= 1

E i + Q − 1 ( n )

n

i= 1

V i −
1

√
n

( 1 0 5)

≥ 1 −
1

n
n −

C B E
√

n
−

1
√

n
( 1 0 6)

≥ n −
1

n
−

1 + C B E
√

n
( 1 0 7)

= , ( 1 0 8)

w h er e ( 1 0 5) is b y ( 9 1) a n d t h e b o u n d ( 1 0 4); ( 1 0 6) is b y t h e
B err y- E ss e e n  T h e or e m i n  A p p e n di x  A- B; a n d ( 1 0 8) is b y t h e
c h oi c e of n i n ( 1 0 2).  C o n s e q u e ntl y, f or all n l ar g e e n o u g h,
a n y (n , M , d , )- e x c ess- dist orti o n c o d e  m u st s atisf y ≥ ,
s o  w e  m u st h a v e

R (n , d , ) ≥
l o g M

n
. ( 1 0 9)

Pl u g gi n g ( 1 0 3) i nt o ( 1 0 9) a n d a p pl yi n g t h e  Ta yl or e x p a n si o n
t o Q − 1 ( n ) yi el d s ( 7 7).
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V.  A C H I E V A BI L I T Y

T h e o r e m 1 1 ( A c hi e v a bilit y). Fi x a n y α > 0 .  C o n si d er t h e
G a u ss- M a r k o v s o u r c e d e fi n e d i n ( 5).  F o r a n y e x c e ss- dist o rti o n
p r o b a bilit y ∈ (0 , 1 ), a n d a n y dist o rti o n t h r e s h ol d d ∈
(0 , d m a x ), t h e  mi ni m u m a c hi e v a bl e s o u r c e c o di n g r at e is
b o u n d e d a s

R (n , d , ) ≤ R U (d ) +
V U (d )

n
Q − 1 ( ) + O

1

(l o g n )κ α
√

n
,

( 1 1 0)

w h e r e R U (d ) is t h e r at e- dist o rti o n f u n cti o n gi v e n i n ( 3 3);
V U (d ) is t h e i nf o r m ati o n al dis p e rsi o n, d e fi n e d i n ( 2 5) a n d
c o m p ut e d i n ( 6 4); a n d κ > 0 is t h e c o n st a nt i n ( 7 6).

T his s e cti o n pr e s e nts t h e pr o of of  T h e or e m 1 1.  We fir st
dis c u ss h o w b o u n d s o n t h e c o v eri n g n u m b er of n - di m e n si o n al
elli p s oi d s c a n b e c o n v ert e d i nt o a c hi e v a bilit y r es ults.  We t h e n
pr o c e e d t o pr e s e nt o ur pr o of of  T h e or e m 1 1,  w hi c h r eli e s o n
r a n d o m c o di n g [ 1 5,  C or oll ar y 1 1], a n d a l o w er b o u n d o n t h e
pr o b a bilit y of a dist orti o n d - b all u si n g t h e d -tilt e d i nf or m ati o n
 XXX ( XXX , d ).

A.  C o n n e cti o n s t o  C o v e ri n g  N u m b e r

D u m er et al. [ 3 5] c o n si d er e d t h e pr o bl e m of c o v eri n g a n
elli p s oi d u si n g t h e  mi ni m u m n u m b er of b alls i n R n , a n d
d eri v e d l o w er a n d u p p er b o u n d s o n t h at n u m b er.  Alt h o u g h
a n y u p p er b o u n d o n t h e c o v eri n g n u m b er i m pli es a n u p p er
b o u n d o n R (n , d , ), t h e u p p er b o u n d o n c o v eri n g n u m b er
i n [ 3 5] is n ot ti g ht e n o u g h t o yi el d t h e a c hi e v a bilit y dir e cti o n
of t h e  G a u ssi a n a p pr o xi m ati o n ( 5 6).  We pr o c e e d t o e x pl ai n
h o w t o o bt ai n a b o u n d o n R (n , d , ) fr o m t h e r e s ults i n [ 3 5].
A n elli p s oi d E n

rrr i s d e fi n e d b y

E n
rrr xxx ∈ R n :

n

i= 1

x 2
i

r 2
i

≤ 1 , ( 1 1 1)

w h er e rrr = (r 1 , . . . , r n ), a n d r i > 0 is o n e h alf of t h e l e n gt h
of t h e i- a xis of E n

rrr .  We s a y t h at a s u b s et M d ⊂ R n i s a
d - c o v eri n g4 of t h e elli p s oi d E n

rrr if

E n
rrr ⊆

yyy ∈ M d

B (yyy , d ), ( 1 1 2)

w h er e B (yyy , d ) is t h e d - b all c e nt er e d at yyy , d e fi n e d i n ( 4).  T h e
c o v eri n g n u m b er N (n , d ) of a n elli p s oi d E n

rrr i s d e fi n e d a s t h e
si z e of its  mi ni m al d - c o v eri n g.  T h e d - e ntr o p y H d ( E n

rrr ) is t h e
l o g arit h m of t h e c o v eri n g n u m b er

H d ( E n
rrr ) l o g N (n , d ). ( 1 1 3)

T h e r e s ult i n [ 3 5,  T h. 2] st at es t h at

H d ( E n
rrr ) = K d + o ( K d ) , ( 1 1 4)

w h er e

K d

i:r 2
i > n d

1

2
l o g

r 2
i

n d
. ( 1 1 5)

4 I n [ 3 5], t h e t er m ε - c o v eri n g  w as us e d i nst e a d of d - c o v eri n g us e d h er e.
T h e y ar e r el at e d b y ε =

√
n d .

D e s pit e t h e si mil arit y b et w e e n ( 1 1 5) a n d t h e r e v er s e  w at er fill-
i n g ( 3 0), t h e r e s ult i n ( 1 1 4) is n ot str o n g e n o u g h t o r e c o v er
e v e n t h e as y m pt oti c r at e- dist orti o n tr a d e off ( 3 0) u nl ess d ≤ d c .

I n o ur pr o bl e m, l et XXX b e t h e d e c orr el ati o n of UUU i n ( 5 0), t h e n
X 1 , . . . , X n ar e i n d e p e n d e nt z er o- m e a n  G a u ssi a n distri b ut e d
wit h v ari a n c es b ei n g σ 2

i d e fi n e d i n ( 5 3).  T h e r a n d o m v e ct or
XXX c o n c e ntr at es ar o u n d a n elli p s oi d  wit h pr o b a bilit y  m ass at
l e ast 1 − .  A p pl yi n g t h e  B err y- E ss e e n t h e or e m t o e x pr e ss r i ’s
i n ( 1 1 5),  w e d e d u c e t h at f or a n y ∈ (0 , 0 .5 ) a n d d ∈ (0 , d c ],

R (n , d , ) ≤
1

2
l o g

σ 2

d
+

Q − 1 ( )
√

2 n
+ o (1 ), ( 1 1 6)

w h er e t h e e xtr a o (1 ) t er m c o m e s fr o m t h e o ( K d ) t er m i n ( 1 1 4).
D u e t o t h at o (1 ) t er m, t h e b o u n d ( 1 1 6) is fir st- or d er o pti-
m al, b ut n ot s e c o n d- or d er o pti m al. Str e n g ht h e ni n g ( 1 1 4) t o
H d ( E n

rrr ) = K d + o
√

K d w o ul d all o w o n e t o r e pl a c e t h e

o (1 ) t er m i n ( 1 1 6) b y o 1√
n

, yi el di n g t h e ≤ ( a c hi e v a bilit y)

dir e cti o n of t h e  G a u ssi a n a p pr o xi m ati o n ( 5 6) i n t h e r e gi m e
of d ∈ (0 , d c ].  We d o n ot p ur s u e t his a p pr o a c h h er e. I n st e a d,
w e pr o v e ( 5 6) vi a t h e tilt e d i nf or m ati o n.

B.  O utli n e of t h e  A c hi e v a bilit y  Pr o of

We d es cri b e t h e  m ai n i d e as i n o ur a c hi e v a bilit y pr o of a n d
pr e s e nt t h e d et ails i n n e xt s u b s e cti o n.  O ur pr o of is i n s pir e d b y
t h e  w or k of  K o sti n a a n d  Ver d ú [ 1 5,  T h. 1 2],  w h er e t h e s a m e
pr o bl e m  w as a d dr e ss e d f or t h e st ati o n ar y  m e m or yl ess s o ur c e s.
H o w e v er, t h e pr o of t h er e c a n n ot b e dir e ctl y a p pli e d t o t h e
G a u ss- M ar k o v s o ur c e.  T h e r a n d o m c o di n g b o u n d, st at e d n e xt,
pr o vi d e s a n u p p er b o u n d o n t h e e x c ess- dist orti o n pr o b a bilit y

u si n g t h e pr o b a bilit y of t h e dist orti o n d - b alls.

L e m m a 2 ( R a n d o m  C o di n g  B o u n d). L et  XXX b e t h e d e c o rr el a-
ti o n of  UUU i n ( 5 0). T h er e e xists a n (n , M , d , ) c o d e  wit h

≤ i nf
P YYY

E XXX e − M P YYY (B ( XXX ,d )) , ( 1 1 7)

w h e r e t h e i n fi m u m is o v e r all p df ’s  P YYY o n R n wit h YYY
i n d e p e n d e nt of  XXX.

P r o of. A dir e ct a p pli c ati o n of [ 1 5,  C or oll ar y 1 1] t o XXX .
T h e n e xt l e m m a pr o vi d e s a l o w er b o u n d o n t h e pr o b a-

bilit y of t h e dist orti o n d - b alls u si n g t h e d -tilt e d i nf or m ati o n
 XXX ( XXX , d ).

L e m m a 3 ( L o ss y  A E P f or t h e  G a u ss- M ar k o v S o ur c es). Fi x
a n y α > 0 a n d l et η n b e i n ( 7 4) i n S e cti o n III- C. 2 a b o v e.
F o r a n y d ∈ (0 , d m a x ) a n d ∈ (0 , 1 ), t h e r e e xists a c o n st a nt
K > 0 s u c h t h at f o r all n l a r g e e n o u g h,

P l o g
1

P YYY (B ( XXX , d ))
≤  XXX ( XXX , d ) + β 1 l o gq n + β 2

≥ 1 −
K

(l o g n )κ α
, ( 1 1 8)

w h e r e  XXX is t h e d e c o rr el ati o n of  UUU i n ( 5 0); ( XXX , YYY ) f o r ms a
R D F- a c hi e vi n g p air i n R XXX (n , d ), a n d q > 1 , β1 > 0 , β2 a r e
c o n st a nts, s e e ( 2 7 1) a n d ( 2 7 2) i n  A p p e n di x  E- A b el o w. T h e
c o n st a nt κ > 0 is i n ( 7 6) i n S e cti o n III- C. 2 a b o v e.

P r o of. A p p e n di x  E- A.
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T o g et h er  wit h l o g 1
P Y (B ( x ,d )) ≥  X ( x , d ) i n [ 1 5,  E q. ( 2 6)],

o bt ai n e d b y a p pl yi n g  M ar k o v’s i n e q u alit y t o ( 2 2),  L e m m a 3
est a blis h es t h e li n k b et w e e n t h e pr o b a bilit y of dist orti o n d - b all
a n d t h e d -tilt e d i nf or m ati o n: l o g 1

P YYY (B ( XXX ,d )) ≈  XXX ( XXX , d )
f or t h e  G a u ss- M ar k o v s o ur c e.  R es ults of t his ki n d  w er e
r ef err e d t o as l o ss y as y m pt oti c e q ui p artiti o n pr o p ert y ( A E P) i n
[ 2 9, S e c. I. B].

L e m m a 3 is t h e k e y l e m m a i n o ur a c hi e v a bilit y pr o of f or
t h e  G a u ss- M ar k o v s o ur c e s.  T h e pr o of of  L e m m a 3 is o n e
of t h e  m ai n t e c h ni c al c o ntri b uti o n s of t his p a p er.  A n a n a-
l o g of  L e m m a 3 f or t h e st ati o n ar y  m e m or yl ess s o ur c es
[ 1 5,  L e m m a 2] h a s b e e n u s e d t o pr o v e t h e n o n- a s y m pt oti c
a c hi e v a bilit y r es ult [ 1 5, a c hi e v a bilit y pr o of of  T h. 1 2]. S h o w-
i n g a l o w er b o u n d o n t h e pr o b a bilit y of di st orti o n d - b alls i n
t er m s of  XXX ( XXX , d ), t h at is, i n t h e f or m of ( 1 1 8), is t e c h ni-
c al e v e n f or i.i. d. s o ur c e s.  T o d eri v e s u c h a b o u n d f or t h e
G a u ss- M ar k o v s o ur c e s,  w e r el y o n f u n d a m e nt all y n e w i d e a s,
i n cl u di n g t h e  m a xi m u m li k eli h o o d e sti m at or â (uuu ) d e fi n e d
i n ( 7 2) a n d a n al y z e d i n  T h e or e m 6 i n S e cti o n III- C. 2 a b o v e.
We pr o c e e d t o di s c u ss t h e e sti m at or a n d it s r ol e i n t h e pr o of
of  L e m m a 3 n e xt.

A  m aj or st e p i n pr o vi n g [ 1 5,  L e m m a 2] f or t h e i.i. d.
s o ur c e { X i } wit h X i ∼ P X i n v ol v es t h e e m piri c al pr o b a-
bilit y distri b uti o n P X̂ : gi v e n a s o ur c e s e q u e n c e xxx , P X̂ ( x )
1
n

n
i= 1 { x i = x }.  T h e pr o d u ct of t h e e m piri c al distri b uti o n s

P
X̂XX

P X̂ × . . . P X̂ w a s u s e d i n t h e pr o of of [ 1 5,  L e m m a 2]
f or t h e i.i. d. s o ur c e s [ 1 5,  E q. ( 2 7 0)] t o f or m a t y pi c al s et of
s o ur c e o ut c o m e s.

T o d e s cri b e a t y pi c al s et of o ut c o m e s of t h e  G a u ss- M ar k o v
s o ur c e, t o e a c h s o ur c e o ut c o m e xxx ( e q ui v al e ntl y, uuu )  w e ass o-
ci at e a pr o x y r a n d o m v ari a bl e X̂XX (xxx ) a s f oll o w s.  We fir st
esti m at e t h e p ar a m et er a i n ( 5) fr o m t h e s o ur c e o ut c o m e
uuu u si n g t h e  m a xi m u m li k eli h o o d e sti m at or â (uuu ) i n ( 7 2) i n
S e cti o n III- C. 2 a b o v e.  T h e n, t h e pr o x y r a n d o m v ari a bl e X̂XX (xxx )
is d e fi n e d a s a  G a u ssi a n r a n d o m v e ct or  wit h i n d e p e n d e nt
( b ut n ot i d e nti c al) c o or di n at es X̂ i (xxx ) ∼ N (0 , σ̂ 2

i (xxx )), w h er e
σ̂ 2

i (xxx )’s ar e t h e pr o x y v ari a n c e s d e fi n e d u si n g â (uuu ):

σ̂ 2
i (xxx )

σ 2

1 + ˆa (uuu )2 − 2 â (uuu ) c o s (iπ /( n + 1 ))
. ( 1 1 9)

E q ui v al e ntl y, X̂XX (xxx ) is a z er o- m e a n  G a u ssi a n r a n d o m v e ct or
w h o s e distri b uti o n is gi v e n b y

X̂XX (xxx ) ∼ N 000 , di a g ( σ̂ 2
1 (xxx ), . . . , σ̂ 2

n (xxx )) . ( 1 2 0)

T o si m plif y n ot ati o n s,  w h e n t h er e is n o a m bi g uit y,  w e  will
writ e X̂XX a n d σ̂ 2

i f or X̂XX (xxx ) a n d σ̂ 2
i (xxx ), r es p e cti v el y. I nt uiti v el y,

t h e f or m ul a ( 1 1 9) a p pr o xi m at es t h e ei g e n v al u e s of t h e c o v ari-
a n c e  m atri x of UUU ( or e q ui v al e ntl y, t h at of XXX ) f or a t y pi c al xxx .
D u e t o  T h e or e m 6,  wit h pr o b a bilit y a p pr o a c hi n g 1,  w e h a v e
â (UUU ) ≈ a ,  w hi c h i m pli es σ̂ 2

i ≈ σ 2
i a n d X̂XX ≈ XXX .  T h e a c c ur a c y

of t h e s e a p pr o xi m ati o n s is q u a nti fi e d i n  T h e or e m 1 2 b el o w,
w hi c h is t h e  m ai n t o ol i n t h e pr o of of  L e m m a 3.

We n e e d a f e w n ot ati o n s b ef or e pr e s e nti n g  T h e or e m 1 2.
Fir st,  w e p arti c ul ari z e t h e  C R E M pr o bl e m ( 1 2)-( 1 7) t o t h e
G a u ss- M ar k o v s o ur c e.  L et XXX b e t h e d e c orr el ati o n of UUU i n ( 5 0).
F or a n y r a n d o m v e ct or YYY wit h d e n sit y, r e pl a ci n g X b y XXX

i n ( 1 2) a n d n or m ali zi n g b y n , w e d e fi n e

R ( XXX , YYY , d ) i nf
P FFF |XXX :E [d ( XXX ,FFF )] ≤d

1

n
D ( P FFF |XXX ||P YYY |P XXX ). ( 1 2 1)

Pr o p erti es of t h e  C R E M ( 1 2 1) f or t h e t w o s p e ci al c a s e s:
w h e n (i) YYY is a  G a u ssi a n r a n d o m v e ct or  wit h i n d e p e n d e nt
c o or di n at es a n d (ii) ( XXX , YYY ) f or m s a  R D F- a c hi e vi n g p air, ar e

pr e s e nt e d i n  A p p e n di x  C- C.  L et F̂FF b e t h e o pti mi z er of
R ( X̂XX , YYY , d ), w h er e X̂XX is d e fi n e d i n ( 1 2 0) a n d YYY i n ( 6 5).
F or xxx ∈ R n , d e fi n e m i (xxx ) a s

m i (xxx ) E ( F̂ i − x i )
2 |X̂ i = x i . ( 1 2 2)

D e fi niti o n 1 ( M L E- T y pi c al S et). Fi x a n y d ∈ (0 , d m a x ).  Gi v e n
a c o n st a nt α > 0 , l et η n b e i n ( 7 4) i n S e cti o n III- C. 2 a b o v e.
F o r a n y c o n st a nt p > 0 a n d a n y n ∈ N , d e fi n e T (n , α, p ) a s
t h e s et of v e ct o rs uuu ∈ R n s atisf yi n g t h e f oll o wi n g c o n diti o n s :

â (uuu ) − a ≤ η n , ( 1 2 3)

1

n

n

i= 1

m i (xxx ) − d ≤ p η n , ( 1 2 4)

1

n

n

i= 1

x 2
i

σ 2
i

k

− (2 k − 1 )!! ≤ 2 , f o r k = 1 , 2 , 3 , ( 1 2 5)

w h er e xxx = S uuu, a n d  m i (xxx )’s a r e f u n cti o n s of xxx d e fi n e d
i n ( 1 2 2) a b o v e.

T h e c o n diti o n ( 1 2 3) r e q uir e s t h at uuu ∈ T (n , α, p ) s h o ul d
yi el d a s m all esti m ati o n err or,  w hi c h h ol d s  wit h pr o b a bilit y
a p pr o a c hi n g 1 d u e t o  T h e or e m 6.  We  will e x pl ai n t h e c o n di-
ti o n ( 1 2 4) i n  A p p e n di x  E- D b el o w.  T o g ai n i n si g ht i nt o t h e
c o n diti o n ( 1 2 5), n ot e t h at d u e t o ( 5 3),  w e h a v e X i

σ i
∼ N (0 , 1 )

a n d

E

⎡

⎣
X 2

i

σ 2
i

k
⎤

⎦ = (2 k − 1 )!!. ( 1 2 6)

T h er ef or e, t h e c o n diti o n ( 1 2 5) b o u n d s t h e v ari ati o n s of XXX ,
u p t o its si xt h  m o m e nts, a n d t his c o n diti o n h ol d s  wit h pr o b a-
bilit y a p pr o a c hi n g 1 b y t h e  B err y- E ss e e n t h e or e m.  T h e or e m 1 2
b el o w s u m m ari z e s t h e pr o p erti es of t h e t y pi c al s et T (n , α, p )
u s e d i n t h e pr o of of  L e m m a 3.

T h e o r e m 1 2 ( Pr o p erti es of t h e  M L E- T y pi c al S et). F o r a n y
d ∈ (0 , d m a x ) a n d a n y c o n st a nt α > 0 , l et η n b e gi v e n i n ( 7 4)
i n S e cti o n III- C. 2 a b o v e a n d p b e a s uf fi ci e ntl y l a r g e c o n st a nt
( s p e ci fi c all y, p ≥ ( 2 9 8) i n  A p p e n di x  E- B b el o w), t h e n  w e h a v e:

( 1). T h e p r o b a bilit y  m a ss of T (n , α, p ) is l a r g e: t h er e e xists
a c o n st a nt  A 1 > 0 s u c h t h at f o r all n l a r g e e n o u g h,

P [UUU ∈ T (n , α, p )] ≥ 1 −
A 1

(l o g n )κ α , ( 1 2 7)

w h e r e t h e c o n st a nt κ is d e fi n e d i n ( 7 6) i n S e cti o n III- C. 2
a b o v e.

( 2). T h e p r o x y v a ri a n c e s a r e g o o d a p p r o xi m ati o n s: t h e r e
e xists a c o n st a nt  A 2 > 0 s u c h t h at f o r all n l a r g e e n o u g h,
f o r a n y uuu ∈ T (n , α, p ), it h ol d s t h at

σ̂ 2
i (xxx ) − σ 2

i ≤ A 2 η n , ∀ i ∈ [ n ], ( 1 2 8)
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w h e r e σ̂ 2
i (xxx )’s a r e d e fi n e d i n ( 1 1 9).

( 3). L et θ > 0 b e t h e  w at er l e v el  m at c h e d t o d vi a t h e li miti n g
r e v ers e  w at er filli n g ( 3 4).  F o r all n l a r g e e n o u g h, f o r a n y
uuu ∈ T (n , α, p ), it h ol d s t h at

λ̂ (xxx ) − λ ≤
9 A 2

4 θ 2
η n , ( 1 2 9)

w h e r e xxx = S uuu  wit h S i n ( 5 1); λ is gi v e n b y ( 2 3);

λ̂ (xxx ) = − R X̂XX , YYY , d ; ( 1 3 0)

XXX is t h e d e c o rr el ati o n of  UUU i n ( 5 0); ( XXX , YYY ) f o r ms a
R D F- a c hi e vi n g p air i n R XXX (n , d ); a n d X̂XX is t h e p r o x y
G a u ssi a n r a n d o m v a ri a bl e d e fi n e d i n ( 1 2 0).

P r o of. A p p e n di x  E- B.

C.  A c hi e v a bilit y  Pr o of

P r o of of T h e o r e m 1 1. T h e pr o of is b a s e d o n t h e r a n d o m c o di n g
b o u n d  L e m m a 2 a n d t h e l o w er b o u n d i n  L e m m a 3. Fi x a n y
d ∈ (0 , d m a x ) a n d ∈ (0 , 1 ), a n d l et θ > 0 b e t h e w at er
l e v el  m at c h e d t o d vi a t h e li miti n g r e v er s e  w at er filli n g ( 3 4).
We r e u s e t h e n ot ati o n s i n ( 8 9)-( 9 6). Si mil ar t o t h e e v e nt E
i n ( 9 7),  w e d e fi n e t h e e v e nt F as

F  XXX ( XXX , d ) ≤  XXX ( XXX , d n ) +
4 C d

c̃ θ
. ( 1 3 1)

T h e or e m 1 0 i m pli es t h at

P [F ] ≥ 1 −
1

n
. ( 1 3 2)

D e fi n e n a s

n −
C B E + 1

√
n

−
K

(l o g n )κ α
−

1

n
. ( 1 3 3)

Si n c e ∈ (0 , 1 ), w e h a v e n ∈ (0 , 1 ) f or all n l ar g e e n o u g h.
C h o o s e M as

l o g M n R U (d ) + n V U (d ) Q − 1 ( n ) + l o g
l o g n

2
+

β 1 l o gq n + β 2 + c r + c v Q − 1 ( n ) +
4 C d

c̃ θ
, ( 1 3 4)

w h er e q > 1 , β1 > 0 , β2 ar e t h e c o n st a nts i n  L e m m a 3; a n d
c r , c v ar e t h e p o siti v e c o n st a nts i n ( 9 5) a n d ( 9 6).  D e fi n e t h e
r a n d o m v ari a bl e G n a s

G n l o g M −  XXX ( XXX , d n ) − β 1 l o gq n − β 2 −
4 C d

c̃ θ
, ( 1 3 5)

w h er e  XXX ( XXX , d n ) is i n ( 9 1).  B y ( 9 5), ( 9 6), a n d ( 1 3 5),  w e h a v e

G n ≥

n

i= 1

E i + Q − 1 ( n )

n

i= 1

V i −  XXX ( XXX , d n ) + l o g
l o g n

2
,

( 1 3 6)

w h er e E i ’s a n d V i ’s ar e d e fi n e d i n ( 9 3) a n d ( 9 4), r e s p e cti v el y.
D e fi n e t h e e v e nt G as

G G n < l o g
l o g n

2
. ( 1 3 7)

B y ( 1 3 6), ( 9 1) a n d t h e  B err y- E ss e e n  T h e or e m,  w e h a v e

P [G ] ≤ P

⎡

⎣  XXX ( XXX , d n ) −

n

i= 1

E i > Q − 1 ( n )

n

i= 1

V i

⎤

⎦

( 1 3 8)

≤ n +
C B E
√

n
. ( 1 3 9)

D e fi n e t h e e v e nt L as :

L

l o g
1

P YYY (B ( XXX , d ))
≤ l o g M − G n ( 1 4 0)

= l o g
1

P YYY (B ( XXX , d ))
≤  XXX ( XXX , d n ) + β 1 l o gq n + β 2 +

4 C d

c̃ θ
,

( 1 4 1)

w h er e YYY is gi v e n i n ( 6 5).  C o m bi ni n g  L e m m a 3 a n d ( 1 3 2)
yi el d s

P [L ] ≥ 1 −
1

n
−

K

(l o g n ) κ α . ( 1 4 2)

I n d e e d, d e n oti n g t h e pr o b a bilit y o n t h e l ef t- h a n d si d e of ( 1 1 8)
b y P [H ],  w e h a v e

P [H ] = P [H ∩ F ] + P H ∩ F c ( 1 4 3)

≤ P [L ] +
1

n
, ( 1 4 4)

w h er e ( 1 4 4) h ol d s si n c e H ∩ F ⊆ L .
We h a v e n o w g at h er e d all t h e i n gr e di e nts t o pr o v e  T h e o-

r e m 1 1.  R e pl a ci n g YYY b y YYY i n  L e m m a 2,  w e c o n cl u d e t h at
t h er e e xists a n (n , M , d , ) c o d e  wit h

≤ E XXX e − M P YYY (B ( XXX ,d )) ( 1 4 5)

= E XXX e − M P YYY (B ( XXX ,d )) {L } + E XXX e − M P YYY (B ( XXX ,d )) L c

( 1 4 6)

≤ E XXX e − e G n
+

K

(l o g n )κ α
+

1

n
( 1 4 7)

= E XXX e − e G n
{G } + E XXX e − e G n

G c +
K

(l o g n )κ α
+

1

n

( 1 4 8)

≤ P (G ) +
1

√
n

P (G c ) +
K

(l o g n )κ α
+

1

n
( 1 4 9)

≤ n +
C B E + 1

√
n

+
K

(l o g n )κ α
+

1

n
( 1 5 0)

= , ( 1 5 1)

w h er e ( 1 4 5) is b y  w e a k e ni n g ( 1 1 7) u si n g YYY = YYY ; ( 1 4 7)
h ol d s b y ( 1 4 2) a n d {L } M P YYY (B ( XXX , d )) ≥ e G n ; ( 1 4 9) h ol d s

si n c e e − e G n
≤ 1 a n d {G c } e − e G n

≤ 1√
n
; ( 1 5 0) is b y ( 1 3 9);

a n d ( 1 5 1) is b y t h e c h oi c e of n i n ( 1 3 3).  C o n s e q u e ntl y, si n c e
t h er e e xists a n (n , M , d , ) c o d e  wit h ≤ , w e m u st h a v e

R (n , d , ) ≤
l o g M

n
, ( 1 5 2)
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w h er e l o g M is gi v e n b y ( 1 3 4). Si mil ar t o t h e c o n v er s e pr o of,
pl u g gi n g ( 1 3 4) i nt o ( 1 5 2) a n d t h e n u si n g t h e  Ta yl or e x p a n si o n
of Q − 1 ( n ) yi el d s ( 1 1 0).

VI.  C O N C L U S I O N

I n t his p a p er,  w e d eri v e d t h e r e v er s e  w at er filli n g c h ar a c-
t eri z ati o n ( 5 7) of t h e dis p er si o n f or l o ss y c o m pr essi o n of t h e
G a u ss- M ar k o v s o ur c e ( 5)  wit h |a | < 1 ( T h e or e m 1).  T his is
t h e fir st dis p er si o n r e s ult f or l o ss y c o m pr e ssi o n of s o ur c e s  wit h
m e m or y. I n d oi n g s o,  w e d e v el o p e d s e v er al n o v el t e c h ni c al
t o ols,  w hi c h ar e hi g hli g ht e d b el o w.

• We d eri v e d t h e e x pr essi o n f or t h e li miti n g v ari a n c e of
t h e d -tilt e d i nf or m ati o n f or t h e  G a u ss- M ar k o v s o ur c e i n
T h e or e m 2. Its pr o of r eli es o n o ur p ar a m etri c r e pr e s e nt a-
ti o n f or t h e d -tilt e d i nf or m ati o n, pr es e nt e d i n  L e m m a 7
i n  A p p e n di x  C- D.

• T h e or e m 4 pr e s e nt e d a n o n a s y m pt oti c r e fi n e m e nt of
Gr a y’s r e s ult [ 5] (r e st at e d i n  T h e or e m 3) o n t h e ei g e n-
v al u e distri b uti o n of t h e c o v ari a n c e  m atri x of t h e r a n-
d o m v e ct or UUU fr o m t h e  G a u ss- M ar k o v s o ur c e.  T h e k e y
t o ol  w e d e v el o p e d t o pr o v e  T h e or e m 4 is  L e m m a 1
i n S e cti o n III- C. 1,  w hi c h is a s h ar p b o u n d r el ati n g t h e
ei g e n v al u e s of t w o s e q u e n c e s of s y m m etri c tri di a n g o n al
m atri c es.

• T h e  m a xi m u m li k eli h o o d e sti m at or â (uuu ), d e fi n e d i n ( 7 2)
a n d a n al y z e d i n  T h e or e m s 5 a n d 6, is of i n d e p e n d e nt
i nt er est as it all o ws o n e t o esti m at e t h e distri b uti o n of uuu
dr a w n fr o m t h e cl a ss of t h e  G a u ss- M ar k o v s o ur c e s  wit h
u n k n o w n a .  T h e err or b o u n d s i n  T h e or e m 5 r el y o n t h e
H a n s o n- Wri g ht i n e q u alit y [ 2 5,  T h. 1. 1].  T h at i n e q u alit y
a p pli es b e y o n d t h e c a s e  w h e n Z i ’s ar e  G a u ssi a n,  w hi c h
m e a n s t h at o ur a p pr o a c h c a n b e a p pli e d t o ot h er s o ur c e s
wit h  m e m or y.

• T o pr o v e a c hi e v a bilit y,  w e c o n str u ct e d a t y pi c al s et i n
D e fi niti o n 1 b as e d o n t h e  m a xi m u m li k eli h o o d esti m at or.
T his i d e a of c o n str u cti n g t y pi c al s ets vi a esti m at or s c o ul d
als o fi n d its u s e i n ot h er pr o bl e m s.

Fi n all y,  w e dis c u ss s e v er al o p e n pr o bl e m s.

• T h e dis p er si o n f or  G a u ss- M ar k o v s o ur c e s  wit h |a | ≥ 1
is u n k n o w n.  T his p a p er tr e ats t h e a s y m pt oti c all y st a-
ti o n ar y c as e, i. e., |a | < 1.  T h e c a s e |a | ≥ 1 is f u n-
d a m e nt all y diff er e nt, si n c e t h at s o ur c e is n o n st ati o n ar y.
T h e r at e- dist orti o n f u n cti o n s f or n o n st ati o n ar y  G a u ssi a n
a ut or e gr e ssi v e pr o c e ss es  w er e fir st d eri v e d b y  Gr a y
[ 5,  E q. ( 2 2)] i n 1 9 7 0, a n d l at er i n 1 9 8 0 b y  H as hi m ot o a n d
Ari m ot o [ 3 4,  E q.( 6)] i n a n e q ui v al e nt b ut disti n ct f or m;
t h at e q ui v al e n c e  w a s s h o w n b y  Gr a y a n d  H as hi m ot o [ 3 6]
i n 2 0 0 8.  Gr a y’s r e v er s e  w at er filli n g [ 5,  E q. ( 2 2)] is
diff er e nt fr o m  K ol m o g or o v’s r e v er s e  w at er filli n g ( 3 3) i n
t h e n o n st ati o n ar y c a s e,  w h er e t h e l at er d o e s n ot a p pl y.
T h er ef or e, i n or d er t o c h ar a ct eri z e t h e dis p er si o n f or t h e
c a s e |a | ≥ 1, o n e  w o ul d n e e d t o u s e  Gr a y’s r e v er s e
w at er filli n g [ 5,  E q. ( 2 2)] f or R U (d ).

• A n at ur al g e n er ali z ati o n of t his  w or k  w o ul d b e t o c o n-
si d er t h e dis p er si o n f or t h e g e n er al st ati o n ar y  G a u ssi a n
a ut or e gr e ssi v e pr o c e ss es ( 3 7).  T h e g e o m etri c c o n v er s e
pr o of i n S e cti o n I V alr e a d y yi el d s a c o n v er s e b o u n d o n

R (n , d , ),  w hi c h is ti g ht i n t h e l o w dist orti o n r e gi m e
d ∈ (0 , d c ] i n t h e fir st- or d er t er m;  w e c o nj e ct ur e it is
als o ti g ht i n t h e s e c o n d- or d er t er m.  A p o ssi bl e  w a y t o
s h o w a  m at c hi n g a c hi e v a bilit y b o u n d f or t h e  G a u ssi a n
A R pr o c e ss es of or d er m , i n s pir e d b y t h e e sti m ati o n i d e a
i n t his p a p er, is t o a n al y z e a n esti m at or  w hi c h esti m at es
t h e v e ct or aaa = (a 1 , . . . , a m ) i n ( 3 7) i n st e a d of t h e s c al ar
a .  T o d e al  wit h l ar g e dist orti o n s, i. e. d > d c , s h ar p b o u n d s
o n ei g e n v al u e s of A A wit h A gi v e n b y ( 8 2) n e e d t o b e
d eri v e d, si mil ar t o  L e m m a 1 i n S e cti o n III- C. 1; t h e t o ols
i n  A p p e n di x  C- A  mi g ht b e u s ef ul.

• A f or m ul a ( a n al o g o u s t o ( 5 6)) f or t h e c h a n n el dis p er si o n
of t h e  G a u ssi a n i nt er s y m b ol i nt erf er e n c e (I SI) c h a n n els,
s e e [ 3 7,  E q. ( 2 9)],  w as pr e s e nt e d i n [ 3 7,  T h. 5]  wit h o ut
pr o of.  T h e c h a n n el c a p a cit y of t h e  G a u ssi a n I SI c h a n n el
is  w ell- k n o w n, e. g. [ 3 8,  T h.] a n d [ 3 9,  T h. 1].  T h e t o ols
i n t his p a p er  mi g ht b e u s ef ul i n o bt ai ni n g a pr o of of t h e
c h a n n el dis p er si o n f or  G a u ssi a n I SI c h a n n els i n [ 3 7,  T h.
5].

• A f u n d a m e nt al pr o bl e m l eft o p e n is h o w  wi d el y t h e
li miti n g f or m ul a f or t h e dis p er si o n

V (d ) = li m s u p
n → ∞

1

n
Va r [  XXX ( XXX , d )] ( 1 5 3)

a p pli es.  T h e or e m 1 a n d  T h e or e m 2 est a blis h e d its v ali dit y
f or t h e  G a u ss- M ar k o v s o ur c e.  We c o nj e ct ur e t h at it c o n-
ti n u e s t o a p pl y  w h e n e v er t h e c e ntr al li mit t h e or e m t y p e
of r e s ults c a n b e d eri v e d f or  XXX ( XXX , d ).

A P P E N D I X A

A.  A  R o a d m a p of t h e  P a p e r

T h e r el ati o n s of o ur  m ai n t h e or e m s, l e m m a s, c or oll ari e s ar e
pr e s e nt e d i n Fi g. 4.

B.  Cl a ssi c al T h e o r e ms

T h e o r e m 1 3 ( B err y- E ss e e n  T h e or e m, e. g. [ 4 0,  C h. 1 6. 5]). L et
W 1 , . . . , W n b e a c oll e cti o n of i n d e p e n d e nt z er o- m e a n r a n d o m
v ari a bl es  wit h v ari a n c es  V 2

i > 0 a n d fi nit e t hir d a b s ol ut e

m o m e nt T i E [|W i |
3 ] < + ∞ .  D e fi n e t h e a v e r a g e v a ri a n c e

V 2 a n d a v e r a g e t hir d a b s ol ut e  m o m e nt T a s

V 2 1

n

n

i= 1

V 2
i , T

1

n

n

i= 1

T i . ( 1 5 4)

T h e n f o r n ∈ N ,  w e h a v e

s u p
t∈ R

P
1

V
√

n

n

i= 1

W i < t − (t) ≤
6 T

V 3
√

n
, ( 1 5 5)

w h e r e is t h e c df of t h e st a n d a r d n o r m al distri b uti o n N (0 , 1 ).

R e m a r k 4 . Si n c e i n t his p a p er,  w e o nl y c o n si d er r a n d o m
v ari a bl es W i ’s  wit h b o u n d e d p -t h  m o m e nt f or a n y fi nit e p ,
it is e as y t o c h e c k t h at t h er e e xists a c o nst a nt C B E > 0 s u c h
t h at

s u p
t∈ R

P
1

V
√

n

n

i= 1

W i < t − (t) ≤
C B E
√

n
. ( 1 5 6)
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Fi g. 4.  A r o a d m a p of t h e p a p er: a n arr o w fr o m bl o c k A t o bl o c k B m e a ns t h at t h e d eri v ati o n of bl o c k B is b as e d o n bl o c k A .  O ur  m ai n r es ult is  T h e or e m 1.
T h e li g htl y s h a d e d bl o c ks c o nsist of r es ults t h at ar e n o v el a n d r el ati v el y e asi er t o o bt ai n,  w hil e t h e h e a vil y s h a d e d bl o c ks c o nsist of o ur  m ai n t e c h ni c al
c o ntri b uti o ns.

W hil e t h e c o n st a nt C B E d e p e n d s o n t h e r a n d o m v ari a bl es W i ’s,
t o si m plif y n ot ati o n s,  w e u s e C B E i n all a p pli c ati o n s of t h e
B err y- E ss e e n  T h e or e m.

C. J u sti fi c ati o n of ( 1 1)

We pr o vi d e a s h ort j u sti fi c ati o n of h o w ( 1 1) f oll o ws
fr o m [ 2 7].  We u s e t h e s a m e n ot ati o n s i n [ 2 7].  We d e n ot e P t h e
distri b uti o n of t h e s o ur c e X , a n d Q 0 t h e o pti m al r e pr o d u cti o n
distri b uti o n i n R X (d ), t h at is, Q 0 is t h e Y - m ar gi n al of a
mi ni mi z er P̃ 0 . Fir st, [ 2 7,  C or oll ar y,  E q. ( 1. 2 5)] s h o ws t h at

R X (d ) = m a x
α ( x ), s

E P l o g α ( X ) − s d . ( 1 5 7)

N e xt, t h e pr o of of [ 2 7,  L e m m a 1. 4] i n [ 2 7,  E q. ( 1. 2 7)-( 1. 3 2)]
s h o ws t h at t h e  m a xi mi z er ( α (·), s ) is gi v e n
b y [ 2 7,  E q. ( 1. 1 5)]  wit h s = λ d u e t o [ 2 7,  E q. ( 1. 1 2)]. F or
c o n v e ni e n c e,  w e  writ e d o w n [ 2 7,  E q. ( 1. 1 5)]:

α ( x ) =
1

E Q 0 [e x p (− λ d ( x , Y ))]
, ( 1 5 8)

w h er e Y ∼ Q 0 . Fi n all y, pl u g gi n g ( 1 5 8) i nt o ( 1 5 7) yi el d s ( 1 1).

A P P E N D I X B
P R O O F S I N S E C T I O N III

A.  C o r n er  P oi nts o n t h e  Dis p ersi o n  C u r v e

We d eri v e ( 6 1) u si n g t h e r e si d u e t h e or e m fr o m c o m pl e x
a n al y sis [ 4 1,  T h. 1 7]. Si mil ar i d e a s h a v e b e e n a p pli e d b y

B er g er [ 1 1,  C h. 6, p. 2 3 2] a n d  Gr a y [ 3 6,  E q. ( 1 2)] t o st u d y
t h e r at e- dist orti o n f u n cti o n s f or t h e n o n st ati o n ar y  G a u ssi a n  A R
pr o c e ss es ( 3 7).  T h e c o or di n at e of P 1 i n Fi g. 3 c a n b e e asil y
o bt ai n e d as f oll o ws.  T h e  w at er l e v el  m at c h e d t o d c vi a ( 3 4) is
θ mi n i n ( 4 0).  H e n c e, ( 5 7) i s si m pli fi e d a s

V U (d c ) =
1

4 π

π

− π
1 d w =

1

2
. ( 1 5 9)

T o tr e at P 2 , n ot e t h at t h e  w at er l e v el  m at c h e d t o d m a x vi a ( 3 4)
is θ m a x i n ( 4 1),  w hi c h, d u e t o ( 3 5), e q u als,

θ m a x =
σ 2

(1 − a )2
. ( 1 6 0)

T his i m pli es t h at ( 5 7) e v al u at es as

V U (d m a x ) =
σ 4

4 π θ 2
m a x

π

− π

1

( g ( w ))2
d w. ( 1 6 1)

I n v o ki n g t h e r e si d u e t h e or e m [ 4 1,  T h. 1 7],  w e  will o bt ai n t h e
i nt e gr al

I
π

− π

1

( g ( w ))2
d w =

2 π ( 1 + a 2 )

(1 − a 2 )3
, ( 1 6 2)

w hi c h  will c o m pl et e t h e d eri v ati o n.  T o t h at e n d, c h a n g e
v ari a bl es u si n g z = e jw a n d r e writ e

g ( w ) = 1 + a 2 − a (z + z − 1 ) ( 1 6 3)

= (z − 1 − a )(z − a ). ( 1 6 4)
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T h e i nt e gr al I is t h e n

I =
|z | =1

z

ja 2 (z − a − 1 )2 (z − a )2
d z ( 1 6 5)

= 2 π j R e sz = a
z

ja 2 (z − a − 1 )2 (z − a )2
( 1 6 6)

=
2 π

a 2
li m
z → a

d

d z

z

(z − a − 1 )2
( 1 6 7)

=
2 π ( 1 + a 2 )

(1 − a 2 )3
, ( 1 6 8)

w h er e ( 1 6 5) is b y t h e c h a n g e of v ari a bl e z = e jw ; ( 1 6 6) is
d u e t o t h e r e si d u e t h e or e m a n d a ∈ [ 0 , 1 ); a n d ( 1 6 7) is t h e
st a n d ar d  m et h o d of c o m p uti n g r e si d u e s.

B. T w o I nt e r p r et ati o n s of t h e  M a xi m u m  Dist o rti o n

We pr e s e nt t h e c o m p ut ati o n d et ails of ( 4 7) a n d h o w ( 4 2)
l e a d s t o ( 4 6).  Usi n g t h e s a m e t e c h ni q u e a s i n ( 1 6 5)-( 1 6 8),
w e c o m p ut e ( 4 2) a s

d m a x =
σ 2

2 π |z | =1

1

jz (z − 1 − a )(z − a )
d z ( 1 6 9)

= σ 2 R e s z = a
1

− a (z − a − 1 )(z − a )
( 1 7 0)

= σ 2 li m
z → a

1

− a (z − a − 1 )
( 1 7 1)

=
σ 2

1 − a 2
. ( 1 7 2)

T o c o m p ut e t h e st ati o n ar y v ari a n c e, t a k e t h e v ari a n c e o n b ot h
si d e s of ( 5),

Va r [ U i ] = a 2 Va r U i− 1 + σ 2 , ( 1 7 3)

t h e n t a ki n g t h e li mit o n b ot h si d e s of ( 1 7 3),  w e h a v e

li m
i→ ∞

Va r [ U i ] = a 2 li m
i→ ∞

Va r U i− 1 + σ 2 , ( 1 7 4)

w hi c h i m pli es

li m
i→ ∞

Va r [ U i ] =
σ 2

1 − a 2
. ( 1 7 5)

A P P E N D I X C
P R O O F S I N S E C T I O N II

A.  Ei g e n v al u e s of  N e arl y T o e plitz Tri di a g o n al  M atri c es

F or c o n v e ni e n c e,  w e r e c or d t w o i m p ort r e s ult s fr o m  m atri x
t h e or y.

T h e o r e m 1 4 ( C a u c h y I nt erl a ci n g  T he or e m f or  Ei g e n v al-
u e s [ 4 2, p. 5 9]) . L et H b e a n n × n  H er miti a n  m atri x p a rtiti o n e d

a s H =
P

, w h er e P is a n (n − 1 ) × (n − 1 ) p ri n ci p al

s u b m atri x of H . L et λ 1 (P ) ≤ λ 2 (P ) . . . ≤ λ n − 1 (P ) b e t h e
ei g e n v al u e s of P , a n d λ 1 (H ) ≤ λ 2 (H ) . . . ≤ λ n (H ) b e t h e
ei g e n v al u e s of H , t h e n λ i (H ) ≤ λ i (P ) ≤ λ i+ 1 (H ) f o r i =
1 , . . . , n − 1 .

T h e o r e m 1 5 ( G er s h g ori n  Cir cl e  T h e or e m [ 4 3, p. 1 6,  T h.
1. 1 1]) . L et M b e a n y n × n  m atri x,  wit h e ntri es  m ij .

D e fi n e r i j = i m i j , ∀ i ∈ [ n ], t h e n f o r a n y ei g e n v al u e
λ of M , t h er e e xists i ∈ [ n ] s u c h t h at |λ − m ii | ≤ r i .

P r o of of L e m m a 1. T o i n di c at e t h e di m e n si o n, d e n ot e b y A n

t h e  m atri x A d e fi n e d i n ( 4 8), a n d d e n ot e

B n A n A n ( 1 7 6)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 + a 2 − a 0 0 . . . 0
− a 1 + a 2 − a 0 . . . 0

0 − a 1 + a 2 − a
...

...
...

...
...

...
...

...
...

... 0 − a 1 + a 2 − a
0 . . . . . . 0 − a 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

( 1 7 7)

N oti c e t h at  w e o bt ai n a tri di a g o n al  T o e plit z  m atri x W n if t h e
(n , n )-t h e ntr y of B n i s r e pl a c e d b y 1 + a 2 :

W n =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 + a 2 − a 0 0 . . . 0
− a 1 + a 2 − a 0 . . . 0

0 − a 1 + a 2 − a
...

...
...

...
...

. ..
...

...
...

... 0 − a 1 + a 2 − a
0 . . . . . . 0 − a 1 + a 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

( 1 7 8)

w h o s e ei g e n v al u es ξ (n )
1 ≤ ξ (n )

2 . . . ≤ ξ (n )
n ar e gi v e n b y ( 6 9),

s e e [ 4 4,  E q. ( 4)].  At a n i nt uiti v e l e v el,  w e e x p e ct ξ
(n )
i ’s t o

a p pr o xi m at e µ i ’s  w ell si n c e B n a n d W n diff er i n o nl y o n e
e ntr y.  T h e fir st p art of t h e pr o of a p pli es t h e  C a u c h y i nt erl a ci n g
t h e or e m ( T h e or e m 1 4) t o s h o w ( 7 0) f or 2 ≤ i ≤ n . T h e
b o u n d ( 7 0) f or i = 1 is pr o v e d vi a t h e  G er s h g ori n cir cl e
t h e or e m ( T h e or e m 1 5) i n t h e s e c o n d p art.

A p pl yi n g  T h e or e m 1 4 b y p artiti o ni n g B n a s

B n =
W n − 1

1
, ( 1 7 9)

w e o bt ai n

µ i ≤ ξ
(n − 1 )
i ≤ µ i+ 1 , ∀ i ∈ [ n − 1 ]. ( 1 8 0)

O n t h e ot h er h a n d, si n c e W n B n i n t h e s e mi d e fi nit e or d er,
w e h a v e

ξ (n )
i ≥ µ i , ∀ i ∈ [ n ]. ( 1 8 1)

C o m bi ni n g ( 1 8 0) a n d ( 1 8 1) yi el d s

ξ (n − 1 )
i− 1 ≤ µ i ≤ ξ (n )

i , ∀ i = 2 , . . . , n . ( 1 8 2)

Si m pl e al g e br ai c  m a ni p ul ati o n s u si n g ( 6 9) a n d ( 1 8 2) l e a d t o

ξ
(n )
i − µ i ≤ ξ

(n )
i − ξ

(n − 1 )
i− 1 ≤

2 π a

n
, ∀ i = 2 , . . . , n . ( 1 8 3)

T o b o u n d t h e diff er e n c e ξ (n )
1 − µ 1 ,  w e a p pl y  T h e or e m 1 5 t o

B n .  N ot e t h at f or B n , w e h a v e r 1 = r n = a a n d r i = 2 a , ∀ i =
2 , . . . , n − 1 (r e c all r i ’s d e fi n e d i n  T h e or e m 1 5). F or t h e
ei g e n v al u e µ 1 , t h er e e xists j ∈ [ n ] s u c h t h at |µ 1 − B j j | ≤ r j .
T h e f oll o wi n g a n al ys es l e a d t o µ 1 ≥ (1 − a )2 :
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Fi g. 5.  B o u n d t h e i nt e gr al I b y  Ri e m a n n s u m s.

• If 2 ≤ j ≤ n − 1, t h e n |µ 1 − (1 + a 2 )| ≤ 2 a , w hi c h
i m pli es t h at µ 1 ≥ 1 + a 2 − 2 a .

• If j = 1, t h e n |µ 1 − (1 + a 2 )| ≤ a ,  w hi c h i m pli es t h at
µ 1 ≥ 1 + a 2 − a ≥ 1 + a 2 − 2 a .

• If j = n , t h e n |µ 1 − 1 | ≤ a ,  w hi c h i m pli es µ 1 ≥ 1 − a ≥
(1 − a )2 .

R e c all fr o m ( 6 9) t h at ξ
(n )
1 = 1 + a 2 − 2 a c o s π

n + 1 .  H e n c e,

ξ (n )
1 − µ 1 ≤ 2 a 1 − c o s

π

n + 1
( 1 8 4)

≤
a π 2

(n + 1 )2
, ( 1 8 5)

≤
2 a π

n
( 1 8 6)

w h er e ( 1 8 5) i s b y t h e i n e q u alit y c o s ( x ) ≥ 1 − x 2 / 2.

B.  P r o of of T h e o r e m 4

P r o of. Si n c e S ( w ) i n ( 3 5) is e v e n i n w ∈ [ − π,  π ], w e h a v e

I
1

2 π

π

− π
F [S ( w )] d w ( 1 8 7)

=
1

π

π

0
F [S ( w )] d w. ( 1 8 8)

We b o u n d t h e i nt e gr al I b y  Ri e m a n n s u m s o v er i nt er v als
of  wi dt h π

n + 1 , s e e Fi g. 5. Si n c e F [S ( w )] is a n o ni n cr e a si n g
f u n cti o n i n w ∈ [ 0 , π ], w e h a v e

I ≥
1

π

n

i= 1

F S
iπ

n + 1

π

n + 1
. ( 1 8 9)

Usi n g  L e m m a 1,  w e c a n f urt h er b o u n d ( 1 8 9) fr o m b el o w a s

I ≥
1

n + 1

n

i= 1

F
σ 2

µ i + 2 a π / n
. ( 1 9 0)

Si n c e F is L - Li p s c hit z,  w e h a v e f or i ∈ [ n ],

F
σ 2

µ i + 2 a π / n
≥ F

σ 2

µ i
− L

σ 2

µ i
−

σ 2

µ i + 2 a π / n

( 1 9 1)

≥ F
σ 2

µ i
−

2 a π L σ 2

n µ 2
i

. ( 1 9 2)

Pl u g gi n g ( 1 9 2) i nt o ( 1 9 0),  w e o bt ai n

I ≥
1

n + 1

n

i= 1

F
σ 2

µ i
−

2 a L π σ 2

n (n + 1 )

n

i= 1

1

µ 2
i

. ( 1 9 3)

Fr o m ( 7 1),  w e s e e t h at

1

n

n

i= 1

1

µ 2
i

≤
1

(1 − a )4
. ( 1 9 4)

L et F ∞ b e t h e s u p n or m of F o v er t h e i nt er v al ( 6 6), t h e n

I ≥
1

n + 1

n

i= 1

F
σ 2

µ i
−

2 a L π σ 2

(n + 1 )(1 − a )4
( 1 9 5)

≥
1

n

n

i= 1

F
σ 2

µ i
−

F ∞ + 2 a L π σ 2 /( 1 − a )4

n
. ( 1 9 6)

Si mil arl y,  w e c a n d eri v e t h e u p p er b o u n d

I ≤
1

n

n

i= 1

F
σ 2

µ i
+

2 F ∞

n
. ( 1 9 7)

T h er ef or e, s etti n g

C L m a x F ∞ +
2 a L π σ 2

(1 − a )4
, 2 F ∞ ( 1 9 8)

c o m pl et es t h e pr o of.

C.  P r o p e rti es of t h e  C o n diti o n al  R el ati v e  E ntr o p y
Mi ni miz ati o n  P r o bl e m

T his s e cti o n pr es e nts t hr e e r es ults o n t h e  C R E M pr o b-
l e m ( 1 2 1), all of  w hi c h ar e n e c e ss ar y t o t h e pr o of of
T h e or e m 1 1.

1)  G a u ssi a n  C R E M: T h e o pti mi z ati o n pr o bl e m ( 1 2 1) is
r ef err e d t o as t h e  G a u ssi a n  C R E M  w h e n XXX a n d YYY ar e  G a u ssi a n
r a n d o m v e ct or s  wit h i n d e p e n d e nt c o or di n at es.  T h e o pti mi z er
a n d o pti m al v al u e of t h e  G a u ssi a n  C R E M ar e c h ar a ct eri z e d
b y t h e f oll o wi n g l e m m a.

L e m m a 4. L et  XXX a n d YYY b e  G a u ssi a n r a n d o m v e ct o rs  wit h
i n d e p e n d e nt c o o r di n at e s, i. e.,

XXX ∼ N (000 , X ), w h e r e X = di a g α 2
1 , . . . , α2

n , ( 1 9 9)

YYY ∼ N (000 , Y ), w h e r e Y = di a g β 2
1 , . . . , β 2

n . ( 2 0 0)

T h e n, t h e o pti miz er  P FFF |XXX i n t h e  G a u ssi a n  C R E M ( 1 2 1)
R ( XXX , YYY , d ) is

P FFF |XXX =

n

i= 1

P F i |X i
, ( 2 0 1)

w h e r e f o r a n y xxx ∈ R n , t h e c o n diti o n al distri b uti o n of  Fi gi v e n
X i = x i i s5

F i | { X i = x i } ∼ N
2 δ β 2

i x i

1 + 2 δ β 2
i

,
β 2

i

1 + 2 δ β 2
i

, ( 2 0 2)

5 W h e n β 2
i = 0 f or s o m e i ∈ [ n ], t h e r a n d o m v ari a bl e i n ( 2 0 2) d e g e n er at es

t o a d et er mi nisti c r a n d o m v ari a bl e t a ki n g v al u e 0, a n d t h e n ot ati o n N (0 , 0 )
d e n ot es t h e  Dir a c d elt a f u n cti o n.
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a n d t h e o pti m al v al u e is

R ( XXX , YYY , d ) = − δ d +
1

2 n

n

i= 1

l o g 1 + 2 δ β 2
i +

1

n

n

i= 1

δ α 2
i

1 + 2 δ β 2
i

, ( 2 0 3)

w h e r e δ is t h e n e g ati v e sl o p e d e fi n e d a s

δ = − R ( XXX , YYY , d ) . ( 2 0 4)

P r o of. We p arti c ul ari z e ( 1 6) t o t h e  G a u ssi a n  C R E M. F or a n y
fi x e d xxx ∈ R n , r e arr a n gi n g ( 1 6) yi el d s

fFFF |XXX ( yyy |xxx )

= fYYY (yyy ) e x p YYY (xxx , δ , d ) − δ n d (xxx , yyy ) + δ n d ( 2 0 5)

∝ fYYY (yyy ) e x p − δ n d (xxx , yyy ) ( 2 0 6)

∝ e x p − δ

n

i= 1

( y i − x i )
2 −

n

i= 1

y 2
i

2 β 2
i

( 2 0 7)

=

n

i= 1

e x p

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−

y i −
2 δ β 2

i x i

1 + 2 δ β 2
i

2

2 β 2
i

1 + 2 δ β 2
i

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, ( 2 0 8)

w h er e p 1 ∝ p 2 m e a n s t h at p 1 = c p 2 f or a p o siti v e c o n st a nt
c ; ( 2 0 6) is b y k e e pi n g o nl y t er m s c o nt ai ni n g yyy ( si n c e xxx is
fi x e d); ( 2 0 7) is b y pl u g gi n g t h e p df of YYY i nt o ( 2 0 6); a n d ( 2 0 8)
is b y c o m pl eti n g t h e s q u ar es i n y i .  H e n c e, ( 2 0 1) a n d ( 2 0 2)
f oll o w.  N e xt, t h e e x pr e ssi o n ( 2 0 3) is o bt ai n e d b y a dir e ct
c o m p ut ati o n u si n g ( 1 6), ( 2 0 1) a n d ( 2 0 2).

R ( XXX , YYY , d )

=
1

n R n
fXXX (xxx )

R n
fFFF |XXX ( yyy |xxx ) YYY (xxx , δ , d )−

δ n d (xxx , yyy ) + δ n d d yyy d xxx ( 2 0 9)

=
1

n R n
fXXX (xxx )

R n
fFFF |XXX ( yyy |xxx ) YYY (xxx , δ , d ) d yyy d xxx ( 2 1 0)

= − δ d +
1

2 n

n

i= 1

l o g 1 + 2 δ β 2
i +

1

n

n

i= 1

δ α 2
i

1 + 2 δ β 2
i

,

( 2 1 1)

w h er e ( 2 0 9) f oll o w s b y s u b stit uti n g ( 1 6) i nt o ( 1 2 1); ( 2 1 0)
h ol d s si n c e E [d ( XXX , FFF )] = d b y t h e o pti m alit y of FFF ;
a n d ( 2 1 1) is b y dir e ct i nt e gr ati o n of ( 2 1 0),  w hi c h r eli es o n
t h e d e fi niti o n of t h e g e n er ali z e d tilt e d i nf or m ati o n ( 1 5) a n d
t h e  w ell- k n o w n f or m ul a f or t h e  m o m e nt g e n er ati n g f u n c-
ti o n ( M G F) of a n o n c e ntr al χ 2

1 - distri b uti o n.
2)  G a u ss- M a r k o v  C R E M: T h e o pti mi z ati o n pr o bl e m ( 1 2 1)

is r ef err e d t o as t h e  G a u ss- M ar k o v  C R E M if XXX is t h e
d e c orr el ati o n of UUU i n ( 5 0), a n d ( XXX , YYY ) = ( XXX , YYY ) f or m s
a  R D F- a c hi e vi n g p air i n R XXX (n , d ).  R e c all fr o m ( 5 3) t h at
XXX ∼ N (0 , XXX ), w h er e

XXX = di a g ( σ 2
1 , . . . , σ 2

n ), ( 2 1 2)

a n d σ 2
i ’s ar e gi v e n b y ( 5 3).  R e c all fr o m ( 6 5) t h at YYY ∼

N (0 , YYY ), w h er e

YYY = di a g ( ν 2
1 , . . . , ν 2

n ), ( 2 1 3)

a n d  w e d e n ot e ν 2
i a s

ν 2
i m a x 0 , σ 2

i − θ n . ( 2 1 4)

A n d θ n > 0 is t h e  w at er l e v el  m at c h e d t o d vi a t h e n -t h or d er
r e v er s e  w at er filli n g ( 3 1). Fr o m ( 1 4),  w e h a v e

R ( XXX , YYY , d ) = R UUU (n , d ), ( 2 1 5)

a n d R UUU (n , d ) is gi v e n b y ( 3 0).  L e m m a 4 is als o a p pli c a bl e
t o t h e s p e ci al c as e of t h e  G a uss- M ar k o v  C R E M. F urt h er-
m or e, t h e n e xt l e m m a c h ar a ct eri z e s t h e n e g ati v e sl o p e i n t h e
G a u ss- M ar k o v  C R E M.

L e m m a 5. I n t h e  G a u ss- M a r k o v  C R E M, f o r a n y d ∈ (0 , d m a x )
a n d n ∈ N , l et θ n > 0 b e t h e  w at er l e v el  m at c h e d t o d vi a
t h e n-t h o r d er r e v ers e  w at er filli n g ( 3 1), t h e n e g ati v e sl o p e λ
d e fi n e d i n ( 2 3) s atis fi es

λ =
1

2 θ n
. ( 2 1 6)

P r o of. We dir e ctl y c o m p ut e t h e n e g ati v e sl o p e u si n g t h e
p ar a m etri c r e pr e s e nt ati o n ( 3 0) a n d ( 3 1).  Ta ki n g t h e d eri v ati v e
wit h r es p e ct t o d o n b ot h si d e s of ( 3 0) yi el d s

λ =
1

n

n

i= 1

1

2 θ n

d θ n

d d
σ 2

i > θ n . ( 2 1 7)

Diff er e nti ati n g ( 3 1),  w e o bt ai n

d d

d θ n
=

1

n

n

i= 1

σ 2
i > θ n , ( 2 1 8)

w hi c h is i n d e p e n d e nt of i. Pl u g gi n g ( 2 1 8) i nt o ( 2 1 7)
yi el d s ( 2 1 6).

T o j u stif y t h e f or m al diff er e nti ati o n i n ( 2 1 8), o b s er v e
u si n g ( 3 1) t h at d is a c o nti n u o u s pi e c e wis e li n e ar f u n cti o n
of θ n , a n d d is diff er e nti a bl e  wit h r es p e ct t o θ n e x c e pt at t h e
n p oi nts: θ n = σ 2

i , i ∈ [ n ].  T h e a b o v e pr o of g o e s t hr o u g h a s
l o n g a s t h e d eri v ati v e s at t h o s e n p oi nts ar e u n d er st o o d a s t h e
l eft d eri v ati v es. I n d e e d, R UUU (n , d ) is diff er e nti a bl e  w.r.t. d f or
a n y d ∈ (0 , d m a x ), e. g. [ 1 5,  E q. ( 1 6)].

3) S e n siti vit y of t h e  N e g ati v e Sl o p e: T h e f oll o wi n g t h e-
or e m is a p ert ur b ati o n r e s ult,  w hi c h b o u n d s t h e c h a n g e i n
t h e n e g ati v e sl o p e  w h e n t h e v ari a n c e s of t h e i n p ut XXX t o
R ( XXX , YYY , d ) ar e p ert ur b e d. It is r el at e d t o l oss y c o m pr es-
si o n u si n g  mis m at c h e d c o d e b o o k: t h e c o d e w or d s ar e dr a w n
r a n d o ml y a c c or di n g t o t h e di stri b uti o n P YYY w hil e t h e s o ur c e
distri b uti o n is X̂XX i n st e a d of XXX .

L e m m a 6. L et  XXX b e t h e d e c o rr el ati o n of  UUU i n ( 5 0), a n d l et
( XXX , YYY ) b e a  R D F- a c hi e vi n g p air i n R XXX (n , d ) ( r e c all ( 1 9)).
F o r a n y fi x e d dist o rti o n d ∈ (0 , d m a x ), l et θ > 0 b e t h e  w at e r
l e v el  m at c h e d t o d vi a t h e li miti n g r e v ers e  w at er filli n g i n ( 3 4).
F o r a n y t ∈ (0 , θ /3 ), l et σ̂ 2

i ’s b e s u c h t h at

|σ̂ 2
i − σ 2

i | ≤ t, ∀ i ∈ [ n ]. ( 2 1 9)

A ut h ori z e d li c e n s e d u s e li mit e d t o: C A LI F O R NI A I N S TI T U T E O F T E C H N O L O G Y. D o w nl o a d e d o n F e br u ar y 1 6, 2 0 2 0 at 0 5: 5 3: 0 1 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 
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L et t h e  G a u ssi a n r a n d o m v e ct o r X̂XX b e X̂XX ∼
N (000 , di a g ( σ̂ 2

1 , . . . , σ̂ 2
n )), a n d l et λ̂ b e t h e n e g ati v e sl o p e of

R ( X̂XX , YYY , d ). T h e n, f o r all n l a r g e e n o u g h, t h e n e g ati v e sl o p e
λ̂ s atis fi e s

|λ − λ̂ | ≤
9 t

4 θ 2
, ( 2 2 0)

w h e r e λ = − R ( XXX , YYY , d ) is gi v e n b y ( 2 1 6).

P r o of. C o n si d er t h e  G a u ssi a n  C R E M R ( X̂XX , YYY , d ). L et θ̂ n > 0
b e t h e  w at er l e v el  m at c h e d t o d vi a t h e n -t h or d er r e v er s e
w at er filli n g ( 3 1) o v er σ̂ 2

i ’s, a n d l et θ n > 0 b e t h e w at er l e v el
m at c h e d t o d vi a t h e n -t h or d er r e v er s e  w at er filli n g ( 3 1) o v er
σ 2

i ’s. I n ( 2 0 3), r e pl a ci n g ( XXX , YYY ) b y ( X̂XX , YYY ), a n d t h e n t a ki n g
t h e d eri v ati v e  wit h r es p e ct t o d o n b ot h si d e s yi el d s

− λ̂ = − λ̂ +
1

2 n
i:σ̂ 2

i > θ̂ n

− 2 λ̂

1 + 2 λ̂ ν 2
i

d θ̂ n

d d
+

1

n
i:σ̂ 2

i > θ̂ n

2 σ̂ 2
i λ̂ 2

(1 + 2 λ̂ ν 2
i )2

d θ̂ n

d d
, ( 2 2 1)

w h er e ν 2
i ’s ar e d e fi n e d i n ( 2 1 4).  R e arr a n gi n g t er m s yi el d s

λ̂ =

i:σ̂ 2
i > θ̂ n

1

(1 + 2 λ̂ ν 2
i )2

i:σ̂ 2
i > θ̂ n

2 ( σ̂ 2
i − σ 2

i + θ n )

(1 + 2 λ̂ ν 2
i )2

.

( 2 2 2)

S u b stit uti n g t h e b o u n d ( 2 1 9) i nt o ( 2 2 2),  w e o bt ai n

λ̂ ∈
1

2 ( θ n + t)
,

1

2 ( θ n − t)
. ( 2 2 3)

Si n c e li m n → ∞ θ n = θ , f or all n l ar g e e n o u g h,  w e h a v e

2 θ

3
≤ θ n ≤

4 θ

3
. ( 2 2 4)

Si n c e t ∈ (0 , θ /3 ), ( 2 2 4) i m pli es t h at 0 < t < θ n / 2.
Fr o m ( 2 1 6), ( 2 2 3) a n d ( 2 2 4),  w e s e e t h at

|λ − λ̂ |

≤ m a x
1

2 ( θ n + t)
−

1

2 θ n
,

1

2 ( θ n − t)
−

1

2 θ n
( 2 2 5)

≤
t

θ 2
n

( 2 2 6)

≤
9 t

4 θ 2
. ( 2 2 7)

D.  P r o of of T h e o r e m 2

T h e or e m 2 is a dir e ct c o n s e q u e n c e of t h e f oll o wi n g l e m m a.

L e m m a 7 ( P ar a m etri c  R e pr e s e nt ati o n f or t h e d - Tilt e d I nf or-
m ati o n) . L et  XXX b e t h e d e c o rr el ati o n of  UUU ( 5 0), a n d l et ( XXX , YYY )
b e a  R D F- a c hi e vi n g p air i n R XXX (n , d ).  F o r a n y d ∈ (0 , d m a x ),
l et θ n > 0 b e t h e  w at e r l e v el  m at c h e d t o d vi a t h e n-t h

o r d er r e v ers e  w at er filli n g ( 3 1) o v er σ 2
i , i ∈ [ n ]. T h e n, f o r

all xxx ∈ R n ,

Y i
( x i , λ , mi n ( θ n , σ 2

i ))

=
mi n ( θ n , σ 2

i )

2 θ n

x 2
i

σ 2
i

− 1 +
1

2
l o g

m a x ( θ n , σ 2
i )

θ n
, ( 2 2 8)

w h e r e λ d e fi n e d i n ( 2 3) is gi v e n b y ( 2 1 6).

P r o of. T h e pr o of r eli es o n t h e  G a u ssi a nit y of YYY . F or e a c h
i ∈ [ n ], fr o m ( 1 5) a n d ( 2 1 6),  w e h a v e

Y i
( x i , λ , mi n ( θ n , σ 2

i ))

= −
mi n ( θ n , σ 2

i )

2 θ n
− l o g E e x p − λ Y i − x i

2
. ( 2 2 9)

S u b stit uti n g Y i ≡ 0 a. s. f or all i s u c h t h at σ 2
i ≤ θ n

(r e c all ( 2 1 3)) i nt o ( 2 2 9),  w e o bt ai n

Y i
( x i , λ , mi n ( θ n , σ 2

i )) =
x 2

i − σ 2
i

2 θ n
. ( 2 3 0)

S u b stit uti n g Y i ∼ N (0 , σ 2
i − θ n ) f or all i s u c h t h at σ 2

i >
θ n (r e c all ( 2 1 3)) i nt o ( 2 2 9) a n d a p pl yi n g t h e f or m ul a f or t h e
m o m e nt g e n er ati n g f u n cti o n of a n o n c e ntr al χ 2 - distri b uti o n
wit h o n e d e gr e e of fr e e d o m,  w e o bt ai n

Y i
( x i , λ , mi n ( θ n , σ 2

i )) =
1

2

x 2
i

σ 2
i

− 1 +
1

2
l o g

σ 2
i

θ n
. ( 2 3 1)

U nif yi n g ( 2 3 0) a n d ( 2 3 1),  w e o bt ai n ( 2 2 8).

P r o of of T h e o r e m 2. F or a n y fi x e d dist orti o n d ∈ (0 , d m a x ),
l et θ > 0 b e t h e  w at er l e v el  m at c h e d t o d vi a t h e li miti n g
r e v er s e  w at er filli n g ( 3 4).  B y t h e i n d e p e n d e n c e of Y 1 , . . . , Y n
a n d ( 3 1),  w e h a v e f or a n y xxx ,

 XXX (xxx , d ) =

n

i= 1

Y i
( x i , λ , mi n ( θ n , σ 2

i )), ( 2 3 2)

w h er e λ = − R XXX (n , d ).  Ta ki n g t h e e x p e ct ati o n a n d t h e
v ari a n c e of ( 2 3 2) u si n g ( 2 2 8) yi el d s 6

E [ XXX ( XXX , d )] =

n

i= 1

1

2
m a x 0 , l o g

σ 2
i

θ n
, ( 2 3 3)

Va r [  XXX ( XXX , d )] =

n

i= 1

1

2
mi n

⎛

⎝ 1 ,
σ 2

i

θ n

2
⎞

⎠ . ( 2 3 4)

A n a p pli c ati o n of  T h e or e m 3 t o ( 2 3 3) o n t h e f u n cti o n
t → 1

2 m a x 0 , l o g t
θ yi el d s ( 2 1). Si mil arl y, a n a p pli c ati o n

of  T h e or e m 3 t o ( 2 3 4) o n t h e f u n cti o n t → 1
2 mi n 1 , t

θ
2

yi el d s ( 6 4).

6 T h e r es ult o n e x p e ct ati o ns  w as i m pli citl y est a blis h e d b y  Gr a y [ 5],  w hi c h
w e r e c o v er h er e.  T h e r es ult o n v ari a n c es is n e w.
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Fi g. 6.  C o n v ers e pr o of i n fi g ur es.  T h e c o nt o ur pl ot i n e a c h fi g ur e s h o ws t h e u n d erl yi n g pr o b a bilit y distri b uti o n. ( a)  T h e UUU s p a c e:  Gi v e n d , , t h e g o al is t o
c o v er at l e ast 1 − pr o b a bilit y  m ass, u n d er distri b uti o n of UUU , usi n g t h e l e ast n u m b er of dist orti o n d - b alls. ( b)  T h e XXX s p a c e is si m pl y a u nit ar y tr a nsf or m ati o n
of t h e UUU s p a c e. ( c)  T h e ZZZ s p a c e:  Gi v e n d , , t h e g o al is t o c o v er at l e ast 1 − pr o b a bilit y  m ass, u n d er distri b uti o n of ZZZ , usi n g t h e l e ast n u m b er of dist orti o n
elli ps oi ds, e a c h of  w hi c h h as t h e s a m e v ol u m e as t h e dist orti o n d - b all si n c e d et (A A ) = 1.

A P P E N D I X D
P R O O F S I N S E C T I O N I V

A.  P r o of of T h e o r e m 8

P r o of. T h e r es ult f oll o ws fr o m a g e o m etri c ar g u m e nt, ill u s-
tr at e d i n Fi g. 6.  L et C ⊂ R n b e t h e s et of c o d e w or d s of a n
ar bitr ar y (n , M , d , ) c o d e, a n d B (ccc , d ) b e t h e dist orti o n d - b all
c e nt er e d at a c o d e w or d ccc ∈ C (r e c all ( 4)).  B y t h e d e fi niti o n of
a n (n , M , d , ) c o d e,  w e k n o w t h at t h e u ni o n of t h e dist orti o n
d - b alls c e nt er e d at c o d e w or d s i n C h as pr o b a bilit y  m ass at
l e ast 1 − :

P [UUU ∈ B ] ≥ 1 − , ( 2 3 5)

w h er e B d e n ot e s t h e u ni o n of t h e dist orti o n d - b alls c e nt er e d
at t h e c o d e w or d s i n C :

B

ccc ∈ C

B (ccc , d ). ( 2 3 6)

F or a s et S ⊆ R n , d e n ot e b y

A S {A sss : sss ∈ S } ( 2 3 7)

t h e li n e ar tr a n sf or m ati o n of S b y t h e  m atri x A .  R e c all
fr o m ( 4 8) t h at A is i n v erti bl e a n d t h e i n n o v ati o n is ZZZ = A UUU .
C h a n gi n g v ari a bl e UUU = A − 1 ZZZ i n ( 2 3 5) yi el d s

P ZZZ ∈ A B ≥ 1 − . ( 2 3 8)

N e xt,  w e gi v e a g e o m etri c i nt er pr et ati o n of t h e s et A B .  C o n-
si d er t h e s et A C , t h at is, t h e tr a n sf or m ati o n of t h e c o d e b o o k
C b y A . F or a n y xxx ∈ R n , n oti c e t h at t h e s et

A B (A − 1 xxx , d ) = xxx ∈ R n : (xxx − xxx ) (A A )− 1 (xxx − xxx ) ≤ n d

( 2 3 9)

i s t h e s et of p oi nt s b o u n d e d b y t h e elli p s oi d c e nt er e d at xxx wit h
pri n ci p al a x es b ei n g t h e ei g e n v e ct or s of A A . It f oll o ws t h at

A B = A

ccc ∈ C

B (ccc , d ) ( 2 4 0)

=

ccc ∈ A C

A B (A − 1 ccc , d ), ( 2 4 1)

i. e., A B is t h e u ni o n of elli p s oi d s c e nt er e d at tr a n sf or m e d
c o d e w or d s. S e e Fi g. 6 c f or a n ill u str ati o n of t h e s et A B .

Fi n all y, t h e f oll o wi n g v ol u m etri c ar g u m e nt c o m pl et es t h e
pr o of of  T h e or e m 8. Si n c e t h e v ol u m e of a u ni o n of s ets is
l ess t h a n or e q u al t o t h e s u m of t h e s ets’ v ol u m e s,  w e h a v e

M ≥
Vo l (A B )

Vo l (A B (000 , d ))
. ( 2 4 2)

M or e o v er,  Vol (A B (000 , d )) = Vo l (B (000 , d )) d u e t o d et A =
1.  O n t h e ot h er h a n d, d u e t o t h e s p h eri c al s y m m etr y of
t h e distri b uti o n of ZZZ , t h e b all B (000 , r (n , )), w h er e r (n , )
s atis fi es ( 7 9), h as t h e s m all est v ol u m e a m o n g all s ets i n R n

wit h pr o b a bilit y gr e at er t h a n or e q u al t o 1 − , a n d s o

Vo l (A B ) ≥ Vo l (B (000 , r (n , ))). ( 2 4 3)

T h er ef or e,  w e c a n  w e a k e n ( 2 4 2) a s

M ≥
Vo l (B (000 , r (n , )))

Vo l (B (000 , d ))
=

r (n , )

d

n / 2

. ( 2 4 4)

B.  P r o of of T h e o r e m 1 0

P r o of. T h e pr o of is b as e d o n  C h e b y s h e v’s i n e q u alit y. Fi x
d ∈ (0 , d m a x ). F or e a c h fi x e d n ∈ N , l et θ 1 , θ2 > 0 b e t h e
w at er l e v els  m at c h e d t o d a n d d n , r es p e cti v el y, i n t h e n -t h
or d er r e v er s e  w at er filli n g ( 3 1) o v er σ 2

i , i ∈ [ n ], t h at is,

d =
1

n

n

i= 1

mi n θ 1 , σ 2
i , ( 2 4 5)

d n =
1

n

n

i= 1

mi n θ 2 , σ 2
i . ( 2 4 6)

O b vi o u sl y, b ot h θ 1 a n d θ 2 d e p e n d o n n .  We n o w pr o c e e d t o
s h o w t h at t h er e e xists a c o n st a nt h 2 > 0 s u c h t h at f or all n
l ar g e e n o u g h,

|θ 1 − θ 2 | ≤
h 2

n
. ( 2 4 7)
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I n d e e d,  wit h o ut l o ss of g e n er alit y, ass u m e d < d n ,7 t h e n θ 1 <
θ 2 b y t h e  m o n o ni cit y of t h e r e v er s e  w at er filli n g ( 3 1).  D e fi n e
t h e f oll o wi n g i n d e x s ets

I1 i ∈ [ n ] : σ 2
i ≤ θ 1 , ( 2 4 8)

I2 i ∈ [ n ] : θ 1 < σ 2
i < θ 2 , ( 2 4 9)

I3 i ∈ [ n ] : θ 2 ≤ σ 2
i . ( 2 5 0)

T h e n,

d n − d =
1

n

n

i= 1

mi n θ 2 , σ 2
i − mi n θ 1 , σ 2

i ( 2 5 1)

=
1

n
i∈ I1

0 +
1

n
i∈ I2

σ 2
i − θ 1 +

1

n
i∈ I3

(θ 2 − θ 1 )

( 2 5 2)

≥
|I3 |

n
(θ 2 − θ 1 ) . ( 2 5 3)

Si n c e d n < d m a x , t h er e e xists a c o n st a nt c̃ ∈ (0 , 1 ) s u c h t h at
f or all n l ar g e e n o u g h, |I3 | ≥  c̃ n , h e n c e ( 2 4 7) h ol d s  wit h
h 2 = h 1

c̃ .
N o w, l et G 1 , . . . , G n b e i.i. d. N (0 , 1 ).  T o si m plif y n ot a-

ti o n s,  w e d e n ot e t h e r a n d o m v ari a bl e a s

(d , d n )  XXX ( XXX , d ) −  XXX ( XXX , d n ) . ( 2 5 4)

Fr o m ( 2 3 2) a n d ( 2 2 8),  w e h a v e

(d , d n ) =

n

i= 1

mi n θ 1 , σ 2
i

2 θ 1
−

mi n θ 2 , σ 2
i

2 θ 2
( G 2

i − 1 )

+
1

2
l o g

m a x θ 1 , σ 2
i

2 θ 1
·

2 θ 2

m a x θ 2 , σ 2
i

. ( 2 5 5)

T o a p pl y  C h e b y s h e v’s i n e q u alit y,  w e b o u n d t h e  m e a n a n d t h e
v ari a n c e of (d , d n ) as f oll o ws.

E [ (d , d n )]

=

n

i= 1

1

2
l o g

m a x θ 1 , σ 2
i

2 θ 1
·

2 θ 2

m a x θ 2 , σ 2
i

( 2 5 6)

=
i∈ I1

0 +
i∈ I2

1

2
l o g

σ 2
i

θ 1
+

i∈ I3

1

2
l o g

θ 2

θ 1
( 2 5 7)

≤
h 2

θ 1
, ( 2 5 8)

w h er e ( 2 5 8) h ol d s si n c e f or i ∈ I2 , w e h a v e 1
2 l o g

σ 2
i

θ 1
≤

1
2 l o g θ 2

θ 1
,  w hil e f or i ∈ I3 , d u e t o ( 2 4 7),  w e h a v e

1

2
l o g

θ 2

θ 1
≤

1

2
l o g 1 +

h 2

n θ 1
≤

h 2

2 n θ 1
. ( 2 5 9)

B y a si mil ar ar g u m e nt,  w e c a n b o u n d t h e v ari a n c e as

Va r [ (d , d n )] ≤
h 2

2

θ 2
1 n

. ( 2 6 0)

7 Ot h er wis e, s wit c h θ 1 a n d θ 2 i n t h e r est of t h e pr o of.

I n c o nj u n cti o n  wit h ( 2 5 8), ( 2 6 0),  C h e b y s h e v’s i n e q u alit y
yi el d s t h at f or all n l ar g e e n o u g h a n d ∀ > 0,

P [| (d , d n ) − E [ (d , d n )]| ≥ ] ≤
h 2

2

θ 2
1 n 2

. ( 2 6 1)

C h o o si n g = u h 2
θ 1

i n ( 2 6 1) a n d a p pl yi n g ( 2 5 8) yi el d s t h at
∀ u > 0,

P | (d , d n )| ≥
(1 + u )h 2

θ 1
≤

1

n u 2
. ( 2 6 2)

L et θ > 0 b e t h e  w at er l e v el  m at c h e d t o d vi a t h e li miti n g
r e v er s e  w at er filli n g ( 3 4), t h e n li m n → ∞ θ 1 = θ b y ( 2 4 5)
a n d ( 3 4).  T h er ef or e,  w e h a v e θ 1 ≥ θ

2 f or all n l ar g e e n o u g h.
H e n c e, f or all n l ar g e e n o u g h a n d ∀ u > 0,  w e h a v e

P | (d , d n )| ≥
2 (1 + u )h 2

θ
≤

1

n u 2
. ( 2 6 3)

R e arr a n gi n g t er m s i n ( 2 6 3) c o m pl et es t h e pr o of.

A P P E N D I X E
P R O O F S I N S E C T I O N V

A.  P r o of of L e m m a 3

I n a d diti o n t o n e w c o n c e ntr ati o n i n e q u aliti es, s h o w n i n
L e m m a 9 a n d  L e m m a 1 0 b el o w, t h e pr o of l e v er a g e s t h e
f oll o wi n g b o u n d,  w hi c h is a dir e ct a p pli c ati o n of [ 1 5,  L e m. 1]
t o t h e r a n d o m v e ct or XXX .

L e m m a 8 ( L o w er  B o u n d o n Pr o b a bilit y of  Di st orti o n  B all s).
Fi x d ∈ (0 , d m a x ), n ∈ N , a n d t h e distri b uti o n  PYYY o n R n . T h e n
f o r a n y xxx ∈ R n , it h ol d s t h at

P YYY (B (xxx , d )) ≥ s u p
P

X̂XX
, γ  >0

e x p − λ̂ n γ − YYY (xxx , λ̂ , d ) ×

P d − γ ≤ d xxx , F̂FF ≤ d |X̂XX = xxx , ( 2 6 4)

w h e r e t h e s u p r e m u m is o v e r all p dfs  P
X̂XX

o n R n ; YYY (xxx , λ̂ , d )
is t h e g e n er aliz e d tilt e d i nf o r m ati o n d e fi n e d i n ( 1 5) wit h

λ̂ = − R ( X̂XX , YYY , d ); ( 2 6 5)

a n d t h e r a n d o m v a ri a bl e F̂FF a c hi e v e s R ( X̂XX , YYY , d ).

T h e hi g h-l e v el i d e a i n pr o vi n g  L e m m a 3 is t h e f oll o wi n g.
I n  L e m m a 8,  w e r e pl a c e YYY b y YYY d e fi n e d i n ( 6 5) a n d ( 2 1 3),
a n d  w e c h o o s e X̂XX t o b e t h e pr o x y  G a u ssi a n r a n d o m v ari a bl e
X̂XX (xxx ) d e fi n e d i n ( 1 2 0).  Wit h s u c h c h oi c e s of X̂XX a n d YYY , t h e n e xt
t w o l e m m a s pr o vi d e f urt h er l o w er b o u n d s o n t h e t w o f a ct or s
o n t h e ri g ht si d e of ( 2 6 4).  T h e fir st o n e is a c o n c e ntr ati o n
i n e q u alit y o n t h e g e n er ali z e d tilt e d i nf or m ati o n.

L e m m a 9. F o r a n y fi x e d d ∈ (0 , d m a x ) a n d e x c e ss- dist o rti o n
p r o b a bilit y ∈ (0 , 1 ), t h e r e e xist c o n st a nts  C a n d  C2 > 0
s u c h t h at f o r all n l a r g e e n o u g h,

P YYY ( XXX , λ̂ ( XXX ), d ) ≤ YYY ( XXX , λ , d ) + C l o g n ≥ 1 −
C 2
√

n
,

( 2 6 6)

w h e r e λ̂ (xxx ) is gi v e n b y ( 1 3 0) wit h X̂XX d e fi n e d i n ( 1 2 0), a n d
λ is i n ( 2 1 6).

P r o of. A p p e n di x  E- C.
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T h e s e c o n d b o u n d, pr e s e nt e d i n  L e m m a 1 0 b el o w,
i s r ef err e d t o as t h e s h ell- pr o b a bilit y l o w er b o u n d. F or a n y
xxx ∈ R n a n d a n y γ ∈ (0 , d ), d e fi n e t h e s h ell

S (xxx , d , γ ) xxx ∈ R n : d − γ ≤ d xxx , xxx ≤ d . ( 2 6 7)

G e o m etri c all y,  L e m m a 8 pr o vi d es a q u a ntit ati v e c o n n e cti o n
b et w e e n t h e pr o b a bilit y of a dist orti o n d - b all a n d t h e pr o b-
a bilit y of its s h ell, a n d  L e m m a 1 0 b el o w gi v es a l o w er
b o u n d o n t h e pr o b a b ilit y of t h e s h ell S (xxx , d , γ ) f or “t y pi c al ”
s e q u e n c e s xxx .

L e m m a 1 0 ( S h ell- Pr o b a bilit y  L o w er  B o u n d). Fi x a n y dis-
t o rti o n d ∈ (0 , d m a x ) a n d a n y e x c e ss- di st orti o n p r o b a bilit y

∈ (0 , 1 ).  F o r a n y c o n st a nt α > 0 a n d a n y n ∈ N , c o n si d e r
t h e s et T (n , α, p ) d e fi n e d i n  D e fi niti o n 1,  w h er e p is t h e
c o n st a nt i n T h e o r e m 1 2. L et

γ
l o gq n

n
, ( 2 6 8)

w h e r e q > 1 is a c o n st a nt d e fi n e d i n ( 3 4 6) i n  A p p e n di x  E- D
b el o w. T h e n, t h e r e e xists a c o n st a nt  C 1 > 0 s u c h t h at f o r all
n l a r g e e n o u g h, f o r a n y uuu ∈ T (n , α, p ) a n d xxx = S uuu  wit h S
i n ( 5 2), it h ol d s t h at

P F̂FF ∈ S (xxx , d , γ ) |X̂XX = xxx ≥
C 1
√

n
, ( 2 6 9)

w h e r e X̂XX is gi v e n i n ( 1 2 0).

P r o of. A p p e n di x  E- D.
We n o w pr e s e nt t h e pr o of of  L e m m a 3.

P r o of of L e m m a 3. L et XXX b e t h e d e c orr el ati o n of UUU i n ( 5 0).
R e pl a c e YYY b y YYY i n  L e m m a 8.  L et T (n , α, p ) b e t h e s et
d e fi n e d i n  D e fi niti o n 1, a n d l et p b e t h e c o n st a nt i n  T h e o-
r e m 1 2.  L et C , C 1 , C 2 , q b e t h e c o n st a nts i n  L e m m a s 9 a n d 1 0.
C o n si d er a n y n t h at is l ar g e e n o u g h s u c h t h at  T h e or e m 1 2,
L e m m a 9 a n d  L e m m a 1 0 h ol d.  L et θ > 0 b e t h e w at er l e v el
m at c h e d t o d vi a t h e li miti n g r e v er s e  w at er filli n g ( 3 4).  D e n ot e
t h e e v e nt

E l o g
1

P YYY (B ( XXX , d ))
>  XXX ( XXX , d ) + β 1 l o gq n + β 2 ,

( 2 7 0)

w h er e β 1 a n d β 2 ar e c o n st a nts d e fi n e d b y

β 1
1

2 θ
+ C d +

1

2
+ C , ( 2 7 1)

β 2 − l o g C 1 , ( 2 7 2)

a n d C d > 0 is a c o n st a nt s u c h t h at

λ̂ (xxx ) −
1

2 θ
≤ C d ( 2 7 3)

f or a n y uuu ∈ T (a , α, p ) a n d xxx = S uuu .  T h e e xist e n c e of s u c h
C d is g u ar a nt e e d b y ( 1 2 9) i n  T h e or e m 1 2 a n d t h e f a ct t h at
li mn → ∞ θ n = θ .

Usi n g el e m e nt ar y pr o b a bilit y r ul es,  w e  writ e

P l o g
1

P YYY (B ( XXX , d ))
>  XXX ( XXX , d ) + β 1 l o gq n + β 2

= P [E , UUU ∈ T (n , α, p )] + P [E , UUU ∈ T (n , α, p )] ( 2 7 4)

≤ P UUU ∈ T (n , α, p ), λ̂ ( XXX )n γ + YYY ( XXX , λ̂ ( XXX ), d )−

l o g P F̂FF ∈ S ( X̂XX , d , γ ) |X̂XX = XXX >

 XXX ( XXX , d ) + β 1 l o gq n + β 2

+ P [UUU ∈ T (n , α, p )] ( 2 7 5)

≤ P UUU ∈ T (n , α, p ),  YYY ( XXX , λ̂ ( XXX ), d ) −  XXX ( XXX , d ) >

− λ̂ ( XXX )n γ + l o g
C 1
√

n
+ β 1 l o gq n + β 2

+ P [UUU ∈ T (n , α, p )] ( 2 7 6)

≤ P UUU ∈ T (n , α, p ),  YYY ( XXX , λ̂ ( XXX ), d ) −  XXX ( XXX , d ) >

C l o g n + P [UUU ∈ T (n , α, p )] ( 2 7 7)

≤
K

(l o g n )κ α
, ( 2 7 8)

w h er e ( 2 7 5) is b y  L e m m a 8; ( 2 7 6) is b y ( 2 6 9); ( 2 7 7) is b y
t h e c h oi c e of γ i n ( 2 6 8) a n d q > 1; ( 2 7 8) is b y  L e m m a 9
a n d ( 1 2 7); a n d K > 0 is a c o n st a nt.

B.  P r o of of T h e o r e m 1 2

P r o of. We fir st pr o v e t h e pr o p ert y ( 1). Fir st,  T h e or e m 6 st at es
t h at f or all n l ar g e e n o u g h t h e c o n diti o n ( 1 2 3) i s vi ol at e d  wit h
pr o b a bilit y at  m o st 2

(l o g n ) κ α . S e c o n d,  w e b o u n d t h e pr o b a bilit y

of vi ol ati n g c o n diti o n ( 1 2 5).  N ot e t h at si n c e X i ∼ N (0 , σ 2
i )

b y ( 5 3),  w e h a v e G i
X i
σ i

∼ N (0 , 1 ) f or all i ∈ [ n ]. F or

e a c h k = 1 , 2 , 3, a p pl yi n g t h e  B err y- E ss e e n t h e or e m 8 t o t h e
z er o- m e a n r a n d o m v ari a bl es G 2 k

i − (2 k − 1 )!!,  w e o bt ai n

P
1

n

n

i= 1

G 2 k
i − (2 k − 1 )!! > 2 ≤ 2 Q

2
√

n

r k
+

1 2 T k

r 3
k

√
n

,

( 2 7 9)

w h er e r 2
k a n d T k ar e t h e v ari a n c e a n d t h e t hir d a b s ol ut e

m o m e nt of G 2 k
i − (2 k − 1 )!!, r e s p e cti v el y; r k a n d T k ar e

b ot h p o siti v e c o n st a nts si n c e G i ’s h a v e b o u n d e d fi nit e- or d er
m o m e nts.  T h er ef or e, t h er e e xists a c o n st a nt A 1 > 0 s u c h t h at
f or all n l ar g e e n o u g h,

P
1

n

n

i= 1

G 2 k
i − (2 k − 1 )!! > 2 ≤

A 1√
n

. ( 2 8 0)

T h e b o u n d ( 2 8 0) i m pli e s t h at t h e c o n diti o n ( 1 2 5) i s vi ol at e d

wit h pr o b a bilit y at  m o st
3 A 1√

n
b y t h e u ni o n b o u n d.

8 T h e  B err y- E ss e e n t h e or e m s uf fi c es h er e, t h o u g h ti g ht er b o u n ds ar e p ossi bl e
vi a ot h er c o n c e ntr ati o n i n e q u aliti es, s a y  C h er n off’s b o u n d.
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Verif yi n g t h at t h e c o n diti o n ( 1 2 4) i s s ati s fi e d  wit h hi g h
pr o b a bilit y is  m or e i n v ol v e d.  T h e hi g h-l e v el pr o c e d ur e is t h e
f oll o wi n g.  T h e e x pr e ssi o n s f or m i (xxx )’s i n ( 1 2 2) c a n b e dir e ctl y
o bt ai n e d fr o m ( 2 0 2) i n  L e m m a 4 i n  A p p e n di x  C- C. 1.  T h e n  w e
a p pr o xi m at e m i (xxx ) u si n g c ar ef ull y cr aft e d ¯m i ( x i ), f or w hi c h
it is e a si er t o o bt ai n a c o n c e ntr ati o n b o u n d of t h e f or m ( 1 2 4).
At t h e e n d, t h e a p pr o xi m ati o n g a p s b et w e e n m i (xxx ) a n d ¯m i ( x i )
ar e s h o w n t o b e s uf fi ci e ntl y s m all, a n d ( 1 2 4) e n s u e s.

We n o w pr es e nt t h e d et ails.  We st art  wit h a cl o s er l o o k at

t h e o pti mi z er F̂FF i n R ( X̂XX , YYY , d ).  R e c all t h e di stri b uti o n s of XXX
a n d YYY i n ( 2 1 2) a n d ( 2 1 3), a n d t h e distri b uti o n of X̂XX i n ( 1 2 0).
A n a p pli c ati o n of  L e m m a 4 i n  A p p e n di x  C- C. 1 t o R ( X̂XX , YYY , d )
yi el d s t h at f or all xxx ∈ R n ,

P
F̂FF |X̂XX = xxx

=

n

i= 1

P F̂ i | X̂ i = x i
, ( 2 8 1)

F̂ i | X̂ i = x i ∼ N
2 λ̂ (xxx ) ν 2

i x i

1 + 2 λ̂ (xxx ) ν 2
i

,
ν 2

i

1 + 2 λ̂ (xxx ) ν 2
i

, ( 2 8 2)

w h er e λ̂ (xxx ) is gi v e n b y ( 1 3 0) a n d ν 2
i ’s ar e d e fi n e d i n ( 2 1 4).

T h e n, fr o m ( 2 8 2) a n d t h e d e fi niti o n of m i (xxx ) i n ( 1 2 2), it is
str ai g htf or w ar d t o o bt ai n t h e e x pr e ssi o n

m i (xxx ) =
ν 2

i

1 + 2 λ̂ (xxx ) ν 2
i

+
x 2

i

(1 + 2 λ̂ (xxx ) ν 2
i )2

. ( 2 8 3)

T h e q u a ntit y m i (xxx ) i n t h e f or m of ( 2 8 3) is h ar d t o a n al y z e
si n c e t h er e is n o si m pl e f or m ul a f or λ̂ (xxx ).  We i n st e a d c o n si d er
¯m i ( x i )’s, d e fi n e d a s

¯m i ( x i )
ν 2

i

1 + 2 λ ν 2
i

+
x 2

i

(1 + 2 λ ν 2
i )2

, ( 2 8 4)

w hi c h is o bt ai n e d fr o m ( 2 8 3) b y r e pl a ci n g λ̂ (xxx ) wit h λ .
T h e r a n d o m v ari a bl e m̄ i ( X i ) i s  m u c h e a si er t o a n al y z e, si n c e
λ = 1

2 θ n
b y  L e m m a 5 i n  A p p e n di x  C- C. 2,  wit h  w hi c h ( 2 8 4)

is si m pli fi e d as

m̄ i ( x i ) =
mi n σ 2

i , θn
2

σ 2
i

x 2
i

σ 2
i

− 1 + mi n σ 2
i , θn . ( 2 8 5)

We  will c o ntr ol t h e diff er e n c e b et w e e n m i (xxx ) a n d ¯m i ( x i )
b y b o u n di n g |λ − λ̂ (xxx )|. I n d e e d, a l e n gt h y b ut el e m e nt ar y
c al c ul ati o n, d ef err e d t o t h e e n d of t h e pr o of, s h o ws t h at t h er e
e xists a c o n st a nt A 1 > 0 ( d e p e n di n g o nl y o n d ) s u c h t h at
f or all n l ar g e e n o u g h, ∀ xxx ∈ R n s atisf yi n g ( 1 2 3) a n d ( 1 2 5),
w e h a v e

1

n

n

i= 1

¯m i ( x i ) −
1

n

n

i= 1

m i (xxx ) ≤ A 1 η n . ( 2 8 6)

Wit h ( 2 8 6),  w e pr o c e e d t o e x pl ai n h o w t o a p pl y t h e
B err y- E ss e e n t h e or e m t o o bt ai n t h e f oll o wi n g b o u n d: t h er e
e xists a c o n st a nt A 1 > 0 s u c h t h at f or all n l ar g e e n o u g h a n d
∀ ω > 0,

P
1

n

n

i= 1

m̄ i ( X i ) − d ≥ ω
l o g l o g n

n
≤

A 1

(l o g n )
ω 2

2 β 2

,

( 2 8 7)

w h er e

β 2 1

n

n

i= 1

Va r [ ¯m i ( X i )] . ( 2 8 8)

T o t h at e n d, fir st n ot e fr o m ( 2 8 5) a n d ( 3 1) t h at

1

n

n

i= 1

E [ ¯m i ( X i )] = d , ( 2 8 9)

t h e n a n a p pli c ati o n of t h e  B err y- E ss e e n t h e or e m t o m̄ i ( X i ) −
mi n ( σ 2

i , θn ) yi el d s

P
1

n

n

i= 1

¯m i ( X i ) − d ≥ ω
l o g l o g n

n

≤ 2 Q
ω

√
l o g l o g n

β
+

1 2 T

β 3
√

n
( 2 9 0)

≤
2

(l o g n )
ω 2

2 β 2

+
1 2 T

β 3
√

n
, ( 2 9 1)

w h er e T 1
n

n
i= 1 E [| m̄ i ( X i ) − mi n ( σ 2

i , θn )|3 ] is b o u n d e d.
Usi n g ( 2 8 5), it is e a s y t o c h e c k t h at t h er e e xists a c o n st a nt

β d > 0 ( d e p e n di n g o nl y o n d ) s u c h t h at 0 < β d < β ≤
√

2 σ 2

(1 − a )2 .
T h er ef or e, ( 2 8 7) f oll o ws fr o m ( 2 9 1).  N o w,  w e c o m bi n e ( 2 8 6)
a n d ( 2 8 7) t o c o n cl u d e t h at t h e c o n diti o n ( 1 2 4) i s s ati s fi e d  wit h
hi g h pr o b a bilit y.  D e fi n e t h e s et L ⊂ R n a s

L uuu ∈ R n : uuu s atis fi e s ( 1 2 3) a n d ( 1 2 5) . ( 2 9 2)

T h e n, b y  T h e or e m 6, ( 2 8 0) a n d t h e u ni o n b o u n d,  w e h a v e

P UUU ∈ L c ≤
2

(l o g n )κ α +
3 A 1√

n
. ( 2 9 3)

H e n c e,  w e h a v e

P
1

n

n

i= 1

m i ( XXX ) − d ≥ p η n

≤ P
1

n

n

i= 1

¯m i ( X i ) −
1

n

n

i= 1

m i ( XXX ) +

1

n

n

i= 1

¯m i ( X i ) − d ≥ p η n ( 2 9 4)

= P [·, UUU ∈ L ] + P ·, UUU ∈ L c ( 2 9 5)

≤ P
1

n

n

i= 1

¯m i ( X i ) − d ≥ ( p − A 1 ) ηn + P UUU ∈ L c

( 2 9 6)

≤
A 1

(l o g n )
( p − A 1 )2 α

2 β 2

+
2

(l o g n )κ α +
3 A 1√

n
, ( 2 9 7)

w h er e ( 2 9 4) i s d u e t o t h e tri a n gl e i n e q u alit y; ( 2 9 6) h ol d s
b y ( 2 8 6); ( 2 9 7) f oll o ws fr o m ( 2 8 7) f or p > A 1 .  H e n c e, f or
a n y p s u c h t h at

p ≥ A 1 +
2
√

κ σ 2

(1 − a )2
, ( 2 9 8)
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w e c o n cl u d e fr o m ( 2 9 7) t h at t h er e e xists a c o n st a nt ˜A 1 > 0
s u c h t h at f or all n l ar g e e n o u g h,

P
1

n

n

i= 1

m i ( XXX ) − d ≥ p η n ≤
˜A 1

(l o g n )κ α . ( 2 9 9)

T h er ef or e,  T h e or e m 6, ( 2 8 0) a n d ( 2 9 9) alt o g et h er i m pl y t h e
pr o p ert y ( 1) i n  T h e or e m 1 2.

N e xt,  w e s h o w pr o p ert y ( 2) i n  T h e or e m 1 2.  B y t h e tri a n gl e
i n e q u alit y,  w e h a v e ∀ uuu ∈ R n a n d ∀ i ∈ [ n ],

σ̂ 2
i − σ 2

i ≤ σ̂ 2
i −

σ 2

ξ i
+

σ 2

ξ i
− σ 2

i , ( 3 0 0)

w h er e ξ i is gi v e n i n ( 6 9).  We b o u n d t h e t w o t er m s i n ( 3 0 0)
s e p ar at el y. Fr o m ( 5 3), ( 7 0) a n d ( 7 1),  w e h a v e

σ 2

ξ i
− σ 2

i ≤
2 a π σ 2

(1 − a )4 n
. ( 3 0 1)

T o si m plif y n ot ati o n s, l et φ i
iπ

n + 1 a n d d e n ot e b y ϕ ( t) t h e
f u n cti o n

ϕ ( t)
σ 2

1 + t2 − 2 t c o s φ i
. ( 3 0 2)

It i s e a s y t o s e e t h at t h e d eri v ati v es φ (a ) a n d φ (a ) ar e
b o u n d e d f or a n y fi x e d a ∈ [ 0 , 1 ).  B y t h e  Ta yl or e x p a n si o n
a n d t h e tri a n gl e i n e q u alit y,  w e h a v e

σ̂ 2
i −

σ 2

ξ i
= ϕ ( â (uuu )) − ϕ ( a ) ( 3 0 3)

≤ ϕ (a ) â (uuu ) − a + o â (uuu ) − a . ( 3 0 4)

H e n c e, c o m bi ni n g ( 3 0 0), ( 3 0 1) a n d ( 3 0 4),  w e c o n cl u d e t h at
t h er e e xists a c o n st a nt A 2 > 0 s u c h t h at f or all n l ar g e
e n o u g h ( 1 2 8) h ol d s f or a n y uuu ∈ T (n , α, p ).

Fi n all y, t h e b o u n d ( 1 2 9) f oll o ws i m m e di at el y fr o m a dir e ct
a p pli c ati o n of  L e m m a 6 t o ( 1 2 8).

C al c ul ati o n s t o s h o w ( 2 8 6): Fr o m ( 2 8 3) a n d ( 2 8 4),  w e h a v e

1

n

n

i= 1

¯m i ( x i ) −
1

n

n

i= 1

m i (xxx ) ( 3 0 5)

=
1

n

n

i= 1

2 ν 4
i λ̂ (xxx ) − λ

1 + 2 λ̂ (xxx ) ν 2
i 1 + 2 λ ν 2

i

+

1

n

n

i= 1

2 x 2
i ν 2

i 2 + 2 λ̂ (xxx ) ν 2
i + 2 λ ν 2

i λ̂ (xxx ) − λ

1 + 2 λ̂ (xxx ) ν 2
i

2
1 + 2 λ ν 2

i
2

.

( 3 0 6)

B y ( 1 2 9), f or all n l ar g e e n o u g h, ∀ uuu ∈ T (n , α, p ) a n d xxx =
S uuu , w e h a v e

1 + 2 λ̂ (xxx ) ν 2
i − 1 + 2 λ ν 2

i ≤
1 + 2 λ ν 2

i

2
. ( 3 0 7)

Usi n g ( 2 1 4) a n d ( 2 1 6),  w e d e d u c e t h at 1 ≤ 1 + 2 λ ν 2
i ≤

σ 2
i

θ n
.

T h er ef or e, ( 3 0 7) i m pli es t h at

1

2
≤ 1 + 2 λ̂ (xxx ) ν 2

i ≤
3 σ 2

i

2 θ n
. ( 3 0 8)

We c o nti n u e t o b o u n d ( 3 0 6) a s

1

n

n

i= 1

¯m i ( x i ) −
1

n

n

i= 1

m i (xxx ) ( 3 0 9)

≤
1

n

n

i= 1

4 ν 4
i λ̂ (xxx ) − λ +

1

n

n

i= 1

2 0 x 2
i ν 2

i σ 2
i

θ n
λ̂ (xxx ) − λ

( 3 1 0)

≤
1

n

n

i= 1

4 ν 4
i +

1

n
·

2 0 σ 6

θ n (1 − a )6

n

i= 1

x 2
i

σ 2
i

λ̂ (xxx ) − λ ( 3 1 1)

≤ A 1 η n , ( 3 1 2)

w h er e ( 3 1 0) is b y pl u g gi n g ( 3 0 8) i nt o ( 3 0 6); ( 3 1 1) is b y ν 2
i ≤

σ 2
i a n d

σ 6
i =

σ 6

µ 3
i

≤
σ 6

(1 − a )6
, ∀ i ∈ [ n ], ( 3 1 3)

w hi c h is d u e t o ( 7 1); a n d ( 3 1 2) h ol d s f or s o m e c o n st a nt A 1 >
0 ( d e p e n di n g o n d o nl y) b y ( 1 2 5), ( 1 2 9) a n d ( 2 2 4).

C.  P r o of of L e m m a 9

P r o of. We s k et c h t h e pr o of,  w hi c h is si mil ar t o
[ 1 5,  L e m. 5] e x c e pt f or s o m e sli g ht c h a n g e s. Si n c e Y 1 , . . . , Y n
ar e i n d e p e n d e nt a n d t h e dist orti o n  m e a s ur e d (·, ·) is s e p ar a bl e,
w e u s e t h e d e fi niti o n ( 1 5), t h e di stri b uti o n f or m ul a ( 2 1 3) f or
YYY , a n d t h e f or m ul a f or t h e  m o m e nt g e n er ati n g f u n cti o n of a
n o n c e ntr al χ 2

1 - distri b ut e d r a n d o m v ari a bl e t o o bt ai n f or δ > 0
a n d xxx ∈ R n ,

YYY (xxx , δ, d ) = − n δ d +

n

i= 1

δ x 2
i

1 + 2 δ ν 2
i

+

n

i= 1

1

2
l o g 1 + 2 δ ν 2

i ,

( 3 1 4)

w h er e ν 2
i ’s ar e i n ( 2 1 4).  L et λ̂ (xxx ) b e d e fi n e d i n ( 1 3 0).

Si mil ar t o [ 1 5,  E q. ( 3 1 5)-( 3 2 0)], b y t h e  Ta yl or e x p a n si o n of

YYY (xxx , δ, d ) i n δ at t h e p oi nt δ = λ , w e h a v e f or a n y xxx ∈ R n ,

YYY xxx , λ̂ (xxx ), d − YYY xxx , λ , d ≤
( S (xxx ))2

2 S (xxx )
, ( 3 1 5)

w h er e  w e d e n ot e d

S (xxx ) YYY xxx , λ , d =

n

i= 1

mi n ( θ n , σ 2
i )

2

σ 2
i

x 2
i

σ 2
i

− 1 ,

( 3 1 6)

a n d

S (xxx ) − YYY xxx , λ + ξ ( xxx ), d , ( 3 1 7)

w h er e ( 3 1 6) is b y fir st t a ki n g d eri v ati v es of ( 3 1 4)  wit h r e s p e ct
t o δ a n d t h e n pl u g gi n g λ = 1

2 θ n
; θ n > 0 is t h e w at er l e v el

m at c h e d t o d vi a t h e n -t h or d er r e v er s e  w at er filli n g ( 3 1) o v er
σ 2

i ’s; a n d

ξ ( xxx ) ρ ( λ̂ (xxx ) − λ ), ( 3 1 8)

f or s o m e ρ ∈ [ 0 , 1 ].  N ot e fr o m t h e d e fi niti o n ( 1 2 1) t h at
f or a n y xxx , R ( X̂XX (xxx ), YYY , d ) is a n o ni n cr e a si n g f u n cti o n i n d ,
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h e n c e λ̂ (xxx ) ≥ 0,  w hi c h, c o m bi n e d  wit h dir e ct c o m p ut ati o n s
u si n g ( 3 1 4), i m pli es S (xxx ) ≥ 0, s e e ( 3 2 3) b el o w.  T his f a ct
w as u s e d i n d eri vi n g t h e i n e q u alit y i n ( 3 1 5).

N e xt  w e s h o w c o n c e ntr ati o n b o u n d s f or t h e t w o r a n d o m
v ari a bl es S ( XXX ) a n d S ( XXX ). Fr o m ( 3 1 6),  w e s e e t h at S ( XXX ) is
a s u m of n z er o- m e a n a n d b o u n d e d- v ari a n c e r a n d o m v ari a bl es.
T h e n, b y t h e  B err y- E ss e e n t h e or e m,  w e h a v e

P |S ( XXX )| ≥ V n l o g n ≤
K 1√

n
, ( 3 1 9)

w h er e K 1 > 0 is a c o n st a nt a n d V is a c o n st a nt s u c h t h at

V ≥
1

n

n

i= 1

2 mi n ( θ n , σ 2
i )

4

σ 4
i

. ( 3 2 0)

T o tr e at S ( XXX ), c o n si d er t h e f oll o wi n g e v e nt E :

E {xxx ∈ R : |λ̂ (xxx ) − λ | ≤ n − 1 / 4 }. ( 3 2 1)

Usi n g  L e m m a 6 i n  A p p e n di x  C- C. 3, ( 3 0 0)-( 3 0 4) a n d  T h e o-
r e m 5 i n S e cti o n III- C. 2, o n e c a n s h o w ( si mil ar t o t h e pr o of
of  T h e or e m 6) t h at t h er e e xists a c o n st a nt c > 0 s u c h t h at f or
all n l ar g e e n o u g h,

P E c ≤ e x p { −c
√

n }. ( 3 2 2)

C o m p uti n g t h e d eri v ati v es u si n g ( 3 1 4) yi el d s

S (xxx ) =

n

i= 1

4 x 2
i ν 2

i 1 + 2 ν 2
i ( λ + ξ ( xxx ))

− 3
+

2 ν 4
i 1 + 2 ν 2

i ( λ + ξ ( xxx ))
− 2

. ( 3 2 3)

B y c o n diti o ni n g o n E a n d E c ,  w e s e e t h at f or a n y t > 0,

P S ( XXX ) ≤ nt

= P S ( XXX ) ≤ nt , E + P S ( XXX ) ≤ nt , E c ( 3 2 4)

≤ P S ( XXX ) ≤ nt , E + P E c . ( 3 2 5)

Usi n g ( 3 2 3) a n d t h e si m pl e b o u n d 1
x + y ≥ e x p (− y / x )

x f or a n y
x , y > 0,  w e h a v e f or a n y xxx ∈ E ,

S (xxx )

≥ e x p (− 3 n − 1 / 4 / λ )×
n

i= 1

4 x 2
i ν 2

i 1 + 2 ν 2
i λ

− 3
+ 2 ν 4

i 1 + 2 ν 2
i λ

− 2
( 3 2 6)

=

n

i= 1

A i x
2
i + B i , ( 3 2 7)

w h er e A i , B i ≥ 0 ar e d e fi n e d a s

A i e x p (− 3 n − 1 / 4 / λ )4 ν 2
i 1 + 2 ν 2

i λ
− 3

, ( 3 2 8)

B i e x p (− 3 n − 1 / 4 / λ )2 ν 4
i 1 + 2 ν 2

i λ
− 2

. ( 3 2 9)

L et V n b e d e fi n e d a s

V n
1

n

n

i= 1

2 A i σ
4
i , ( 3 3 0)

a n d c h o o s e t h e c o n st a nt t i n ( 3 2 5) s u c h t h at f or all n l ar g e
e n o u g h,

0 < t <
1

n

n

i= 1

( A i σ
2
i + B i ) −

V n l o g n

n
. ( 3 3 1)

B y t h e  B err y- E ss e e n t h e or e m, t h er e e xi sts a c o n st a nt K 1 > 0
s u c h t h at

P S ( XXX ) ≤ nt , E ≤ P

n

i= 1

A i X
2
i + B i ≤ nt ≤

K 1√
n

.

( 3 3 2)

T h e e xist e n c e of s u c h a c o n st a nt t s atisf yi n g ( 3 3 1) is g u ar a n-
t e e d si n c e f or a n y d < d m a x a n d f or all n s uf fi ci e ntl y l ar g e,
t h er e is a c o n st a nt fr a cti o n of stri ctl y p o siti v e A i ’s a n d B i ’s,
w hi c h c a n b e v eri fi e d b y pl u g gi n g ( 2 1 4) a n d ( 2 1 6) i nt o ( 3 2 8)
a n d ( 3 2 9).  C o m bi ni n g ( 3 2 5) a n d ( 3 3 2) i m pli es t h at t h er e e xists
a c o n st a nt K 1 > 0 s u c h t h at f or all n l ar g e e n o u g h

P S ( XXX ) ≤ nt ≤
K 1√

n
, ( 3 3 3)

w h er e t h e c o n st a nt t s atis fi es ( 3 3 1). Fi n all y, si mil ar t o
[ 1 5,  E q. ( 3 3 9)], c o m bi ni n g ( 3 1 5), ( 3 1 9) a n d ( 3 3 3) yi el d s ( 2 6 6).

D.  P r o of of L e m m a 1 0

P r o of. D u e t o  L e m m a 4 i n  A p p e n di x  C- C. 1, f or a n y xxx ∈ R n ,
w e c a n  writ e t h e r a n d o m v ari a bl e i n v ol v e d i n ( 2 6 9) a s a s u m
of i n d e p e n d e nt r a n d o m v ari a bl es, t o  w hi c h t h e  B err y- E ss e e n
t h e or e m is a p pli e d.  T h e d et ails f oll o w. Fr o m ( 2 8 1) a n d ( 2 8 2),
w e h a v e

d xxx , ˆFFF =
1

n

n

i= 1

M 2
i (xxx ), ( 3 3 4)

w h er e t h e r a n d o m v ari a bl es M i (xxx )’s ar e d e fi n e d as

M i (xxx ) ( F̂ i − x i ). ( 3 3 5)

Fr o m ( 2 8 2),  w e k n o w t h at t h e c o n diti o n al di stri b uti o n s ati s fi e s

M i (xxx ) | X̂XX = xxx ∼ N
− x i

1 + 2 λ̂ (xxx ) ν 2
i

,
ν 2

i

1 + 2 λ̂ (xxx ) ν 2
i

,

( 3 3 6)

w h er e λ̂ (xxx ) i s i n ( 1 3 0).  H e n c e, c o n diti o n e d o n X̂XX = xxx ,

t h e r a n d o m v ari a bl e d xxx , ˆFFF f oll o ws t h e n o n c e ntr al χ 2 -

distri b uti o n  wit h ( at  m o st) n d e gr e e s of fr e e d o m.  A p pl yi n g
t h e  B err y- E ss e e n t h e or e m t o ( 3 3 4) yi el d s t h at ∀ γ > 0,

P d − γ < d xxx , ˆFFF ≤ d |X̂XX = xxx

= P
n d − n γ − n

i= 1 m i (xxx )

s
√

n
<

1

s
√

n

n

i= 1

M 2
i (xxx ) − m i (xxx )

≤
n d − n

i= 1 m i (xxx )

s
√

n
|X̂XX = xxx ( 3 3 7)

≥
n d − n

i= 1 m i (xxx )

s
√

n
−

n d − n γ − n
i= 1 m i (xxx )

s
√

n

−
1 2 t

s 3
√

n
, ( 3 3 8)
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w h er e m i (x ), d e fi n e d i n ( 1 2 2), is t h e e x p e ct ati o n of M 2
i (xxx )

c o n diti o n e d o n X̂XX = xxx ; a n d

s 2 1

n

n

i= 1

Va r M 2
i (xxx ) | X̂XX = xxx , ( 3 3 9)

t
1

n

n

i= 1

E [ M 2
i (xxx ) − m i (xxx )

3
| X̂XX = xxx ]. ( 3 4 0)

B y t h e  m e a n v al u e t h e or e m, ( 3 3 8) e q u als

n γ

s
√

n
√

2 π
e − b 2

2 −
1 2 t

s 3
√

n
( 3 4 1)

f or s o m e b s atisf yi n g

n d − n
i= 1 m i (xxx ) − n γ

s
√

n
≤ b ≤

n d − n
i= 1 m i (xxx )

s
√

n
. ( 3 4 2)

T o f urt h er l o w er- b o u n d ( 3 4 1),  w e b o u n d b 2 a s f oll o ws.

b 2 ≤ 2
n d − n

i= 1 m i (xxx )

s
√

n

2

+ 2
n γ

s
√

n

2

( 3 4 3)

≤
2 p 2 α l o g l o g n

s 2
+

2 l o g 2 q n

s 2 n
( 3 4 4)

≤
4 p 2 α l o g l o g n

c 2
s

, ( 3 4 5)

w h er e ( 3 4 3) i s b y ( 3 4 2) a n d t h e el e m e nt ar y i n e q u alit y ( x +
y )2 ≤ 2 ( x 2 + y 2 ); ( 3 4 4) is b y ( 1 2 4) a n d t h e c h oi c e of γ
i n ( 2 6 8).  T h e c o n st a nt q i n ( 2 6 8) is c h o s e n t o b e

q
2 p 2 α

c 2
s

+ 1 . ( 3 4 6)

T h e c o n st a nt c s > 0 is a l o w er b o u n d of s ,  w h o s e e xist e n c e
is j u sti fi e d b el o w at t h e e n d of t h e pr o of. Fi n all y, ( 3 4 5) h ol d s
f or all s uf fi ci e ntl y l ar g e n .  Usi n g ( 3 4 5),  w e c a n f urt h er l o w er-
b o u n d ( 3 4 1) a s

l o gq n

s
√

2 π
(l o g n )

− 2 p 2 α

c 2
s −

1 2 t

s 3

1
√

n
( 3 4 7)

=
l o g n

s
√

2 π
−

1 2 t

s 3

1
√

n
( 3 4 8)

≥
C 1
√

n
, ( 3 4 9)

w h er e ( 3 4 7) is b y pl u g gi n g ( 3 4 5) i nt o ( 3 4 1); ( 3 4 8) is b y
u si n g ( 3 4 6); a n d ( 3 4 9) h ol d s f or all s uf fi ci e ntl y l ar g e n a n d
s o m e c o n st a nt C 1 > 0.  T h er ef or e, ( 2 6 9) f oll o ws.

Fi n all y, t o j u stif y t h at s a n d t, d e fi n e d i n ( 3 3 9) a n d ( 3 4 0),
ar e b o u n d e d as  w e ass u m e d i n o bt ai ni n g ( 3 4 5) a n d ( 3 4 9),
w e c o m p ut e u si n g ( 3 3 6)

Va r M 2
i (xxx ) | X̂XX = xxx

=
4 x 2

i ν 2
i

(1 + 2 λ̂ (xxx ) ν 2
i )3

+
2 ν 4

i

(1 + 2 λ̂ (xxx ) ν 2
i )2

. ( 3 5 0)

T h e n, u si n g ( 3 0 8) t o b o u n d 1 + 2 λ̂ (xxx ) ν 2
i a n d ( 1 2 5) t o b o u n d

x 2
i ,  w e c a n l o w er- a n d u p p er- b o u n d s b y p o siti v e c o n st a nts; t

c a n b e b o u n d e d si mil arl y.

A P P E N D I X F

A.  D e ri v ati o n of t h e  M a xi m u m Li k eli h o o d  E sti m at o r

T his s e cti o n pr e s e nts t h e d et ails i n o bt ai ni n g ( 7 2).  T h e
r a n d o m v e ct or (U 1 , U 2 − a U 1 , . . . , U n − a U n − 1 ) is distri b ut e d
a c c or di n g t o N (0 , σ 2 I). L et p a (·) b e t h e pr o b a bilit y d e n sit y
f u n cti o n of UUU wit h p ar a m et er a , t h e n

â (uuu )

ar g  m a x
a

p a (uuu ) ( 3 5 1)

= ar g  m a x
a

n

i= 1

1
√

2 π σ 2
e

− 1
2 σ 2 (u i − a u i− 1 ) 2

( 3 5 2)

= ar g  mi n
a

n

i= 2

(u i − a u i− 1 )2 + u 2
1 ( 3 5 3)

= ar g  mi n
a

n

i= 2

u 2
i− 1 a 2 − 2

n

i= 2

u i− 1 u i a +

n

i= 1

u 2
i ( 3 5 4)

=
n − 1
i= 1 u i u i+ 1

n − 1
i= 1 u 2

i

, ( 3 5 5)

w h er e ( 3 5 3) is b y c oll e cti n g t h e t er m s i n t h e e x p o n e nt,
a n d ( 3 5 5) is b y  mi ni mi zi n g t h e q u a dr ati c f u n cti o n of a .

B.  P r o of of T h e o r e m 5

P r o of. We fir st b o u n d P â (UUU ) − a > η .  D e fi n e t h e r a n d o m
v ari a bl e W (n , η ) as

W (n , η )

n − 1

i= 1

U i Z i+ 1 − η U 2
i . ( 3 5 6)

T h e n, fr o m ( 7 2) i n S e cti o n III- C. 2 a b o v e a n d ( 5), it is e a s y t o
s e e t h at

P â (UUU ) − a > η = P [W (n , η )  > 0] . ( 3 5 7)

Fr o m t h e d e fi niti o n of t h e  G a u ss- M ar k o v s o ur c e i n ( 5),
w e h a v e

U i =

i

j = 1

a i− j Z j . ( 3 5 8)

Pl u g gi n g ( 3 5 8) i nt o ( 3 5 6),  w e o bt ai n

W (n , η ) =

n

i= 2

i− 1

j = 1

a i− j − 1 Z i Z j −

η

1 − a 2

n − 1

i= 1

n − 1

j = 1

a |i− j | − a 2 n − i− j Z i Z j . ( 3 5 9)

N oti c e t h at ( 3 5 9) c a n b e f urt h er r e writt e n as t h e f oll o wi n g
q u a dr ati c f or m i n t h e n i.i. d. r a n d o m v ari a bl es Z 1 , . . . , Z n :

W (n , η ) = ZZZ Q (n , η )ZZZ , ( 3 6 0)

w h er e Q (n , η ) is a n n × n s y m m etri c  m atri x d e fi n e d as

Q i, j (n , η ) =

⎧
⎪⎨

⎪⎩

− η 1 − a 2 (n − i)

1 − a 2 , i = j < n

0 , i = j = n
1
2 a |i− j | −1 − η a |i− j|− a 2 n − i− j

1 − a 2 , ot h er wis e .

( 3 6 1)
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F or si m pli cit y, i n t h e r est of t h e pr o of,  w e  writ e W a n d Q
f or W (n , η ) a n d Q (n , η ), r e s p e cti v el y.  B y t h e  H a n s o n- Wri g ht
i n e q u alit y [ 2 5,  T h. 1. 1], t h er e e xists a u ni v er s al c o n st a nt c > 0
s u c h t h at f or a n y t > 0 9

P [W − E [W ] > t] ≤ e x p − c mi n
t2

σ 4 Q 2
F

,
t

σ 2 Q
,

( 3 6 2)

w h er e Q F a n d Q ar e t h e Fr o b e ni u s a n d o p er at or n or m s
of Q , r es p e cti v el y.  Ta ki n g t = − E [W ] ( w hi c h is > 0 f or all
n l ar g e e n o u g h, a s s h o w n i n ( 3 6 6) b el o w) i n ( 3 6 2),  w e c a n
b o u n d ( 3 5 7) a s

P [W > 0] ≤ e x p − c mi n
(− E [W ])2

σ 4 Q 2
F

,
− E [W ]

σ 2 Q
.

( 3 6 3)

It r e m ai n s t o b o u n d E [W ], Q 2
F a n d Q . I n t h e f oll o wi n g,

w e s h o w t h at − E [W ] = ( η n ), Q 2
F = (n ) a n d Q =

O (1 ). Pl u g gi n g t h e s e esti m at e s i nt o ( 3 6 3) yi el d s ( 7 3) u p
t o c o n st a nts.  T h e d et ails f oll o w.  We fir st c o n si d er E [W ].
Fr o m ( 3 6 0) a n d ( 3 6 1),  w e h a v e

E [W ] = σ 2 tr(Q ) = −
η σ 2 n

1 − a 2
+

η σ 2 (1 − a 2 n )

(1 − a 2 )2
. ( 3 6 4)

D e fi n e t h e c o n st a nt K 1 > 0 a s

K 1
1

2 (1 − a 2 )
. ( 3 6 5)

T h e n, f or all n l ar g e e n o u g h,  w e h a v e

− E [W ] ≥ K 1 σ
2 η n . ( 3 6 6)

We t h e n c o n si d er Q 2
F .  Dir e ct c o m p ut ati o n s u si n g ( 3 6 1) yi el d

Q 2
F =

1

2 (1 − a 2 )
+

(1 + a 2 ) η 2 − 2 a (1 − a 2 ) η

(1 − a 2 )3
+

4 a η 2 − 2 (1 − a 2 ) η a 2 n

a (1 − a 2 )3
· n

+
4 a η

(1 − a 2 )3
−

1

2 (1 − a 2 )2
−

η 2 (4 a 2 + 1 )

(1 − a 2 )4

+
4 a 2 η 2

(1 − a 2 )4
+

1

2 (1 − a 2 )2
−

4 a η

(1 − a 2 )3
· a 2 n

+
η 2

(1 − a 2 )4
· a 4 n . ( 3 6 7)

D e fi n e t h e c o n st a nt K 2 > 0 a s

K 2
1

1 − a 2
+

2 (1 + 5 a 2 ) η 2

(1 − a 2 )3
. ( 3 6 8)

9 T h e s u b- g a ussi a n n or m Z i ψ 2
[ 4 5,  D ef. 5. 7] of Z i ∼ N (0 , σ 2 ) s atis fi es

Z i ψ 2
≤ C 1 σ f or a u ni v ers al c o nst a nt C 1 > 0, s e e [ 4 5,  E x a m pl e 5. 8].

B y [ 2 5,  T h. 1. 1], t h er e e xists a u ni v ers al c o nst a nt C 2 > 0 s u c h t h at f or a n y
t > 0,

P [W − E [W ] > t] ≤ e x p − C 2 mi n
t2

C 4
1 σ 4 Q 2

F

,
t

C 2
1 σ 2 Q

.

I n ( 3 6 2),  w e a bs or b C 1 a n d C 2 i nt o a si n gl e u ni v ers al c o nst a nt c .

Si n c e η > 0 a n d a ∈ [ 0 , 1 ), fr o m ( 3 6 7),  w e h a v e f or all n
l ar g e e n o u g h,

Q 2
F ≤ K 2 n . ( 3 6 9)

Fi n all y,  w e b o u n d Q .  Usi n g t h e  G er s h g ori n cir cl e t h e o-
r e m [ 4 3, p. 1 6,  T h. 1. 1 1], o n e c a n e a sil y s h o w t h at

Q ≤ m a x
i∈[ n ]

q i 1 , ( 3 7 0)

w h er e q i d e n ot e s t h e i-t h r o w i n Q .  Dir e ct c o m p ut ati o n s
u si n g ( 3 6 1) yi el d t h at ∀ i ∈ [ n ],

q i 1 ≤ K 3 , ( 3 7 1)

w h er e K 3 is a p o siti v e c o n st a nt gi v e n b y

K 3
1

1 − a
+

η

1 − a 2
+

2 η

(1 − a )2
. ( 3 7 2)

T h er ef or e, ∀ n ≥ 1,  w e h a v e

Q ≤ K 3 . ( 3 7 3)

Pl u g gi n g t h e b o u n d s ( 3 6 6), ( 3 6 9) a n d ( 3 7 3) i nt o ( 3 6 3),
w e h a v e f or all n l ar g e e n o u g h

P [W > 0] ≤ e x p − c mi n
K 2

1 η 2 n

K 2
,

K 1 η n

K 3
. ( 3 7 4)

N oti c e t h at all t h e ar g u m e nts u p t o t his p oi nt ar e v ali d
f or a n y η > 0.  H o w e v er, t h e c o n st a nts K 2 a n d K 3 i n t h e
b o u n d ( 3 7 4) d e p e n d o n η vi a ( 3 6 8) a n d ( 3 7 2), r e s p e cti v el y.
Si n c e  w e ar e i nt er est e d i n s m all η , i n t h e r e st of t h e pr o of,
w e ass u m e η ∈ (0 , 1 ).  B esi d es,  wit h t h e r estri cti o n η ∈ (0 , 1 ),
w e c a n g et ri d of t h e d e p e n d e n c e of K 2 a n d K 3 o n η , a n d
si m plif y ( 3 7 4). F or a n y η ∈ (0 , 1 ),  w e c a n b o u n d K 2 a n d K 3

a s f oll o ws :

K 2 ≤ K 2

1

1 − a 2
+

2 (5 + a 2 )

(1 − a 2 )3
, ( 3 7 5)

K 3 ≤ K 3

a + 4

(1 − a )2 (1 + a )
. ( 3 7 6)

A p pl yi n g t h e b o u n d s ( 3 7 5) a n d ( 3 7 6) t o ( 3 7 4), a n d t h e n s etti n g

c 1
K 2

1

K 2

a n d c 2
K 1

K 3

( 3 7 7)

yi el d s

P â (UUU ) − a > η ≤ e x p − c mi n c 1 η 2 n , c 2 η n . ( 3 7 8)

Fi n all y, t o b o u n d P â (UUU ) − a < − η , i n t h e a b o v e pr o of,
w e r e pl a c e t h e r a n d o m v ari a bl e W (n , η ) b y V (n , η ), d e fi n e d
as

V (n , η )

n − 1

i= 1

− U i Z i+ 1 − η U 2
i . ( 3 7 9)

I n q u a dr ati c f or m s, V (n , η ) = ZZZ S (n , η )ZZZ , w h er e S (n , η ) is
a n n × n s y m m etri c  m atri x, d e fi n e d i n a  w a y si mil ar t o Q (n , η ):

S i, j (n , η ) =

⎧
⎪⎨

⎪⎩

− η 1 − a 2 (n − i)

1 − a 2 , i = j < n

0 , i = j = n

− 1
2 a |i− j | −1 − η a |i− j|− a 2 n − i− j

1 − a 2 , ot h er wis e .

( 3 8 0)
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Wit h t h e s a m e t e c h ni q u e s as a b o v e,  w e o bt ai n

P â (UUU ) − a < − η ≤ e x p − c mi n c 1 η
2 n , c 2 η n ,

( 3 8 1)

w h er e c , c 1 a n d c 2 ar e t h e s a m e c o n st a nts as t h o s e i n ( 3 7 8).

C.  P r o of of T h e o r e m 6

P r o of. T h e pr o of is si mil ar t o t h at of  T h e or e m 5. I n p arti c u-
l ar, ( 3 7 4) still h ol d s:

P â (UUU ) − a > η n ≤ e x p − c mi n
K 2

1 η 2
n n

K 2
,

K 1 η n n

K 3
.

( 3 8 2)

I n st e a d of ( 3 7 5) a n d ( 3 7 6),  w e b o u n d K 2 a n d K 3 b y

K 2 ≤ K 2

2

1 − a 2
, ( 3 8 3)

a n d

K 3 ≤ K 3

2

1 − a
, ( 3 8 4)

w h er e ( 3 8 3) a n d ( 3 8 4) h ol d f or all n l ar g e e n o u g h i n vi e w
of ( 7 4), ( 3 6 8) a n d ( 3 7 2).  A p pl yi n g t h e b o u n d s ( 3 8 3) a n d ( 3 8 4)
t o ( 3 8 2) a n d u si n g t h e f a ct t h at f or all n l ar g e e n o u g h,

mi n
K 2

1 η 2
n n

K 2

,
K 1 η n n

K 3

=
η 2

n n

8 (1 − a 2 )
, ( 3 8 5)

w e o bt ai n

P â (UUU ) − a > η n ≤
1

(l o g n )κ α , ( 3 8 6)

w h er e κ is gi v e n i n ( 7 6). Fi n all y,  w e c a n b o u n d
P â (UUU ) − a < − η n i n t h e s a m e  w a y.

A C K N O W L E D G M E N T

We  w o ul d li k e t o t h a n k t h e ass o ci at e e dit or  Dr. S h u n
Wat a n a b e a n d t h e a n o n y m o u s r e vi e w er s f or t h eir i n si g htf ul
c o m m e nt s t h at ar e r e fl e ct e d i n t h e fi n al v er si o n.
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