IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 10, OCTOBER 2019

6355

The Dispersion of the Gauss—Markov Source

Peida Tian

Abstract— The Gauss-Markov source produces U; = al;_1+
Z; for i > 1, where Uy =0, |a] < 1 and Z; ~ N (0, o2) are iid.
Gaussian random variables. We consider lossy compression of a
block of n samples of the Gauss—-Markov source under squared
error distortion. We obtain the Gaussian approximation for the
Gauss-Markov source with excess-distortion criterion for any
distortion d > 0, and we show that the dispersion has a reverse
waterfilling representation. This is the first finite blocklength
result for lossy compression of sources with memory. We prove
that the finite blocklength rate-distortion function R(n,d,¢€)
approaches the rate-distortion function R(d) as R(n,d,e) =

R(d)+ @ 0 Le)+o (ﬁ), where V (d) is the dispersion, € €

(0, 1) is the excess-distortion probability, and Q‘l is the inverse
Q-function. We give a reverse waterfilling integral representation
for the dispersion V (d), which parallels that of the rate-distortion
functions for Gaussian processes. Remarkably, for all 0 < d =<

—IH‘-:!;D s R(n,d,€) of the Gauss—-Markov source coincides with

that of Z;, the i.i.d. Gaussian noise driving the process, up to
the second-order term. Among novel technical tools developed
in this paper is a sharp approximation of the eigenvalues of the
covariance matrix of n samples of the Gauss-Markov source,
and a construction of a typical set using the maximum likelihood
estimate of the parameter a based on n observations.

Index Terms— Lossy source coding, Gauss-Markov source, dis-
persion, finite blocklength regime, rate-distortion theory, sources
with memory, achievability, converse, autoregressive processes,
covering in probability spaces, parameter estimation.

I. INTRODUCTION

N RATE-DISTORTION theory [2] [3], a source, modeled

as a discrete stochastic process {U,-}?il, produces a random
vector U = (Uy,...,U,)" and the goal is to represent U by
the minimum number of reproduction vectors V' such that the
distortion is no greater than a given threshold d. For any such
set of reproduction vectors, the associated rate is defined as
the ratio between the logarithm of the number of vectors and
n. The rate quantifies the minimum number of bits per symbol
needed to describe the source with distortion d.

Numerous studies have been pursued since the seminal
paper [3], where Shannon first proved the rate-distortion the-
orem for the discrete stationary memoryless sources (DMS)
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and then sketched the ideas on generalizing to continu-
ous alphabets and the stationary ergodic sources. Shannon’s
rate-distortion theorem shows that the minimum rate needed
to describe a DMS within distortion d is given by the
rate-distortion function (RDF) R(d), which is computed as a
solution to a (single-letter) minimal mutual information convex
optimization problem. Goblick [4] proved a coding theorem
for a general subclass of strongly mixing stationary sources
showing that the RDF is equal to the limit of n-letter minimal
mutual information. That limit has exponential computational
complexity in general. Computable expressions for the RDF
of sources with memory are known only in the following
special cases. Gray [5] showed a closed-form expression for
the RDF for a binary symmetric Markov source with bit
error rate distortion in a low distortion regime. For higher
distortions, Jalali and Weissman [6] recently showed upper
and lower bounds allowing one to compute the rate-distortion
function in this case with desired accuracy. Gray [7] showed
a lower bound to the rate-distortion function of finite-state
finite-alphabet Markov sources with a balanced distortion
measure, and the lower bound becomes tight when d < (0, d,.]
for critical distortion d.. For the mean squared error distor-
tion measure (MSE), Davisson [8], and also Kolmogorov [9],
derived the rate-distortion function for stationary Gaussian
processes by applying a unitary transformation to the process
to decorrelate it and applying reverse waterfilling to the decor-
related Gaussians [10]. Berger [11] and Gray [5], in separate
contributions in the late 60’s and early 70’s, derived the MSE
rate-distortion function for Gaussian autoregressive sources.
See [12] for a detailed survey on the development of coding
theorems for more general sources.

All of the above mentioned work [2]-[8], [10], [11] apply
to the operational regime where the coding length n grows
without bound. Asymptotic coding theorems are important
since they set a clear boundary between the achievable and
the impossible. However, practical compression schemes are of
finite blocklength. A natural, but challenging, question to ask
is: for a given coding blocklength n, what is the minimum rate
to compress the source with distortion at most d? Answering
this question exactly is hard. An easier question is that of
second-order analysis, which studies the dominating term in
the gap between RDF and the finite blocklength minimum rate.

In rate-distortion theorems, the landscape of second-order
analyses consists of two criteria: average distortion and excess
distortion. The average distortion constraint posits that the
average distortion should be at most d, while excess distortion
constraint requires that the probability of distortion exceeding
d be at most . For average distortion criterion, Zhang, Yang
and Wei [13] proved that for i.i.d. finite alphabet sources,
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the leading term in the gap R(n,d) — R(d) is I"ﬁ",] where

R(n,d) denotes the minimum rate compatible with average
distortion d at coding length n. Later, Yang and Zhang [14]
extended the achievability result of [13] to abstract sources.
For lossy compression of i.i.d. sources under excess dis-
tortion criterion, the minimum achievable finite blocklength
rate admits the following expansion [15], [16], known as the

Gaussian approximation:
V(d logn
Do@+o (),

R(n,d,e) =R(d)+ .,/ —— —

n n
where V(d) is referred to as the source dispersion and Q_] )
denotes the inverse Q-function. Extensions of the result in (1)
to joint source-channel coding [17], [18] and multiterminal
source coding [19], [20] have also been studied.

The dispersion of lossy compression of sources with mem-
ory is unknown. In the context of variable-length lossy com-
pression with guaranteed distortion, Kontoyiannis [21, Th. 6,
Th. 8] established a connection between the number of bits
needed to represent n given samples produced by an arbitrary
source, and the logarithm of the reciprocal of distortion d-ball
probability. Unfortunately computation of that probability has
exponential in n complexity. In contrast, the dispersions of
lossless compression of sources with memory and of channel
coding over channels with memory are known in some cases.
The second-order expansion of the minimum encoded length
in the lossless compression of Markov sources is computed
in [22] and [23]. Polyanskiy ef al. found the channel dispersion
of the Gilbert-Elliott channel in [24, Th. 4].

In this paper, we derive an expansion of type (1) on
R(n,d,e€) for the Gauss-Markov source, one of the sim-
plest models for sources with memory. We show that the
dispersion V(d) for the Gauss-Markov source is equal to
the limiting variance of the d-tilted information, and has a
reverse waterfilling representation. We show that the disper-
sion V(d) for low distortions is the same as that of the
i.i.d. Gaussian noise driving the process, and becomes smaller
for distortions above a critical value d., which extend the
corresponding result of Gray [5, Eq. (24)] to the nonas-
ymptotic regime. Section II presents the problem formula-
tion. The main results and proof techinques are presented
in Section III. Our proofs of converse and achievability are
presented in Sections IV and V, respectively. The converse
proof generalizes to the Gaussian autoregressive processes [5],
but the achievability proof does not. In proving the converse
and achievability, we develop several new tools including
a nonasymptotic refinement of Gray’s result [5, Eq. (19)]
on the eigenvalue distribution of the covariance matrix of
the Gauss-Markov source. This refinement relies on a sharp
bound on the differences of eigenvalues of two sequences
of tridiagonal matrices, proved using the Cauchy interlacing
theorem and the Gershgorin circle theorem from matrix theory.
In proving achievability, we derive a maximum likelihood
estimator of the parameter a of the Gauss-Markov source and
bound the estimation error using the Hanson-Wright inequality
[25, Th. 1.1]. Our key tool in the achievability proof is the

IThis statement is translated from [13], where the equivalent result was
stated in terms of distortion-rate function.
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construction of a typical set based on the maximum likelihood
estimator. Finally, we conclude in Section VI with brief
discussions on some open problems. Fig. 4 in Appendix A-A
presents a roadmap containing the relations of all theorems,
corollaries and lemmas in this paper.

Notations: Throughout, lowercase (uppercase) boldface let-
ters denote vectors (random vectors) of length n. We omit
the dimension when there is no ambiguity, i.e. 4 = u" =
(uy,. ..,u,,)T andU =U" = (Uy, ..., U,,)T. We write U for
U™. For a random variable X, we use E[X] and Var [X] to
denote its mean and variance, respectively. We write matrices
using sans serif font, e.g. matrix A, and we write ||A|F
and [|A]| to denote the Frobenius and operator norms of A,
respectively. The trace of A is denoted by tr(A). For a vector o,
we denote by |jo|, the £{p-norm of o (p =1 or p = 2 in
this paper). We also denote the sup norm of a function F
by ||Fllc £ sup,p |F(x)|, where D denotes the domain
of F. We use the standard O(-), o(-) and @(-) notations to
characterize functions according to their asymptotic growth
rates. Namely, let f(n) and g(n) be two functions on n,
then f(n) = O(g(n)) if and only if there exists positive real
number M and nog € N such that |f(n)| < M|g(n)| for any
n > ng; f(n) = o(g(n)) if and only if lim,_. f(n)/g(n) =
0; f(n) = ©(g(n)) if and only there exist positive constants
c1,c2 and ng € N such that ¢;g(n) < f(n) < c2g(n) for any
n > ng. For any positive integer m, we denote by [m] the
set of intergers {1, 2, ..., m}. We denote by 1 {-} the indicator
function. We use n!! to denote the double factorial of n. The
imaginary unit is denoted by j. All exponents and logarithms
are base e.

II. PROBLEM FORMULATION
A. Operational Definitions

In single-shot lossy compression, we consider source and
reproduction alphabets X and ), and a given source dis-
tribution Px over X. The distortion measure is a mapping
d(-,"): & x Y + [0,+400). An encoder f is a mapping
f: X — [M], and a decoder is g: [M] +— ). The image
set of a decoder g is referred to as a codebook consisting
of M codewords {g(i )}}"i]. Given distortion threshold d > 0
and excess-distortion probability € € (0,1), an (M,d,€)
code consists of an encoder-decoder pair (f,g) such that
P[d(X, g(f(X))) > d] < €. The nonasymptotic fundamental
limit of lossy compression is the minimum achievable code
size for a given distortion threshold ¢ and an excess-distortion
probability € € (0, 1):

M*(d,e) 2 min{M : Jan (M, d, €) code}. )

In this paper, A = V = R”", and the distortion measure is
the mean squared error (MSE) distortion: Vu, o € R”,

1
d(u,0) £ —llu —o|.

(3)

We refer to the set B(x,d), defined below, as a distortion
d-ball centered at x:

Bx,d) £ {x' eR":d(x,x') <d}. 4)
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We consider the Gauss-Markov source {U; }fﬁl , wWhich satisfies
the following difference equation:

Ui=aUi1+ Z;, Yi=1, (5

and Up = 0. Here, a € [0,1) is the gatin,2 and Z;’s are
independently and identically distributed (i.i.d.) (0, o?) that
form the innovation process. We adopt (5) as the simplest
model capturing information sources with memory: gain a
determines how much memory (as well as the growth rate),
and the innovation Z; represents new randomness being
generated at each time step. In statistics, the Gauss-Markov
source (5) is also known as the first-order Gaussian autore-
gressive (AR) process.

For a fixed blocklength n € N, a distortion threshold d > 0
and an excess-distortion probability € € (0, 1), an (n, M, d, €)
code consists of an encoder f,: R" — [M] and a decoder
On: [M] — R" such that P[d (U, g,(f,(U))) >d] < e,
where U = (Ui,...,U,)" denotes the source vector. The
rate associated with an (n, M,d,€) code is R £ IDiM.
The nonasymptotic operational fundamental limit, that is,
the minimum achievable code size at blocklength n, distortion
d > 0 and excess-distortion probability € € (0, 1), is

M*(n,d,e) £ min{M : 3 an (n, M, d, €) code}, (6)
and the corresponding minimum source coding rate is
log M*(n,d
R(n,d,e) & M_ 7

n

The objective of this paper is to characterize R(n, d, €) for the
Gauss-Markov source.

B. Informational Definitions

The problem of characterizing the operational fundamental
limit M*(d, €) in (2) is closely related to the rate-distortion
function (RDF) Ry (d) of the source X, which is defined as
the solution to the following convex optimization problem [3]:

Ry (d) = 1(X;Y), (®)

inf

Pyjx: E[d(X,Y)]=<d
where the infimum is over all conditional distributions
Py|x : X — Y such that the expected distortion is less than or
equal d, and /(X; Y) denotes the mutual information between
X and Y. In this paper, we assume that

1) Rx(d) is differetiable with respect to d;

2) there exists a minimizer in (8).
The pair (X, Y*) is referred to as the RDF-achieving pair if
Py+|x is the minimizer in (8). For any x € &, the d-tilted
information yx(x, d) in x, introduced in [15, Definition 6], is

Jx(x,d) £ —2*d —logEexp (—A*d(x, Y")), 9)

where A* is the negative slope of the curve Ry(d) at
distortion d:

= -Ry(@). (10)
2Note that if a € (—1,0] in (5), then {(—])"U,' TD is a Gauss-Markov

. . . i=0 | .
source with nonnegative gain —a and the same innovation variance. Thus
restricting to 0 = a < 1 is without loss of generality.
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The d-tilted information ;x (X, d) has the property that
Rx(d) = Ex (X, d)]. an

When A is a finite set, (11) follows immediately from the
Karush—Kuhn-Tucker (KKT) conditions for the optimization
problem (8), see [26, Th. 9.4.1] and [11, Eq. (2.5.16)]. Csiszir
showed the validity of (11) when X is an abstract probability
space [27, Corollary, Lemma 1.4, Egs. (1.15), (1.25), (1.27)—
(1.32)], see Appendix A-C for a concise justification. For more
properties of the d-tilted information, see [15, Eq. (17)-(19)].

Next, we introduce the conditional relative entropy min-
imization (CREM) problem, which plays a key role in our
development. Let Py and Py be probability distributions
defined on alphabets X" and Y, respectively. For any d > 0,
the CREM problem is defined as

R(X,Y,d) £ inf

D(P Py).
Ppjy: E[d(X,F)]<d (Prx || Py|Px)

(12)
where F is a random variable taking values in ), and
D(Prx||Py|Px) is the conditional relative entropy:

D(Prix||Py|Py) & / D(Prix—||Py)dPx(x).  (13)

A well-known fact in the study of lossy compression is that
the CREM problem (12) is related to the RDF (8) as

Rx(d) = igf R(X,Y,d), (14)
¥

where the infimization is over all probability distributions
Py of the random variables ¥ over ) that are indepen-
dent of X; and the equality in (14) is achieved when Py
is the Y*-marginal of the RDF-achieving pair (X, ¥Y*), see
[10, Eq. (10.140)] and [28, Th. 4] for the finite alphabets
A'; [14, Eq. (3.3)] and [21, Eq. (13)] for abstract alphabets X'
The property (14) is a foundation of the Blahut—Arimoto
algorithm, which computes iterative approximations to Ry (d)
by alternating between inner and outer infimizations in (14).
The CREM problem is also important in nonasymptotic
analyses of lossy compressors, see [14, Eq. (3.3)], [21,
Eq. (13)] and [15, Eq. (27)]. Operationally, it relates to the
mismatched-codebooks problem, that is, lossy compression
of source Py using random codewords drawn from Py
[29, Th. 12]. Similar to (9), Vx ¢ X, d > 0, d > 0,
the generalized tilted information Ay(x, d, d), defined in [15,
Eq. (28)], is

Ay(x,6,d) £ —6d —logEexp(—dd(x,Y)). (15)

The optimizer Pp+x of (12) satisfies the following condition:
VxedX,ye),

d Pp«x(y|x)

ot =P ()

= Ay(x,d",d) — &d(x,y) + dd, (16)

where
& _R(X,Y,d). (17

When A" and Y are discrete, (16) can be verified by the KKT
conditions for the optimization problem (12). For abstract
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alphabets A, see [29, Th. 2] and [14, Property 1] for an expo-
sition. By comparing (9) and (15) and using the relation (14),
we see that

JX(x:d) = AY*(X.,).*.,d)., (18)

where A* is in (10).

For the Gauss-Markov source defined in (5), its n-th order
rate-distortion function Ry (n, d) is defined by replacing X by
U in (8) and then normalizing by n:

1
Ry (n,d) = p 1(U; V). (19)

inf
Pyy:
E[d(U,V)]<d

The rate-distortion function Ry (d) for the Gauss-Makov
source (5) is

Ry (d) £ limsup Ry (n,d). (20)
n—0o0
It immediately follows from (11) that
1
Ry(d) = limsup —E [y (U, d)], (21)

n—soo N

where jy (U, d) is the d-tilted information random variable
defined in (9), that is,

Ju(@,d) = —1*nd — logE [exp (—2*nd (u, V*))], (22)

where (U, V*) forms a RDF-achieving pair in (19) and

2* = —Riy(n, d). (23)

The variance of the d-tilted information is important in cap-
turing the second-order performance of the best source code.
Define

Vy(n,d) = Var[jy (U, d)], (24)

Vu(d) £ lim sup 1Vy(n, d). (25)
n—oo N
The quantity Vi (d) is referred to as the informational disper-
sion, in contrast to the operational dispersion Vy(d) defined
in the next subsection. Reverse waterfilling solutions for
rate-distortion functions of the Gauss-Markov source were
well-known, see [5, Eq. (15)] for Ry (n, d), [5, Eq. (22)] for
Ry (d) and our discussions in Section II-D below. In this paper,

we derive similar parametric expressions for both Vi (n, d)
and Vi (d).

C. Operational Fundamental Limits

In terms of coding theorems, the equality between R(d)
(the minimum achievable source coding rate under average
distortion criterion when the blocklength n goes to infinity)
and Ry (d) (the informational rate-distortion function defined
in (20)) has been established, e.g. [11, Th. 6.3.4] and [5, Th.
2]. For the Gauss-Markov source, by the Markov inequality,
the achievability result under average distortion criterion,
e.g. [5, Th. 2], can be converted into an achievability result
under the excess distortion criterion. A matching converse
follows from Kieffer’s strong converse [30, Th. 1] for the

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 10, OCTOBER 2019

stationary ergodic sources. Therefore, for any d > 0 and
€ € (0,1), we have

lim R(n,d,€) = Ry(d), (26)
n—=00

where R(n, d, €) is defined in (7) and Ry (d) in (20).

The main result of this paper is the following Gaussian
approximation for the minimum achievable rate R(n,d, €) in
lossy compression of the Gauss-Markov source (5):

Vy(d)
n

R(n,d,e) = Ry(d) + 0 e +o (i) , (27

Jn

where Q_](-) denotes the inverse Q-function, and the term
o(-) will be refined in Theorems 7 and 11 in Sections IV and V
below. Our main result (27) is a nonasymptotic refinement
of (26), implying that the convergence rate in the limit (26)
is of order Lﬂ with the optimal constant factor given in (27).
Formally, the rate-dispersion function Vi (d), introduced in
[15, Def. 7] and simply referred to as (operational) dispersion,
is

Vu(d) £ lim lim n

e—=0n—00

2
(R(n,d,e)—RU(d)) _ 28)

27'(e)
Equivalently, our main result (27) establishes the equality
between the operational and informational dispersions for the
Gauss-Markov source:

Vu(@) = Vy(a). (29)

D. Related Work

The n-th order RDF Ry (n,d) defined in (19) for the
Gauss-Markov source is given by the reverse waterfilling
[5, Eq. (17)] and [11, Eq. (6.3.34)+(6.3.36)]:

Rp(ndy= 1S 0. L 10g %% 30

U(ﬂ., )_Egmax 750ga E ( )
l n

d=— in(@,, c2), 31

ng“““( ,0}) 31)

2

where ¢;’s are the eigenvalues of the covariance matrix (see

the discussions in Section III-A below):

Yy 2EWUU ", (32)

and 6, > 0 is the water level matched to d at blocklength n.
The rate-distortion function Ry (d) for the Gauss-Markov
source (5) is obtained by passing to the limit of infinite n
in (30) and (31) via invoking the limiting theorems on the
eigenvalues of the covariance matrix Xy [5, Eq. (22)] and
[11, Th. 6.3.2], given by

Ry (d) = % /_ " max [0, % log S(;’)] dw, (33)

T

1
d=— min [0, S(w)] dw, (34)
27 J_x
where the power spectrum of the Gauss-Markov source (5) is
given by
2

a
S(w) = ——
(w) :

35
@ (35)
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w
T

water level #

Power spectrum S(w)
N
T

—_

=

Fig. 1.

and the function g is defined as

gw) £ 1+a®> —2acos(w), Vw e [—m,xl. (36)

We refer to (30)-(31) as the n-th order reverse waterfilling, and
to (33)-(34) as the limiting reverse waterfilling. Fig. 1 depicts
the limiting reverse waterfilling (34).

Results similar to (30)-(34) hold for the stationary Gaussian
processes [9, Eq. (17), (18)], as well as for the higher-order
Gaussian AR processes (not necessarily stationary)
[5, Eq. (22)]. We discuss the subtle differences between
the rate-distortion functions of the (asymptotically) stationary
and nonstationary Gaussian AR processes in Section VI
below. This paper considers the (asymptotically) stationary
Gauss-Markov sources, i.e., (5) with |a| < 1.

The converse results in this paper extend partly to the
higher-order Gaussian AR processes, studied by Gray [5]
and Berger [11, Sec. 6.3.2]. The Gaussian AR process is
[5, Eq. (D]

i
Ui=> aUi¢+Zi, i1,
£=1
and U; = 0 for i <0, where Z;’s are i.i.d. N'(0, 02), and the
real constants ag’s satisfy [5, Eq. (10)]

oo
Z lag| < oo.
£=0

The Gauss-Markov source in (5) is a special case of (37)
with a; = a and ay = 0 for £ > 2. The following relation
between the rate-distortion functions of the Gaussian AR
process {U; }X% in (37) and the i.i.d. Gaussian process {Z; }=%7
is due to Gray [5, Eq. (24)]:

(37)

(38)

[Ru(d) =Rz(d), 0<d<d., 39

Ry(d) > Rz(d), d. <d < dmax,

=
—Power spectrum S(w)
[ Area equals 2wd

0 T
w

Reverse waterfilling (34) for a = 0.5: the water level # is chosen such that the shaded area equals 2mwd.

where d, is referred to as the critical distortion, defined as
d; £ Opin, where

Omin = min _ S(w).

wel[—m,x]

(40)

Accordingly, denote the maximum value of S(w) over the
inverval [—x, ] as

£ max S(w).
we[—m,x]

Omax (41)
In (39), dmax is the maximum distortion achievable in (34)
(that is, when 6 > Opax):

a1 [7

T Jx

S(w) dw, (42)

Amax =
and Rz(d) is the RDF for i.i.d. Gaussian sources derived by
Shannon [3, Equation below Fig. 9]:

1 o2
Rz(d) =max {0, - log—. (43)
2 d
The power spectrum S(w) of the Gaussian AR process is
[5, Eq. 21)]
)
(44)

+00
Za;e_ﬂw , we[—m, ]

=0

S(w) = o2

Equality in (39) is a deep result stating that in a range of
low distortions, the asymptotic rate-distortion tradeoff of a
Gaussian AR process and that of its driving innovation process
are the same. See Fig. 2 for an illustration of (39) in the special
case of a Gauss-Markov source with a = 0.5.

The critical distortion d. and the maximum distortion dpax
can be understood pictorially as follows. In Fig. 1 and equiv-
alently in (34), as the water level @ rises from 0 to Opip, the
minimum on the right side of (34) equals #, meaning that
d =0 for 0 < 0 < Onin (equivalently, 0 < d < d.). As the
water level @ rises further, lower parts of the spectrum S(w)
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== RDF for Z
051 —RDF for U]|
o 04F -
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I
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& I
= 0.3+ I .
2 I
£ |
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Fig. 2. The rate-distortion functions for the Gauss-Markov source {U;} with @ = 0.5 and 62 = 1, and for the innovation process {Zi}2,. Zi ~N(0, 1)

driving that source.

start to play a role in (34). When the water level @ rises above
the peak in Fig. 1: @ > Oy, the distortion d in (34) remains
as dmayx- In the case of the Gauss-Markov source, from (35),
it is easy to see that d. and dmax are given by

0_2
de = ——, 45
T (1 +a))? )
0.2

Note that dpax in (46) equals the stationary variance of the
source (Appendix B-B), i.e.,

dmax = lim Var[U,]. (47)
n—0o0
For the nonstationary Gauss-Markov sources (la] = 1),

dmax = +00.

III. MAIN RESULTS

A. Preliminary: Decorrelation

We first make a simple but important observation on the
equivalence between lossy compression of the Gauss-Markov
sources and parallel independent Gaussian sources. For any
n € N, the random vector U = (Uy,..., U,,)T generated by
the model (5) follows the multivariate Gaussian distribution
N, Zy), where Zy = o2(ATA)~! is its covariance matrix
and A is an n x n lower triangular matrix with detA = 1:

1 0 o ... 0
—a 1 0 0

AL 0 —a 1 0 (48)
0o ... 0 —a 1

Since (5) can be rewritten as Z = AU, and Z ~ N (0, o21),
the covariance matrix of U is given by
Yo =EA'ZZTA Y 1=0c2ATA). 9
We refer to the random vector X as the decorrelation of U:
X2s'v, (50)

where S is the unitary matrix in the eigendecomposition of
the positive definite matrix (ATA)

(ATA)~! =SAST,

A:diag(i,...,i),
Hi Hn
where 0 < u; < ... < pu, are the eigenvalues of ATA.
From (49) and (51), it is clear that X ~ N(0,c2A),
ie., X1, ..., X, are independent zero-mean Gaussian random
variables with variances o-f’s being the eigenvalues of Xy:

(5D
(52)

2
240
g, = —,

Hi

i €[n]. (53)

Since they are related via the unitary transformation S
which preserves the geometry of the underlying Euclidean
space, U and X are equivalent in terms of their fundamen-
tal limits. Indeed, any (n, M, d,€) code for U (recall the
definition in Section II-B above) can be transformed, via S,
into an (n, M,d, €) code for X, and vice versa; therefore,
the finite blocklength minimum achievable rates R(n, d, €) for
U and X are the same. Since I(SX;SY) = I(X;Y) and
E|SX — SY |3 = E|X — Y3, their n-th order and limiting
rate-distortion functions are the same: Vn € N, d € (0, dpax),
we have Ry(n,d) = Ry(n,d), and hence Ry (d) = Ry (d).
By the same transformation, it is easy to verify that this
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Fig. 3. Dispersion versus distortion: The Gauss-Markov source with @ = 0 and 62 = 1 degenerates to the i.i.d. Gaussian source, i.e., the innovation process
{Z;}32,. The dispersion of the Gauss-Markov source with @ = 0.5 and o2 =1 is given by the solid line. Two corner points on the solid line are labeled as

Py (corresponding to d¢) and P (corresponding to dmax).

equivalence also extends to the d-tilted information: Vu € R”,
let

x2STu, (54)
then

Ju(u,d) = jx(x,d).

Due to the above equivalence, we will refer to both U and its
decorrelation X in our analysis. Decorrelation is a well-known
tool, which was used to find the rate-distortion functions for
the general Gaussian AR processes [5].

(33)

B. Gaussian Approximations for the Gauss-Markov Sources
We now formally state the main contributions of this paper.
Theorem 1. For the Gauss-Markov source in (5) with a
[0, 1), fix any excess-distortion probability € < (0,1) and
distortion threshold d < (0,dmax), Where dmax is defined
in (46). The minimum achievable source coding rate for the
Gauss-Markov source in (5) satisfies
Vu(d)
n

R(1,d,e) = Ry(d) + Q*@)+o(i), (56)

N

where Ry (d) is the rate-distortion function of the
Gauss-Markov source, given in (33);, and the operational
dispersion Vy (d), defined in (28), is given by

1 [T S(w))?
Vu(d) = — min|1, | — dw, (57)
az ) . (7]
where 0 > 0 is the water level matched to the distortion d

via (34), and the power spectrum S(w) is in (35).

The proof of Theorem 1 is in given in Sections IV (con-
verse) and V (achievability).

Pleasingly, the new reverse waterfilling solution for the
dispersion in (57) parallels the classical reverse waterfilling
representation of the rate-distortion function in (33). Further-
more, just like their rate-distortion functions (recall (39)),
the dispersions of the Gauss-Markov source U in (5) and its
innovation process Z are comparable:

Corollary 1. Let Vy(d) and Vz(d) be the dispersions of the
Gauss-Markov source (5) and the memoryless Gaussian source
{Z:i)2,, respectively, then

0<d<d,,

2

Vu(d) = Vz(d), (58)
d. <d <o”.

Vu@) < Vz(d),

Proof. From [16, Th. 2] and [15, Th. 40], we know that the

dispersion of the memoryless Gaussian source is
1

Vz(d) =5, vd e 0,07, (59)

which is also shown in Fig. 3. By the definition of d, in (45)

and the discussion around (45) and (46), we see that (57)
satisfies

|G ] 1

min | 1
’ (9g(w)) <1,
from which Corollary 1 follows. [ ]
Corollary 1 parallels Gray’s result (39) [5, Eq. (24)] for the
rate-distortion functions of U and Z, and they together imply
that for d € (0,d.], the fundamental limits of lossy com-
pression of the Gauss-Markov source and the i.i.d. Gaussian
source {Z ;}f’il are the same, up to the second-order term. For

de (d,, 02), the Gauss-Markov source is harder to compress
in the limit of n going to infinity since Ry (d) > Rz(d),

if d € (0,d,],
if d € (de, dmax),

(60)
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but the Gauss-Markov source approaches its asymptotic funda-
mental limit faster since Vi (d) < Vz(d). See the discussions
following Theorem 2 below for an intuitive explanation.

The dispersions for a = 0 and a = 0.5 are plotted in Fig. 3,
where the dotted line (for a = 0,62 = 1) recovers the
dispersion result (59) in [15] and [16] for the i.i.d. Gaussian
sources {Z,’}?i], as expected. The solid line (for a = 0.5,
62 = 1) coincides with the dotted line in the region d
(0,d.], which means that the Gauss-Markov source has the
same dispersion as its innovation process in the region of
low d’s. For d < (d,, 02), the dispersion of the Gauss-Markov
source is smaller than that of its innovation process and
decreases with d, as indicated by Corollary 1.

Using the residue theorem from complex analysis, we also
derive the coordinates of the two corner points P; and P> on
the solid line (Appendix B-A):

2y(1 —
Py = (d., 1/2), PZZ(dmax:w)- (61)

2(1 +a)?

The vertical segment between (dmax,0) and P, corresponds
to the case when the water level # is above the spectrum
peak Omax in Fig. 1, and the dispersion Vi (d) in (57) becomes

1 T
Vo) = s / Sw)? dw, 62)

—
which continues decreasing as @ increases, even as the distor-
tion d remains as dnyax, as seen from (34) and (57).
Theorem 2 below gives formulas for the d-tilted information
defined in (22) and informational dispersion defined in (25).

Theorem 2. For the Gauss-Markov source U in (5), for any
d € (0,dmax) and n = 1, the d-tilted information is given by

" min@y,, 62) [ x?
d f— d — 2: 1 1 _1
JU("-: ) JX(IJ ) P 29,; (02 )+
1 1 max 6',,,03)
— 0 —_—
2% g,

and the informational dispersion satisfies

T 2
Vy(d) = é/_ min |:1, (?) ] dw, (64)

where 0, > 0 is the water level matched to d via the n-th order
reverse waterfilling (31); @ > 0 is the water level matched to
the distortion d via the limifing reverse waterfilling (34), and
the power spectrum S(w) is defined in (35).

Proof. Appendix C-D. [ ]

Theorem 2 computes the informational dispersion Vi (d)
defined in (25). The formula (56) in Theorem 1 is an
equivalent reformulation of the definition of the operational
dispersion Vi (d) in (28), while (57) together with Theorem 2
establish the equality Vy(d) = Vy(d). Theorem 1 and
Theorem 2 establish that for the Gauss-Markov source,
the operational RDF and dispersion are given by (21)
and (25), respectively, providing a natural extension to
the fact that in lossy compression of i.i.d. sources {X;},
the mean E[;x, (X1, d)] and the variance Var [;x, (X1, d)] of
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the single-letter d-tilted information ;x, (X1, d) are equal to
the RDF and the dispersion, respectively [15, Th. 12].

Theorem 2 also provides intuition on our result in Corol-
lary 1 for d > d.. Since (X, Y*) forms a RDF-achieving pair
in Ry(n,d) (recall (19)), it is well-known [10, Th. 10.3.3]
that ¥* has independent coordinates and V i € [n],

Y? ~ N'(0, max (a,? O, 0) ) (65)

where 6, > 0 is the water level matched to the distortion
d in the n-th order reverse waterfilling over {crf};;] in (31).
Since d > d., there are some X; in (63) which are “inactive",
that is, gf < 6,, which makes the variance of (63) smaller.
Geometrically, since X concentrates inside an ellipsoid, we are
covering such an ellipsoid by balls of radius V/nd. The centers
of these distortion d-balls lie on another lower dimensional
ellipsoid. That lower dimensional ellipsoid is the one on which
the random vector ¥* concentrates. For d > d,, although
centered at a lower dimensional ellipsoid (since Y = 0 for
inactive X;’s), these d-balls are large enough to also cover
those “inactive" dimensions.

C. Technical Tools

1) Eigenvalues of the Covariance Matrices: Although
decorrelation simplifies the problem by transforming a source
with memory into a memoryless one, the real challenge is
to study the evolution of the variances ¢;’s in (53), as n
increases. For finite n, there is no closed-form expression for
the eigenvalues of Zy fora < (0, 1).3 Since the inverse of Xy
is G—IIATA, which is almost a Toeplitz matrix except the (n, n)-
th entry, the limiting distribution of the eigenvalues of Xy can
be deduced from the limiting distribution of eigenvalues of
Toeplitz matrices [5, Eq. (19)].

Theorem 3 (Reformulation of Gray [5, Eq. (19)]). Fix any
a € [0, 1). For any continuous function F(t) over the interval

I e [Gmin, gmax] s (66)

. 2, .
the eigenvalues o;’s of Xy satisfy

lim EZF(JE) = %fﬁ F (S(w)) dw,  (67)
=1 T Jx

n—00 1 4=
where S(w) is defined in (35).

There are more general results in the form of Theorem 3,
known as Szegd’s theorem, see [32, Ch. 5] for Toeplitz forms
and [33, Corollary 2.3] for asymptotically Toeplitz matrices.
In the context of rate-distortion theory, applying Theorem 3
to (30)-(31) leads to (33)-(34).

Unfortunately, Theorem 3 is insufficient to obtain the fine
asymptotics in our Theorem 1. To derive our finite blocklength
results, we need to understand the rate of convergence in (67).
Towards that end, we develop a nonasymptotic refinement of
Theorem 3, presented next.

Theorem 4 (Nonasymptotic Eigenvalue Distribution of Zg).
Fix any a € [0,1). For any bounded, L-Lipschitz and

3 A closed-form expression for the eigenvalues of £y is known only for

a=1[31, Eq. (2)].
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non-decreasing function F(t) over the interval in (66), and
Jor any n = 1, the eigenvalues giz 's of Ty satisfy

- N
;EF(U,-)——/ F (S(w))dw

2 J_»

C
<L
n

(68)

where C; > 0 is a constant that depends on the Lipschitz
constant L and the sup norm || F||« of F, and S(w) is in (35).

Proof. Theorem 4 follows from Lemma 1 below and ele-
mentary analyses on Riemann sums. See Appendix C-B for
details. ]

In the course of the proof of Theorem 4, we obtain the
following nonasymptotic bounds on each eigenvalue p; of
ATA, which is of independent interest.

Lemma 1 (Sharp Approximation of the Eigenvalues of ATA).
Fixanya €[0,1). Foranyn e N, let0 < yu1 < p2... < py
be the eigenvalues of AT A, and let

A it
afzg(nﬂ), 69)

where g is in (36). Then, we have
0<& <" Viem (10)

Proof. The idea in proving Lemma 1 is that ATA is
almost a tridiagonal Toeplitz matrix, whose eigenvalues are
given by (69). The bound (70) is obtained via the Cauchy
interlacing theorem and the Gershgorin circle theorem. See
Appendix C-A for details. |

Remark 1. In view of (69) and (70) in Lemma 1, we have
VneNand Vi € [n],

(1—a) < pi<(+a)’ (71)

The key difference between the asymptotically stationary case
(a € [0, 1)) and the nonstationary case (a > 1) is that, in the
later case, u; decreases to zero as n increases to infinity,
see [34, Lemma] and [31, Eq. (2)]. In the asymptotically
stationary case, p; is bounded away from zero according
to (71).

2) An Estimation Problem: Our achievability proof relies on
the analysis of the following parameter estimation problem.
Given a source sequence # = (uy,.. .,u,,)T, drawn from
the model (5) with unknown a, the maximum likelihood
estimate (MLE) of the parameter a is (Appendix F-A)

(72)

We show that the estimation error of the MLE decays expo-
nentially in n for any a € [0, 1).

Theorem 5. Fix a € [0, 1). Let n € (0, 1). Then, there exists
a universal constant ¢ > 0 and two constants c¢1,c2 > 0 (c1
and ¢ only depend on a, see (377) in Appendix F-C below)
such that for all n large enough, the estimation error of the
MLE satisfies

P[laU) —a| > n] <2exp [—cmin (cl n*n, czqn)] . (73)
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Proof. Appendix F-B. |

Finally, we present a strengthened version of Theorem 5,
which is used in our achievability proof. Let & > 0 be a
constant. Define #, as

» |aloglogn
"N

Theorem 6. Fix a [0, 1). Given a constant o > 0, let g,
be in (74). Then, for all n large enough, the estimation error
of the MLE safisfies

(74)

Pa@) ~ al > 1] < G (75)
where x is a constant given by
2 ﬁ (76)
and ¢ = 0 is the constant in Theorem 5.
Proof. Appendix F-C. |

See Section V-B for the construction of a typical set based
on a(u).

IV. CONVERSE

Theorem 7 (Converse). For the Gauss-Markov source (5) with
the constant a € [0, 1), for any excess-distortion probability
€ € (0,1), and for any distortion threshold d € (0, dmax),
the minimum achievable source coding rate satisfies

WD o1 -2 1o (%)

n 2n
a7

R(n,d,e) = Ry(d) +

where Ry (d) is the rate-distortion function given in (33), and
Vu(d) is the informational dispersion, defined in (25) and
computed in (64).

We present two converse proofs in the following. The
first one is a volumetric argument; while the second one
relies on a general converse derived in [15, Th. 7] and a
new concentration result on the d-tilted information of the
Gauss-Markov source.

A. A Geometric Proof

Geometrically, any (n, M, d, €) code induces a covering of
(R", Py): the union of d-balls centered at the codewords have
probability mass at least 1 —e. Converting the underlying prob-
ability to Pz and using the symmetry of A'(0, o%1), we obtain
the following lower bound on the number of codewords M.
The argument relies on det A = 1, where A is in (48).

Theorem 8. Given € € (0,1) and d € (0, dmax), the size of
any (n, M, d, €) code for the Gauss-Markov source (5) must

satisfy
n/2
M > (‘r(n_’é)) , (78)
d
where r(n, €) is such that
P(G <n-r(n, e)fo-z) =1—c¢, (79)
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and G is a random variable distributed according to the
xz-disrriburion with n degrees of freedom.

Proof of Theorem 8. Appendix D-A. |

Remark 2. Theorem 8, which applies to the Gauss-Markov
source, parallels [15, Th. 36], which applies to the i.i.d.
Gaussian source. Both proofs rely on the volumetric method,
though the proof of Theorem 8 requires additional arguments
related to linear transformations of the underlying space.
Theorem 8 yields the optimal second-order coding rate for
the Gauss-Markov source only in the low distortion regime
(as we will see in the proof of Theorem 7 below), while
an analysis of [15, Th. 36] gives the optimal second-order
coding rate for the ii.d. Gaussian source of any distortion
[15, Th. 40].

Equipped with Theorem 8, we are ready to prove the
converse in Theorem 7 for d € (0, d.].

Proof of Theorem 7 below the critical distorfion. Applying the
Berry-Esseen Theorem in Appendix A-B to (79) yields

r(n,€) > o2 [1 + \/EQ_I (e + C—;HE)] . (80)

Plugging (80) into (78) and taking logarithms, we obtain

1 2 1 1
R(n,d,e) = 3 log % +\/;Q“(é) +0 (E) ,  (81)

where we use the Taylor expansions of log(l + x) and the
inverse Q-function. The converse bound (81) holds for any
€ €(0,1)and d € (0, dmax)- By (39) and (58), we see that (81)
is the same as (77) for d € (0,d.], up to the second-order
term. In addition, (81) is slightly stronger than (77) in the
third-order term. For d € (d., dmax), (81) is not tight, even
in the first order since Ry (d) > %log "7 for d € (d., dmax),
by (39) and (43). [ |

Remark 3. The converse (81) holds for the general Gaussian
AR processes defined in (37). The proof stays the same, except
that the matrix A in (48) is replaced by

1 0 0 0
—a 1 0 0

A L —daz —aq 1 0 (82)
—an_1 —a; —a; 1

B. Converse Proof

The second proof is based on a general converse by Kostina
and Verdu [15], restated here for convenience, and a concen-
tration result which bounds the difference between ;x (X, d)
and its approximation ;x(X,d,), for d, defined in (86)
below.

Theorem 9 ([15, Th. 7]). Fixd € (0, dmax). Any (n, M, d, €)

code must satisfy

€>supP[x(X,d) >logM +y | —exp(—y).
y=0

(83)
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The converse bound in Theorem 9 above provides a
lower bound on € for any (n,M,d,e) code using the
d-tilted information, and is used to derive a converse result
on the dispersion of the stationary memoryless sources in
[15, Eq. (103)—(106)]. The key step in the proof of
[15, Eq. (103)-(106)] is to write the d-tilted information as
a sum of n i.i.d. random variables, to which the Berry-Esseen
Theorem is applied.

For the Gauss-Markov source X, using (22), (31) and (65),
we can write the d-tilted information ;¥ (X, d) as a sum of n
independent (but not identical) random variables:

n
x(X,d) =" jx,(Xi, min(b,, 5})),
i=1
where 6, is given in (31). Indeed, (84) is further simplified
to (63) in the proof of Theorem 2. However, it is hard to
conduct nonasymptotic analysis using (84) since understand-
ing the evolution of both 6, and ¢;’s as n grows in (84) is
challenging. Therefore, we approximate jx (X, d) using

(84)

XX, dy) =" yx,(Xi, min(@, o)),

i=1

(85)
where

LR ST
dy = - gmm(ﬂ, o?), (86)
and @ is the water level matched to d via the limiting reverse
waterfilling (34). Then, & does not dependent on n in (85).
Since our Theorem 4 and Lemma 1 in Section III-C.1 capture
the evolution of o-f’s as n grows, (85) is easier to analyze
than (84) in the nonasymptotic regime. Throughout the paper,

the relations among a given distortion d, the water levels 8,
31 34
0,, and the distortion d,, defined in (86), are 6, <> d <2

0 <—)> d,. Note that there is no direct reverse waterfilling

relation between d, in (86) and 6, in (31). As shown by our

concentration result Theorem 10 in the following, the approx-

imation jx (X, d,) stays within a constant from ;x (X, d) with
- 1

probability at least 1 — O ().

Theorem 10 (Approximation of the d-Tilted Information). For
any d € (0, dmax), let @ > 0 be the water level matched to d
via the limiting reverse waterfilling (34). Suppose we have a
sequence of distortion levels d, € (0, dmax) With the property
that there exists a constant hy > 0 such that for all n large
enough,

h
ld — d| < —.
n

(87)
Then, there exists a constant ¢ € (0, 1) such that for any

u > 25";1 and all n large enough, we have

Pllyx X,d) — jx (X,dp)| <u]l = 1—

n(gBT‘l‘—l)

5. (88)

Proof of Theorem 10. Appendix D-B. [ ]

In the rest of this section, we present the detailed proof of
Theorem 7 for any d € (0, dmax). The d-tilted information
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Jx (X, d) is first approximated by jx (X, d,) defined in (85),
which is a sum of independent random variables whose
expectations and variances approximate the rate-distortion
function Ry(d) and the informational dispersion Vi (d),
respectively. Combining these approximation bounds and
Theorem 9, we obtain the converse in (77). The details
follow.

Proof of Theorem 7. Fix d € (0, dmax). Let @ > 0 be the water
level matched to d via the limiting reverse waterfilling (34).
Notice that d,, defined in (86), is the distortion matched to
the water level @ via the n-th order reverse waterfilling (31)
over cr ’s. Comparing (31) and (86), and applying Theorem 4
to the functlon t — min (@, t), we deduce that there exists a
constant Cy > 0 such that for any n > 1,

C
ld —dy| < =<
n

(89)
Let Y™ be the n-dimensional Gaussian random vector such
that (X, Y" ) forms a RDF-achlevmg pair in Ry (n, d,) defined
in (19). Note that Y” defined here is indeed different from
Y* in (65), where (X,Y”) forms a RDF-achieving pair in

Ry(n,d). It is well-known [10, Th. 10.3.3] that Y has
independent coordinates and similar to (65),
YF ~ N, max( _0, o)) (90)
By the independence of }_’;"s, (18) and (22), we have
n
XX, d) = > Mg (X, 7, min (0,07)), O
i=1
where
= —Ryn,dy) = R (X, Y, dy). (92)

Denote by E; and V; the means and the variances of
Ay+(X;, 2*, min (6, 6%)) (the summands in (91)). By the same
computations leading to (233) and (234) in Appendix C-D,

we have
1 0'2
E; = max —log 9 (93)
1 of
vl = i - —L - 4
mln(2 292) (94)

We now derive the approximation of Ry (d) and Vy(d)
using the means E;’s and the variances V;’s, respectively.
Applying Theorem 4 to the function ¢ +> max (0, 5 log 5)

in (21) and (93), and to the function > min (%, 2%) in (64)
and (94), we conclude that there exist two constants ¢,, ¢, > 0
(depending on d only) such that

nRy(d) — D Ei| <cr, (95)
i=l1

VaVy@d) — | D Vil <c. (96)
i=l

6365

Next, we consider the sequence of distortion levels {d, }M 1s
which satisfies the condition (87) due to (89). Define the event

4Cy
Ce k]
where ¢ € (0, 1) is the constant in Theorem 10 and Cy > 0
is the constant in (89). Theorem 10 implies that

E£ X, d)> jx (X, dy) —

(C)

P[E] = 1—1. (98)
n

Letting y = %logn in Theorem 9, we see that if an
(n, M, d, €')-excess-distortion code exists, then

I 1
e’zP[JX(X,d)zlogM—l— 05”]—5 (99)
]P[;X(x d) > logM+—|€] (€1 - % (100)
logn 4Cy 1
(101)

where (101) is due to (98) and (97). For any fixed € € (0, 1),
define ¢, as

€n =€ +exp(—y) + C—jf + :—1
where Cgg is the constant in the Berry-Esseen Theorem in
Appendix A-B. Then, we have ¢, € (0,1) for all n large
enough. We choose M as

log M 2 nRy(d) +/nVy (d) Q™ (€n)

(102)

C
-6 |Q |- =2 (103)
co
From (95), (96) and (103), we have
lo M{ZE + 0 en) Z‘v _, 3 (104)
g n ¥ 0

i=1 i=1
Continuing the inequality in (101), we have

€ > (1 - :—1) P[é/\ﬁ*(x,’, A*, min (9, a,?)) >

D Ei+ 07 () ZV,-] - (105)
i=1 i=1
1 CBe 1
=(-3) (- T0) - e
1 1+ CBe
i = (107)
—e (108)

where (105) is by (91) and the bound (104); (106) is by the
Berry-Esseen Theorem in Appendix A-B; and (108) is by the
choice of €, in (102). Consequently, for all n large enough,
any (n, M, d, €')-excess-distortion code must satisfy ¢’ > e,
so we must have

R(n,d,€) >

log M
og¥ (109)
n

Plugging (103) into (109) and applying the Taylor expansion
to Q7 (ey) yields (77). [ ]
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V. ACHIEVABILITY
Theorem 11 (Achievability). Fix any a > 0. Consider the
Gauss-Markov source defined in (5). For any excess-distortion
probability € € (0,1), and any distortion threshold d <
(0, dmax), the minimum achievable source coding rate is
bounded as

Vy (d)
n

R(n,d, €) < Ry(d) + 0-'(e)+0 (

1
o)
(110)

where Ry (d) is the rate-distortion function given in (33);
Vu(d) is the informational dispersion, defined in (25) and
computed in (64); and x > 0 is the constant in (76).

This section presents the proof of Theorem 11. We first
discuss how bounds on the covering number of n-dimensional
ellipsoids can be converted into achievability results. We then
proceed to present our proof of Theorem 11, which relies on
random coding [15, Corollary 11], and a lower bound on the
probability of a distortion d-ball using the d-tilted information

Jx(X, d).

A. Connections to Covering Number

Dumer ef al. [35] considered the problem of covering an
ellipsoid using the minimum number of balls in R”, and
derived lower and upper bounds on that number. Although
any upper bound on the covering number implies an upper
bound on R(n,d, €), the upper bound on covering number
in [35] is not tight enough to yield the achievability direction
of the Gaussian approximation (56). We proceed to explain
how to obtain a bound on R(n, d, €) from the results in [35].
An ellipsoid E} is defined by

no 2
X’
Efé{xeR":Z—‘ZSI],

(111)

i=1 i
where r = (r1,...,ry), and r; > 0 is one half of the length
of the i-axis of E}. We say that a subset My C R" is a

d-cove,ring::(4 of the ellipsoid E} if

Efc |J B@.d),
yeMy
where B(y, d) is the d-ball centered at y, defined in (4). The
covering number N(n, d) of an ellipsoid E} is defined as the
size of its minimal d-covering. The d-entropy Hy(E}') is the
logarithm of the covering number

(112)

H4(E") £ 10gN(n, d). (113)
The result in [35, Th. 2] states that
Hu(E;) = K4 +o0(Ka), (114)
where
Kdé.zz %log%. (115)
ir?>nd

4In [35], the term e-covering was used instead of d-covering used here.
They are related by & = /nd.
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Despite the similarity between (115) and the reverse waterfill-
ing (30), the result in (114) is not strong enough to recover
even the asymptotic rate-distortion tradeoff (30) unless d < d_.

In our problem, let X be the decorrelation of U in (50), then
X1, ..., X, are independent zero-mean Gaussian distributed
with variances being 0;2 defined in (53). The random vector
X concentrates around an ellipsoid with probability mass at
least 1 —e. Applying the Berry-Esseen theorem to express r;’s
in (115), we deduce that for any € € (0,0.5) and d < (0, d.],

1. o2 07
R(n,d,e) < —log— +
( ) = Zlog— 5

where the extra o(1) term comes from the 0(Ky) term in (114).
Due to that o(1) term, the bound (116) is first-order opti-
mal, but not second-order optimal. Strenghthening (114) to
Hy(E}) = K4 + o (/K4) would allow one to replace the

o(1) term in (116) by o (ﬁ) yielding the < (achievability)
direction of the Gaussian approximation (56) in the regime

of d € (0,d.]. We do not pursue this approach here. Instead,
we prove (56) via the tilted information.

+o(1), (116)

B. Outline of the Achievability Proof

We describe the main ideas in our achievability proof and
present the details in next subsection. Our proof is inspired by
the work of Kostina and Verdi [15, Th. 12], where the same
problem was addressed for the stationary memoryless sources.
However, the proof there cannot be directly applied to the
Gauss-Markov source. The random coding bound, stated next,
provides an upper bound on the excess-distortion probability
€ using the probability of the distortion d-balls.

Lemma 2 (Random Coding Bound). Let X be the decorrela-
tion of U in (50). There exists an (n, M, d, €) code with

, —MPy(B(X,d))
¢ <infEx [e ] (117)

where the infimum is over all pdf’s Py on R" with ¥
independent of X.

Proof. A direct application of [15, Corollary 11] to X. [ ]
The next lemma provides a lower bound on the proba-
bility of the distortion d-balls using the d-tilted information
xX, d).
Lemma 3 (Lossy AEP for the Gauss-Markov Sources). Fix
any a > 0 and let n, be in (74) in Section III-C.2 above.
For any d € (0, dmax) and € € (0, 1), there exists a constant
K > 0 such that for all n large enough,

1

Pllog ————— < jx(X,d) + pr1log?n + z]

ot 5 e pricgin 1

K

— ]' - 7‘)

(log n)y<=
where X is the decorrelation of U in (50); (X,Y*) forms a
RDF-achieving pair in Rx(n,d), and q > 1, 1 > 0, p2 are
constants, see (271) and (272) in Appendix E-A below. The

constant k > 0 is in (76) in Section III-C.2 above.

(118)

Proof. Appendix E-A. [ ]

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on February 16,2020 at 05:53:01 UTC from IEEE Xplore. Restrictions apply.



TIAN AND KOSTINA: DISPERSION OF THE GAUSS-MARKOV SOURCE

Together with log—B(x—d > jx(x,d) in [15, Eq. (26)],
obtained by applying Markov’s inequality to (22), Lemma 3
establishes the link between the probability of distortion d-ball
and the d-tilted information: log PBED). Jx(X,d)
for the Gauss-Markov source. Results of this kind were
referred to as lossy asymptotic equipartition property (AEP) in
[29, Sec. LB].

Lemma 3 is the key lemma in our achievability proof for
the Gauss-Markov sources. The proof of Lemma 3 is one
of the main technical contributions of this paper. An ana-
log of Lemma 3 for the stationary memoryless sources
[15, Lemma 2] has been used to prove the non-asymptotic
achievability result [15, achievability proof of Th. 12]. Show-
ing a lower bound on the probability of distortion d-balls in
terms of jx(X,d), that is, in the form of (118), is techni-
cal even for i.i.d. sources. To derive such a bound for the
Gauss-Markov sources, we rely on fundamentally new ideas,
including the maximum likelihood estimator d(u) defined
in (72) and analyzed in Theorem 6 in Section III-C.2 above.
We proceed to discuss the estimator and its role in the proof
of Lemma 3 next.

A major step in proving [15, Lemma 2] for the i.i.d.
source {X;} with X; ~ Py involves the empirical proba-
bility distribution Py: given a source sequence X, Py (x) =
1> | 1{xi = x}. The product of the empirical distributions
Pi' ES Py x ... Py was used in the proof of [15, Lemma 2]
for the i.i.d. sources [15, Eq. (270)] to form a typical set of
source outcomes.

To describe a typical set of outcomes of the Gauss-Markov
source, to each source outcome xA(equivalently, u) we asso-
ciate a proxy random variable X (x) as follows. We first
estimate the parameter a in (5) from the source outcome
u using the maximum likelihood estimator () in (72) in
Section III-C.2 above. Then, the proxy random variable X (x)
is defined as a Gaussian random vector with independent
(but not identical) coordinates X; (x) ~ N(O, 02(1)) where

2(.t) s are the proxy variances defined using a(u):

a2

A2 N A
o (x) = 2a(u)cos (ix/(n+ 1))

1+a@m)? - (19

Equivalently, X (x) is a zero-mean Gaussian random vector
whose distribution is given by
Xx)~ N (0, diag(62(x), ..., 6> (x))) . (120)

To simplify notations, when there is no ambiguity, we will
write X and 52 for X (x) and az(x) respectively. Intuitively,
the formula (1 19) approximates the eigenvalues of the covari-
ance matrix of U (or equivalently, that of X) for a typical x.
Due to Theorem 6, with probablllty approaching 1, we have
a(U) = a, which implies 02 ~ a and X ~ X. The accuracy
of these approximations is quanuﬁed in Theorem 12 below,
which is the main tool in the proof of Lemma 3.

We need a few notations before presenting Theorem 12.
First, we particularize the CREM problem (12)-(17) to the
Gauss-Markov source. Let X be the decorrelation of U in (50).
For any random vector ¥ with density, replacing X by X
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in (12) and normalizing by n, we define

R(X,Y,d)= —D(PF|XIIP1'|PX)

Ppx: [E[d(; F)]=d n
Properties of the CREM (121) for the two special cases:
when (i) Y is a Gaussian random vector with independent
coordinates and (ii) (X, Y) forms a RDF -achieving pair, are
presented in Appendix C-C. Let F" be the optimizer of
]R(X Y*, d), where X is defined in (120) and Y* in (65).
For x € R", define m;(x) as

(121)

mi(x) 2B [(Ff - x) 1% = xi]. (122)
Definition 1 (MLE-Typical Set). Fix any d € (0, dmax). Given
a constant a > 0, let n, be in (74) in Section III-C.2 above.
For any constant p > 0 and any n € N, define T (n, a, p) as
the set of vectors u € R" satisfying the following conditions:

|a@) — a| < na, (123)
1 n
=D mi(x) —d| < pra, (124)
g
k
1< [ x?
> %) —@k—1| <2, fork=1,2,3, (125)
S\
where x = S'Tu, and m;(x)’s are functions of x defined

in (122) above.

The condition (123) requires that # € 7 (n,a, p) should
yield a small estimation error, which holds with probability
approaching 1 due to Theorem 6. We will explain the condi-
tion (124) in Appendix E-D below. To gain insight into the
condition (125), note that due to (53), we have %‘ ~ N(0,1)

and
x2\'
E —‘2 = (2k — D!
g;

Therefore, the condition (125) bounds the variations of X,
up to its sixth moments, and this condition holds with proba-
bility approaching 1 by the Berry-Esseen theorem. Theorem 12
below summarizes the properties of the typical set 7 (n, a, p)
used in the proof of Lemma 3.

Theorem 12 (Properties of the MLE-Typical Set). For any
d € (0, dmax) and any constant a > 0, let n, be given in (74)
in Section III-C.2 above and p be a sufficiently large constant
(specifically, p = (298) in Appendix E-B below), then we have:

(126)

(1). The probability mass of T (n, a, p) is large: there exists
a constant Ay > 0 such that for all n large enough,
Ay
(logn)
where the constant x is defined in (76) in Section III-C.2
above.
(2). The proxy variances are good approximations: there

exists a constant Ay > 0 such that for all n large enough,
for any u € T (n, a, p), it holds that

PUeT(@m,a,p)l=1- (127)

Mo sy K ?

) Z(x) —a
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where 67(x)’s are defined in (119).

(3). Let 0 > 0 be the water level matched to d via the limiting
reverse waterfilling (34). For all n large enough, for any
u € T(n,a, p), it holds that

9A2
462 ’?fh

where x = STu with S in (51); 2* is given by (23);

¥ (x) —

(129)

() = —R (x Y*, d) : (130)
X is the decorrelation of U in (50); (X,Y™) forms a
RDF-achieving pair in Ry(n,d);, and X is the proxy
Gaussian random variable defined in (120).

Proof. Appendix E-B. [ ]

C. Achievability Proof

Proof of Theorem 11. The proof is based on the random coding
bound Lemma 2 and the lower bound in Lemma 3. Fix any
d € (0,dma) and € € (0,1), and let # > 0 be the water
level matched to d via the limiting reverse waterfilling (34).
We reuse the notations in (89)-(96). Similar to the event £
in (97), we define the event F as

4Cy

Fi = (131)
Theorem 10 implies that
1
P[Fl>1——. (132)
n
Define ¢, as
G recBEXL K 1 (133)
" Ji (ogny

Since € € (0, 1), we have ¢, € (0, 1) for all n large enough.
Choose M as

1
log M 2 nRy (d) +VnVy @ Q™ (ex) +log ==+
C
Brlogin+ B +c, +co |0 N en)| + 6‘* (134)

where g > 1, f1 > 0, f2 are the constants in Lemma 3; and
cr, C, are the positive constants in (95) and (96). Define the
random variable G, as

4Cy
G 2 logM — jx (X, dy) — prlog?n — pr — =5

where jx (X, d,) is in (91). By (95), (96), and (135), we have

(135)

Gn >ZIE +Q ' (en) ZV —Jx (X, d,) +log gn

i=1 i=1

(136)

where E;’s and V;’s are defined in (93) and (94), respectively.
Define the event G as
logn
> [

G= IG,, < log (137)
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By (136), (91) and the Berry-Esseen Theorem, we have

PIGI<P|;x (X,d)— D Bi> 0 (&) | D Vi

i=1 i=1

(138)
C
<ent % (139)
Define the event L as:
L
AIl g ! <logM — G, ] (140)
Pyx (B(X,d)) —
1 4Cy
Il gm_n (X, dp)+prlogn+ pa + =5
(141)

where ¥* is given in (65). Combining Lemma 3 and (132)
yields
1 K

PIL]=1———

n  (logn)**" (142)

Indeed, denoting the probability on the left-hand side of (118)
by P[H], we have

P[H] =P[HNF]1+P[HNF]
EP[IJ]-I—l,
n

(143)
(144)

where (144) holds since H N F C L.

We have now gathered all the ingredients to prove Theo-
rem 11. Replacing ¥ by ¥* in Lemma 2, we conclude that
there exists an (n, M, d, €') code with

EJ’

<Eyx [g—MPY* (B(X,d))] (145)

—Eyx [e—MPy* (BX.d)) {IJ}] +Eyx I:e—MPp(B(X,d))]L [ﬁc]]

(146)
_¢Gn K 1

<Ey [e ]er 4= (147)

_¢Gn _¢Gn e K 1

:Ex[f ]].{g}:l—l—]Ex[e ]].[Q ]:I‘l'w"‘;
(148)

z} 1 sl
<P@©G) + EIP(Q )+ Togny = + (149)
Cge +1 K 1

<et— ot Gogaya T (150)
—e, (151)
where (145) is by weakening (117) using ¥ = ¥*; (147)

holds by &142) and 1 {L} M Py~ %B(X d)) > ¢%n; (149) holds
since e ¢ < 1 and 1 {G}e—* ; (150) is by (139);
and (151) is by the choice of ¢, in (13{ ). Consequently, since
there exists an (n, M, d, €') code with €' < ¢, we must have

log M

R(n,d,e) < (152)
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where log M is given by (134). Similar to the converse proof,
plugging (134) into (152) and then using the Taylor expansion
of Q~1(ey) yields (110). [ ]

VI. CONCLUSION

In this paper, we derived the reverse waterfilling charac-
terization (57) of the dispersion for lossy compression of the
Gauss-Markov source (5) with |a| < 1 (Theorem 1). This is
the first dispersion result for lossy compression of sources with
memory. In doing so, we developed several novel technical
tools, which are highlighted below.

« We derived the expression for the limiting variance of
the d-tilted information for the Gauss-Markov source in
Theorem 2. Its proof relies on our parametric representa-
tion for the d-tilted information, presented in Lemma 7
in Appendix C-D.

o Theorem 4 presented a nonasymptotic refinement of
Gray’s result [5] (restated in Theorem 3) on the eigen-
value distribution of the covariance matrix of the ran-
dom vector U from the Gauss-Markov source. The key
tool we developed to prove Theorem 4 is Lemma 1
in Section III-C.1, which is a sharp bound relating the
eigenvalues of two sequences of symmetric tridiangonal
matrices.

« The maximum likelihood estimator a(u), defined in (72)
and analyzed in Theorems 5 and 6, is of independent
interest as it allows one to estimate the distribution of u
drawn from the class of the Gauss-Markov sources with
unknown a. The error bounds in Theorem 5 rely on the
Hanson-Wright inequality [25, Th. 1.1]. That inequality
applies beyond the case when Z;’s are Gaussian, which
means that our approach can be applied to other sources
with memory.

« To prove achievability, we constructed a typical set in
Definition 1 based on the maximum likelihood estimator.
This idea of constructing typical sets via estimators could
also find its use in other problems.

Finally, we discuss several open problems.

« The dispersion for Gauss-Markov sources with |a| > 1
is unknown. This paper treats the asymptotically sta-
tionary case, i.e., |[a|] < 1. The case |a] = 1 is fun-
damentally different, since that source is nonstationary.
The rate-distortion functions for nonstationary Gaussian
autoregressive processes were first derived by Gray
[5, Eq. (22)] in 1970, and later in 1980 by Hashimoto and
Arimoto [34, Eq.(6)] in an equivalent but distinct form;
that equivalence was shown by Gray and Hashimoto [36]
in 2008. Gray’s reverse waterfilling [5, Eq. (22)] is
different from Kolmogorov’s reverse waterfilling (33) in
the nonstationary case, where the later does not apply.
Therefore, in order to characterize the dispersion for the
case |a| = 1, one would need to use Gray’s reverse
waterfilling [5, Eq. (22)] for Ry (d).

« A natural generalization of this work would be to con-
sider the dispersion for the general stationary Gaussian
autoregressive processes (37). The geometric converse
proof in Section IV already yields a converse bound on
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R(n,d,€), which is tight in the low distortion regime
d € (0,d.] in the first-order term; we conjecture it is
also tight in the second-order term. A possible way to
show a matching achievability bound for the Gaussian
AR processes of order m, inspired by the estimation idea
in this paper, is to analyze an estimator which estimates
the vectora = (a, ..., a,)" in (37) instead of the scalar
a. To deal with large distortions, i.e. d > d,, sharp bounds
on eigenvalues of ATA with A given by (82) need to be
derived, similar to Lemma 1 in Section III-C.1; the tools
in Appendix C-A might be useful.

« A formula (analogous to (56)) for the channel dispersion
of the Gaussian intersymbol interference (ISI) channels,
see [37, Eq. (29)], was presented in [37, Th. 5] without
proof. The channel capacity of the Gaussian ISI channel
is well-known, e.g. [38, Th.] and [39, Th. 1]. The tools
in this paper might be useful in obtaining a proof of the
channel dispersion for Gaussian ISI channels in [37, Th.
5].

« A fundamental problem left open is how widely the
limiting formula for the dispersion

V(d) = lim sup éVar x(X,d)]

n—0o0

(153)

applies. Theorem 1 and Theorem 2 established its validity
for the Gauss-Markov source. We conjecture that it con-
tinues to apply whenever the central limit theorem type
of results can be derived for jx(X, d).

APPENDIX A
A. A Roadmap of the Paper

The relations of our main theorems, lemmas, corollaries are
presented in Fig. 4.

B. Classical Theorems

Theorem 13 (Berry-Esseen Theorem, e.g. [40, Ch. 16.5]). Let
Wi, ..., W, be a collection of independent zero-mean random
variables with variances Vf > 0 and finite third absolute
moment T; £ ]E[|W,'|3] < +o00. Define the average variance
v? and average third absolute moment T as

1 1l <
2 A 2 L .
14 _EZV,., T—EZT,. (154)
i=1 =1
Then for n € N, we have
1 < T
sup |P W <t| —0() < ——, (155)
teR [Vﬁg ‘ ] V3yn

where ®© is the cdf of the standard normal distribution N (0, 1).

Remark 4. Since in this paper, we only consider random
variables W;’s with bounded p-th moment for any finite p,
it is easy to check that there exists a constant Cgg > 0 such
that

CBE

sup < —.
n

telR

(156)

1 n
P[V—,/E;W" <t]—®(r)
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Lemma 7
Expression for d-
tilted information

Theorem 3
Limiting distribution
of eigenvalues

Theorem 8
Geometric
converse bound

Theorem 7
Converse  §

Theorem 9
General converse
[Kostina & Verdu]
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Corollary 1
‘Comparison
of dispersions

Lemma 2
Random coding
bound

Theorem 11
A Achievability

Theorem 4

Nonasymptotic bounds on ]

Theorem 14 & 15 Lemma 1 the elgen s
Tools from matrix Sharp bounds
analysis on eigenvalues

Lemma 9
Difference of generalized

Lemma &
[Kostina & Verdu]

Theorem 10

Approximation of d-tilted
inf i

tlted information

Fig. 4. A roadmap of the paper: an arrow from block A to block B means that the derivation of block B is based on block A. Our main result is Theorem 1.
The lightly shaded blocks consist of results that are novel and relatively easier to obtain, while the heavily shaded blocks consist of our main technical

contributions.

While the constant Cgg depends on the random variables W;’s,
to simplify notations, we use Cgg in all applications of the
Berry-Esseen Theorem.

C. Justification of (11)
We provide a short justification of how (11) follows
from [27]. We use the same notations in [27]. We denote P the
distribution of the source X, and Qp the optimal reproduction
distribution in Rx(d), that is, Qp is the Y-marginal of a
minimizer Py. First, [27, Corollary, Eq. (1.25)] shows that
Ry(d) = max Ep [loga(X)] —sd. (157)
a(x), s
Next, the proof of [27, Lemma 1.4] in [27, Eq. (1.27)-(1.32)]
shows that the maximizer (a*(-),s*) 1is given
by [27, Eq. (1.15)] with s* = 4* due to [27, Eq. (1.12)]. For
convenience, we write down [27, Eq. (1.15)]:
1
Eg,lexp(—2*d(x, Y*)I’

where Y* ~ Qg. Finally, plugging (158) into (157) yields (11).
|

a*(x) = (158)

APPENDIX B
PROOES IN SECTION III

A. Corner Points on the Dispersion Curve

We derive (61) using the residue theorem from complex
analysis [41, Th. 17]. Similar ideas have been applied by

Berger [11, Ch. 6, p. 232] and Gray [36, Eq. (12)] to study
the rate-distortion functions for the nonstationary Gaussian AR
processes (37). The coordinate of Py in Fig. 3 can be easily
obtained as follows. The water level matched to d. via (34) is
Omin in (40). Hence, (57) is simplified as

1 T
Vu (dc) = E /
-

To treat P>, note that the water level matched to dpyax via (34)
is Omax in (41), which, due to (35), equals,

1
ldw= _. 15
W= (159)

o2
oo = T ay (160
This implies that (57) evaluates as
4 T 1
Vi (dmax) = dw. (161)

4 03ax )= (g(w))?
Invoking the residue theorem [41, Th. 17], we will obtain the
integral
A [T w_2x(1+a2)
= (g(w))? (1—a®?’
which will complete the derivation. To that end, change
variables using z = €/ and rewrite

(162)

gw)=1+a*—az+z7"
= '-a)z—a).

(163)
(164)
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The integral 7 is then

Z
T= d 165
=1 ja?(z —a=")2(z — a)? (169

Z

= 27j Res;—, 166
e e

2r . d z
Sy (en

2 (1 +a?)

T a-ap (169

where (165) is by the change of variable z = ej“’; (166) is
due to the residue theorem and a < [0, 1); and (167) is the
standard method of computing residues. u

B. Two Interpretations of the Maximum Distortion

We present the computation details of (47) and how (42)
leads to (46). Using the same technique as in (165)-(168),
we compute (42) as

d ot ! d (169)
max — - N Z

2z Jig=1 j2@ 7! —a)z — a)

1
2
— o?Res,_q 170
7 i —a Nz —a) (70
1

_ 2

=0 g1_1>r‘1] T (171)

__ (172)

1 —a?

To compute the stationary variance, take the variance on both
sides of (5),

Var [U;] = a*Var [Ui_1] + o2, (173)
then taking the limit on both sides of (173), we have
lim Var[U;] = a* lim Var [Ui_1] + o2, (174)
11— 00 I—00
which implies
o2
lim Var [U;] = ——. (175)
i—00 1—a?
|
APPENDIX C

PROOFS IN SECTION II
A. Eigenvalues of Nearly Toeplitz Tridiagonal Matrices

For convenience, we record two import results from matrix
theory.

Theorem 14 (Cauchy Interlacing Theorem for Eigenval-

ues [42, p.59]). Let H be an n xn Hermitian matrix partitioned

as H= E:l, where P is an (n — 1) x (n — 1) principal

submatrix of H. Let 11(P) <= 42(P)... < An—1(P) be the
eigenvalues of P, and A1(H) < A2(H)... < A,(H) be the
eigenvalues of H, then A;(H) < 4;(P) < Aipx1(H) for i =
I,...,n—1.

Theorem 15 (Gershgorin Circle Theorem [43, p.16, Th.
1.11]). Let M be any n x n matrix, with entries m;;.
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Define r; = Z#i |m,'j , Y i e [n], then for any eigenvalue
A of M, there exists i € [n] such that |1 —m;;| < ri.

Proof of Lemma 1. To indicate the dimension, denote by A,
the matrix A defined in (48), and denote

B. 2AlA, (176)
/1 +a?2 —a 0 0 0 \
—a 1 —|—a2 —a 0 0
0 —a 1+a2 —a
: . 0 —a 1 —1—02 —a
\ 0 .0 —a 1)
(177)

Notice that we obtain a tridiagonal Toeplitz matrix W,, if the
(n, n)-th entry of B, is replaced by 1 + a*:

/1—1—02 —a 0 0 0 \
—a 1—1—32 —a 0 0
0 —a 1+a2 -—a
W, = ’
: 0 —a 1+a? —a
\ 0 . 0 —a 1+ad?%
(178)

whose eigenvalues g‘](") < g‘g’) o< &M oare given by (69),
see [44, Eq. (4)]. At an intuitive level, we expect g‘l.(")’s to
approximate y;’s well since B, and W, differ in only one
entry. The first part of the proof applies the Cauchy interlacing
theorem (Theorem 14) to show (70) for 2 < i < n. The
bound (70) for i = 1 is proved via the Gershgorin circle
theorem (Theorem 15) in the second part.
Applying Theorem 14 by partitioning B, as

BH = (Wﬂ_] *) 2
- 1

pi <&V < pi, Yieln-11

(179)
we obtain

(180)

On the other hand, since W,, = B, in the semidefinite order,
we have

& > pi, Yielnl. (181)
Combining (180) and (181) yields
&V <pi<E™, Vi=2,..,n. (182

Simple algebraic manipulations using (69) and (182) lead to

2ra

5{{"}_#{,55}"}_;@]—1)5— Vi=2,...,n. (183)
n

To bound the difference g‘l(") — 1, we apply Theorem 15 to
B, . Note that for B,, we have rj =r, =a and r; = 2a, Vi =
2,...,n — 1 (recall r;’s defined in Theorem 15). For the
eigenvalue u1, there exists j € [n] such that g1 — Bjj| <rj.
The following analyses lead to x1 > (1 — a)*:
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F (W)
-_:h'.-‘-'“-ﬁ
- 0l " w
n+1

Fig. 5. Bound the integral / by Riemann sums.

o If 2 < j <n —1, then |pu —(l+az)| < 2a, which
implies that x1 > 1+ a? — 2a.
o« If j =1, then |1 — (1 + a?)| < a, which implies that
1 >1+a*>—a=>1+a*>-2a.
o If j =n, then |u1 — 1| < a, which implies g1 > 1—a >
(1-a)”
Recall from (69) that g‘(") =1+a’— 20005( +]) Hence,

&M — uy <2a|1—cos [ —— (184)
- n+1
L _on’ (185)
2a
< =T (186)
n
where (185) is by the inequality cos(x) > 1 — x%/2. [ |

B. Proof of Theorem 4

Proof. Since S(w) in (35) is even in w € [—=x, =], we have
T

F[S(w)] dw

|

2z J_4
l/ F[S(w)] dw.
7 Jo

We bound the integral I by Riemann sums over intervals
of width +1, see Fig. 5. Since F [S(w)] is a nonincreasing
function in w [0, =], we have

b_Z‘F[ (n+1)]n11'

Using Lemma 1, we can further bound (189) from below as

(187)

(188)

(189)

I =

— o?
- LSsr(2 )
n+1 P ui +2am/n

Since F is L-Lipschitz, we have for i € [n],
0'2 0'2 0'2 0'2
F\——)>>F|—)-L{—— ——
(#£+2ﬂfrz’ﬁ)_ (#i) (#:‘ #£+2ﬂfrz’ﬁ)

(191)
> F (ﬁ) —
Hi

(190)

2ar Lo?

192
o (192)
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Plugging (192) into (190), we obtain

1 < o? 2aLlwo? 1
1> F|— — (193)
n—l—lg (#i) nn+1) ; p?
From (71), we see that
DI 19

1 _ e
i > (] ﬂ)

Let || F||oc be the sup norm of F over the interval (66), then

1l < 2 2aLzo?
I> ZF("—)—$4 (195)
n+1 = Ui n+ 1)1 —a)
n 2 2501 _ ayd
- 1 F(cr_) _ lIFllo +2aLzo”/(1 —a) . (19)
n=s Hi n
i=1
Similarly, we can derive the upper bound
2
2[[Flloo
I =< - F .
Z ( ) - (197)
i=1
Therefore, setting
2aLwo?
Cr 2 max | [|Flloc + 7, 2llFlloc (198)
(1—-a)
completes the proof. [ ]

C. Properties of the Conditional Relative Entropy
Minimization Problem

This section presents three results on the CREM prob-
lem (121), all of which are necessary to the proof of
Theorem 11.

1) Gaussian CREM: The optimization problem (121) is
referred to as the Gaussian CREM when X and ¥ are Gaussian
random vectors with independent coordinates. The optimizer
and optimal value of the Gaussian CREM are characterized
by the following lemma.

Lemma 4. Let X and Y be Gaussian random vectors with
independent coordinates, i.e.,

X ~ N, Tx), where Tx — diag (af, . ..,ag), (199)

). (@00)

Then, the optimizer Pp+x in the Gaussian CREM (121)
R(X,Y,d)is

Y ~ N0, £y), where Ly = diag (ﬁlz, ..

Pp+1x (201)

n
=[17ex.
i=l

where for any x € R", the conditional distribution of F" given

X =x; isd
25*{1’?){,' ﬁ?
7 7). (202)
1 +26*p7 1+ 20*p;

F}*I{szxi}’“N(

SWhen ﬁ? = 0 for some i € [n], the random variable in (202) degenerates
to a deterministic random variable taking value 0, and the notation (0, 0)
denotes the Dirac delta function.
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and the optimal value is

R(X,Y,d) = —6'd + % ilog (1 + 25*,8,?) +
i=1

1 < 5*0(?
Pyt (203)
i=1 T ﬂi
where &% is the negative slope defined as
ot =-R(X,Y,d). (204)

Proof. We particularize (16) to the Gaussian CREM. For any
fixed x € R", rearranging (16) yields

Jrrx (¥Ix)

=fr(y)exp{Ay(x,5*,d) — &nd (x,y) + 5*nd}  (205)
o fr (y) exp {—5*nd @, 3} (206)
o exp [ —5* Z(v, —xi)? — ?] (207)
i=1
26*,8‘-2x.' 2
n Yi — W
=Jex |- 7 : (208)
i=1 m

where p; o« p2 means that p; = ¢’p> for a positive constant
c’; (206) is by keeping only terms containing y (since x is
fixed); (207) is by plugging the pdf of ¥ into (206); and (208)
is by completing the squares in y;. Hence, (201) and (202)
follow. Next, the expression (203) is obtained by a direct
computation using (16), (201) and (202).

R(X,Y,d)
1
:E ./]R" fX(I)/RN fp*|x(y|x)[Ay(x,5*,d)_

&nd(x,y) + 5*nd] dydx (209)

=1/ fx(x)/ frx(yIx)Ay(x, 6", d) dydx  (210)

n FYow)
(211)

where (209) follows by substituting (16) into (121); (210)
holds since E[d(X, F*)] = d by the optimality of F*;
and (211) is by direct integration of (210), which relies on
the definition of the generalized tilted information (15) and
the well-known formula for the moment generating func-
tion (MGF) of a noncentral x%-distribution. [ |

2) Gauss-Markov CREM: The optimization problem (121)
is referred to as the Gauss-Markov CREM if X is the
decorrelation of U in (50), and (X,Y) = (X,Y*) forms
a RDF-achieving pair in Rx(n,d). Recall from (53) that
X ~ N(0, Zx), where

Tx = diag(e?,...,07), (212)
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and af’s are given by (53). Recall from (65) that ¥* ~
N0, Zy+), where

Ty« = diag(v?, ..., v2), (213)
and we denote vf as
v2 2 max (0, o2 — 9,,) . (214)

And 6, > 0 is the water level matched to d via the n-th order
reverse waterfilling (31). From (14), we have

=Ry (n, d),

and Ry (n,d) is given by (30). Lemma 4 is also applicable
to the special case of the Gauss-Markov CREM. Further-
more, the next lemma characterizes the negative slope in the
Gauss-Markov CREM.

R(X,Y*, d) (215)

Lemma 5. In the Gauss-Markov CREM, for any d € (0, dmax)
and n € N, let 6, > 0 be the water level matched to d via
the n-th order reverse waterfilling (31), the negative slope 1*
defined in (23) satisfies

1

A=

T (216)

Proof. We directly compute the negative slope using the
parametric representation (30) and (31). Taking the derivative
with respect to d on both sides of (30) yields

1< 1 db,

*— - 5t da |7 >9} 217)
Differentiating (31), we obtain
dd 1
=-31 {a,? > 9,,}, (218)
n M4

which is independent of i.
yields (216).

To justify the formal differentiation in (218), observe
using (31) that d is a continuous piecewise linear function
of 6,, and d is differentiable with respect to 6, except at the
n points: 6, = af, i € [n]. The above proof goes through as
long as the derivatives at those n points are understood as the
left derivatives. Indeed, Ry (n, d) is differentiable w.r.t. d for
any d € (0, dmax), €.g. [15, Eq. (16)]. [ |

3) Sensitivity of the Negative Slope: The following the-
orem is a perturbation result, which bounds the change in
the negative slope when the variances of the input X to
R(X,Y* d) are perturbed. It is related to lossy compres-
sion using mismatched codebook: the codewords are drawn
randomly according to the distribution Py« while the source
distribution is X instead of X.

Lemma 6. Let X be the decorrelation of U in (50), and let
(X,Y*) be a RDF-achieving pair in Rx(n,d) (recall (19)).
For any fixed distortion d € (0, dmax), let @ > 0 be the water
level matched fo d via the limiting reverse waterfilling in (34).
For any t € (0,68/3), let &2’3 be such that

Plugging (218) into (217)

67 —of|<t, Vielnl (219)
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Let the Gaussian random vector X be X ~
N0, diag(67, ...,672)), and let 2* be the negative slope of
]R(ﬁ ,Y*,d). Then, for all n large enough, the negative slope
A* satisfies

ot
407’

where 1* = —R' (X, ¥*,d) is given by (216).

12X — 3*| < (220)

Proof. Consider the Gaussian CREM ]R(ff ,Y* d). Let Gy >0
be the water level matched to d via the n-th order reverse
waterfilling (31) over Az’s and let 8, > 0 be the water level
matched to d via the n- th order reverse waterfilling (31) over
52’5 In (203), replacing (X, Y) by (X ¥Y*), and then taking
lhe derivative with respect to d on both sides yields

B .
2n 4~ 142)x} dd

i:0; >t

~2j*2 db,

S 221
i, (1 +22%v3)2 dd’ 22D

==
Q)

where vf’s are defined in (214). Rearranging terms yields
A 2(67 — o + 6,
-3 /Z oo
(1 + 27*v 2)2 i, (1+27*v 2)2
(222)

Substituting the bound (219) into (222), we obtain

u 1 1
A* . 223
© [2@ T r)] @2
Since lim,_. o 8, = @, for all n large enough, we have
260 40
— <O =< — (224)
3 3

Since t € (0,0/3), (224) implies that 0 < t < @,/2.
From (216), (223) and (224), we see that

|27 = 271
1 1 1 1

- e 225
Emax[ 20010 26,1’ 126, =1 2, I (225)

t
= (226)

of
- (227)
| ]

D. Proof of Theorem 2

Theorem 2 is a direct consequence of the following lemma.

Lemma 7 (Parametric Representation for the d-Tilted Infor-
mation). Let X be the decorrelation of U (50), and let (X, Y™)
be a RDF-achieving pair in Ry (n, d). For any d € (0, dmax),
let 6, = 0 be the water level matched to d via the n-th
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order reverse waterfilling (31) over al-z, i € [n]. Then, for
all x ¢ R,

Ay (xi, 2%, min 9,,, )

mm (@, crf) 1 max(6,, af)
— |5 1)+ zlog———, (228)
0' 2 9:1

20, ,'

where A* defined in (23) is given by (216).

Proof. The proof relies on the Gaussianity of ¥*. For each
i € [n], from (15) and (216), we have

Ay (xi, %, min(@,, o))

min(8,, o>
__ minlh.of) _ logE [exp{ (Y- x,)z}]. (229)
26,
Substituting ¥ = 0 as. for all i such that .crl.2 < 0O,
(recall (213)) into (229), we obtain
x2— g2
Ay (xi, 2%, min@,, 07)) = =~ (230)

20,

Substituting Y* ~ AN(0,62 — 6,) for all i such that ¢? >
0, (recall (213)) into (229) and applying the formula for the
moment generating function of a noncentral y2-distribution
with one degree of freedom, we obtain

* 2 1} 1o
Ay'_*(x,-,,l , min(6,, o} )):5 a—?—l —|—§log 5. (231)
Unifying (230) and (231), we obtain (228). [ |

Proof of Theorem 2. For any fixed distortion d € (0, dmax).
let & > 0 be the water level matched to d via the limiting
reverse waterfilling (34). By the independence of Y, ..., Y7
and (31), we have for any x,

Jx@®,d) =" Ay+(x;, 1, min(b,, 07)), (232)

i=1

where 2* = —Ry(n,d). Taking the expectation and the
variance of (232) using (228) ylelds

o1 o?
Ex(X,d)] =) 5 max (0, log 6—’)

i=1

2
| o?
Var[;x(X,d)]:ZEmin 1, (9—‘)

i=1

(233)

(234)

An application of Theorem 3 to (233) on the function
t + ymax(0,log %) yields (21). Similarly, an application
of Theorem 3 to (234) on the function ¢ +> 3 min [1, (%)2]
yields (64).

6The result on expectations was implicitly established by Gray [5], which
we recover here. The result on variances is new.
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distortion d-ball

(a)

6375

distortion ellipsoid

(c)

Fig. 6. Converse proof in figures. The contour plot in each figure shows the underlying probability distribution. (a) The U space: Given d, €, the goal is to
cover at least 1 — e probability mass, under distribution of U, using the least number of distortion d-balls. (b) The X space is simply a unitary transformation
of the U space. (c) The Z space: Given d, €, the goal is to cover at least 1 — e probability mass, under distribution of Z, using the least number of distortion
ellipsoids, each of which has the same volume as the distortion d-ball since det(AAT] =1.

APPENDIX D
PROOES IN SECTION IV

A. Proof of Theorem 8

Proof. The result follows from a geometric argument, illus-
trated in Fig. 6. Let C C R” be the set of codewords of an
arbitrary (n, M, d, €) code, and B(c, d) be the distortion d-ball
centered at a codeword ¢ € C (recall (4)). By the definition of
an (n, M, d, €) code, we know that the union of the distortion
d-balls centered at codewords in C has probability mass at
least 1 — e:

PU cB]>1—¢, (235)

where B denotes the union of the distortion d-balls centered
at the codewords in C:

B2 | B, d). (236)
ceC
For a set S € R", denote by
AS £ (As :5s € S) (237)

the linear transformation of & by the matrix A. Recall
from (48) that A is invertible and the innovation is Z = AU.
Changing variable U = A~!Z in (235) yields

P|Z cAB]>1—e. (238)

Next, we give a geometric interpretation of the set AB. Con-
sider the set AC, that is, the transformation of the codebook
C by A. For any x € R”, notice that the set

ABAx, d)={ cR": (' —x)T (AAT) (' —x) < na
(239)

is the set of points bounded by the ellipsoid centered at x with
principal axes being the eigenvectors of AAT . 1t follows that

AB =A U B(c, d) (240)
ceC

= |J AB(ATI¢,a), (241)
c'eAC

i.e., AB is the union of ellipsoids centered at transformed
codewords. See Fig. 6¢ for an illustration of the set AB.
Finally, the following volumetric argument completes the
proof of Theorem 8. Since the volume of a union of sets is
less than or equal to the sum of the sets’ volumes, we have

- Vol(AB)

— Vol(AB(0, d))’
Moreover, Vol(AB(0,d)) = Vol(5(0,d)) due to detA =
1. On the other hand, due to the spherical symmetry of
the distribution of Z, the ball B(0,r(n,€)), where r(n,¢€)
satisfies (79), has the smallest volume among all sets in R”
with probability greater than or equal to 1 — €, and so

(242)

Vol(AB) = Vol(B(0, r(n, €))). (243)
Therefore, we can weaken (242) as
Vol(B(0,r(n,€)))  (r(n,e) n/2
= Vol(B©,d)) ( d ) ' (249)
|

B. Proof of Theorem 10

Proof. The proof is based on Chebyshev’s inequality. Fix
d € (0, dnay). For each fixed n € N, let 81,6, > 0 be the
water levels matched to d and d,, respectively, in the n-th

order reverse waterfilling (31) over af, i € |n], that is,

1 n
d=—->"min (61, af) , (245)
n =1
1 n
dy = — > min (6, 07). (246)
n
=1

Obviously, both 8, and 6, depend on n. We now proceed to
show that there exists a constant hp > 0 such that for all n
large enough,

61 — 03] < % (247)
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Indeed, without loss of generality, assume d < dm? then ¢ <
6> by the mononicity of the reverse waterfilling (31). Define
the following index sets

n4 {i elnl:o? < 91}, (248)
LA {i clnl: 6 <o? < 92} , (249)
LA {i cnl: 6, < a,?} . (250)
Then,
dy—d = % g (mjn (92, gf) — min (61, af)) (251)
= %ZO—'—&Z (&'? —91) +£Z(ﬂz —6)

ieh ieh ielh
(252)
> Bl g, . (253)

Since d, < dmax. there exists a constant ¢ € (0, 1) such that
for all n large enough, |I3] > ¢n, hence (247) holds with
hy = "%
Now, let Gi,..., G, be i.id. N (0,1). To simplify nota-
tions, we denote the random variable as
A(d,dy) £ jx (X,d) — jx (X, dy). (254)

From (232) and (228), we have

7 min (61,67) min (62, 0?) )
A(d, dy) = i) _ i) G2 -1
(d.d) El;[[ - e (R
1 max (61, ¢?) 26,
*t3 log |: 26 " max (6, 01-2)] ] (25

To apply Chebyshev’s inequality, we bound the mean and the
variance of A(d, d,) as follows.

E [A(d dp)]
max (61, ¢?) 26,
— 1 : 256
Z 08 |: 26 max (6, Jiz)] (256)
1 0'1-2 1 &
:ZO—I—ZEloga—i—Ziloga (257)
iel) iel iely
Sy (258)
o

2
where (258) holds since for i € I, we have i log 3—' <

1 log 7, while for i € I3, due to (247), we have

11‘92111”34”2 259
2%, =2\t og ) S 2me P
By a similar argument, we can bound the variance as
2
Var[A(d, dy)] < 2. (260)
Oin

TOtherwise, switch #; and 6 in the rest of the proof.
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In conjunction with (258), (260), Chebyshev’s inequality
yields that for all n large enough and V¢ > 0,

2
P[IA(d,d,) —E[A(d,d,)]| > £] < —2 261
IA@, dn) ~EIA@ )| = (1< 5. (26D
Choosing £ = uhy in (261) and applying (258) yields that
Yu > 0,
plia@day= EE2] o L o
o nu?

Let & > 0 be the water level matched to d via the limiting
reverse waterfilling (34), then lim,.oc@ = 0 by (245)
and (34). Therefore, we have #; > % for all n large enough.
Hence, for all n large enough and Vu > 0, we have

2(1 +u)n2] _ L
0

263
<— (263)

P[mw, )] >

Rearranging terms in (263) completes the proof. [ ]

APPENDIX E
PROOFS IN SECTION V

A. Proof of Lemma 3

In addition to new concentration inequalities, shown in
Lemma 9 and Lemma 10 below, the proof leverages the
following bound, which is a direct application of [15, Lem. 1]
to the random vector X.

Lemma 8 (Lower Bound on Probability of Distortion Balls).
Fix d € (0, dmax), n € N, and the distribution Py on R". Then
for any x € R", it holds that

sup exp {—ﬁ*ny — Ay(x, %, d)} x
Pi,‘?}ﬂ

]P’[d—y gd(x,f-‘*) <d |J?:x], (264)

Py (B(x,d)) =

where the supremum is over all pdfs Py on R"; Ay(x, 2*,d)
is the generalized tilted information defined in (15) with

*=-R(X,Y,d); (265)
and the random variable F~ achieves R(i LY. d).

The high-level idea in proving Lemma 3 is the following.
In Lemma 8, we replace ¥ by ¥* defined in (65) and (213),
and we choose X to be the proxy Gaussian random variable
X (x) defined in (120). With such choices of X and Y, the next
two lemmas provide further lower bounds on the two factors
on the right side of (264). The first one is a concentration
inequality on the generalized tilted information.

Lemma 9. For any fixed d € (0, dmax) and excess-distortion
probability € € (0, 1), there exist constants C and Cy > 0
such that for all n large enough,
C
[Ay*(X I*(X), d) < Ay+(X, 2%, d)—l—Clogn] >1- 2,
Jn
(266)
where J*(x) is given by (130) with X defined in (120), and
A* is in (216).

Proof. Appendix E-C. [ ]
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The second bound, presented in Lemma 10 below,
is referred to as the shell-probability lower bound. For any
x € R" and any y € (0, d), define the shell

Sx,d,y)={x' eR":d —y <d(x,x') <d}. (267)
Geometrically, Lemma 8 provides a quantitative connection
between the probability of a distortion d-ball and the prob-
ability of its shell, and Lemma 10 below gives a lower
bound on the probability of the shell S(x,d, y) for “typical”
sequences X.

Lemma 10 (Shell-Probability Lower Bound). Fix any dis-
tortion d € (0,dmax) and any excess-distortion probability
€ € (0,1). For any constant a > 0 and any n € N, consider
the set T(n,a, p) defined in Definition 1, where p is the
constant in Theorem 12. Let

a log? n

y n »

(268)

where g > 1 is a constant defined in (346) in Appendix E-D
below. Then, there exists a constant Ci; > 0 such that for all
n large enough, for any u € T (n, a, p) and x = STu with S
in (52), it holds that

n C
]P[ €S, d,y) |J(_:|c]37:E (269)
where X is given in (120).
Proof. Appendix E-D. [ ]

We now present the proof of Lemma 3.

Proof of Lemma 3. Let X be the decorrelation of U in (50).
Replace ¥ by ¥* in Lemma 8. Let 7 (n,a, p) be the set
defined in Definition 1, and let p be the constant in Theo-
rem 12. Let C, Cy, Ca, g be the constants in Lemmas 9 and 10.
Consider any n that is large enough such that Theorem 12,
Lemma 9 and Lemma 10 hold. Let & > 0 be the water level
matched to d via the limiting reverse waterfilling (34). Denote
the event

1
E:2log————— > jx (X, d)+ pilog?n + 2],
& e BX, ) pricgin
(270)
where £ and f; are constants defined by
ﬂ£1+c +1+C (271)
1= 2,9 d 2 ]
pr & —log Cy, (272)
and C; > 0 is a constant such that
*(x) — Ll Ca (273)
20—

for any u € T (a, a, p) and x = S'u. The existence of such
Cg is guaranteed by (129) in Theorem 12 and the fact that
limnﬁm 9?1 = 6
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Using elementary probability rules, we write

P [log > yx (X,d)+ prlog?n + ﬁg]

1
Py« (B(X, d))

=PI, UeTn,a pl+PIE, UgT(n,a p)l (274
<P|U & Tla ). F00my + A (X 100, )=
logIP[ cSX,d,y) X = x]
Jx (X,d)+ prlog?n + ﬁz]
+P[U ¢ T(n,a, p)l 275)

EP[U e T(n,a,p), Ay-(X,2*(X),d) — jx (X,d) >

- C
— A" (X)ny +log J_:_i + prlog?n + ﬁg]

+PU ¢T(n,a,p)l (276)

EP[U e T(n,a, p), Ay«(X,2*(X),d) — jx (X, d) >

Clog n] +PU ¢ T(n,a, p)l 277
K
= (logn)xa’ 278)

where (275) is by Lemma 8; (276) is by (269); (277) is by
the choice of y in (268) and g > 1; (278) is by Lemma 9
and (127); and K > O is a constant. [ |

B. Proof of Theorem 12

Proof. We first prove the property (1). First, Theorem 6 states
that for all n large enough the condition (123) is violated with
probability at most W Second, we bound the probablllty
of violating condition (125). Note that since X; ~ N (0, o,

by (53), we have G; L ‘:—: ~ N(0,1) for all i € [n]. For
each k = 1, 2, 3, applying the Berry-Esseen theorem® to the
zero-mean random variables Gfk — (2k — D)!!, we obtain

[ ZG”‘—(zk—nn >2] <20 (2()+

where rf and T; are the variance and the third absolute
moment of Gg" — (2k — 1)!1, respectively; rp and T} are
both positive constants since G;’s have bounded finite-order
moments. Therefore, there exists a constant A} > 0 such that

for all n large enough,
L oo A
]P|: EZGi — k=1 > 2] < N

i=1
The bound (280) implies that the condition (125) is violated
with probability at most j_ by the union bound.

12T}

\/_
(279)

(280)

8The Berry-Esseen theorem suffices here, though tighter bounds are possible
via other concentration inequalities, say Chernoff’s bound.
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Verifying that the condition (124) is satisfied with high
probability is more involved. The high-level procedure is the
following. The expressions for m;(x)’s in (122) can be directly
obtained from (202) in Lemma 4 in Appendix C-C.1. Then we
approximate m;(x) using carefully crafted m;(x;), for which
it is easier to obtain a concentration bound of the form (124).
At the end, the approximation gaps between m; (x) and m; (x;)
are shown to be sufficiently small, and (124) ensues.

We now prqsi:nt the details. We start with a closer look at
the optimizer F in R(X, Y*, d). Recall the distributions of X
and ¥* in (212) and (213), and the distribution of X in (120).
An application of Lemma 4 in Appendix C-C.1 to R(X, ¥*, d)
yields that for all x € R”,

n

= H Pﬁ}ﬂii:ﬁ’

i=1

N - 21 2x; 2

[ PNy vy (ol B , (282)
1+ 27%@)w? 1+ 22 (x)?

where :1*(x) is given by (130) and v?’s are defined in (214).
Then, from (282) and the definition of m;(x) in (122), it is
straightforward to obtain the expression

2 2
Ith X
m;(x) = : -

- + - .
14227 @)? (1 + 225 (x)v?)?

The quantity m;(x) in the form of (283) is hard to analyze
since there is no simple formula for 4*(x). We instead consider
m;(x;)’s, defined as

P

P R=x (281)

(283)

2 IZ

- A i i
m;(x;) = + ,
i) 142277 (14 2277)?2

(284)

which is obtained from (283) by replacing ﬁ*(x) with A*.
The random variable m;(X;) is much easier to analyze, since
A* = 2‘%" by Lemma 5 in Appendix C-C.2, with which (284)
is simplified as

. 2 2 2
m;(x;) = M (x—‘2 - 1)—|—min (af,.ﬁ',,) . (285)
g;

g;
We will control the difference between m;(x) and m;(x;)
by bounding [4* — A*(x)|. Indeed, a lengthy but elementary
calculation, deferred to the end of the proof, shows that there
exists a constant A] > 0 (depending only on d) such that
for all n large enough, Vx € R" satisfying (123) and (125),
we have

< A{1n. (286)

1 o _ 1 «
‘;Emi(xi)_ggmi(x)

With (286), we proceed to explain how to apply the
Berry-Esseen theorem to obtain the following bound: there
exists a constant A}” > 0 such that for all n large enough and

Yo > 0,
1 < log | A
P[Ezm,-(xn—d > o,/ °gn°g”]s .
i=l (logn)?#*

(287)
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where
1 n
2 A —
= — Vi (XD]. 288
B2 ; ar [7; (X;)] (288)
To that end, first note from (285) and (31) that
1
- EE[m,- (Xl =d, (289)

then an application of the Berry-Esseen theorem to m1;(X;) —
min(af, 6,) yields

1 - . loglogn
P[ngm,()(,) d 3@1/7,1 \
logl 12T
So(SEEE) B
- 2 n 12T 291)
p— 0)2 3 ]
(logn)?* pm

where T £ 13 E[|im;(X;) — min(o?,6,)%] is bounded.
Using (285), it is easy to check that there exists a constant
PB4 > 0 (depending only ond) such that0 < g < f < %
Therefore, (287) follows from (291). Now, we combine (28)6)
and (287) to conclude that the condition (124) is satisfied with

high probability. Define the set £ C R" as
L2 {uecR": u satisfies (123) and (125)} . (292)

Then, by Theorem 6, (280) and the union bound, we have

2 3A/
PlUel)<—= 41 293
[ € ] - (logn)xa ﬁ ( )
Hence, we have
1 n
P[ Egmi(x) —d| = pr:n]
L 1 <
SP[ - Emi(xi) - ;‘mi(X) +
LS i(x) —d| > pnn] (294)
=1
=P[,U € L1+P[-,U e £°] (295)

]' - — " C
S]P|: Egmi(xi) —d| > (P—Al)??n] +P[U e L]
(296)
Ay 2 34/
— 297
S (p_drlijga (log n)xﬂ \/?_1 : ( 9 )
(logn) 2

where (294) is due to the triangle inequality; (296) holds
by (286); (297) follows from (287) for p > AY. Hence, for
any p such that

p> A+ 2. /xo?
=

oo (298)
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we conclude from (297) that there exists a constant A >0
such that for all n large enough,

1 & g]
Pl|- E i(X)—d n | < —————.
[ n f=lm ( ) =P ] = (lﬂgﬂ)xa

Therefore, Theorem 6, (280) and (299) altogether imply the
property (1) in Theorem 12.

Next, we show property (2) in Theorem 12. By the triangle
inequality, we have Yu € R" and Vi € [n],

2 2
. a o
01_2 A P A 01_2
g i
where ¢; is given in (69). We bound the two terms in (300)

separately. From (53), (70) and (71), we have

(299)

=

o; —0;

|62 - o . (300)

2 2
2
7 _o|< 20 (301)
Ci (1—a)'n
To simplify notations, let ¢; = % and denote by @(t) the
function
2
P2 —° (302)

1+1t2—2fcosg;

It is easy to see that the derivatives ¢'(a) and ¢"(a) are
bounded for any fixed a < [0, 1). By the Taylor expansion
and the triangle inequality, we have

~2 O

2
—| = e@@)) — p(a)|

-3 (303)

<lo'(@)||a@) —a| +o(ja@)—al). (304)

Hence, combining (300), (301) and (304), we conclude that
there exists a constant A > 0 such that for all n large
enough (128) holds for any # € 7 (n, a, p).

Finally, the bound (129) follows immediately from a direct
application of Lemma 6 to (128).

Calculations to show (286): From (283) and (284), we have

%ifﬁi(xi) - % imi(x)
i=1 i=1
Lo 20 (1*(;) - ,1*)
n i—1 (1 + 21*(x)vf) (14272
n 2x2y2 (2 + 22 @2 + 2A*u§) (i*(x) ~ ,1*)

%Z i
i=1

(305)

(1+ 21*(x)u})2 (14 22%2)?
(306)

By (129), for all n large enough, Yu € 7(n,a, p) and x =
STu, we have

1+ 22%v?

5 (307)

)(1 + 21*(x)u§) - (1 + 2,1*1;,?)‘ <

2

Using (214) and (216), we deduce that 1 < 1+21*v] < Z-.
Therefore, (307) implies that

N 302

2

n

(308)

B3] =
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We continue to bound (306) as
1 <
=D mi(x) — = > mi(x) (309)
i nia
- 5 1 < 20x2v262 |,
- 44)1* _ - [ el B —)*
< ; v | 1) — |+ n; g (x)
(310)
1 < 1 200° < x2 s
<| 2SS gty = L | |A*(x) — A*| (311
_[z b ey o | [P =] o
<A, (312)
where (310) is by plugging (308) into (306); (311) is by v? =<
c? and
6 6
6 a a .
07 =— < , Vieln], (313)
o T (1-a)f
which is due to (71); and (312) holds for some constant A} >
0 (depending on d only) by (125), (129) and (224). [ |
C. Proof of Lemma 9
Proof. We sketch the proof, which is similar to
[15, Lem. 5] except for some slight changes. Since Y7, ..., V>

are independent and the distortion measure d (-, -) is separable,
we use the definition (15), the distribution formula (213) for
¥Y*, and the formula for the moment generating function of a
noncentral Xlz-distributed random variable to obtain for § > 0
and x ¢ R",

N "
Ay« (x,0,d) = —ndd + D ———+> —log(1+26v}),
“1+20] &2 ( )
(314)

where vl.z’s are in (214). Let i*(x) be defined in (130).
Similar to [15, Eq. (315)-(320)], by the Taylor expansion of
Ay+ (x,d,d) in J at the point = A*, we have for any x € R",

- & (x))2
Ay+ (I, AF(x), d) — Ay~ (x, il d) < (ZSE’I&)) ,

(315)

where we denoted

, , ) " [min(@n, c2)]” [ x2
S(x)éAY*(x,,l,d):z% 5-1),

i=1 i i
(316)
and
S"(x) £ —Ay. (x, 1* + £(x),d), (317)

where (316) is by first taking derivatives of (314) with respect
to d and then plugging A* = 2‘%"; 0, > 0 is the water level
matched to d via the n-th order reverse waterfilling (31) over
gf’s; and

E@) 2 p(*(x) — 1),

for some p € [0, 1]. Note from the definition (121) that
for any x, R(X (x), Y*,d) is a nonincreasing function in d,

(318)
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hence i*(x) > 0, which, combined with direct computations
using (314), implies S”(x) > 0, see (323) below. This fact
was used in deriving the inequality in (315).

Next we show concentration bounds for the two random
variables §'(X) and S”(X). From (316), we see that §'(X) is
a sum of n zero-mean and bounded-variance random variables.
Then, by the Berry-Esseen theorem, we have

‘ ; Ki
P[|S'(X0)| > V/V'nlogn| < T

where K| > 0 is a constant and V' is a constant such that

(319)

. 4
1 < 2 [min(4,, 6]
|/ G —e b ES
- 132t e
=1 L
To treat S”(X), consider the following event &:
EL x eR: 1) — A% <n~ /4. (321)

Using Lemma 6 in Appendix C-C.3, (300)-(304) and Theo-
rem 5 in Section III-C.2, one can show (similar to the proof
of Theorem 6) that there exists a constant ¢’ > 0 such that for
all n large enough,

P [£°] < exp{—c'v/n}. (322)
Computing the derivatives using (314) yields
" _3
§") = > axh? [1 + 202" + :(x))] +
i=1
-2
2w [1 + 2w + :(x))] . (323)

By conditioning on £ and £¢, we see that for any ¢ > 0,
P[S"(X) < nt]
=P[S"(X) < nt, E]+P[S"(X) <nt, &)
<P[S"(X) <nt, E]|+P[&°].

(324)
(325)

Using (323) and the simple bound % > M for any
x,y > 0, we have for any x € £,
SN(I)
> exp(—3n_”4,’l*)x

n

3 [4x?u3 (1 + 2u,?,1*)_3 + 2} (1 + 2u,?,1*) _2] (326)

i=1

n
=> ax2+B;, (327)
i=1
where A;, B; = 0 are defined as
-3
Ai 2 exp(—3n~14/7%)av? (1 T 2u3,1*) . (328)
-2
B; 2 exp(—3n~ /vt (14 20227) . (329)
Let V, be defined as
1 n
v, & - 221&,’0’?, (330)
i=
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and choose the constant ¢ in (325) such that for all n large
enough,

1 « V. logn
Z 2 /
Oqfqg (A;O',--I—B;') nn .

i=1

(331)

By the Berry-Esseen theorem, there exists a constant Kj' > 0
such that

P[S"(X) <nt, E] <P [ZA,-X? + B < nr] < \K—f‘

5 n
i=1
(332)

The existence of such a constant f satisfying (331) is guaran-
teed since for any d < dmax and for all n sufficiently large,
there is a constant fraction of strictly positive A;’s and B;’s,
which can be verified by plugging (214) and (216) into (328)
and (329). Combining (325) and (332) implies that there exists
a constant K{” > 0 such that for all n large enough
"(X KT 333
P[s"00) <] < =, (333)
where the constant ¢ satisfies (331). Finally, similar to
[15, Eq. (339)], combining (315), (319) and (333) yields (266).

|

D. Proof of Lemma 10

Proof. Due to Lemma 4 in Appendix C-C.1, for any x € R”,
we can write the random variable involved in (269) as a sum
of independent random variables, to which the Berry-Esseen
theorem is applied. The details follow. From (281) and (282),
we have

A R
d(x,F) =~ EM" (x), (334)
=
where the random variables M;(x)’s are defined as
M; (@) 2 (F} — xi). (335)

From (282), we know that the conditional distribution satisfies

- —X; 2
Mix) | X=x~N = , = ;
14227 @2 1420 x)w?

(336)
where ﬁ*(x) is in (130). Hence, conditioned on X = x,
the random variable d (x, F*) follows the noncentral xz-

distribution with (at most) n degrees of freedom. Applying
the Berry-Esseen theorem to (334) yields that Vy > 0,

[P[d—y <d(x,FA*) <d |)AI:J£]

_ofnd —ny — 2 m;i(x) 1 < 20xY — e
_]P[ s/n - Sﬁg (M" ) —m; (x))

< nd — zs:f/:?_; m;(x) lﬁ :I] (337)
o (T (s~ Lm0
s/n syn
12¢
— 53\/55 (338)
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where m;(x), defined in (122), is the expectation of M;'Z (x)
conditioned on X = x; and

24 ZVar [ME(J:) | X —x] (339)
i=1
3 .
ta_ ZE[)M}(:) _ m,'(x)‘ | X =x]. (340)
=
By the mean value theorem, (338) equals
_ny _b2 12t (341)
s/n/ 2:1' s3/n
for some b satisfying
nd = FLymi@ —ny _, nd - FLimi®
s/n sy/n

To further lower-bound (341), we bound b? as follows.

n . 2 2
pea(MEZHME) () G

s/n sy/n
2p2aloglogn 2log2n
= ra 2g g + f (344)
5 s4n
4p2alogl
SM, (345)
c?

where (343) is by (342) and the elementary inequality (x +

y)? < 2(x% + y%); (344) is by (124) and the choice of y
in (268). The constant ¢ in (268) is chosen to be
A 2p2a
q=—5 t+1 (346)

5

The constant ¢; > 0 is a lower bound of s, whose existence
is justified below at the end of the proof. Finally, (345) holds
for all sufficiently large n. Using (345), we can further lower-
bound (341) as

log? —32— 12ty 1
(S\/— (logn) 3—3) ﬁ (347)
- ( logn _ E) L (348)
- \s27 53 Jn
Cy
Zﬁ, (349)

where (347) is by plugging (345) into (341); (348) is by
using (346); and (349) holds for all sufficiently large n and
some constant C; > 0. Therefore, (269) follows.

Finally, to justify that s and ¢, defined in (339) and (340),
are bounded as we assumed in obtaining (345) and (349),
we compute using (336)

Var [M}(x) | X :x]
2.,2
4xi Vi

= ~ +
(1 + 22*(@x)v?)3

2 (350)
(1 + 27+ (x)Ww?)?

Then, using (308) to bound 1 + 21*(.:)1;!.2 and (125) to bound
xl?, we can lower- and upper-bound s by positive constants; ¢

can be bounded similarly. [ ]
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APPENDIX F
A. Derivation of the Maximum Likelihood Estimator

This section presents the details in obtaining (72). The
random vector (U, Up—aUy,...,U,—a U,,_l)T is distributed
according to A'(0, c21). Let p,(-) be the probability density
function of U with parameter a, then

au)

£arg max pq (u) (351)
= arg max H e_ﬁf(”_a“'—_l ? (352)
\-" ?TO'
:argngnZ(u,- —cmr,-_l)2 —|—u% (353)
i=2
n n n
. 2 2 2
:argm;nz.ui_la —ZZui_lu,-a—l—Zui (354)
i=2 i=2 i=1
n—1
iU
:72*1_ . ‘2“ . (355)
i1 Ui

where (353) is by collecting the terms in the exponent,
and (355) is by minimizing the quadratic function of a.

B. Proof of Theorem 5

Proof. We first bound P [a(U) — a > 7). Define the random
variable W(n, #) as
n—1
W, 2> (U,'ZH_] - :;U,?) .
i=1
Then, from (72) in Section III-C.2 above and (5), it is easy to
see that

(356)

(357)

From the definition of the Gauss-Markov source in (5),
we have

PlaU)—a > n] =P[W(n,n) > 0].

I
Ui=Y a7z, (358)
j=1
Plugging (358) into (356), we obtain
n i—1
ZZﬂi_j_]ZiZj—
i=2 j=1

n—1n-1

1—a2 ZZ( li—jl _

i=1 j=1

Wi(n,n) =

2"—"—3) ZiZ;. (359)

Notice that (359) can be further rewritten as the following

quadratic form in the n i.i.d. random variables Zy, ..., Z,:
W(n,n) =Z'Q, n)Z, (360)
where Q(n, ) is an n x n symmetric matrix defined as
_,?l—l_a_zrzﬂ, i=j<n
Qi j(n,n) =10, i=j=n
Tali=il=1 “li_jll__“;n_i_j, otherwise.
(361)
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For simplicity, in the rest of the proof, we write W and Q
for W(n, ) and Q(n, 5), respectively. By the Hanson-Wright
inequality [25, Th. 1.1], there exists a universal constant ¢ > 0
such that for any t > 0 ?

12 t
PIW-—-E[W —c mi
[ []>”5“¥[Cmm£ﬂmﬁfanJ}
(362)

where ||Q||F and ||Q|| are the Frobenius and operator norms
of Q, respectively. Taking t = —E[W] (which is > 0 for all
n large enough, as shown in (366) below) in (362), we can
bound (357) as

(-E[w)? -E[W]
a4iQIz * <2Ql

(363)

P[W = 0] =exp |:—cmin(

It remains to bound E [W], ||Q||:‘;~ and ||Q||. In the following,
we show that —E[W] = ©(yn), Q|32 = O(n) and Q| =
O(1). Plugging these estimates into (363) yields (73) up
to constants. The details follow. We first consider E[W].
From (360) and (361), we have

no’n  no(l —a®)

E[W] = o’tr(Q) = — 364
Define the constant K| > 0 as
1
Ki&—s. 365
L 0= d (365)
Then, for all n large enough, we have
—E[W] > Kio2gn. (366)

We then consider ||Q||%;. Direct computations using (361) yield
QI — 1 (1+a»)n* —2a(1 —a)y
l ||F = 2(1 _ag) + (1 — 02)3
(4an* —2(1 —a?)n) ah]
-n

a(l —a?)3
N dan 1 _ 7*@a’+1)
(1—a?3 2(1—a?)? (1 —a?)*
4a’n? N 1 _ dap a2
(1—a®*  2(1—-a?)? (1 —a?3
" 4
—a™m 367
+ (1 —a?)* (367)
Define the constant K> > 0 as
1 2(1 + 5a%)n?
K, 2 (1+5a%)y (368)

T1-a2 T (-a?p

9The sub-gaussian norm [|Z; ||, [45, Def. 5.7] of Z; ~N(0, 52) satisfies
1Zilly, = Cio for a univemafvcunstant Cy; > 0, see [45, Example 5.8].
By [25, Th. 1.1], there exists a universal constant C» > 0 such that for any
t=0,

2 t )]
ctetiQlz’ cfo?1Ql /]

In (362), we absorb € and C; into a single universal constant c.

PIW —E[W] > t] <exp {—Cg min(
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Since # > 0 and a € [0, 1), from (367), we have for all n
large enough,

1Ql% < Kon. (369)

Finally, we bound ||Q|. Using the Gershgorin circle theo-
rem [43, p.16, Th. 1.11], one can easily show that

QI < max ||g;ll1, (370)
ig[n]

where g; denotes the i-th row in Q. Direct computations
using (361) yield that Vi € [n],

llgillh < K3, (371)
where K3 is a positive constant given by
1 n 2n
K3 = . 372
S S s R G g (372)
Therefore, ¥n = 1, we have
1Q|l < Ks. (373)

Plugging the bounds (366), (369) and (373) into (363),
we have for all n large enough

Kin’n K
PIW > 0] <exp| —cmin( =22 2N (374
P K- K3

Notice that all the arguments up to this point are valid
for any # > 0. However, the constants K> and K3 in the
bound (374) depend on # via (368) and (372), respectively.
Since we are interested in small #, in the rest of the proof,
we assume # < (0, 1). Besides, with the restriction 5 € (0, 1),
we can get rid of the dependence of K> and K3 on #, and
simplify (374). For any 5 € (0, 1), we can bound K3 and K3
as follows:

1 2(5 4+ a?)

K, <Kj) % 375
2= R/ ]_a2+(]_az)3s ( )
4
Ks<kje 7 (376)

(1-a)*(1+a)
Applying the bounds (375) and (376) to (374), and then setting

gKlz s Ky

cl = K_é and ¢ = K__;, (377)

yields
Pla(U) —a > n] <exp [—c min (cmzn, czrm)] . (378)

Finally, to bound P [a(U) —a < —7], in the above proof,
we replace the random variable W(n, n) by V (n, ), defined
as

n—1
Vi) e (—U,'ZH_] - :;UE) .
i=1
In quadratic forms, V(n, 5) = Z'S(n, nZ, where S(n, ) is
an n x n symmetric matrix, defined in a way similar to Q(n, #):
2(n—i)

(379)

l—a

Nz i=j<n
Sij(n,m) =10, o . i=j=n
—Lali=il-1 — q%, otherwise.

(380)
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With the same techniques as above, we obtain
PlaU) —a < —n] <exp [—c min (clqzn, czqn)] ,
(381)

where ¢, ¢; and ¢ are the same constants as those in (378).
|

C. Proof of Theorem 6

Proof. The proof is similar to that of Theorem 5. In particu-
lar, (374) still holds:

K?n’n Kigun
P[a(U)—ab»;?n]Eexp —cmin Sifa" Bifant

K ' Kj
(382)
Instead of (375) and (376), we bound K> and K3 by
2
"oa
K) <K, = 11— a2 (383)
and
noh 2
Kz <= K3 = s (384)
1—a

where (383) and (384) hold for all n large enough in view
of (74), (368) and (372). Applying the bounds (383) and (384)
to (382) and using the fact that for all n large enough,

Kin2n Kimun Zn
min| =7, = ) = g, (389)
2 3 (1—a?
we obtain

1
PlaU) —a < — 386
[a@) —a > n] < (ogn)<@ (386)
where x is given in (76). Finallyy, we can bound
P[a(U) —a < —n,] in the same way. ]
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