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Daniel L. Alspach Endowed Chair in

Dynamic Systems and Control
Dept. of Mechanical and Aero. Eng.
University of California, San Diego

La Jolla, California 92093
Email: krstic@ucsd.edu

Peiman Naseradinmousavi
Assistant Professor

Dynamic Systems and Control Lab.
Dept. of Mechanical Eng.

San Diego State University
San Diego, California 92115

Email: pnaseradinmousavi@sdsu.edu

ABSTRACT

In this paper, we examine the autonomous operation of a
high-DOF robot manipulator. We investigate a pick-and-place
task where the position and orientation of an object, an obsta-
cle, and a target pad are initially unknown and need to be au-
tonomously determined. In order to complete this task, we em-
ploy a combination of computer vision, deep learning, and con-
trol techniques. First, we locate the center of each item in two
captured images utilizing HSV-based scanning. Second, we uti-
lize stereo vision techniques to determine the 3D position of each
item. Third, we implement a Convolutional Neural Network in
order to determine the orientation of the object. Finally, we use
the calculated 3D positions of each item to establish an obstacle
avoidance trajectory lifting the object over the obstacle and onto
the target pad. Through the results of our research, we demon-
strate that our combination of techniques has minimal error, is
capable of running in real-time, and is able to reliably perform
the task. Thus, we demonstrate that through the combination of

specialized autonomous techniques, generalization to a complex
autonomous task is possible.

1 Introduction
Robot manipulators have many advantages over manual la-

bor, they are more precise, consistent, faster, and stronger than
even the most capable of humans [1]. Additionally, they do not
suffer from exhaustion or lack of focus, and are capable of sus-
taining harsh environments. These traits are desirable in many
environments that pose risks to humans, especially in industrial
applications and medicine. However, the autonomous systems
used to control such manipulators have historically had difficul-
ties generalizing to complex tasks. This has led most manipu-
lators into being used either for repetitive, easy to define tasks
utilizing autonomous control, or more complex tasks under the
direct control of a human operator. Furthermore, direct control
via human input reduces the benefit of consistent performance,
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since the human operator becomes the limiting factor of the sys-
tem with respect to exhaustion and focus. Thus, the current lim-
itations of autonomous systems represent a significant reduction
in the potential of robot manipulators.

In recent years, many research efforts were carried out to im-
prove the generalization ability of autonomous systems. These
studies have been aided by significant advances in the fields of
computer vision and machine learning. Such studies focused pri-
marily on increasing the ability of autonomous systems to com-
prehend and act based on their environment, rather than relying
on a predetermined state. Relevant to the purpose of this effort,
research topics include object detection [2–5], pose determina-
tion [6–11], optimal grasp determination [11–20], and obstacle
avoidance [21–27]. These studies all represent significant steps
towards the autonomous operation of robot manipulators in com-
plex tasks.

Object detection is a field of research useful in numerous
applications, and has seen a significant amount of progress in re-
cent years. Due to the research of He et al. [4], efficient object
detection and pixel-wise segmentation is possible across thou-
sands of object categories. Furthermore, its current speed of 5
fps means that object detection can now be performed in real-
time, enhancing the ability of autonomous systems to react to
a changing environment. This research is an iterative improve-
ment of the earlier works of Girshick [2] and Ren et al. [3], each
increased the performance and efficiency of the network.

Pose determination has seen a comparable amount of
progress, due in part to the improvement of object detection net-
works and the increased availability of depth information in im-
ages. Early studies, such as that by Saxena et al. [6], sought
to determine object pose by determining each of its 3 principal
axes. More recent works, such as by Rad and Lepetit [7] in-
stead sought to detect the corners of the object, and determined
the pose through the well defined Perspective-n-Point (PnP) al-
gorithm in computer vision. Research such as that of Pauwelset
et al. [10] has shown that the determination of pose can be im-
proved with depth information, collected either by stereo vision
or with the use of RGB-D cameras. Additionally, Pauwelset et
al. [10] demonstrated in their research that pose determination
can be computed efficiently in real time, as their algorithm is ca-
pable of simultaneously detecting 150 objects at 40 fps.

Optimal grasp detection has been the focus of numerous
studies in recent years, with many different methods explored.
While some algorithms, such as Tremblay et al. [11], determined
the optimal grasp purely through the determination of the pose,
algorithms such as Lenz et al. [12] bypassed pose determination
and compute the optimal grasp directly. Along with the presence
or lack of depth information, studies vary in the conditions in
which the grasp is to be performed. Johns et al. [18] investigated
determining the optimal grasp accounting for uncertainty in the
pose of the gripper, while Dogar et al. [17] studied optimally
grasping an object while nudging others aside in a cluttered en-

vironment. The proper method to use for grasp determination is
dependent on the type of problem the robot manipulator is in-
tended to solve.

Obstacle avoidance, similarly to optimal grasp detection, is
an active research topic with a large variety of tested methods.
While most studies tend to focus on avoiding collision with the
end effector, Yang et al. [22] investigated collision between an
obstacle and the manipulator’s other links, and avoiding colli-
sion via redundancy present in the manipulator. Among the stud-
ies that investigated collision with the end effector, there are still
many differences present between studies. For instance, Wang et
al. [26] proposed a non-linear model predictive controller for the
obstacle avoidance problem, while Benzaoui et al. [24] presented
a fuzzy adaptive control scheme, and Wei et al. [21] proposed an
improved rapidly exploring random trees algorithm. Each algo-
rithm has shown promise in the task of obstacle avoidance.

The goal of this paper is the autonomous development of
an obstacle avoidance trajectory [28], combining computer vi-
sion, deep learning, and control principles. Specifically, our al-
gorithm autonomously determines the 3D positions of an object,
an obstacle, and a target pad, as well as determining the optimal
grasp angle (orientation) to pick up the object. Once the object is
picked up, a trajectory is autonomously determined to guide the
object past the obstacle onto the target pad. Note that while most
studies focus on a single aspect of autonomous systems, our ef-
fort examines the autonomous process as a whole. Key to this
study is the examination of the performance of each step of the
algorithm, and the interdependence of said steps. For this task,
we utilize Baxter, a robot with two 7-DOF robotic arms and three
cameras, as a case study.

The paper is organized as follows. In Section 2, we present a
brief overview of the dynamics of Baxter’s right arm, which will
be used for object manipulation. In Section 3, we go over each
step in the autonomous procedure. These steps are object detec-
tion via HSV-based scanning, distance determination via stereo
vision, pose determination via deep learning, and the develop-
ment of the obstacle avoidance trajectory. Finally in Section 4,
we quantitatively asses the overall performance of the algorithm.

2 Mathematical Modeling
The redundant manipulator, which is being studied here, has

7-DOF as shown in Figs. 1 and 2. The Baxter manipulator’s
Denavit-Hartenberg parameters are shown in Table 1 provided
by the manufacturer. The Euler-Lagrange equation leads to the
robot’s dynamic equations:

M(q)q̈+C(q, q̇)q̇+G(q) = τ (1)

where, q, q̇, q̈ ∈ R7 are angles, angular velocities and angular ac-
celerations of joints, respectively, and τ ∈R7 indicates the vector
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FIGURE 1. The 7-DOF Baxter’s arm
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FIGURE 2. The joints’ configuration: (a) sagittal view; (b) top view

of joints’ driving torques. Also, M(q) ∈ R7×7, C(q, q̇) ∈ R7×7,
and G(q)∈R7 are the mass, Coriolis, and gravitational matrices,
respectively. The coupled nonlinear dynamic model of the robot
is verified in [29–32].

3 Fully Autonomous Operation
For the purpose of the autonomous task, the red object,

blue obstacle, and green target mat coordinates are (xp,yp,zp),

TABLE 1. Baxter’s Denavit-Hartenberg Parameters

Link ai di αi θi

1 0.069 0.27035 −π/2 θ1

2 0 0 π/2 θ2 +π/2

3 0.069 0.36435 −π/2 θ3

4 0 0 π/2 θ4

5 0.010 0.37429 −π/2 θ5

6 0 0 π/2 θ6

7 0 0.3945 0 θ7

(xo,yo,zo), and (xd ,yd ,zd), respectively. The origin of the coor-
dinate system is the right corner of the table closest to Baxter.
The x-axis is directed left along the table, the y-axis is directed
upwards normal to the table, and the z-axis is directed away from
Baxter along the table, as can be seen in Fig. 3. All positions are
initially unknown and need to be autonomously determined.

To determine the 3D positions, Baxter’s left-hand and head
cameras each take a picture of the table from a predetermined po-
sition. Using the process of HSV-Based scanning, the centers of
each of the three items are determined in 2D image frame coor-
dinates. Once the image frame coordinates from each camera are
determined, their corresponding 3D coordinates are determined
utilizing stereo vision techniques.

FIGURE 3. Physical layout of the autonomous task (in this picture
object is blue and obstacle is red)

Once 3D positions are determined, Baxter’s right manipula-
tor is positioned in front of the red object. Utilizing a trained con-
volutional neural network (CNN), Baxter determines the 2D ori-
entation of the object as the angle θ on the interval 0≤ θ ≤ 180.
Once this angle is determined, the right manipulator is rotated
by the calculated angle and the red object is picked up. Finally,
using the determined positions of each object, a spline trajectory
is calculated and performed moving the red object over the blue
obstacle and onto the green target mat.

3.1 HSV-Based Scanning
In order to determine the position and orientation of each

of the three items, it is first required to locate their position in a
2D image. As each of the items in the task has a unique distin-
guishing color, we use Hue, Saturation, and Value (HSV) based
scanning to locate their 2D position. In the HSV color format,
hue represents the “color” of the pixel, while saturation and value
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(a) (b) (c) (d)

FIGURE 4. HSV-based scanning for object detection: (a) Original image; (b) Binary mask of ”Blue” pixels; (c) Mask after morphological filtering;
(d) Image with contours and centers drawn

measure how far the color is from “white” and “black”, respec-
tively. Expressing colors in HSV format allows the same color to
possess a similar hue value under differing lighting conditions,
which essential for color based tracking.

Once an image is converted from the RGB space (Fig. 4(a))
to the HSV space, the image is then scanned for pixels within a
specified hue range, that possesses a minimum required satura-
tion and value. The target hue value is based on the desired color
to find, while the allowable hue range, the minimum saturation,
and minimum value are all experimentally determined for each
object color. All pixels than fall in the required range are set to
white, while the other pixels are set to black. While the result-
ing binary mask, or black and white image, contains the desired
object, the picture also contains noise, as can be seen in Fig. 4(b).

To reduce the noise present in the binary mask, morpholog-
ical filtering is utilized [33]. The morphological filtering opera-
tions used in this effort are the opening operation to fill in holes
in the object, followed by closing to remove background noise.
These two operations are effective at removing noise in the bi-
nary mask, as can be clearly seen in Fig. 4(c). Small white
streaks in the initial binary mask, caused by both the ceiling
lights and blue tape on the floor, are almost completely removed
from the mask, leaving the desired object as the most defined fea-
ture in the mask. After filtering is complete, a contour is drawn
around the largest white object in the mask, and the center of the
mask is used as the 2D location of the object in the image. As
seen in Fig. 4(d), HSV-based scanning is effective as an object
detection algorithm, and is able to generate accurate contours for
the items.

3.2 Stereo Vision
Before 3D positions can be determined, it is first required

to calibrate the stereo system. Unlike camera calibration, which
estimates the intrinsic properties of the camera, stereo calibration
is used to determine the homogeneous transform between two
cameras.

During stereo calibration, multiple images of a large chess-
board pattern are captured from the left-hand and head cameras,
such that there are two pictures for every chessboard position, as

shown in Fig. 5. The chessboard pattern is used due to the ease
and accuracy of locating the corners between tiles in an image,
which makes the pattern a good candidate for calibration. From
each camera, 3D object coordinates (x,y,z) of each of the cor-
ners are known and their 2D image coordinates (u,v) are easily
determined. Thus, we can use the PnP algorithm to determine
the rotation and translation between the camera coordinate sys-
tem and the chessboard. This algorithm is based on the relation-
ship between 3D object coordinates and 2D image coordinates
are given by the following equation

s

u
v
1

=

 f 0 cx

0 f cy

0 0 1


r11 r12 r13 tx

r21 r22 r23 ty
r31 r32 r33 tz




x
y
z
1

 (2)

where f is the focal length of the camera, (cx,cy) is the center
of the image, and R and T are the rotation matrix and translation
vector, respectively, between the camera and the chessboard. s is
a parameter chosen so that the third element of the homogeneous
image coordinates is 1. Once the rotation and translation from
the chessboard to each of the cameras are computed, the rotation
and translation from the left-hand camera reference frame to the
head camera reference frame can be determined as

R = R2RT
1 (3)

T =−R2RT
1 +T2 (4)

where R1 and T1 are the rotation and translation, respec-
tively, from the left-hand camera to the chessboard, R2 and T2
are the rotation and translation, respectively, from the head cam-
era to the chessboard. Once R and T are determined, rectification
of the images is possible.

Rectification is the process of virtually rotating stereo im-
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FIGURE 5. Stereo calibration: View from left-hand camera

ages, so that the images are horizontally rotated to each other on
the same plane. The rectification algorithm uses the determined
R and T , along with the intrinsic camera parameters, to create
a map from each of the camera coordinate systems to the cor-
responding rectified system, as well as determining a horizontal
shift Tx from the left rectified image to the head rectified image.
In this effort, we utilize the rectification algorithm developed for
the OpenCV library [34]. For the rest of this section, we re-
fer to the rectified image coordinates (u′1,v

′
1) = map1(u1,v1) and

(u′2,v
′
2) = map2(u2,v2) of each of the item centers.

After the left-hand and head images are rectified (Fig. 6),
we determine the 3D positions of the items using the following
equation

s


xL

yL

zL

1

=


1 0 0 −cx

0 1 0 −cy

0 0 0 f
0 0 −1/Tx 0




u′1
v′1

u′1−u′2
1

 (5)

where (xL,yL,zL) are the 3D item coordinates relative to the left-
hand camera, and s is a parameter chosen so that the fourth el-
ement of the homogeneous 3D coordinates is 1. Once the item
coordinates in the 3D camera coordinate system (xL,yL,zL) are
determined, they are then rotated and translated into the table co-
ordinate system (Fig. 7), described in the beginning of Section
3. The rotation and translation between the left-hand camera and
the table were previously determined by applying the PnP algo-
rithm to an image of the chessboard aligned to the table coordi-
nate system.

3.3 Deep Learning
In order to determine the 2D orientation of the red object, we

formulate and train a Convolutional Neural Network (CNN). Us-

(a) (b)

FIGURE 6. Stereo rectification: (a) View from left-hand camera; (b)
View from head camera

FIGURE 7. Calculated 3D positions (mm)

FIGURE 8. Orientation angle θ , predicted using deep learning

ing a picture of the red object from the right-hand camera as in-
put, our network predicts the angle θ on the interval 0≤ θ ≤ 180
between the table and the major axis of the red object, as shown
in Fig. 8. To guide the training of this network, we define a cost
function based on the mean square error between the predicted
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angle θ̂ and true angle θ

MSE =

∑
N
i=1 min

{∣∣∣θ − θ̂

∣∣∣ ,180−
∣∣∣θ − θ̂

∣∣∣}2

N
(6)

where N is the total number of samples being evaluated, and

min
{∣∣∣θ − θ̂

∣∣∣ ,180−
∣∣∣θ − θ̂

∣∣∣} is the shortest distance from θ to

θ̂ compensating for a periodic output. We similarly define the
mean error as

ME =

∑
N
i=1 min

{∣∣∣θ − θ̂

∣∣∣ ,180−
∣∣∣θ − θ̂

∣∣∣}
N

(7)

which we use to quantitatively asses the performance of the
CNN.

(a) (b)

(c)

FIGURE 9. Image preprocessing: (a) Initial right-hand image; (b)
Right-hand image after random rotation; (c) Generated mask

In order to reduce the number of images required for train-
ing, as well as increase model performance, we preprocess (Fig.
9) each right-hand image before we pass it to the CNN. First, we
apply HSV-based scanning to generate a mask representing the
red object. We then crop the mask to the smallest square that
inscribes the red object, in order to preserve the original aspect

ratio. Finally, we resize the image to 48×48×1, and subtract
the mean grayscale color value from the mask to prevent neuron
saturation during training. This process reduces a 600×960×3
RGB image into a 48×48×1 image mask, reducing the number
of input parameters by a factor of 750 while preserving the nec-
essary data to predict the orientation.

The structure of our CNN is as follows. After the input mask
passes through 6 alternating 3×3 convolutional and max pooling
layers, the resulting data is flattened and passed through 6 dense
layers of decreasing depth. We utilize the hyperbolic tangent as
the activation function for all 3×3 convolutional and dense lay-
ers, excluding the final dense layer. For this layer, we instead
use the remainder after division with 180. This insures that all
predicted angles will be in the range 0◦ ≤ θ ≤ 180◦ without sat-
uration at 0◦ or 180◦.

For the training of our network, we collected 140 images of
the red object at different angles and distances from the camera,
which we split into a training set of 120 images and a valida-
tion set of 20 images. To compensate for a small dataset, we
augmented our data by applying 10 random rotations to each im-
age, as seen in Fig. 9(b). Along with increasing the size of the
dataset to 1400 images, this has the added benefit of increasing
the spread of angles present in our data. The network was trained
for 1000 epochs with a batch size of 200. We utilize the adamax
optimizer developed by Kingma and Ba [35] with the suggested
learning rate of 0.002.

3.4 Obstacle Avoidance Trajectory

Once 3D object position and the orientation of the red object,
as well as the 3D position of blue obstacle and green target pad
are determined, we formulate an obstacle avoidance trajectory
comprising of the points (xobj,yobj,zobj), (xobst,yobst +K1(hobj +
hobst),zobst), and (xtrg,htrg +K2hobj,ztrg), where hobj is the height
of the red object, hobst is the height of the blue obstacle, htrg in-
dicates the height of the green pad, and K1,K2 ≥ 0.5 are spacing
multipliers chosen to prevent collision. We employ a cubic spline
between these three points, governed by the equations

if t <
topr

2


y(t) = α1t3 +β1t2 + γ1t +δ1

x(t) = a1t2 +b1t + c1

z(t) = a′1t2 +b′1t + c′1

(8)

if t ≥
topr

2


y(t) = α2t3 +β2t2 + γ2t +δ2

x(t) = a2t2 +b2t + c2

z(t) = a′2t2 +b′2t + c′2

(9)
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FIGURE 10. Convergence during training of CNN: (a) Mean Square
Error; (b) Mean Error
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FIGURE 11. Histogram of orientation angle prediction error on test-
ing dataset

where topr is the total operation time of the trajectory, and α , β ,
etc. are constants to be determined by applying the necessary
boundary conditions. These conditions are as follows

P(t = 0) = (xobj,yobj,zobj) (10)

P(t =
topr

2
) = (xobst,yobst +K1(hobj +hobst),zobst) (11)

P(t = topr) = (xtrg,htrg +K2hobj,ztrg) (12)

P′(t = 0) = (0,0,0) (13)

P′(t = topr) = (0,0,0) (14)

y′(t =
topr

2
) = 0 (15)

where P = (x(t),y(t),z(t)). Note that at time topr/2, the y deriva-
tive is zero, but the x and z derivatives are free.

4 Experimental Results

In order to determine the accuracy and precision of our 3D
positions, we positioned the red object at 10 different locations
on the table. At each position, we recorded the position calcu-
lated by our algorithm, and also determined the actual position.
We determined that the mean distance between our calculated
value and the actual value is 5 mm, with a standard deviation of
1.8 mm. This indicates our algorithm is capable of generating
consistent results, which is crucial in order to properly pick up
objects with a robotic manipulator. The satisfactory performance
of our algorithm demonstrates that the combined use of image
masks generated through object detection and stereo vision tech-
niques is an effective method for determining 3D positions, and
that the error carried over from each step of the algorithm did not
prevent the algorithm from functioning as intended. Finally, this
stage of the algorithm has an average run time of 78.4 ms, mean-
ing 3D positions can be determined real-time with a potential
12.8 f ps.

From Fig. 10, it can be seen that both the MSE and the ME
exhibit smooth convergence throughout training. Also the val-
idation error reaches a sufficiently small value of 1.54◦. This
value could reasonably be argued to be within the expected hu-
man error of our determination of the angle labels for training,
which would indicate that the validation error converged to the
minimum possible error. Similarly, in the testing set of 190 im-
ages after data augmentation, the ME is measured to be 1.49◦.
This indicates that the tuning of hyperparameters on the valida-
tion set did not cause overfitting when compared to the testing
error. As seen in Fig. 11, this angle measure is also consistent,
as the majority of the probability distribution, and thus the major-
ity of predicted angles, are located within 4◦ of the actual angle
value. Finally, this stage of the algorithm has an average run
time of 17.2 ms, meaning that the orientation can be predicted in
real-time with a potential 58.1 f ps.

As a final performance test, we run the complete au-
tonomous procedure on Baxter to complete the previously speci-
fied task. As can be seen in Fig. 12, Baxter is able to execute all
stages of the procedure and complete the task. Each portion of
the autonomous system operates on the accumulated error from
previous steps in the algorithm, but these errors do not become
large enough to prevent the system from functioning as intended.
In the presence of negligible positional error from HSV-scanning
and stereo vision, small angular error from the CNN, as well as
fluctuations in the control of the right manipulator, the gripper is
still successful in picking up the red object. Similarly, the manip-
ulator successfully navigates the red object around the obstacle
and on to the destination based on positions calculated earlier by
the system. Despite the negligible accumulated error, algorithms
developed to solve a specific autonomous problem can be effec-
tively coupled in order to complete more complex tasks.
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FIGURE 12. Experimental validation of complete autonomous pro-
cedure; see peimannm.sdsu.edu for the experiment AVI file

5 Conclusion
In this paper, we argued that robotic manipulators have not

reached their full potential due to their current inability to per-
form complex tasks autonomously. We presented recent research
efforts in a variety of topics relevant to the autonomous operation
of robotic manipulators. Rather than focusing on a particular as-
pect relevant to autonomous operation, such as object detection
or obstacle avoidance, we chose to analyze the performance of
a complete autonomous system. We proposed a task involving
object detection, pose determination, and obstacle avoidance. To
execute this task, we developed an algorithm composed of mul-
tiple smaller procedures intended to solve a certain aspect of the
combined task. These individual procedures employed a vari-
ety of computer vision, deep learning, and control techniques.
Through the results of our research, we demonstrated that:

1. Each procedure in the algorithm operates with an acceptable
error.

2. Each procedure in the algorithm is capable of running in
real-time.

3. The complete algorithm is capable of reliably executing the
task defined.

Thus, through the combination of specialized autonomous tech-
niques, generalization to a complex autonomous task is possible.
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