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ABSTRACT
We formulate a predictor-based controller for a high-DOF

manipulator to compensate a time-invariant input delay during a
pick-and-place task. Robot manipulators are widely used in tele-
manipulation systems on the account of their reliable, fast, and
precise motions while they are subject to large delays. Using
common control algorithms on such delay systems can cause not
only poor control performance, but also catastrophic instability
in engineering applications. Therefore, delays need to be com-
pensated in designing robust control laws. As a case study, we
focus on a 7-DOF Baxter manipulator subject to three different
input delays. First, delay-free dynamic equations of the Baxter
manipulator are derived using the Lagrangian method. Then, we
formulate a predictor-based controller, in the presence of input
delay, in order to track desired trajectories. Finally, the effects of
input delays in the absence of a robust predictor are investigated,
and then the performance of the predictor-based controller is ex-
perimentally evaluated to reveal robustness of the algorithm for-
mulated. Simulation and experimental results demonstrate that
the predictor-based controller effectively compensates input de-
lays and achieves closed-loop stability.

1 Introduction
Robot manipulators are widely used in various applications

to track desired trajectories, particularly in telemanipulation sys-

tems, on the account of their reliable, fast, and precise motions
in executing tasks such as moving debris and turning valves [1].
Remote manipulators provide the capability of executing tasks
safely at an unreachable/dangerous location while they are sub-
ject to large input delays as with many engineering systems. In-
terest in delay, as a common dynamic phenomenon, is driven by
applications in modeling and control of traffic systems [2], tele-
operators [3–5], vehicles [6], and robot manipulators [7, 8].

The detrimental impact of time delay is well-established,
which plays the most significant role in degrading remote per-
ception and manipulation. Large input delays often arise from
communication delay between sensor and actuator, or from time-
consuming computational burden of multi-agent networks. For
instance, the foremost concern of vision-based control is tackling
the delay introduced by image acquisition and image processing.
One of the earliest challenges in engineering has been the con-
trol of systems subject to delays. Note that a common approach
to tackle and handle this problem is the use of predictive algo-
rithms. In 1959, Smith presented the delay compensator known
as the Smith predictor [9]. However, in some cases, the Smith
predictor – a modification of a nominal controller designed to
stabilize the delay-free system – may fail to achieve the closed-
loop stability when the plant is unstable [10].

Many studies in recent years were carried out for linear sys-
tems subject to the input delays [11–20]. In addition to many
researches on linear systems, the further recent developments
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TABLE 1. Baxter’s Denavit-Hartenberg Parameters

Link/Joint ai di αi θi

1/S0 0.069 0.27035 −π/2 θ1

2/S1 0 0 π/2 θ2 +π/2

3/E0 0.069 0.36435 −π/2 θ3

4/E1 0 0 π/2 θ4

5/W0 0.010 0.37429 −π/2 θ5

6/W1 0 0 π/2 θ6

7/W2 0 0.3945 0 θ7
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FIGURE 1. The 7-DOF Baxter manipulator: (a) The joints configu-
ration; (b) sagittal view

of predictor-based control laws for nonlinear systems with in-
put delays can be found in [21–30]. Motivated by the harmful
consequences of input delays on the stability and performance of
such control systems, we formulate and implement a predictor-
feedback controller [31] for the compensation of large input de-
lays in a multi-input highly nonlinear system – the 7-DOF Baxter
manipulator as a case study. We reasonably assume that all input
channels induce the same delay due to the fact that it is practi-
cally impossible to have different delays for the robot with highly
coupled dynamics.

This paper is organized as follows. We begin with a brief
mathematical modeling of the system in Section 2, along with
deriving dynamics equations, in order to formulate the predictor-
feedback control law. In Section 3, we present the global asymp-
totic stability of the closed-loop system using the predictor-
feedback control law and necessary assumptions. Finally, Sec-
tion 4 is devoted to the results of experiments (pick-and-place
task) in order to reveal the significance of predictor for the sys-
tem stabilization in the presence of three different input delays.

2 Mathematical Modeling
The redundant Baxter manipulator, which is being studied

here, has seven degrees of freedom, see Fig. 1. The Denavit-
Hartenberg parameters for this manipulator are determined based
on the specifications provided by the manufacturer, shown in Ta-
ble 1.

M(q)q̈+C(q, q̇)q̇+G(q) = τ (1)

where, q ∈R7, q̇ ∈R7, and q̈ ∈R7 are angles, angular velocities,
and angular accelerations of joints, respectively, and τ ∈ R7 in-
dicates the vector of joint driving torques. Also, M(q) ∈ R7×7,
C(q, q̇) ∈ R7×7, and G(q) ∈ R7 are the mass, Coriolis, and grav-
itational matrices, respectively, which are symbolically derived
using the Euler-Lagrange equation [32–35]. Note that the iner-
tia matrix M(q) is symmetric, positive definite, and consequently
invertible. This property is used in the subsequent development.
The multi-input nonlinear system (1) can be written as 14th-order
ODEs with the following general state-space form,

Ẋ = f0(X ,U) (2)

where X = [q1, · · · ,q7, q̇1, · · · , q̇7]
T ∈ R14 is the vector of states

and U = τ7×1 ∈ R7 is the input of nonlinear system (2).
Since we intend to design a predictor-based controller lead-

ing to perfect tracking, we derive error dynamics and then design
the controller to stabilize the error dynamics making the origin
asymptotically stable.

Ė = f (E,U) (3)

where, E = [eT
1 ,e

T
2 ]

T ∈ R14 is the vector of error states and
e1(q, t), e2(q, q̇, t) ∈ R7 are defined as

e1 = qdes−q (4)

e2 = ė1 +αe1 (5)

where α ∈ R7×7 is a constant positive definite matrix, and the
following assumption is held for the desired joint trajectories.

Assumption 1. The desired joint trajectories qdes(t) ∈ R7 and
their derivatives q̇des(t), q̈des(t) ∈ R7 exist and are bounded for
all t ≥ 0.

3 Designing the Predictor-Based Controller
Dealing with highly nonlinear and coupled dynamic equa-

tions could cause a complicated problem of designing computa-
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tionally efficient control scheme to avoid the large delay. There-
fore, we derive a predictor-based controller for a multi-input non-
linear system, in the presence of input delay, to stabilize the
closed-loop system. In order to demonstrate the generality of
our approach, consider the following general multi-input nonlin-
ear system with m inputs, n states, and constant input delay D,

Ė(t) = f
(
E(t),U1(t−D), · · · ,Um(t−D)

)
(6)

where, E ∈Rn is the vector of states, U1, · · · ,Um ∈R are the con-
trol inputs, D > 0 is an input delay, and f : Rn×Rm → Rn is a
locally Lipschitz vector field. We assume that a feedback law
Ui(t) = κi(E(t)) is known such that the functions κi : Rn → R
globally asymptotically stabilize the delay-free system – the
closed-loop system Ė(t) = f (E(t),κ(E(t))) is globally asymp-
totically stable in the absence of delay. Therefore, in the delay
system, the control law needs to be as follows:

Ui(t−D) = κi(E(t)) (7)

which can be expressed as

Ui(t) = κi(E(t +D)) = κi(P(t)) (8)

where P(t) is the D-time units ahead predictor of E(t). The pre-
dictor law for the system (6) is given by,

P(t) = E(t)+
∫ t

t−D
f
(

P(θ),U1(θ),U2(θ), · · · ,Um(θ)
)

dθ (9)

with the following initial conditions for the integral (9),

P(θ) = E(0)+
∫

θ

−D
f
(

P(s),U1(s),U2(s), · · · ,Um(s)
)

ds (10)

where θ ∈ [−D,0]. Note that P(t) is defined in terms of its past
values, however a solution P(t) to (9) does not always exist since
the control applied after t = D has no effect on the plant over the
time interval [0,D]; consequently the system (6) can exhibit fi-
nite escape before t = D. Therefore, in order to ensure the global
existence of the predictor state, we need to be sure that, for all
initial conditions and all locally bounded input signals, the sys-
tem’s solutions exist for all time. This property is the so-called
“forward completeness”. For designing the predictor-based con-
troller, we utilize the results of [31] in the following theorem.

Theorem 1. Consider the closed-loop system consisting of the

plant (6) with input delay. If there exists control laws (8)-(9) such
that Ė(t)= f (E(t),κ(E(t))) becomes asymptotically stable, sub-
ject to the assumptions of open-loop system forward complete-
ness and the Input-to-State Stability (ISS) of closed-loop system
Ė(t) = f (E(t),κ(E(t)) + ω) with respect to ω , the following
holds for all t ≥ 0,

Ω(t)≤ β
(
Ω(0), t

)
(11)

where

Ω(t) = |E(t)|+
n

∑
i=1

sup
t−D≤θ≤t

|Ui(θ)| (12)

3.1 Error System Development

The control objective includes converging joint position and
velocity errors to zero implying the generalized coordinates track
the desired time-varying joint trajectories, qdes(t) ∈ R7. A state-
space model for the tracking error (Eq. (3)) is developed based
on Eqs. (4) and (5). Then a controller is formulated to improve
tracking performance indices, converging errors to zero, subject
to the assumption of knowing the system’s dynamics, as men-
tioned earlier.

A state-space model, based on the tracking error, is for-
mulated through premultiplying the inertia matrix by the time
derivative of Eq. (5), while Eqs. (1) and (4) are substituted,

−Mė2 +(Mα−C)e2 +(−Mα
2 +Cα)e1

+Mq̈des +Cq̇des +G = τ (13)

which yields,

ė2 = αe2 +h−M−1
τ (14)

where h ∈ R7 is a nonlinear function defined as

h = q̈des−α
2e1 +M−1(Cq̇des +G+Cαe1−Ce2) (15)

and the state-space model of error dynamics becomes,

Ė = f (E,τ) =

[
e2−αe1

αe2 +h−M−1τ

]
(16)

As we mentioned through Theorem 1, the forward completeness
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and ISS properties of the nonlinear system need to be established.
The forward-complete systems include all linear systems both
stable and unstable, as well as various nonlinear systems with
bounded nonlinearities. The mathematical model of robot ma-
nipulators contains trigonometric nonlinearities as a result of ro-
tational motions, which implies that q(t) and consequently e1(t)
do not escape to infinity within a finite time. Therefore, robot
manipulators are the forward-complete nonlinear systems [22].

We can also utilize the following theorem [36] to establish
the forward completeness of the system,

Theorem 2. System ẋ = f (x,d) is forward complete if and only
if there exists a proper and smooth function V : Rn→ R≥0 such
that the following exponential growth condition is verified:

DV (x) f (x,d)≤V (x), ∀x ∈ Rn,∀d ∈D (17)

We now establish (17) by considering the following Lya-
punov function,

V (E) =
1
2

eT
1 e1 +

1
2

eT
2 e2 (18)

We easily have,

V̇ = eT
1 (e2−αe1)+ eT

2 (αe2 +h−M−1
τ)

= eT
1 e2− eT

1 αe1 + eT
2 αe2 + eT

2 h− eT
2 M−1

τ (19)

Since M, M−1, and C include trigonometric functions, we get,

eT
1 e2− eT

1 αe1 + eT
2 αe2 ≤

1
2

(
eT

1 e1 + eT
2 e2

)
−λmeT

1 e1 +λMeT
2 e2 (20)

eT
2 h≤ eT

2

(
q̈des−α

2e1 +M−1Cq̇des +

M−1G+M−1Cαe1−M−1Ce2

)
≤ 1

2

(
eT

2 e2 + q̈T
desq̈des

)
+

γ1

2

(
eT

2 e2 + eT
1 e1

)
+

γ2

2

(
eT

2 e2 + q̇T
desq̇des

)
+

γ3

2

(
eT

2 e2 +Γ
2
)

+
γ4

2

(
eT

2 e2 + eT
1 e1

)
− γ5

(
eT

2 e2

)
−eT

2 M−1
τ ≤ γ6

2

(
eT

2 e2 + τ
T

τ

)
(21)

where λM and λm denotes the maximum and minimum eigenval-
ues of matrix α , respectively. Also, γ ′i s > 0 ( i = 1,2,3,4,5,6)
and Γ is the L2-norm of gravitational vector. Substituting Eqs.
(20) and (21) into Eq. (19) yields,

V̇ ≤ (1−2λm + γ1 + γ4)

(
1
2

eT
1 e1

)
+ (2+2λM + γ1 + γ2 + γ3 + γ4−2γ5 + γ6)

(
1
2

eT
2 e2

)
+

1
2

(
q̈T

desq̈des

)
+

γ2

2

(
q̇T

desq̇des

)
+

γ3

2
Γ

2 +
γ6

2
|τ|2

≤ γ6

(
1
2

eT
1 e1 +

1
2

eT
2 e2

)
+ γ7 (22)

where,

γ6 = max
{(

1−2λm + γ1 + γ4

)
,(

2+2λM + γ1 + γ2 + γ3 + γ4−2γ5 + γ6

)}
(23)

1
2

(
q̈T

desq̈des

)
+

γ2

2

(
q̇T

desq̇des

)
+

γ3

2
Γ

2 +
γ6

2
|τ|2 ≤ γ7 (24)

since τ , q̈des, and q̇des are bounded, we get,

V̇ ≤ γ6V (E)+ γ7 (25)

Consequently, (V (E)+ γ7
γ6
)

1
γ6 is a smooth Lyapunov function sat-

isfying (17). With this function, we have established that the fol-
lowing assumption of Theorem 1 is verified.

Assumption 2. The system Ė = f (E,τ1, · · · ,τm) is forward com-
plete.

The forward-completeness ensures that, for every initial
condition and locally bounded input signal, the corresponding
solution is defined for all t ≥ 0.

Then, we design a predictor feedback law for (16), which
achieves global asymptotic stability for the delay-free system,
as mentioned in Theorem 1 – the closed-loop system Ė(t) =
f (E(t),κ(E(t))) should be asymptotically stable. Since the dy-
namics of system (1) is known, the controller is formulated,
based on Eq. (14), as

τ = κ(E) = M(h+(β +α)e2) (26)

where β ∈ R7×7 is a constant positive definite matrix. Substitut-
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ing Eq. (26) into Eq. (14) and using the invertible property of
inertia matrix result in the closed-loop error signal for e2(t) as

ė2 =−βe2 (27)

Finally, the state-space model of closed-loop system, with re-
spect to Eqs. (5) and (27), is derived as follows,

Ė = f (E,κ(E)) = AE(t) (28)

where A ∈ R14×14 is defined as

A =

[
−α I7×7

07×7 −β

]
(29)

where I7×7 and 07×7 are identity and zero matrices, respectively.
Since A is an upper triangular block matrix and is also Hurwitz
for any positive definite α and β matrices, (28) is hence expo-
nentially stable.

Note that the control law is formulated such that the error dy-
namics becomes exponentially and subsequently asymptotically
stable. Now the only property we need to establish, before using
Theorem 1, is the input-to-state (ISS) stability of the following
closed-loop system with respect to ω = [ω1, · · · ,ωm]

T .

Ė = f (E,κ(E)+ω) =

[
e2−αe1

αe2 +h−M−1(κ(E)+ω)

]

= AE(t)−

[
07×7

M−1ω

]
(30)

The ISS property can be shown using the following Lemma [37].

Lemma 1. Suppose ẋ = f (t,x,u) is continuously differentiable
and globally Lipschitz in (x,u), uniformly in t. If the unforced
system ẋ = f (t,x,0) has a globally exponentially stable equilib-
rium point at the origin, then the system is input-to-state stable.

Due to the fact that Ė = f (E,κ(E) + ω) is continuously
differentiable and globally Lipschitz in (E,ω), the closed-loop
system (30) is therefore ISS with respect to ω using Lemma 1.
Hence, the following assumption for our system is verified,

Assumption 3. The system Ė = f (E, κ1(E)+ω1, · · · , κm(E)+
ωm) is Input-to-State Stable (ISS) with respect to ω =
[ω1, · · · ,ωm]

T .

Finally, as Assumptions 2 and 3 are held for our system, we
can employ Theorem 1 to design a predictor-based controller to

FIGURE 2. The robot fails to track the desired trajectory without a
predictor in the presence of input delay

FIGURE 3. A stable obstacle-avoidance pick-and-place task with in-
put delay using the predictor-based controller

compensate any large input delay, asymptotically stabilize the
error, and make the robot to follow the desired joint trajectories.

4 Experimental Results
We experimentally implement the predictor-based controller

for the 7-DOF Baxter manipulator as a case study, through a
pick-and-place task, while input delays are reasonably similar
in all input channels [38]. We reveal the destabilizing effect of
input delay on the control of the manipulator, as shown in Fig. 2,
and also discuss the effect of incremental delay on the stability
of the robot. We intentionally apply the following input delays
and then operate the manipulator without any predictor:

D = 0.01s: indicates minimum feasible input delay with re-
spect to the sampling rate (ts = 0.01s) of Baxter.

D = 0.02s: the increased delay to determine a crucial value
causing the robot operational failure.

D = 0.04s: the increased delay to study the significant effect
of a relatively large input delay.

The joint trajectories and torques, for the three cases mentioned
above, are presented in Figs. 4 and 5, respectively, and also com-
pared with the experimental results of delay-free system. Note
that we did not plot the joint trajectories of delay-free system
since the manipulator almost perfectly tracks the desired trajecto-
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FIGURE 4. The experimental (a) S0, (b) S1, (c) E0, (d) E1, (e) W0,
(f) W1, and (g) W2 joint trajectories in the presence of D = 0.01s (blue
line), D = 0.02s (orange line), and D = 0.04s (green line) input delays
without a predictor

ries. As shown in Fig. 4, for D = 0.01s, the manipulator can still
follow the desired trajectories while the joint torques are more
than those of the delay-free system (Fig. 5). The results also re-
veal that the joint torques, in particular for the joint 5 (Fig. 5(e)),
oscillate since the manipulator approaches its singular configu-
ration while passing over the obstacle (2.5s ≤ t ≤ 3.5s). By
increasing the delay from 0.01s to 0.02s, the manipulator be-
comes unstable and expectedly cannot follow the desired tra-
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FIGURE 5. The experimental joint torques of (a) S0, (b) S1, (c) E0,
(d) E1, (e) W0, (f) W1, and (g) W2 in the presence of D = 0.01s (blue
line), D = 0.02s (orange line), and D = 0.04s (green line) input delays
without a predictor

jectories (Fig. 4). Note that the joint 2 (S1) does not oscillate
like the other ones because of the supporting spring mounted at
this joint (Fig. 1). We also examine the robot’s performance in
the presence of 0.04s input delay. The results illustrate that the
manipulator harmfully oscillates and then fails to properly oper-
ate. Therefore, the robot, as expected, becomes unstable within
a shorter time interval through increasing the amount of delay. It
is clear that the instability of one link results in the robot failure
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due to the highly dynamic interconnections among the links.
It is worth mentioning that we operate the manipulator us-

ing joint torque control mode, as an advanced control scheme,
which grants the access to the lowest control levels and puts
much responsibility on the control algorithm. Consequently, for
both 0.02s and 0.04s input delays, we could not capture more
data since Baxter moves stochastically leading to the catastrophic
malfunction. The AVI files of the experiments are accessible
through our Dynamic Systems and Control Laboratory (DSCL)
website.

In summary, as shown in Fig. 4, the closed-loop system
becomes unstable for small input delays. Therefore, implement-
ing the predictor-based controller is a necessity to be carried out.
We hence take the advantage of the predictor-based controller,
using Theorem 1, in order to globally asymptotically stabilize
the manipulator due to the fact that all the assumptions are valid
for the robot’s arm. We formulate the predictor along with the
controller, and then thoroughly investigate their performances in
compensating the destabilizing input delays. In order to exam-
ine the effects of delay’s magnitude, experiments are carried out
in the presence of three different large input delays: 0.8s, 0.9s,
and 1.0s. Note that exposing the robot to the input delays more
than 1.0s is not logical since the whole operational time is 6.0s.
Shown in Figs. 6 and 7 are the joint angles and torques, respec-
tively.

As shown in Fig. 7, there is no control torque before t = D
and consequently, the robot remains stationary (Fig. 6). There-
fore, the errors expectedly emerge within t ∈ [0,D), in particular
for the joints 2 (S1), 4 (E1), and 7 (W2) (Fig. 6). At t = D, the
manipulator begins following the desired trajectories using the
predictor-based controller by applying high amounts of torques.
Figs. 3 and 6 present an acceptable performance of the predictor-
based controller since the tracking errors converge to zero after
4.0s.

From another aspect, Figs. 6(a) and 6(e) reveal that the
tracking errors of the joints 1 (S0) and 6 (W1) are not consider-
ably high, for 0≤ t ≤D, despite the other ones. It is obvious that
the less tracking error typically demands the less control torque
to be applied with respect to the ranges of joint rotation angles.
Increasing the input delay expectedly imposes higher tracking er-
rors at the onset of the robot operation and consequently, much
more control torques are needed to be applied (Fig. 7). After
t = D, the manipulator begins to perfectly track the desired tra-
jectories using the considerable initial control torques. The con-
trol torques peak at t = D and then decline by the decremental
tracking errors (Fig. 7). As mentioned earlier, the manipulator
approaches its singular configuration around t = 3.0s, which sub-
sequently results in the incremental oscillation-like joint torques,
in particular for the joint 5 (W0), as shown in Fig. 7(e).

As shown in Fig. 7, comparing the control torques at t = D
reveals that τ2, τ3, and τ4 take higher values than the other ones
since the joints 2 (S1), 3 (E0), and 4 (E1) are subject to more
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FIGURE 6. The experimental (a) S0, (b) S1, (c) E0, (d) E1, (e) W0, (f)
W1, and (g) W2 joint trajectories in the presence of D = 0.8s (blue line),
D = 0.9s (orange line), and D = 1.0s (green line) input delays using the
predictor-based controller

tracking errors and loads (based on the manipulator structure)
with respect to the other joints. Finally, comparing Figs. 5
and 7 implies that even an uncompensated small delay results in
harmful torques and therefore, the manipulator expectedly fails
to track the desired trajectories. As can be observed in Fig. 6, the
tracking errors begin to decrease after t = D, due to the fact that
Theorem 1 guarantees the asymptotic convergence of the track-
ing errors to zero subject to any large delay. Fig. 8 presents the

7 Copyright c© 2019 by ASME



0 1 2 3 4 5 6

Time (sec)

-10

-5

0

5

10

15

τ
1
(N

.m
)

With Predictor (D = 0.8s)
With Predictor (D = 0.9s)
With Predictor (D = 1.0s)

(a)

0 1 2 3 4 5 6

Time (sec)

-30

-20

-10

0

10

τ
2
(N

.m
)

With Predictor (D = 0.8s)
With Predictor (D = 0.9s)
With Predictor (D = 1.0s)

(b)

0 1 2 3 4 5 6

Time (sec)

-5

0

5

10

15

τ
3
(N

.m
)

With Predictor (D = 0.8s)
With Predictor (D = 0.9s)
With Predictor (D = 1.0s)

(c)

0 1 2 3 4 5 6

Time (sec)

-5

0

5

10

15

τ
4
(N

.m
)

With Predictor (D = 0.8s)
With Predictor (D = 0.9s)
With Predictor (D = 1.0s)

(d)

0 1 2 3 4 5 6

Time (sec)

-4

-2

0

2

4

6

τ
5
(N

.m
)

With Predictor (D = 0.8s)
With Predictor (D = 0.9s)
With Predictor (D = 1.0s)

(e)

0 1 2 3 4 5 6

Time (sec)

-5

-4

-3

-2

-1

0

1

2

τ
6
(N

.m
)

With Predictor (D = 0.8s)
With Predictor (D = 0.9s)
With Predictor (D = 1.0s)

(f)

0 1 2 3 4 5 6

Time (sec)

-3

-2

-1

0

1

2

3

4

τ
7
(N

.m
)

With Predictor (D = 0.8s)
With Predictor (D = 0.9s)
With Predictor (D = 1.0s)

(g)

FIGURE 7. The experimental joint torques of (a) S0, (b) S1, (c) E0, (d)
E1, (e) W0, (f) W1, and (g) W2 joints in the presence of D = 0.8s (blue
line), D = 0.9s (orange line), and D = 1.0s (green line) input delays
using the predictor-based controller

experimental tracking errors for D = 0.8s.
The negligible experimental tracking errors mainly root on

the inaccuracy of sensors and actuators. We experimentally ver-
ified the model in a back-and-forth procedure [32, 35, 38] and
there is an acceptable correlation between our model and Bax-
ter’s dynamics. Moreover, unmodeled dynamics, such as friction
in joints or external disturbances, may result in the prediction off-
set from the actual path, which we carefully considered through
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FIGURE 8. The experimental tracking errors subject to the predictor-
based controller in the presence of 0.8s input delay

designing the controller. The algorithm measures the robot’s
joint angles at each iteration and hence making predictions be-
gins from that measurement – the state E(t) in Eq. (9) is mea-
sured in each iteration. Providing this measurement to the pre-
dictor endows robustness against small uncertainties and avoids
any cumulative error caused by uncertainties or unmodeled dy-
namics. Moreover, we established that the closed-loop system
is ISS, which in turn provides the control robustness against any
bounded disturbance. Based on the data provided by Baxter’s
manufacturer, the series elastic actuators act as filters helping to
reduce both the friction and backlash through low-cost gearbox.
Therefore, as can be seen in Fig. 8, the tracking errors asymp-
tomatically converge to zero. Also, Fig. 9 presents the simula-
tion results for D = 0.8s revealing that the tracking errors asymp-
tomatically converge to zero, as expected.

5 Conclusions
Throughout this paper, we designed a predictor-based con-

troller for a general highly interconnected nonlinear system sub-
ject to the time-invariant input delay. We investigated the desta-
bilizing effects of three different input delays shown in Figs. 4
and 5, and then the controller was implemented for the 7-DOF
Baxter manipulator as a case study. Toward designing the con-
troller, we established the forward completeness of the open-loop
system and Input-to-State Stability (ISS) properties of the closed-
loop system. We then formulated the predictor-based controller
to asymptotically stabilize the system employing Theorem 1, and
then investigated the effects of large input delays on the control
of Baxter robot.

The experimental results revealed that the predictor-based
controller, in the presence of large input delays, makes the robot
asymptomatically stable, and the robot tracks the desired joint
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FIGURE 9. The simulated tracking errors subject to the predictor-
based controller in the presence of 0.8s input delay

trajectories, as expected. We also established that the tracking
errors, subject to the predictor-based controller, asymptotically
converge to zero. The negligible amounts of the tracking errors,
shown in Fig. 8, mainly root on the inaccuracy of sensors and
actuators. The simulation results also presented the asymptotic
convergence of the tracking errors to zero guaranteed through
Theorem 1, as shown in Fig. 9. The principal results of this
research work can be summarized as follows:

The minimum input delay destabilizes the robot.

Using Theorem 1, the stability of the system for any large
input delay is guaranteed.

The predictor-based controller analytically and experimen-
tally compensates the input delay and achieves the closed-
loop asymptotic stability.

It is worth mentioning that although our controller is robust
against a time-invariant delay and small uncertainties, but time-
varying input delays and enormous uncertainties may affect the
control performance; this problem has not yet been addressed.
Therefore, we are currently focusing our efforts on designing a
nonlinear adaptive time-delay control scheme with application to
high-DOF robotic manipulators.
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Krstić. Adaptive stabilization of lti systems with distributed
input delay. International Journal of Adaptive Control and
Signal Processing, 27(1-2):46–65, 2013.

[17] Iasson Karafyllis and Miroslav Krstić. Delay-robustness of
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