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Abstract—Speculative execution side-channel vulnerabilities
in micro-architecture processors have raised concerns about
the security of Intel SGX. To understand clearly the security
impact of this vulnerability against SGX, this paper makes the
following studies: First, to demonstrate the feasibility of the
attacks, we present SGXPECTRE Attacks (the SGX-variants of
Spectre attacks) that exploit speculative execution side-channel
vulnerabilities to subvert the confidentiality of SGX enclaves.
We show that when the branch prediction of the enclave code
can be influenced by programs outside the enclave, the control
flow of the enclave program can be temporarily altered to
execute instructions that lead to observable cache-state changes.
An adversary observing such changes can learn secrets inside
the enclave memory or its internal registers, thus completely
defeating the confidentiality guarantee offered by SGX. Second,
to determine whether real-world enclave programs are impacted
by the attacks, we develop techniques to automate the search
of vulnerable code patterns in enclave binaries using symbolic
execution. Our study suggests that nearly any enclave program
could be vulnerable to SGXPECTRE Attacks since vulnerable
code patterns are available in most SGX runtimes (e.g., Intel
SGX SDK, Rust-SGX, and Graphene-SGX). Third, we apply
SGXPECTRE Attacks to steal seal keys and attestation keys from
Intel signed quoting enclaves. The seal key can be used to decrypt
sealed storage outside the enclaves and forge valid sealed data;
the attestation key can be used to forge attestation signatures.
For these reasons, SGXPECTRE Attacks practically defeat SGX’s
security protection. Finally, we evaluate Intel’s existing counter-
measures against SGXPECTRE Attacks and discusses the security
implications.

I. INTRODUCTION

Intel’s Software Guard eXtensions (SGX) improves ap-
plication security by removing privileged code from the
trusted computing base (TCB). At a high level, SGX provides
software applications shielded execution environments, called
enclaves, to run private code and operate sensitive data, where
both the code and data are isolated from the rest of the
software systems. Even privileged software such as operating
systems and hypervisors are not allowed to directly inspect or
manipulate the memory inside the enclaves. Although SGX
is still in its infancy, the promise of shielded execution has
encouraged researchers and practitioners to develop various
new applications to utilize these features (e.g., [3], [55],
[22], [64], [93], [75], [58], [74], [96]), and new software
tools or frameworks (e.g., [6], [5], [73], [25], [77], [46],
[88], [79], [71], [67], [54]) to help developers adopt this

emerging programming paradigm. Most recently, SGX has
been adopted by commercial public clouds, such as Azure
confidential computing [63], [2], aiming to protect cloud data
against compromised operating systems or hypervisors, or
even “malicious insiders with administrative privilege” [63].

However, the recently disclosed CPU vulnerabilities due to
the out-of-order and speculative execution [23] have raised
many questions and concerns about the security of SGX.
Particularly, the so-called Meltdown [48] and Spectre at-
tacks [44] have demonstrated that an unprivileged application
may exploit these vulnerabilities to extract memory content
that is only accessible to privileged software. The developers
have been wondering whether SGX will hold its original
security promises given these hardware bugs [35].

In this paper, we particularly study Spectre-like attacks
against SGX enclaves. We aim to answer the following re-
search questions: (1) Is SGX vulnerable to Spectre attacks?
(2) As Spectre attacks require vulnerable code patterns in
the target software, do such code patterns exist in real-world
enclave programs? (3) What are the consequences of the
attacks? (4) Is SGX completely broken due to these hardware
bugs? The answers to these questions are critically important
to the adoption of the SGX technology and commercialization
of SGX-based applications in the future; they are also valuable
to the research community in understanding SGX’s threat
model.

In this paper, we first explore techniques to conduct
SGXPECTRE Attacks. SGXPECTRE is the term we coined for
the SGX-variants of the Spectre attacks. This is to differentiate
from other variants of Spectre attacks. At a high level, SGX-
PECTRE exploits the race condition between the speculatively
executed memory references and the latency of the branch
resolution, in order to generate side-channel observable cache
traces and consequently read memory content. Specifically,
we explore how branch targets can be injected into SGX
enclaves, how registers inside enclaves can be controlled by
the outside world, how information can be leaked through side
channels, and how the adversary could increase the probability
of winning the race condition. These techniques are the key
components for successfully performing SGXPECTRE Attacks.
To the best of our knowledge, they have never been studied in
previous works.



Second, we develop techniques to automate the search of
vulnerabilities in enclave binaries. We observe SGXPECTRE
Attacks are enabled by two types of code gadgets in the
enclave binary. To help the enclave developers detect vulner-
abilities in their code, we develop binary analysis tools to
symbolically execute enclave code and automatically identify
such gadgets from enclave binaries. As a result, we found
both types of gadgets exist in widely used SGX runtimes,
such as Intel SGX SDK, Rust-SGX SDK, and Graphene-
SGX library OS. Therefore any enclave program built with
these runtimes would be vulnerable to SGXPECTRE Attacks.
To our knowledge, our tool is the first to perform symbolic
execution on enclave binary (which we have open-sourced
on GitHub). It is also the first tool to automatically detect
software vulnerabilities that enable Spectre-like attacks. We
expect our study will inspire future research.

Third, we demonstrate end-to-end attacks to validate the
fidelity of SGXPECTRE Attacks and extract Intel’s secrets.
Particularly, we show that the adversary could learn the content
of the enclave memory as well as its register values from a
victim enclave. An even more alarming consequence is that
SGXPECTRE Attacks can be leveraged to steal secrets belong-
ing to Intel SGX platforms, such as provisioning keys, seal
keys, and attestation keys. For example, we have demonstrated
that SGXPECTRE Attacks are able to read memory from the
quoting enclave developed by Intel and extract Intel’s seal key,
which can be used to decrypt the sealed EPID blob to extract
the attestation key (i.e., EPID private key). With an attestation
key, the adversary could compromise a large group of SGX
platforms that share the same EPID public key. Our work was
one of the first to demonstrate the extraction of Intel’s secrets.

Fourth, we investigate the security implication of SGX-
PECTRE Attacks on the SGX ecosystem. We enumerate all
derived keys and in-memory secrets of Intel’s SGX platforms,
and study how Intel mitigate the threats to these in-memory
secrets by having them depending on the version of the
microcode of the SGX platform. This paper contributes to the
overall understanding of the security implications of SGXPEC-
TRE Attacks and similar attacks targeting the confidentiality
of SGX platforms.

The rest of the paper is organized as follows: Sec. II intro-
duces key concepts of Intel processor micro-architectures to set
the stage of our discussion. Sec. III discusses the threat model.
Sec. IV presents a systematic exploration of attack vectors in
enclaves and techniques that enable practical attacks. Sec. V
presents a symbolic execution tool for searching instruction
gadgets in enclave programs in an automated manner. Sec. VI
shows end-to-end SGXPECTRE Attacks against enclave run-
times that lead to a complete breach of enclave confidentiality.
Sec. VII discusses and evaluates countermeasures against the
attacks. Sec. VIII discusses the security implications of side
channels on SGX platforms. Sec. IX discusses related work
and Sec. X concludes the paper.

II. BACKGROUND

A. Intel Processor Internals

Out-of-order execution. Modern CPUs implement deep
pipelines so that multiple instructions can be executed at the
same time. Because instructions do not take equal time to
complete, the order of the instructions’ execution and their
order in the program may differ. This form of out-of-order
execution requires taking special care of instructions whose
operands have inter-dependencies, as these instructions may
access memory in orders constrained by the program logic.
To handle the potential data hazards, instructions are retired
in order, resolving any inaccuracy due to the out-of-order
execution at the time of retirement.

Speculative execution. Speculative execution shares the same
goal as out-of-order execution, but differs in that speculation
is made to speed up the program’s execution when the control
flow or data dependency of the future execution is uncertain.
One of the most important examples of speculative execution
is branch prediction. When a conditional or indirect branch
instruction is met, because checking the branch condition or
resolving the branch target may take time, a prediction is
made, based on its history, to prefetch instructions first. If the
prediction is correct, speculatively executed instructions may
retire; otherwise, mis-predicted execution will be rewinded.
The micro-architectural component that enables speculative
execution is the branch prediction unit (BPU), which consists
of several hardware components that help predict conditional
branches, indirect jumps and calls, and function returns. For
example, branch target buffers (BTB) are typically used to
predict indirect jumps and calls, and return stack buffers (RSB)
are used to predict near returns. These micro-architectural
components, however, are shared between softwares running
on different security domains (e.g., user space vs. kernel space,
enclave mode vs. non-enclave mode), thus leading to the
security issues that we present in this paper.

Implicit caching. Implicit caching refers to the caching of
memory elements, either data or instructions, that are not
due to direct instruction fetching or data accessing. Implicit
caching may be caused in modern processors by “aggressive
prefetching, branch prediction, and TLB miss handling” [31].
For example, mis-predicted branches will lead to the fetching
and execution of instructions, as well as data memory reads
or writes from these instructions, that are not intended by the
program. Implicit caching is one of the root causes of the CPU
vulnerabilities studied in this paper.

B. Intel SGX

Intel SGX is an architecture extension in recent Intel proces-
sors aiming to offer strong application security by providing
primitives such as memory isolation, memory encryption,
sealed storage, and remote attestation. An important concept
in SGX is the secure enclave. An enclave is an execution
environment created and maintained by the processor so that
only applications running in it have a dedicated memory region



that is protected from all other software components. Both
confidentiality and integrity of the memory inside enclaves
are protected from the untrusted system software.

To enter the enclave mode, the software executes the
EENTER leaf function by specifying the address of Thread
Control Structure (TCS) inside the enclave. TCS holds the
location of the first instruction to execute inside the enclave.
Multiple TCSs can be defined to support multi-threading
inside the same enclave. Registers used by the untrusted
program may be preserved after EENTER. The enclave runtime
determines the proper control flow depending on the register
values (e.g., differentiating ECall from ORet).

Asynchronous Enclave eXit (AEX). When interrupts, ex-
ceptions, and VM exits happen during the enclave mode,
the processor will save the execution state in the State Save
Area (SSA) of the current enclave thread, and replace it
with a synthetic state to prevent information leakage. After
the interrupts or exceptions are handled, the execution will
be returned (through IRET) from the kernel to an address
external to enclaves, which is known as Asynchronous Exit
Pointer (AEP). The ERESUME leaf function will be executed
to transfer control back to the enclave by filling the RIP with
the copy saved in the SSA.

Remote Attestation. SGX remote attestation is used by en-
claves to prove to the ISV (i.e., the enclave developer) that
a claimed enclave is running inside an SGX enabled proces-
sor. An anonymous signature scheme, called Intel Enhanced
Privacy ID (EPID) [40], is used to produce the attestation
signature. The attestation key (i.e., EPID private key) cannot
be directly accessed by an attested enclave, otherwise a mali-
cious enclave could generate any valid attestation signature to
deceive the remote party. Hence, Intel issues two privileged
enclaves, called the provisioning enclave and the quoting
enclave to manage the attestation key and sign attestation data.

Sealed storage. Enclaves can encrypt and integrity-protect
some secrets, e.g., the attestation key, via sealing to store the
secrets outside the enclave, e.g., on a non-volatile memory.
The encryption key used during the sealing process is called
the seal key, which is derived via EGETKEY instruction.

C. Cache Side Channels

Cache side channels leverage the timing difference between
cache hits and cache misses to infer the victim’s memory
access patterns. Typical examples of cache side-channel at-
tacks are PRIME+PROBE and FLUSH+RELOAD attacks. In
PRIME+PROBE attacks [61], [60], [94], [57], [1], [76], [50],
[39], by pre-loading cache lines in a cache set, the adversary
expects that her future memory accesses (to the same memory)
will be served by the cache, unless evicted by the victim
program. Therefore, cache misses will reveal the victim’s
cache usage of the target cache set. In FLUSH+RELOAD
attacks [20], [91], [92], [7], [95], [4], the adversary shares
some physical memory pages (e.g., through dynamic shared
libraries) with the victim. By issuing clflush on certain
virtual addresses that are mapped to the shared pages, the

1 i f ( x < a r r a y 1 s i z e )
2 y = a r r a y 2 [ a r r a y 1 [ x ] ∗ 4096] ;

Listing 1. An example of bounds check bypass [44]

adversary can flush the shared cache lines out of the entire
cache hierarchy. Therefore, RELOADs of these cache lines
will be slower because of cache misses, unless they have been
loaded by the victim into the cache. In these ways, the victim’s
memory access patterns can be revealed to the adversary.

D. Spectre Attacks

Spectre attacks [44], [23] leverage hardware vulnerabilities
due to speculative execution to extract memory content that
should not be accessible by the adversary. Originally there
were two variants of Spectre attacks: bounds check bypass and
branch target injection. The first variant targets the conditional
branch prediction. An example of this variant is shown in
Listing 1: A conditional branch is used to check whether input
x is within the bounds of the array (line 1 in Listing 1).
However, when the value of x is out-of-bounds, due to the
misprediction of the conditional branch (i.e., by the hardware
branch prediction unit), speculative out-of-bounds memory
access may happen before the bounds check is resolved,
which triggers implicit caching (loading a particular memory
address of array2 to CPU cache) that reflects the out-of-
bounds memory content of array1. The adversary could then
leverage cache side channels to learn the state of the implicit
caching and infer the data values.

The second variant targets the indirect branch prediction.
Particularly, the adversary first manipulates the branch target
buffer (BTB) such that when the victim process executes a
indirect branch instruction, the BTB will mispredict the target
address to speculatively execute code that could never be
executed by normal control flows. Similar to the first variant
of Spectre attacks, sensitive data can be extracted using cache
side channels. As the code patterns in Listing 1 rarely exist
in real-world code, this paper explores the second variant of
Spectre attacks on SGX.

III. THREAT MODEL

In this paper, we consider an adversary with the system
privilege of the machine that runs on the processor with
SGX support. Specifically, we assume the adversary has the
following capabilities.
• Complete OS control: We assume the adversary has com-

plete control over the entire OS, including re-compiling the
kernel and rebooting the OS with arbitrary arguments.

• Interacting with the targeted enclave: We assume the adver-
sary is able to launch the targeted enclave with a software
program under her control and to enter the enclaves with
parameters under her control.

• Launching and controlling another enclave: we assume the
adversary is able to run another enclave that she completely
controls in the same process or another process. This



Fig. 1. A simple example of SGXPECTRE Attacks. The gray blocks represent
code or data outside the enclave. The white blocks represent enclave code or
data.

implies that the enclave can poison any BTB entries used
by the targeted enclave.

We assume the binary code of the targeted enclave is already
known to the adversary and does not change during execution.
Therefore, we assume that the adversary is primarily interested
in extracting the secrets that have been provisioned into the
enclaves, either by Intel or by regular enclave developers.

IV. SGXPECTRE ATTACKS

A. A Simple Example

Steps of an SGXPECTRE Attack are illustrated in Fig. 1.
Step ¶ is to poison the branch target buffer, such that when
the enclave program executes a branch instruction at a specific
address, the predicted branch target is the address of enclave
instructions that may leak secrets. For example, in Fig. 1, to
trick the ret instruction at address 0x02560 in the enclave to
speculatively return to the secret-leaking instructions located
at address 0x07642, the code to poison the branch prediction
executes an indirect jump from the source address 0x02560
to the target address 0x07642 multiple times. We will discuss
branch target injection in more details in Sec. IV-B.

Step · is to prepare a CPU environment to increase
the chance of speculatively executing the secret-leaking in-
structions before the processor detects the mis-prediction and
flushes the pipeline. Such preparation includes flushing the
victim’s branch target address (to delay the retirement of the
targeted branch instruction or return instruction) and depleting
the RSB (to force the CPU to predict return address using
the BTB). Flushing branch targets cannot use the clflush

instruction, as the enclave memory is not accessible from
outside (We will discuss alternative approaches in Sec. IV-E).
The code for depleting the RSB (shown in Fig. 1) pushes the
address of a ret instructions 16 times and returns to itself
repeatedly to drain all RSB entries.

Step ¸ is to set the register values used by the speculatively
executed secret-leaking instructions, such that they will read
enclave memory targeted by the adversary and leave cache
traces that the adversary could monitor. In this simple example,
the adversary sets r14 to 0x106500, the address of a 2-
byte secret inside the enclave, and sets r15 to 0x610000,
the base address of a monitored array outside the enclave.
The enclu instruction with rax=2 is executed to enter the
enclave. We will discuss methods to pass values into the
enclaves in Sec. IV-C.

Step ¹ is to trigger the enclave code. Because of the BTB
poisoning, instructions at address 0x07642 will be executed
speculatively while the target of the ret instruction at ad-
dress 0x02560 is being resolved. The instruction “movzwq
(%r14), %rbx” loads the 2-byte secret data into rbx, and
“mov (%r15, %rbx, 1), %rdx” touches one entry of
the monitored array dictated by the value of rbx.

Step º is to examine the monitored array using a
FLUSH+RELOAD side channel and extract the secret values.
Techniques to do so are discussed in details in Sec. IV-D.

B. Injecting Branch Targets into Enclaves

The branch prediction units in modern processors typically
consist of:
• Branch target buffer: When an indirect jump/call or a

conditional jump is executed, the target address will be
cached in the BTB. The next time the same indirect
jump/call is executed, the target address in the BTB will
be fetched for speculative execution. Modern x86-64 archi-
tectures typically support 48-bit virtual address and 40-bit
physical address [31], [41]. For space efficiency, many Intel
processors, such as Skylake, use only the lower 32-bit of
a virtual address as the index and tag of a BTB entry.

• Return stack buffer: When a near Call instruction with
non-zero displacement1 is executed, an entry with the
address of the instruction sequentially following it will be
created in the return stack buffer (RSB). The RSB is not
affected by far Call, far Ret, or Iret instructions. Most
processors that implement RSB have 16 entries [17]. On
Intel Skylake or later processors, when RSB underflows,
BTBs will be used for prediction instead.

Poisoning BTBs from outside. To temporarily alter the
control-flow of the enclave code by injecting branch targets,
the adversary needs to run BTB poisoning code outside the
targeted enclave, which could be done in one of the following
ways (as illustrated in Fig. 2).

1Call instructions with zero displacements will not affect the RSB,
because they are common code constructions for obtaining the current RIP
value. These zero displacement calls do not have matching returns.



Fig. 2. Poisoning BTB from the same process or a different process

• Branch target injection from the same process. The ad-
versary could poison the BTB by using code outside the
enclave but in the same process. Since the BTB uses only
the lower 32 bits of the source address to index a BTB
entry, the adversary could reserve a 232 = 4GB memory
buffer, and execute an indirect jump instruction (within
the buffer) whose source address (e.g., 0x7fff00002560) is
the same as the branch instruction in the target enclave
(i.e., 0x02560) in the lower 32 bits, and target address
(e.g., 0x7fff00007642) is the same as the secret-leaking
instructions (i.e., 0x07642) inside the target enclave in the
lower 32 bits.
• Branch target injection from a different process. The ad-

versary could inject the branch targets from a different
process. Although this attack method requires a context
switch in between of the execution of the BTB poisoning
code and targeted enclave program, the advantage of this
method is that the adversary could encapsulate the BTB
poisoning coding into another enclave that is under his
control. This allows the adversary to perfectly shadow the
branch instructions of the targeted enclave program (i.e.,
matching all bits in the virtual addresses).

It is worth noting that address space layout randomization
can be disabled by the adversary to facilitate the BTB poi-
soning attacks. On a Lenovo Thinkpad X1 Carbon (4th Gen)
laptop with an Intel Core i5-6200U processor (Skylake), we
have verified that for indirect jump/call, the BTB could be
poisoned either from the same process or a different process.
For the return instructions, we only observed successful poi-
soning using a different process (i.e., perfect branch target
matching). To force return instructions to use BTB, the RSB
needs to be depleted before executing the target enclave code.
Interestingly, as shown in Fig. 1, a near call is made in
enclave_entry(), which could have filled the RSB, but
we still could inject the return target of the return instruction at
0x02560 with BTB. We speculate that this is an architecture-
specific implementation. A more reliable way to deplete the
RSB is through the use of AEX as described in Sec. VI-A.

C. Controlling Registers in Enclaves

Because all registers are restored by hardware after
ERESUME, the adversary is not able to control any register
inside the enclave when the control returns back to the enclave
after an AEX. In contrast, most registers can be set before the
EENTER leaf function and remain controlled by the adversary

Fig. 3. EENTER and ECall table lookup

after entering the enclave mode until modified by the enclave
code. Therefore, the adversary might have a chance to control
some registers in the enclave after an EENTER.

The SGX developer guide [32] defines ECall and OCall
to specify the interaction between the enclave and external
software. An ECall, or “Enclave Call”, is a function call
to enter enclave mode; an OCall, or “Outside Call”, is a
function call to exit the enclave mode. Returning from an
OCall is called an ORet. Both ECalls and ORets are
implemented through EENTER by the SGX SDK. As shown in
Fig. 3, the function enter_enclave() is called by the en-
clave entry point, enclave_entry(). Then depending on
the value of the edi register, do_ecall() or do_oret()
will be called. The do_ecall() function is triggered to
call trts_ecall() and get_function_address() in
a sequence and eventually look up the ECall table. Both
ECall and ORet can be exploited to control registers in
enclaves.

D. Leaking Secrets via Side Channels

The key to the success of SGXPECTRE Attacks lies in the
fact that speculatively executed instructions trigger implicit
caching, which is not properly rewinded when the incorrectly
issued instructions are discarded by the processor. Therefore,
these side effects of speculative execution on CPU caches can
be leveraged to leak information from inside the enclave.

Cache side-channel attacks against enclave programs have
been studied recently [66], [8], [21], [19], all of which
demonstrated that a program runs outside the enclave may
use PRIME+PROBE techniques [76] to infer secrets from the
enclave code, only if the enclave code has secret-dependent
memory access patterns. Though more fine-grained and less
noisy, FLUSH+RELOAD techniques [91] cannot be used in
SGX attacks since enclaves do not share memory with the
external world.

Different from these studies, however, SGXPECTRE Attacks
may leverage these less noisy FLUSH+RELOAD side channels
to leak information. Because the enclave code can access data
outside the enclave directly, an SGXPECTRE Attack may force
the speculatively executed memory references inside enclaves
to touch memory locations outside the enclave, as shown in
Fig. 1. The adversary can flush an array of memory before the
attack, such as the array from address 0x610000 to 0x61ffff,



Fig. 4. Best scenarios for winning a race condition. Memory accesses D1, I1,
D2, D3 are labeled next to the related instructions. The address translation
and data accesses are illustrated on the right: The 4 blocks on top denote
the units holding the address translation information, including TLBs, paging
structures, caches (for PTEs), and the memory; the 4 blocks at the bottom
denote the units holding data/instruction. The shadow blocks represent the
units from which the address translation or data/instruction access are served.

and then reload each entry and measure the reload time to
determine if the entry has been touched by the enclave code
during the speculative execution.

Other than cache side-channel attacks, previous work has
demonstrated BTB side-channel attacks, TLB side-channel
attacks, DRAM-cache side-channel attacks, and page-fault
attacks against enclaves. In theory, some of these venues
may also be leveraged by SGXPECTRE Attacks. For instance,
although TLB entries used by the enclave code will be flushed
when exiting the enclave mode, a PRIME+PROBE-based TLB
attack may learn that a TLB entry has been created in a
particular TLB set when the program runs in the enclave mode.
Similarly, BTB and DRAM-cache side-channel attacks may
also be exploitable in this scenario. However, page-fault side
channels cannot be used in SGXPECTRE Attacks because the
speculatively executed instructions will not raise exceptions.

E. Winning a Race Condition

At the core of an SGXPECTRE Attack is a race between
the execution of the branch instruction and the speculative
execution: data leakage will only happen when the branch
instruction retires later than the speculative execution of the
secret-leaking code. Fig. 4 shows a desired scenario for win-
ning such a race condition in an SGXPECTRE Attack: The
branch instruction has one data access D1, while the specula-
tive execution of the secret-leaking code has one instruction
fetch I1 and two data accesses D2 and D3. To win the
race condition, the adversary should ensure that the memory
accesses of I1, D2 and D3 are fast enough. However, because
I1 and D2 fetch memory inside the enclave, and as TLBs
and paging structures used inside the enclaves are flushed
at AEX or EEXIT, the adversary could at best perform the
address translation of the corresponding pages from caches
(i.e., use cached copies of the page table). Fortunately, it can
be achieved by performing Step ¹ in Fig. 1 multiple times. It
is also possible to preload the instructions and data used in I1

and D2 into the L1 cache to further speed up the speculative
execution. As D3 accesses memory outside the enclave, it is
possible to preload the TLB entry of the corresponding page.
However, data of D3 should be loaded from the memory.

Meanwhile, the adversary should slow down D1 by forcing
its address translation and data fetch to happen in the memory.
However, this step has been proven technically challenging.
First, it is difficult to effectively flush the branch target (and the
address translation data) to memory without using clflush
instruction. Second, because the return address is stored in
the stack frames, which is very frequently used during the
execution, evicting return addresses must be done frequently.
In the attack described in Sec. VI, we leveraged an additional
page fault to suspend the enclave execution right before the
branch instruction and flush the return target by evicting all
cache lines in the same cache set.

V. ATTACK GADGETS IDENTIFICATION

In this section, we show that any enclave programs devel-
oped with existing SGX SDKs are vulnerable to SGXPECTRE
Attacks. In particular, we have developed an automated pro-
gram analysis tool that symbolically executes the enclave code
to examine code patterns in SGX runtimes, and have identified
those code patterns in every runtime library we have examined,
including Intel’s SGX SDK [36], Rust-SGX [14], Graphene-
SGX [77]. In this section, we present how we search these
gadgets in greater detail.

A. Types of Gadgets

In order to launch SGXPECTRE Attacks, two types of code
patterns are needed. The first type of code patterns consists of
a branch instruction that can be influenced by the adversary
and several registers that are under the adversary’s control
when the branch instruction is executed. The second type
of code patterns consists of two memory references close
to each other and collectively reveal some enclave memory
content through cache side channels. Borrowing the term used
in return-oriented programming [68] and Spectre attacks [44],
we use gadgets to refer to these patterns. More specifically, we
name them Type-I gadgets and Type-II gadgets, respectively.

Type-I gadgets: branch target injection. A gadget is a
sequence of instructions that are executed sequentially during
one run of the enclave program (but not necessarily con-
secutive in the memory layout). A Type-I gadget is such
an instruction sequence that starts from the entry point of
EENTER (dubbed enclave_entry()) and ends with one
of the following instructions: (1) near indirect jump, (2) near
indirect call, or (3) near return. EENTER is the only method
for the adversary to take control of registers inside enclaves.
During an EENTER, most registers are preserved by the hard-
ware; they are left to be sanitized by the enclave software. If
any of these registers is not overwritten by the software before
one of the three types of branch instructions is met, a Type-I
gadget is found. An example of a Type-I gadget is shown in
Listing 2, which is excerpted from libsgx_trts.a of Intel
SGX SDK. In particular, line 49 in Listing 2 is the first return



1 0000000000003662 <e n c l a v e e n t r y >:
2 3662 : cmp $0x0 ,% r a x
3 3666 : j n e 3709 <e n c l a v e e n t r y +0xa7>
4 366 c : xor %rdx ,% rdx
5 366 f : mov %gs : 0 x8 ,% r a x
6 3676 : 00 00
7 3678 : cmp $0x0 ,% r a x
8 367 c : j n e 368d <e n c l a v e e n t r y +0x2b>
9 367 e : mov %rbx ,% r a x

10 3681 : sub $0x10000 ,% r a x
11 3687 : sub $0x2b0 ,% r a x
12 368d : xchg %rax ,% r s p
13 368 f : push %r c x
14 3690 : push %rbp
15 3691 : mov %rsp ,% rbp
16 3694 : sub $0x30 ,% r s p
17 3698 : mov %rax ,−0x8(% rbp )
18 369 c : mov %rdx ,−0x18(% rbp )
19 36 a0 : mov %rbx ,−0x20(% rbp )
20 36 a4 : mov %r s i ,−0x28(% rbp )
21 36 a8 : mov %r d i ,−0x30(% rbp )
22 36 ac : mov %rdx ,% r c x
23 36 a f : mov %rbx ,% rdx
24 36 b2 : c a l l q 1 f20 <e n t e r e n c l a v e>
25 . . .
26

27 0000000000001 f20 <e n t e r e n c l a v e >:
28 1 f20 : push %r13
29 1 f22 : push %r12
30 1 f24 : mov %r s i ,% r13
31 1 f27 : push %rbp
32 1 f28 : push %rbx
33 1 f29 : mov %rdx ,% r12
34 1 f 2 c : mov %edi ,% ebx
35 1 f 2 e : mov %ecx ,% ebp
36 1 f30 : sub $0x8 ,% r s p
37 1 f34 : c a l l q b60 <s g x i s e n c l a v e c r a s h e d>
38 . . .
39

40 0000000000000 b60 <s g x i s e n c l a v e c r a s h e d >:
41 b60 : sub $0x8 ,% r s p
42 b64 : c a l l q 361b <g e t e n c l a v e s t a t e>
43 . . .
44

45 000000000000361 b <g e t e n c l a v e s t a t e >:
46 361b : l e a 0 x213886(% r i p ) ,% r c x # 216 ea8 <

g e n c l a v e s t a t e>
47 3622 : xor %rax ,% r a x
48 3625 : mov (% r c x ) ,% eax
49 3627 : r e t q

Listing 2. An example of a Type-I gadget

instruction encountered by an enclave program after EENTER.
When this near return instruction is executed, several registers
can still be controlled by the adversary, including rbx, rdi,
rsi, r8, r9, r10, r11, r14, and r15.

Type-II gadgets: secret extraction. A Type-II gadget is a
sequence of instructions that starts from a memory reference
instruction that loads data in the memory pointed to by register
regA into register regB, and ends with another memory
reference instruction whose target address is determined by
the value of regB. When the control flow is redirected to a
Type-II gadget, if regA is controlled by the adversary, the first
memory reference instruction will load regB with the value
of the enclave memory chosen by the adversary. Because the
entire Type-II gadget is speculatively executed and eventually
discarded when the branch instruction in the Type-I gadget
retires, the secret value stored in regB will not be learned by
the adversary directly. However, as the second memory refer-
ence will trigger the implicit caching, the adversary can use a

1 0000000000005 c10 <d l f r e e >:
2 . . .
3 607 f : mov 0x38(% r s i ) ,% e d i
4 6082 : mov %r d i ,% r c x
5 6085 : l e a (%rbx ,% r d i , 8 ) ,% r d i
6 6089 : cmp 0 x258(% r d i ) ,% r s i
7 . . .

Listing 3. An example of a Type-II gadget

FLUSH+RELOAD side channel to extract the value of regB.
An example of a Type-II gadget is illustrated in Listing 3,
which is excerpted from the libsgx_tstdc.a library of
Intel SGX SDK. Assuming rsi is a register controlled by
the adversary, the first instruction (line 3) reads the content
of memory address pointed to by rsi+0x38 to edi. Then
the value of rbx+rdi×8 is stored in rdi (line 5). Finally,
the memory address at rdi+0x258 is loaded to be compared
with rsi (line 6). To narrow down the range of rdi+0x258,
it is desired that rbx is also controlled by the adversary. We
use regC to represent these base registers like rbx.

B. Symbolically Executing SGX Code

Although a skillful developer can manually read the source
code or even the disassembled binary code of an enclave
program and runtime libraries to identify exploitable gadgets,
such an effort is very tedious and error-prone. It is highly
desirable to leverage automated software tools to scan an
enclave binary to detect any gadgets, and eliminate them
before deploying them to untrusted SGX machines.

To this end, we devise a dynamic symbolic execution
technique to enable automated identification of SGXPECTRE
Attack gadgets. Symbolic execution [43] is a program testing
and debugging technique in which symbolic inputs are sup-
plied instead of concrete inputs. Symbolic execution abstractly
executes a program and concurrently explores multiple exe-
cution paths. The abstract execution of each execution path
is associated with a path constraint that represents multiple
concrete runs of the same program that satisfy the path con-
ditions. Using symbolic execution techniques, we can explore
multiple execution paths in enclave programs to find gadgets
of SGXPECTRE Attacks.

Symbolic execution of an enclave function. We design a tool
built atop the angr [72], a popular binary analysis framework
to perform the symbolic execution. To avoid the path explosion
problem in symbolically executing a large enclave program
(or a large SGX runtime such as Graphene-SGX), our tool
allows the user to specify an arbitrary enclave function to
start the symbolic execution. During the symbolic execution,
machine states are maintained internally to represent the status
of registers, stacks, and the memory; instructions update the
machine states represented with symbolic values while the
execution makes forward progress. The exploration of an
execution path terminates when the execution returns to this
entry function or detects a gadget. To symbolically execute
an SGX enclave binary, we have extended angr to handle:
(1) the EEXIT instruction, by putting the address of the



enclave entry point, enclave_entry(), in the rip register
of its successor states; (2) dealing with instructions that are
not already supported by angr, such as xsave, xrstore,
repz, and rdrand.

C. Gadget Identification

Identifying Type-I gadgets. The key requirement of a Type-I
gadget is that before the execution of the indirect jump/call
or near return instruction, the values of some registers are
controlled (directly or indirectly) by the adversary, which can
only be achieved via EENTER. We consider two types of Type-
I gadget separately: ECall gadgets and ORet gadgets.

To detect ECall gadgets, the symbolic execution starts
from the enclave_entry() function and stops when a
Type-I gadget is found. During the path exploration, edi
register is set to a value that leads to an ECall.

To detect ORet gadgets, the symbolic execution starts
from a user-specified function inside the enclave. Once an
OCall is encountered, the control flow is transferred to
enclave_entry() and the edi register is set to a value
that leads to an ORet. At this point, all other registers are
considered controlled by the adversary and thus are assigned
symbolic values. An ORet gadget is found if an indirect
jump/call or near return instruction is encountered and some
of the registers still have symbolic values. The symbolic
execution continues if no gadgets are found until the user-
specified function finishes.

Identifying Type-II gadgets. To identify Type-II gadgets, our
tool scans the entire enclave binary and looks for memory
reference instructions (i.e., mov and its variants, such as
movd and movq) that load register regB with data from
the memory location pointed to by regA. Both regA and
regB are general registers, such as rax, rbx, rcx, rdx, r8
- r15. Once one of such instructions is found, the following
N instructions (e.g., N = 10) are examined to see if there
is another memory reference instruction (e.g., mov, cmp) that
accesses a memory location pointed to by register regD. If
so, the instruction sequence is a potential Type-II gadget. It is
desired to have a register regC used as the base address for the
second memory reference. However, we also consider gadgets
that do not involve regC, because they are also exploitable.

Once we have identified a potential gadget, it is executed
symbolically using angr. The symbolic execution starts from
the first instruction of a potential Type-II gadget, and regB
and regC are both assigned symbolic values. At the end of
the symbolic execution of the potential gadget, the tool checks
whether regD contains a derivative value of regB, and when
regC is used as the base address of the second memory
reference, whether regC still holds its original symbolic
values. A potential gadget is a true gadget if the checks pass.
We use either [regA, regB, regC] or [regA, regB] to
represent a Type-II gadget.

D. Experimental Results of Gadget Detection

We run our symbolic execution tool on three well-known
SGX runtimes: the official Intel Linux SGX SDK (ver-

sion 2.1.102.43402), Rust-SGX SDK (version 0.9.1), and
Graphene-SGX (commit bf90323). In all cases, a minimal
enclave with a single empty ECall was developed for anal-
ysis, because gadgets detected in a minimal enclave binary
will appear in any enclave code developed using these SDKs.
When the enclave binary becomes more complex, the size
of the resulting enclave binary will grow to include more
components of the SDK libraries, and the number of available
gadgets will also increase. For example, a simple OCall
implementation of printf() introduces three more Type-
II gadgets. In addition, the code written by the enclave author
might also introduce extra exploitable gadgets.

To detect ECall Type-I gadgets, the symbolic execution
starts from the enclave_entry() function in all three
runtime libraries. To detect ORet Type-I gadgets, in Intel
SGX SDK and Rust-SGX SDK, we started our analysis from
the sgx_ocall() function, which is the interface defined
to serve all OCalls. In contrast, Graphene-SGX has more
diverse OCall sites. In total, there are 37 such sites as defined
in enclave_ocalls.c. Unlike in other cases where the
symbolic analysis completes instantly due to small function
sizes, analyzing these 37 OCall sites consumes more time:
the median running time of analyzing one OCall site was 39
seconds; the minimum analysis time was 8 seconds; and the
maximum was 340 seconds.

The results for Type-I gadgets are summarized in Table I.
In Table I, column 2 shows the type of the gadget, whether
it being an indirect jump, indirect call, or return; column 3
shows only the gadget’s end address (because Type-I gadgets
always start at the enclave_entry()), which is the address
of an branch instruction, represented using the function name
the instruction is located and its offset; column 4 shows the
registers that are under the control of the adversary when the
branch instructions are executed. For example, the first entry
in Table I shows an indirect jump gadget, which is located in
do_ecall() (with an offset of 0x118). By the time of the
indirect jump, the registers that are still under the control of
the adversary are rdi, r8, r9, r10, r11, r14 and r15.

Due to space limit, Type-II gadgets are not listed in the
paper. The results are highlighted as follows: For Type-II
gadgets of the form [regA, regB, regC] (which means at
the time of memory reference, two registers, regB and regC,
are controlled by the adversary), we have found 6 gadgets in
Intel’s SGX SDK, 6 gadgets in Rust-SGX, and 18 gadgets
in Graphene-SGX. For Type-II gadgets of the form [regA,
regB], we have found 6, 86, and 180 such gadgets in these
three runtime libraries, respectively.

VI. STEALING ENCLAVE SECRETS

In this section, we demonstrate two end-to-end SGXPECTRE
Attacks against SGX enclave programs. In the first exam-
ple, we show how SGXPECTRE Attacks could read register
values from arbitrary enclave program developed using Intel
SGX SDK [36]. In the second example, we demonstrate
the extraction of Intel’s secrets (e.g., attestation keys) using
SGXPECTRE Attacks. Both experiments were conducted on a



Category End Address Controlled Registers

Intel SGX SDK

indirect jump <do ecall>:0x118 rdi, r8, r9, r10, r11, r14, r15
indirect call — —

return

<get enclave state>:0xc rbx, rdi, rsi, r8, r9, r10, r11, r12, r13, r14, r15
<sgx is enclave crashed>:0x16 rbx, rdi, rsi, r8, r9, r10, r11, r12, r13, r14, r15
<get thread data>:0x9 rbx, rdi, rsi, r8, r9, r10, r11, r12, r13, r14, r15
< ZL16init stack guardPv>:0x21 rdi, rsi, r8, r9, r10, r11, r12, r13, r14, r15
<do ecall>:0x21 rsi, r8, r9, r10, r11, r12, r13, r14, r15
<enter enclave>:0x62 rbx, rsi, r8, r9, r10, r11, r12, r13, r14, r15
<restore xregs>:0x2b rsi, r8, r9, r10, r11, r12, r14, r15
<do rdrand>:0x11 r8, r9, r10, r11, r12, r14, r15
<sgx read rand>:0x46 rbx, r8, r9, r10, r11, r12, r14, r15

Rust SGX SDK

indirect jump <do ecall>:0x118 rdi, r9, r10, r11, r12, r13, r14, r15
indirect call — —

return

< ZL14do init threadPv>:0x109 rdi, r9, r10, r11, r12, r13, r14, r15
<do ecall>:0x21 rsi, r8, r9, r10, r11, r12, r13, r14, r15
<do ecall>:0x63 rsi, r8, r9, r10, r11, r12, r13, r14, r15
< ZL16init stack guardPv>:0x21 rdi, rsi, r8, r9, r10, r11, r12, r13, r14, r15
< ZL16init stack guardPv>:0x69 rdi, r8, r9, r10, r11, r12, r13, r14, r15
<enter enclave>:0x55 rbx, rsi, r8, r9, r10, r11, r12, r13, r14, r15
<restore xregs>:0x2b rsi, r8, r9, r10, r11, r12, r13, r14, r15
<elf tls info>:0xa0 rbx, rdx, rsi, r9, r10, r11, r14, r15
<get enclave state>:0xc rdx, rdi, r8, r9, r10, r11, r12, r14, r15
<get thread data>:0x9 rbx, rdi, rsi, r8, r9, r10, r11, r12, r13, r14, r15
< morestack>:0xe r8, r9, r10, r11
<asm oret>:0x64 r8, r9, r10, r11
< memcpy>:0xa3 rax, rbx, rdi, r9, r10, r11, r14, r15
< memset>:0x1d rax, rbx, rdx, rdi, r9, r10, r11, r14, r15
< intel cpu features init body>:0x42b rbx, rdx, rdi, r9, r10, r11, r14, r15

Graphene-SGX

indirect jump — —
indirect call < DkGenericEventTrigger>:0x20 r9, r10, r11, r13, r14, r15

return

< DkGetExceptionHandler>:0x30 rdi, r8, r9, r10, r11, r12, r13, r14, r15
<get frame>:0x84 r8, r9, r10, r11, r12, r13, r14, r15
< DkHandleExternelEvent>:0x55 rdi, r8, r9, r10, r11, r12, r13, r14, r15
< DkSpinLock>:0x27 rbx, rdi, r8, r9, r10, r11, r12, r13, r14, r15
<sgx is within enclave>:0x23 rdi, rsi, r8, r12, r13, r14
<handle ecall>:0xcd rdi, rsi, r8
<handle ecall>:0xd5 rdx, rdi, rsi, r8

TABLE I
SGXPECTRE ATTACK TYPE-I GADGETS IN POPULAR SGX RUNTIME LIBRARIES.

Fig. 5. Exploiting Intel SGX SDK. The blocks with dark shadows represent
instructions or data located in untrusted memory. Blocks without shadows are
instructions inside the target enclave or the .data segment of the enclave
memory.

Lenovo Thinkpad X1 Carbon (4th Gen) laptop with an Intel
Core i5-6200U processor and 8GB memory.

A. Reading Register Values from Arbitrary Enclaves

We first demonstrate an attack that enables the adversary
to read arbitrary register values inside an arbitrary enclave
program written with Intel SGX SDK [36], because this is
Intel’s official SDK. Rust-SGX was developed based on the
official SDK and thus can be exploited in the same way. For
demonstration purposes, the enclave program we developed
has only one ECall function that runs in a busy loop. We
verified that our own code does not contain any Type-I or
Type-II gadgets in itself. The exploited gadgets, however, are
located in the runtime libraries of SDK version 2.1.102.43402
(compiled with gcc version 5.4.020160609), which are listed
in Listing 2 and Listing 3.

This attack is possible because during AEX, the values of
registers are stored in the SSA before exiting the enclave.
As the SSA is also a memory region inside the enclave and
its address is fixed when loading the enclave, the privileged
adversary could leverage SGXPECTRE Attacks to read register
values in the SSA during an AEX. This attack is especially
powerful as it allows the adversary to frequently interrupt
the enclave execution with AEX [81] and take snapshots of
its SSAs to single-step trace its register values during its



execution.
In particular, the attack is shown in Fig. 5. In Step À, the

targeted enclave code is loaded into an enclave that is created
by a malicious program controlled by the adversary. After
EINIT, the malicious program starts a new thread (denoted
as the victim thread) to issue EENTER to execute the enclave
code. The enclave code only runs in a busy loop. But in reality,
the enclave program might complete a remote attestation and
establish trusted communication with its remote owner. In Step
Á, the adversary triggers frequent interrupts to cause AEXs
from the targeted enclave. During an AEX, the processor stores
its register values into the SSA, exits the enclave and invokes
the system software’s interrupt handler. Before the control is
returned to the enclave program via ERESUME, the adversary
pauses the victim thread’s execution at the AEP, a piece of
instructions in the untrusted runtime library that takes control
after IRet.

In Step Â, the main thread of the adversary-controlled
program sets (through a kernel module) the reserved bit
in the PTE of the enclave memory page that holds
g_enclave_state, a global variable used by Intel SGX
SDK to track the state of the enclave, e.g., initialized or
crashed states. As shown in Listing 2, this global variable
is accessed right before the ret instruction of the Type-I
gadget (i.e., the memory referenced by rcx in the instruction
“mov (%rcx),%eax”. In Step Ã, the main thread poisons
the BTB, prepares registers (i.e., rsi and rdi), and executes
EENTER to trigger the attack. Note that rbx will be set to
rdi by the time the ret instruction is executed (line 34 in
Listing 2), in such a way we can control rsi and rbx when
speculatively executing Type-II gadget. To poison the BTB,
the adversary creates an auxiliary enclave program in another
process containing an indirect jump with the source address
equals the address of the ret instruction in the Type-I gadget,
and the target address the same as the start address of the
Type-II gadget in the victim enclave. The process that runs in
the auxiliary enclave is pinned onto the same logical core as
the main thread. To trigger the BTB poisoning code, the main
thread calls sched_yield() to relinquish the logical core
to the auxiliary enclave program.

In Step Ä, after the main thread issues EENTER to get
into the enclave mode, the Type-I gadget will be executed
immediately. Because a reserved bit in the PTE is set, a page
fault is triggered when the enclave code accesses the global
variable g_enclave_state. In the page fault handler, the
adversary clears the reserved bit in the PTE, evicts the stack
frame that holds the return address of the ret instruction
from cache by accessing 2, 000 memory blocks whose virtual
addresses have the same lower 12-bits as the stack address.
The RSB is depleted right before ERESUME from the fault
handling, so that it will remain empty until the ret instruction
of Type-I gadget is executed. In Step Å, due to the extended
delay of reading the return address from memory, the processor
speculatively executes the Type-II gadget (as a result of
the BTB poisoning and RSB depletion). After the processor
detects the mis-prediction and flushes speculatively executed

instructions from the pipeline, the enclave code continues to
execute. However, because rdi is set as a memory address in
our attack, it is an invalid value for the SDK as rdi is used
as the index of the ECall table. The enclave execution will
return with an error quickly after the speculative execution.
This artifact allows the adversary to repeatedly probe into
the enclave. In Step Æ, the adversary uses FLUSH+RELOAD
techniques to infer the memory location accessed inside the
Type-II gadget. One byte of SSA can thus be leaked. The main
thread then repeats Step Â to Step Æ to extract the remaining
bytes of the SSA.

In our Type-I gadget, the get_enclave_state() func-
tion is very short as it contains only 4 instructions. Since
calling into this function will load the stack into the L1 cache,
it is very difficult to flush the return address out of the cache
to win the race condition. In fact, our initial attempts to
flush the return address all failed. Triggering page faults to
flush the return address resolves the issue. However, directly
introducing page faults in every stack access could greatly
increase the amount of time to carry out the attack. Therefore,
instead of triggering page faults on the stack memory, the page
fault is enforced on the global variable g_enclave_state
which is located on another page. In this way, we can flush
the return address with only one page fault in each run.

In our Type-II gadget, the first memory access reads 4 bytes
(32 bits). It is unrealistic to monitor 232 possible values using
FLUSH+RELOAD. However, if we know the value of lower 24
bits, we can adjust the base of the second memory access (i.e.,
rbx) to map the 256 possible values of the highest 8 bits to the
cache lines monitored by the FLUSH+RELOAD code. Once all
32 bits of the targeted memory are learned, the adversary shifts
the target address by one byte to learn the value of a new byte.
We found in practice that it is not hard to find some initial
consecutively known bytes. For example, the unused bytes in
an enclave data page will be initialized as 0x00, as they are
used to calculate the measurement hash. Particularly, we found
that there are 4 reserved bytes (in the EXINFO structure) in the
SSA right before the GPRSGX region (which stores registers).
Therefore, we can start from the reserved bytes (all 0s), and
extract the GPRSGX region from the first byte to the last. As
shown in Fig. 5, all register values, including rax, rbx, rcx,
rdx, r8 to r15, rip, etc, can be read from the SSA very
accurately. To read all registers in the GPRSGX region (184
bytes in total), our current implementation takes 414 to 3677
seconds to finish. On average, each byte can be read in 6.6
seconds. We believe our code can be further improved.

Although the demonstrated attack only targets the register
values, we note reading other enclave memory follows exactly
the same steps. The primary constraint is that the attack is
much more convenient if three consecutive bytes are known.
To read the .data segments, due to data alignment, some
bytes are reserved and initialized as 0s, which can be used
to bootstrap the attack. In addition, some global variables
have limited data ranges, rendering most bytes known. To read
the stack frames, the adversary could begin with a relatively
small address which is likely unused and thus is known to



be initialized with 0xcc. In this way, the adversary can start
reading the stack frames from these known bytes.

B. Stealing Intel Secrets

Next, we show how to steal Intel secrets, such as seal keys
and attestation keys, from Intel’s prebuilt and signed quoting
enclave, i.e., libsgx_qe.signed.so (version 2.1.2). All
the attacks described below have been empirically validated
on a Lenovo Thinkpad X1 Carbon (4th Gen) laptop with an
Intel Core i5-6200U processor.

The demonstrated attack involves first extracting seal keys
of the quoting enclave and then decrypting sealed storage
blob for the attestation keys. More particularly, the adversary
could use SGXPECTRE Attacks to read the seal keys from
the enclave memory when it is being used during sealing
or unsealing operations. In our demonstration, we targeted
Intel SDK API sgx_unseal_data() used for unsealing
a sealed blob. The sgx_unseal_data() API works as
follows: firstly, it calls sgx_get_key() function to derive
the seal key and then store it temporarily on the stack in
the enclave memory. Secondly, with the seal key, it calls
sgx_rijndael128GCM_decrypt() function to decrypt
the sealed blob. Finally, it clears the seal key (by setting
the memory range storing the seal key on the stack to
0s) and returns. Hence, to read the seal key, the adversary
suspends the execution of the victim enclave when function
sgx_rijndael128GCM_decrypt() is being called, by
setting the reserved bit of the PTE of the enclave code page
containing sgx_rijndael128GCM_decrypt(). The ad-
versary then launches SGXPECTRE Attacks to read the stack
and extract the seal key.

To decrypt the sealed blob, the adversary could export the
seal key and then use an AES-128-GCM decryption algorithm
implemented by herself. This may happen outside the enclave
or on a different machine, because the SGX hardware is no
longer involved in the process. We have validated the attacks
on our testbed.

Extracting the seal key of the quoting enclave. The quot-
ing enclave has two ECall functions: verify_blob(),
which is used to verify the sealed EPID blob, and
get_quote(), which is used to generate a quote
on behalf of an attested enclave for remote attesta-
tion. Particularly, verify_blob() calls an internal func-
tion verify_blob_internal(), which further calls the
sgx_unseal_data() API to unseal the EPID blob. So we
targeted the verify_blob() ECall function, suspended
its execution when sgx_rijndael128GCM_decrypt()
was being called, and read the stack to obtain the quoting
enclave’s seal key. These steps have been described in the
previous paragraphs.

Extracting attestation key. After running the provisioning
protocol with Intel’s provisioning service, an attestation key
(i.e., EPID private key) is created and then sealed in an EPID
blob by the provisioning enclave and stored on a non-volatile
memory. Though the location of the non-volatile memory is

not documented, during remote attestation, SGX still relies on
the untrusted OS to pass the sealed EPID blob into the quoting
enclave. This offers the adversary a chance to obtain the sealed
EPID blob. With the extracted seal key of the quoting enclave,
we could decrypt the sealed EPID blob to extract the EPID
private key.

After obtaining the attestation key, the adversary could
use this EPID private key to generate an anonymous group
signature and pass the remote attestation. This means the
adversary can now impersonate any machine in the EPID
group. Moreover, the adversary could also use the attestation
key completely outside the enclave and trick the ISVs to
believe their code runs inside an enclave. This attack has been
validated in our experiments, by generating a valid signature
of a quote from an ISV’s enclave without running it on SGX.

We note here that one challenge we have addressed in
attacking the Intel signed quoting enclave is that the TCS
number of the quoting enclave is set to 1, which means the
adversary has to use the same TCS to enter the enclaves.
SGXPECTRE Attacks are still possible as the number of SSAs
per TCS is 2, which is designed to allow the victim to run
exception handlers within the enclave when the exception
could not be resolved outside the enclave during AEXs.
However, this also enables the adversary to EENTER into
the enclave during an AEX, thus launching the SGXPECTRE
Attack to steal the secrets being used by the quoting enclave.

VII. EVALUATING EXISTING COUNTERMEASURES

Hardware patches. To mitigate branch target injection at-
tacks, Intel has released microcode updates to support the
following three features [34].
• Indirect Branch Restricted Speculation (IBRS): IBRS re-

stricts the speculation of indirect branches [38]. Software
running in a more privileged mode can set a model-specific
register (MSR), IA32_SPEC_CTRL.IBRS, to 1 by using
the WRMSR instruction, so that indirect branches will not be
controlled by software that was executed in a less privileged
mode or by a program running on the other logical core
of the physical core. By default, on machines that support
IBRS, branch prediction inside the SGX enclave cannot be
controlled by software running in the non-enclave mode.

• Single Thread Indirect Branch Predictors (STIBP): STIBP
prevents branch target injection from software running on
the neighboring logical core, which can be enabled by
setting the IA32_SPEC_CTRL.STIBP MSR to 1.

• Indirect Branch Predictor Barrier (IBPB): IBPB is an
indirect branch control command that establishes a barrier
to prevent the branch targets after the barrier from being
controlled by code before the barrier. The barrier can be
established by setting the IA32_PRED_CMD.IBPB MSR.

Particularly, IBRS provides a default mechanism that pre-
vents branch target injection. To validate the claim, we devel-
oped the following tests: First, to check if the BTB is cleansed
during EENTER or EEXIT, we developed a dummy enclave
code that trains the BTB to predict address A for an indirect



jump. After training the BTB, the enclave code uses EEXIT
and a subsequent EENTER to switch the execute mode once
and then executes the same indirect jump but with address B
as the target. Without the IBRS patch, the later indirect jump
will speculatively execute instructions in address A. However,
with the patch, instructions in address A will not be executed.

Second, to test if the BTB is cleansed during ERESUME,
we developed another dummy enclave code that will always
encounter an AEX (by introducing page faults) right before
an indirect call. In the AEP, another BTB poisoning enclave
code will be executed before ERESUME. Without the patch, the
indirect call speculatively executed the secret-leaking gadget.
The attack failed after patching.

Third, to test the effectiveness of the hardware patch under
Hyper-Threading, we tried poisoning the BTB using a program
running on the logical core sharing the same physical core. The
experiment setup was similar to our end-to-end case study in
Sec. VI, but instead of pinning the BTB poisoning enclave
code onto the same logical core, we pinned it onto the sibling
logical core. We observed some secret bytes leaked before the
patch, but no leakage after applying the patch.

Therefore, from these tests, we can conclude that SGX
machines with microcode patch will cleanse the BTB during
EENTER and during ERESUME, and also prevent branch
injection via Hyper-Threading, thus they are immune to SGX-
PECTRE Attacks.

Retpoline. Retpoline is a pure software-based solution to
Spectre attacks [78], which has been developed for major
compilers, such as GCC [89] and LLVM [9]. Because modern
processors have implemented separate predictors for function
returns, such as Intel’s return stack buffer [26], [27], [28], [29],
[30] and AMD’s return-address stack [41], it is believed that
these return predictors are not vulnerable to Spectre attacks.
Therefore, the key idea of retpoline is to replace indirect jumps
or indirect calls with returns to prevent branch target injection.

However, in recent Intel Skylake/Kabylake processors, on
which SGX is supported, when the RSB is depleted, the BPU
will fall back to generic BTBs to predict a function return. This
allows poisoning of return instructions. Therefore, Retpoline
is useless by itself in preventing SGXPECTRE Attacks.

VIII. IS SGX BROKEN?

In the previous sections, we have shown that SGXPECTRE
Attacks lead to confidentiality breaches for both Intel’s en-
claves and developers’ enclaves. In this section, we aim to
understand the security implications of SGXPECTRE Attacks
(as well as other similar attacks due to speculative or out-of-
order execution [80]): Is SGX completely broken under these
threats?

A. Intel’s Secrets

As demonstrated in this paper, all secrets in the memory
(or registers saved in the SSA during AEX) can be extracted
by SGXPECTRE Attacks. We believe all secrets that are
exposed in the enclave memory (even only temporarily) can
be exfiltrated by these attacks. While all secrets in developers’

Fig. 6. Intel’s secrets and key derivation.

enclaves are exposed, however, not all Intel’s secrets can be
stolen in the same manner. Specifically, Intel’s secrets for its
SGX platforms can be found in Fig. 6. Next, we explain in
details how these secrets are affected by SGXPECTRE Attacks.

Intel’s root secrets. For Intel’s infrastructure services to trust
an SGX machine, during the manufacturing process, Intel
generates a root provisioning key at its internal key generation
facility, and burns it into the e-fuse of an SGX machine. The
root provisioning key is also stored in an Intel’s database to be
referenced by Intel’s provisioning service. As such, the root
provisioning key serves as a shared secret that is only known
by Intel and the underlying SGX machine [40]. A 128-bit
root seal key is generated inside the processor chip during the
manufacturing process [31]. This root seal key is not known
by Intel. For improving security, these two keys can only
be accessed through the EGETKEY instruction and EREPORT
instruction, but never exported to enclaves’ protected memory.

Derived keys. Derived secrets of an SGX platform include the
provisioning key, the provisioning seal key, the report keys,
the seal keys, the EINIT token key. The provisioning key
is the secret used to establish trust during the provisioning
protocol; the provisioning seal key is a symmetric key used
to generate an encrypted backup copy of the attestation key
to be stored in Intel’s provisioning service; the EINIT token
key is used only by the launch enclave to sign the EINIT
token of a legitimate enclave. A report key is a symmetric
key possessed by each enclave. The EREPORT instruction
is used by an enclave to generate a report of its execution
context and produce a CMAC tag of the report using the
report key of a specified enclave (e.g., the quoting enclave).
However, the report key is not exported to the memory in this
process as it is kept secret to the specified enclave; it can only
be exported to the memory by the owner enclave using the
EGETKEY instruction. A seal key is used by an enclave to
encrypt and decrypt the sealed storage; therefore, there could
be multiple seal keys for each enclave, which can be identified
using their KEYID. It is also possible for enclaves from the
same ISV to share the seal keys. All of these derived secrets



can be exposed in the enclave memory, either by developers’
enclaves or Intel’s enclaves (e.g., quoting enclaves and launch
enclaves). Therefore, SGXPECTRE Attacks are able to extract
all of them.

EPID signing keys for attestation. In the EPID provision-
ing protocol, the SGX platform first sends a message to
Intel’s provisioning service that contains the platform identifier
(PPID) and the trusted computing base (TCB) version. Upon
receiving the message, Intel’s provisioning service verifies
the PPID and selects an EPID group for the SGX platform.
Intel assigns SGX platforms with the same CPU type and
the same TCB version the same EPID group, which contains
millions of machines [40]. Intel’s provisioning service then
sends the EPID group public key to the SGX platform. With
the group public key, the provisioning enclave runs an EPID
join protocol with Intel’s provisioning service to generate an
EPID private key. The EPID private key is sealed using Intel’s
seal key for later use. Each TCB version only requires running
the provisioning protocol once. Breach of one EPID private
key might invalidate the entire EPID group. Unfortunately,
the EPID private key is also an in-memory secret that can
be extracted by SGXPECTRE Attacks, as demonstrated in this
paper.

Summary. The relationship among these keys are illustrated in
Fig. 6. The gray boxes represent secrets only in the hardware
and firmware, and the white boxes represent secrets exposed
to memory. Dashed boxes represent values that are known to
the platform, some of which are used to derive secrets. We can
see that all Intel’s secrets, except the root seal key and root
provisioning key, can be exposed by SGXPECTRE Attacks.

B. Defense via Centralized Attestation Services

Defenses by Intel’s attestation service. Although the IBRS
microcode patch defeats SGXPECTRE Attacks, unpatched pro-
cessors remain vulnerable. The key to the security of the SGX
ecosystem is whether attestation measurements and signatures
from processors without the IBRS patch can be detected during
remote attestation. Indeed, Intel’s attestation service arbitrates
every attestation request from the ISV, detects attestation
signatures generated from unpatched CPUs, and responses to
the ISV with an error message indicating outdated CPUSVN
(see Table II). Therefore, the combination of the microcode
patches and defenses by Intel’s attestation service has been an
effective defense against SGXPECTRE Attacks (and also the
Foreshadow attack [80]).

Implications for developer enclaves. Despite the defense,
developers should be aware of the security implications of run-
ning (or having run) an enclave on unpatched SGX processors.
First, any secret provisioned to an unpatched processor can be
leaked. This includes secrets in enclaves that are provisioned
before the remote attestation, or after the remote attestation if
the ISV chooses to ignore the error message returned by the
attestation service. Moreover, because the ISV enclave’s seal
key can be compromised by SGXPECTRE Attacks, any secret
sealed by an enclave run on an unpatched processor can be

Result Description Trustworthy
OK EPID signature was verified correctly and the TCB level

of the SGX platform is up-to-date.
Yes

SIGNATURE INVALID EPID signature was invalid. No
GROUP REVOKED EPID group has been revoked. No
SIGNATURE REVOKED EPID private key used has been revoked by signature. No
KEY REVOKED EPID private key used has been directly revoked (not by

signature).
No

SIGRL VERSION MISMATCH SigRL version does not match the most recent version of
the SigRL.

No

GROUP OUT OF DATE EPID signature was verified correctly, but the TCB level
of SGX platform is outdated.

Up to ISV

CONFIGURATION NEEDED EPID signature was verified correctly, but but additional
configuration of SGX platform may be needed

Up to ISV

TABLE II
ATTESTATION RESULTS [33]

decrypted by the adversary. Furthermore, any legacy sealed
secrets become untrustworthy, as they could be forged by the
adversary using the stolen seal key.

Second, as the EPID private key used in the remote at-
testation can be extracted by the attacker, the attacker can
provide a valid signature for any SGX processors in the
EPID group [40]. With the attestation key, it is also possible
for the attacker to run the enclave code entirely outside
the enclave and forge a valid signature to fool the ISV. As
shown in Table II, Intel currently rely on ISV to make their
own decisions after receiving this error message. An error
message during attestation with GROUP_OUT_OF_DATE or
CONFIGURATION_NEEDED implies that the enclave cannot
be trusted at all.

IX. RELATED WORK

Spectre. Our work is closely related to the recently demon-
strated Spectre attacks [44], [23]. A variety of attack scenar-
ios have been demonstrated, including cross-process mem-
ory read [44], kernel memory read from user processes,
and host memory read from KVM guests [23]. While these
attacks mainly abuse BTB, Spectre-like attacks using other
micro-architectural components, such as Return Stack Buffer
(RSB) [52] and Store To Load (STL) [24] have also been
demonstrated. Further, NetSpectre [65] demonstrated that re-
mote adversaries could launch Spectre-like attacks over net-
work.

In the context of SGX, O’Keeffe et al. [59] demonstrated
a Spectre-like attack, particularly the bounds check bypass
variant, against SGX enclaves, and Koruyeh et al. [45] demon-
strated a Spectre attack using RSB against SGX enclaves. Both
attacks are only proof-of-concept, which target uncommon
enclave codes that are specially developed by the authors.
In contrast, in this paper we systematically investigate the
security of SGX enclaves due to vulnerable speculative execu-
tion, by enumerating attack vectors and techniques, developing
binary analysis tools for automated gadget identification, and
demonstrating end-to-end attacks against arbitrary enclaves. A
particular difference in this paper is that we demonstrate suc-
cessful extraction of Intel’s secrets from Intel signed enclaves.

Meltdown. Meltdown attacks [48] are another micro-
architectural side-channel attacks that exploit implicit caching
to extract secret memory content that is not directly readable
by the attack code. Different from Spectre attacks, Meltdown



attacks leverage the feature of out-of-order execution to ex-
ecute instructions that should have not been executed. An
example given by Lipp et al. [48] showed that an unprivileged
user program could access an arbitrary kernel memory element
and then visit a specific offset in an attacker-controlled data
array, in accordance with the value of the kernel memory
element, to load data into the cache. Because of the out-of-
order execution, instructions after the illegal kernel memory
access can be executed and then discarded when the kernel
memory access instruction triggers an exception. However, due
to implicit caching, the access to the attacker-controlled data
array will leave traces in the cache, which will be captured by
subsequent FLUSH+RELOAD measurements. Similar attacks
can be performed to attack Xen hypervisor when the guest
VM runs in paravirtualization mode [48].

Foreshadow and L1TF. Concurrent to our work, Van Bulck
et al. [80] introduced a Meltdown-style attack, called Fore-
shadow, against SGX enclaves. The Foreshadow attack lever-
ages a new hardware vulnerability called L1 Terminal Fault
(L1TF) [37] to read any enclave memory that resided in L1
cache. Both Foreshadow and SGXPECTRE can be used to ex-
tracts Intel’s secrets from Intel signed enclaves. However, these
two attacks exploit different types of hardware vulnerabilities.
Though both Foreshadow and SGXPECTRE have been patched
by microcode updates, they would motivate researchers to
rethink SGX’s security model in future research.

Micro-architectural side channels on SGX. SGXPECTRE
Attacks are variants of micro-architectural side-channel attacks
on SGX, in which the adversary illegally learns secrets inside
SGX enclaves. Although it has already been demonstrated that
by observing execution traces of an enclave program left in the
CPU caches [66], [8], [21], [19], branch target buffers [47],
DRAM’s row buffer contention [85], page-table entries [82],
[85], and page-fault exception handlers [90], [70], a side-
channel adversary with system privileges may infer sensitive
data from the enclaves, these traditional side-channel attacks
are only feasible if the enclave program already has secret-
dependent memory access patterns. In contrast, the conse-
quences of SGXPECTRE Attacks are far more concerning.

Side-channel defenses. Existing countermeasures to side-
channel attacks can be categorized into three classes: hard-
ware solutions, system solutions, and application solutions.
Hardware solutions [86], [87], [15], [53], [51], [12] require
modification of the processors, which are typically effective,
but are limited in that the time window required to have
major processor vendors to incorporate them in commercial
hardware is very long. System solutions only modify system
software [42], [83], [49], [97], but as they require trusted
system software, they cannot be directly applied to SGX.

Application solutions are potentially applicable to SGX.
Previous work generally falls into three categories: First, using
compiler-assisted approaches to eliminate secret-dependent
control flows and data flows [56], [11], [70], or to diversify or
randomize memory access patterns at runtime to conceal the
true execution traces [13], [62]. However, as the vulnerabilities

in the enclave programs that enable SGXPECTRE Attacks are
not caused by secret-dependent control or data flows, these
approaches are not applicable. Second, using static analysis or
symbolic execution to detect cache side-channel vulnerabilities
in commodity software [16], [84]. However, these approaches
model secret-dependent memory accesses in a program; they
are not applicable in the detection of the gadgets used in
our attacks. Third, detecting page-fault attacks or interrupt-
based attacks against SGX enclave using Intel’s hardware
transactional memory [69], [10], [18]. These approaches can
be used to detect frequent AEX, but still allowing secret leaks
in SGXPECTRE Attacks.

Randomization SGX-Shield [67] implemented fine-grained
ASLR for enclave programs. It uses a secure in-enclave
loader to perform randomization. However, the randomization
process itself involves accesses to the enclave memory and
thus can be learnt by SGXPECTRE Attacks. Hence, such ran-
domization based mitigation has limited effect on SGXPECTRE
Attacks.

X. CONCLUSION

In this paper, we studied techniques to perform SGXPECTRE
Attacks, developed a symbolic execution tool to automatically
detect exploitable gadgets, demonstrated end-to-end attacks
to show how secrets (including Intel’s secrets) can be ex-
tracted, and discussed the security implications on the SGX
ecosystems. Our study concludes that SGXPECTRE Attacks are
powerful to extract any in-memory secrets from SGX enclaves
(including register values that are stored in memory during
AEX), but also points out Intel’s control of enclave attestation
provides a layer of defense that effectively mitigates such
vulnerabilities via microcode updates.
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