
OPERA: Open Remote Attestation for Intel’s Secure Enclaves
Guoxing Chen

The Ohio State University
chen.4329@osu.edu

Yinqian Zhang
The Ohio State University
yinqian@cse.ohio-state.edu

Ten-Hwang Lai
The Ohio State University
lai@cse.ohio-state.edu

ABSTRACT
Intel Software Guard Extensions (SGX) remote attestation enables
enclaves to authenticate hardware inside which they run, and attest
the integrity of their enclave memory to the remote party. To en-
force direct control of attestation, Intel mandates attestation to be
verified by Intel’s attestation service. This Intel-centric attestation
model, however, neither protects privacy nor performs efficiently
when distributed and frequent attestation is required.

This paper presents OPERA, an Open Platform for Enclave Remote
Attestation. Without involving Intel’s attestation service while con-
ducting attestation, OPERA is unchained from Intel, although it relies
on Intel to establish a chain of trust whose anchor point is the secret
rooted in SGX hardware. OPERA is open, as the implementation of
its attestation service is completely open, allowing any enclave
developer to run her own OPERA service, and its execution is pub-
licly verifiable and hence trustworthy; OPERA is privacy-preserving,
as the attestation service does not learn which enclave is being
attested or when the attestation takes place; OPERA is performant,
as it does not rely on a single-point-of-verification and also reduces
the latency of verification.

CCS CONCEPTS
• Security and privacy → Trusted computing.

KEYWORDS
Trusted execution environments; Intel SGX; remote attestation;
privacy-preserving techniques
ACM Reference Format:
Guoxing Chen, Yinqian Zhang, and Ten-Hwang Lai. 2019. OPERA: Open
Remote Attestation for Intel’s Secure Enclaves. In 2019 ACM SIGSAC Con-
ference on Computer and Communications Security (CCS ’19), November
11–15, 2019, London, United Kingdom. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3319535.3354220

1 INTRODUCTION
Intel Software Guard Extensions (SGX) enables a userspace process
to create isolated memory regions, called enclaves, within which
the code and data are protected against accesses from the operating
system and other software. Therefore, SGX provides a hardware
foundation for supporting security-critical applications even un-
der the assumption of an untrusted operating system or a rogue

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00
https://doi.org/10.1145/3319535.3354220

Figure 1: Intel’s remote attestation workflow.

system administrator. Due to its unique security properties, both
academia and industry have paid considerable attention to SGX
since its announcement in 2013. So far, various prototype appli-
cations (e.g., [3, 17, 28, 29, 33, 40, 41, 47–49]) and development
frameworks (e.g., [4, 6, 11, 18, 26, 27, 34, 35, 38, 42, 46]) have been
proposed to encourage broader SGX adoption. Recently, SGX has
been integrated into commercial products: Microsoft Azure has
offered SGX platforms in commercial clouds for confidential cloud
computing [31]; a startup company, Fortanix, utilizes SGX to im-
plement hardware security modules and offer runtime encryption
solutions [15].

While confidentiality and integrity of Intel SGX are primarily pro-
vided by a microcode extension of the memory management unit
(MMU) and a hardware Memory Encryption Engine (MEE), remote
attestation also plays a crucial role. Remote attestation is a method
for software to attest the authenticity of its underlying hardware
and the identity of the software to a remote party. Without remote
attestation, the trust between SGX enclaves and their users cannot
be established. In this paper, we study the issues of trust and privacy
of Intel’s attestation model, and then propose an open attestation
platform as an enhancement for the existing infrastructure.

1.1 Intel’s Attestation Service
Intel’s attestation model consists of three entities (as shown in
Fig. 1): (1) Intel’s services, including Intel’s provisioning service
(IPS) and attestation service (IAS); (2) Independent Software Vendor
(ISV)—Intel’s term for enclave developers; (3) and the SGX platforms,
which run Intel signed enclaves (such as quoting enclaves) and the
ISV developed enclave (i.e., IsvE).

Intel SGX adopts the Enhanced Privacy ID (EPID) scheme [10]
for remote attestation. EPID uses a group signature that allows an

https://doi.org/10.1145/3319535.3354220
https://doi.org/10.1145/3319535.3354220

Figure 2: Information exchanges between entities.

SGX platform to generate a signature without leaking the identity
of the SGX platform. The EPID scheme involves (1) provisioning
the EPID member private key (i.e., attestation key) into the SGX
platform through a provisioning protocol, and (2) using the EPID
member private key to sign the report of the attested enclaves
during attestation.

Provisioning protocol. In the EPID provisioning protocol (step
❶ in Fig. 1), the SGX platform first sends a message to IPS that
contains the Platform Provisioning ID (PPID) and the trusted com-
puting base (TCB) version. Upon receiving the message, IPS verifies
the PPID and selects an EPID group for the SGX platform. Intel’s cur-
rent design assigns SGX platforms with the same CPU type and the
same TCB version the same EPID group. According to Intel’s doc-
umentation [22], each EPID group contains millions of machines.
IPS then sends back the EPID group public key to the SGX platform.
With the group public key, the Intel-signed provisioning enclave
(PvE) runs an EPID join protocol with IPS to acquire an EPID mem-
ber private key, which is sealed in a persistent storage using a seal
key, and thus shared with the Intel-signed quoting enclave (step ❷

in Fig. 1).

EPID-based attestation. The EPID-based remote attestation pro-
cedure is initiated by the attested enclave (step ➀), possibly when
requested by the ISV remotely. The attested enclave transfers 64-
byte attested data (containing a message or a hash value that the
attested enclave would like to associate with the attestation) to
the Intel-signed quoting enclave (QE) using a process called lo-
cal attestation. The quoting enclave generates a data structure,
called a quote, containing the identities of the enclave, including the
measurement-based identity MRENCLAVE and the certificate-based
identity MRSIGNER, the 64-byte attested data, and a signature of the
structure signed with the EPID member private key. The resulting
quote is first encrypted with IAS’s public key (hardcoded in QE)
and then sent back to the ISV (step ➁ and ➂). The ISV forwards
the quote to IAS for verification (step ➃). The verification results
are signed by Intel and encrypted with the ISV’s public key before
returning to the ISV (step ➄). Upon a successful attestation, the ISV
software provisions secrets into the IsvE to perform confidential
computation (step ➅).

Anonymity considerations. Fig. 2 shows the information excha-
nges between entities in Intel’s attestation model. The primary
identifier of an SGX platform is its PPID, which is collected by Intel
during the provisioning protocol. PPID uniquely identifies an SGX
platform. To have the enclave code executed by the SGX platform,
the ISV needs to reveal identity of the enclave signer (i.e., MRSIGNER),

the identity of the enclave to be executed (i.e., MRENCLAVE), and the
identity of the ISV (i.e., SPID) to the SGX platform. As all these data
are included in a quote, they are also collected by IAS as well. The
EPID protocol provides a sense of anonymity for SGX platforms
during attestation. As only the EPID group identity is included in
the quote, neither the ISV nor Intel would learn on which SGX
platform did the enclave run.

1.2 Motivation
Instead of allowing ISVs to verify the attestation quotes by them-
selves, Intel’s quoting enclaves encrypt the quotes with Intel’s own
public key and hence only Intel’s attestation service (IAS) is able to
decrypt the quotes and verify the attestation. As such, every attes-
tation request must go through IAS to be validated. IAS becomes
a trusted third party for ISVs to conduct Internet-based remote
attestation.

However, this Intel-centric remote attestation model has several
limitations. First, this design leaks sensitive information of the ISVs
and enclaves to Intel during verification: (1) which ISV is conducting
attestation (through its service provider ID, or SPID) and possibly
its IP address (through the TLS connection with IAS), (2) which
enclave is being attested (through MRENCLAVE), (3) who signed the
enclave (through MRSIGNER), (4) the content of the 64B attested data
(embedded in the quote). Therefore, applications that utilize SGX
to perform privacy-sensitive computation may be hesitant to use
Intel’s attestation infrastructure. While trusting Intel processors to
preserve the privacy of the computation running atop is acceptable
in practice, trusting an Internet-facing attestation service that can
be compromised by external attackers or rogue insiders would be a
different story.

Second, some SGX applications require distributed and frequent
attestation. For example, in confidential cloud computing [2, 31],
users of these SGX-enabled applications may need to frequently
request remote attestation of the SGX applications running in the
cloud (e.g., especially in the case of microservice functions, since
they are launched and terminated frequently). In privacy-preserving
Blockchains that conceal smart contracts in SGX enclaves [13, 50],
thousands of nodes may need to perform attestation to verify the
computation of others frequently. In these cases, this Intel-centric
Internet-based single-point-of-verification model would be insuf-
ficient to sustain the high volume of attestation requests. In both
examples, moreover, the latency of quote verification (between step
③ to ⑥ in Fig. 1) is too long (as shown in Sec. 5), which negatively
impacts the performance of these applications.

Recognizing these limitations, in December 2018, Intel announced
a third-party attestation solution [32]. However, this solution is
primarily designed as “an on-premise remote attestation capability”
that is used for data centers [20]. We will discuss the limitation of
Intel’s third-party attestation model in Sec. 6.4 when it is used as
an Internet-based attestation service, and also discuss how OPERA
could help address its limitation. In contrast, in this paper, we aim to
design and develop a trusted and publicly verifiable Internet-based
attestation platform that are suited for applications to perform
distributed, frequent, and privacy-preserving attestation.

1.3 OPERA
In this paper, we propose an Open Platform for Enclave Remote
Attestation (OPERA) to address the limitations of the Intel-centric
attestation model. It is designed to achieve the following properties:
• Openness. The implementation of OPERA’s attestation service is
completely open; the execution of OPERA is publicly verifiable
and thus is trustworthy. Moreover, any ISV could run its own
OPERA service.

• Privacy. No information regarding the attested enclaves or their
developers is leaked to any party other than the SGX platform
(who already possesses such information by executing these
enclaves).

• Performant. The attestation is verified directly by the ISV soft-
ware or its users, hence eliminating the Internet-based single-
point-of-verification and at the same time reducing the latency
of verification.
The source code of OPERA is open sourced and available on

https://sites.google.com/site/operasgxkb/. We have also discussed
with Intel to launch OPERA as a free open service.

Paper outline.We first outline the design of OPERA in Sec. 2 and
then detail its design in Sec. 3. The security and privacy guarantees
of OPERA are analyzed in Sec. 4. The prototype implementation and
its evaluation are described in Sec. 5. We discuss relevant issues in
Sec. 6 and related work in Sec. 7, and conclude this paper in Sec. 8.

2 AN OPEN ATTESTATION PLATFORM
In this section, we provide a high-level overview of Open Platform
for Enclave Remote Attestation (OPERA), an open remote attestation
platform for SGX enclaves. Details of its design will be provided in
later sections.

2.1 Threat Model
Intel’s services, including IPS and IAS, are trusted to honestly fol-
low the predefined protocols, but may stealthily collect information
of the SGX platforms, the ISVs, and the enclaves being attested,
during the remote attestation. As the root secrets of SGX platforms
are controlled by Intel, we must trust the tech-giant to faithfully
establish a chain of trust to identify SGX platforms and their pro-
tected software. We also assume that there is no backdoor installed
on SGX platforms that could leak any secrets to Intel; firewalls
could effectively prevent connections to Intel servers other than
the provisioning and attestation traffic.

We assume the SGX platforms, including the entire software
stack outside the enclaves, are untrusted, although they are re-
sponsible for launching enclaves, supporting their execution and
external communication. However, we assume that Intel SGX is
secure. Though recently disclosed hardware vulnerabilities have
rendered SGX vulnerable to some speculative execution based at-
tacks [12, 43, 44], we assume the confidentiality of the enclaves
is guaranteed if the CPU microcode is up-to-date. As such, our
remote attestation platform must be able to detect outdated CPU
microcode versions, similar to what is offered by IAS. We assume
the SGX platforms are operated by a party that is not motivated to
collude with Intel.

Figure 3: Design overview

OPERA is also untrusted, because it is an open platform that allows
anyone to participate. However, we assume OPERA can be publicly
verified. The open platform publishes its enclave programs to be
hosted either on the SGX platforms or public servers (which are also
untrusted). We assume the source code and binaries of all OPERA-
provided enclaves can be publicly verified to only perform their
specified execution. The design and verification of these enclaves
is out of scope. We assume these enclaves can be trusted after
performing remote attestation.

Although the primary goal of our design is to preserve the pri-
vacy of enclaves and their ISVs during attestation, our design will
also preserve the anonymity of the SGX platforms to ISVs, so that
ISVs cannot identify on which machine their enclaves are executed
from the attestation signatures.

2.2 Design Overview

Components. The overview of OPERA is illustrated in Fig. 3. The
main functionality of OPERA is handled by two types of enclaves: the
issuing enclaves (IssueE) and the attestation enclaves (AttestE).
An IssueE runs on a publicly-accessible server equipped with an
SGX processor (e.g., a cloud SGX server). We call such servers OPERA
Servers. To preserve the anonymity of the SGX platforms, OPERA
adopts the same group signature schemes used by IAS, i.e., the EPID
scheme. An IssueE is responsible for generating an EPID group
issuing key, which is used to issue member keys to AttestEs and
to produce group verification certificates (gvCert). To leverage IAS
to validate the authenticity of the IssueE, the ISV that launches the
IssueE must be registered with Intel and the attestation must go
through these ISVs. We call an OPERA-participating ISV an OPERA-
SV. From Intel’s point of view, each OPERA-SV is no different than
other ISVs.

The AttestE is launched on the SGX platform that requires
enclave attestation services. It communicates with the IssueE to
obtain a unique EPID member private key. The IssueE conducts a
remote attestation to validate the authenticity of AttestE. Then the
AttestE serves the local attestation requests from the ISV enclaves
(called IsvEs) and produces quotes (called OPERA quotes) that are
signed by its EPID private key. At least one AttestE is required

https://sites.google.com/site/operasgxkb/

to run on the same SGX platform with the IsvE to be attested;
multiple AttestEs can be launched to work with the same IssueE.

Each OPERA-SVmust run its own frontend server to communicate
with IAS.We discuss in Sec. 6 how frontend servers can be hosted by
untrusted parties. The authenticity of both IssueEs and AttestEs
are guaranteed by the original Intel attestation procedure, with the
help of the OPERA-SV frontend server.

Operations. OPERA operates in three steps: registration, preparation,
and attestation. The registration step launches, validates, and regis-
ters an IssueE to OPERA; the preparation step launches an AttestE
on one SGX platform, validates its authenticity, and provisions the
EPID private key into the AttestE by running a provisioning pro-
tocol with an IssueE; the attestation step attests the authenticity
of an IsvE (i.e., ISV enclave) that run on the same machine as the
AttestE. The validation of IssueE and AttestE needs to be run
periodically to check the validity of the SGX platform using IAS
and establish trustworthiness of these enclaves.

The source code and the binaries of IssueEs and AttestEs are
published so that they can be scrutinized to perform the exact de-
sired actions, nothing less and more. For example, the only network
activities from an AttestE is through a provisioning protocol or
through a self-validation procedure. As long as the code follows
these protocols and nothing more, it can be assured that no infor-
mation regarding the ISVs or the SGX platforms will be collected
by OPERA. Furthermore, as each IsvE communicates only with the
AttestE, the ISV could assure that its identity will neither be leaked
to Intel.

To enable the ISVs to verify the authenticity of IsvE, AttestE,
and IssueE directly from the OPERA quotes, OPERA adopts the con-
cept of certificates and accompanies the quotes with a chain of
certificates, including an EPID group certificate (gvCert) gener-
ated by IssueE that endorse the authenticity of AttestE and a
certificate-type structure from IAS that endorses the validity of
IssueE. SGX platform’s anonymity is preserved by adopting the
EPID scheme, as the ISVs cannot differentiate one SGX platform
from another by looking at their EPID signatures. Additional cares
must be taken for the anonymity guarantees, however, which we
will detail in Sec. 3.

3 DESIGN OF OPERA
In this section, we detail the design of the open attestation ser-
vice. In Sec. 3.1, we describe the registration step for setting up one
IssueE to OPERA; in Sec. 3.2, we describe preparation step for set-
ting up one AttestE on an SGX platform; in Sec. 3.3, we describe
the attestation step for an ISV enclave; in Sec. 3.4, we explain the
revocation process.

3.1 Registration
This step sets up an IssueE and registers it with OPERA. Then a
validation procedure is executed to generate a fresh group verifica-
tion certificate (gvCert) for the IssueE. The validation procedure
is executed periodically (e.g., daily) to guarantee that the security
level of the SGX processor it runs upon is up-to-date.

Figure 4: Validation protocol of IssueE

IssueE setup.An IssueE is launched on an untrusted OPERA server.
After launching, the IssueE first generates inside the enclave mem-
ory an issuing private key and the corresponding group public key.
As the issuing private key is protected by SGX, the OPERA Server
cannot learn its content. A copy of the issuing private key will be
sealed for backup. An issuing private key represents an EPID group
and is used to produce EPID member private keys for each AttestE.
An IssueE also creates two empty revocation lists during its setup:
one for private key revocation and the other for signature-based
revocation as described in Intel’s documentation [22].

IssueE validation. After setup, the IssueE generates a group ver-
ification certificate (gvCert) for the EPID group. The certificate
should include the group public key, revocation lists, and a cryp-
tographic proof of their authenticity. OPERA achieves this using
Intel SGX’s remote attestation with the help of a frontend server
run by an OPERA-SV. The IssueE uses Intel’s quoting enclave to
generate an IAS quote with the hash of the group public key and
revocation lists as the report data, and sends the IAS quote to the
frontend software to be forwarded to IAS. The IAS verification
report (returned from IAS and signed by Intel) can be used as a
proof of the authenticity of the public key and the revocation lists.
The certificate expires after a short period, e.g., a day [24], so that
the IssueE needs to periodically re-validate itself and produce a
fresh gvCert. IAS checks if the Intel-issued EPID private key has
been revoked or if the CPU is up-to-date, which is essential to the
security of OPERA. Therefore, periodic re-validation is important.

Since OPERA servers are not trusted, we need to be careful when
designing the validation protocol. Basically, we need a reliable
way, e.g., a timestamp to represent the freshness of a gvCert. Note
that the IAS verification report contains a timestamp from the IAS,
which can be used as the timestamp of the gvCert. However, IAS
quotes used to produce IAS verification reports do not include any
time information. It is possible for the OPERA server to send an
outdated IAS quote to IAS to obtain an IAS verification report from
Intel with a new timestamp, so that the OPERA server might be able
to refresh an expired gvCert without interacting the IssueE.

One intuitive solution is to maintain an internal timestamp in-
side IssueE, and include the timestamp in the gvCert. The IssueE
could use valid IAS verification reports to update this timestamp.

Table 1: Structure of group verification certificate (gvCert).

Name Description
Group public
key

The public key of the EPID group for veri-
fying EPID signatures

H(PrivRl) Hash value of private key revocation list
H(SigRl) Hash value of signature based revocation

list
IssueE times-
tamp

A timestamp provided by the OPERA server
and verified by IssueE

Nonce A nonce generated within IssueE

IAS verifica-
tion report

Intel signed structure whose report data is
the hash of the above five entries, andwhose
timestamp should be within the same inter-
val of the IssueE timestamp.

However, such a design requires two rounds of Intel’s remote attes-
tation for each validation, one for updating the timestamp and the
other for generating the gvCert with the updated timestamp.

Hence, we adopted a commit-and-reveal method which requires
only one round of Intel’s remote attestation per validation. The
protocol for updating the certificate is shown in Fig. 4. Specifically,
when requesting a new certificate,
• The OPERA Server software first passes a current (untrusted)
timestamp as input to the IssueE.

• The IssueE then picks a random nonce, calculates the hash
value of the group public key, hash values of the revocation lists,
the timestamp provided by OPERA server, and the generated
nonce. The hash value will then be used to generate a new IAS
quote to be sent to IAS.

• After receiving the IAS verification report, IssueE checks the
timestamp of the IAS verification report and timestamp given
by the OPERA Server software. If their difference is small, e.g.,
less than 5 seconds, IssueE reveals the nonce and outputs the
verification certificate.
The timestamp of the IAS verification report is used as the times-

tamp of the gvCert. Here the revealed nonce enforces that the
timestamp of an acceptable IAS verification report should be close
(with a small difference) to the IssueE timestamp present in the
gvCert. The structure of the certificate is shown in Table 1.

3.2 Preparation
This step sets up an AttestE on an SGX platform. The validation
procedure is executed periodically (e.g., daily) to ensure that the
SGX processor is up-to-date.

AttestE setup. An AttestE will be launched on an SGX platform.
It will then run a provisioning protocol (as illustrated in Fig. 5) with
an IssueE:
• The AttestE sends to the OPERA server an EPID provisioning
request (Msg 1).

• After receiving the request, IssueE generates a nonce, and then
sends it back to AttestE together with gvCert (Msg 2).

• The AttestE verifies gvCert, and generates an EPID private key
using the nonce received inMsg 2. A proof of knowledge [10] is

Figure 5: OPERA provisioning flow

generated to prove that AttestE does possess the private key.
The hash value of the proof will be used as the report data to
generate an IAS quote. This quote and the proof itself will be
sent back to IssueE (Msg 3).

• After receiving Msg 3, IssueE sends the quote to the OPERA-SV
frontend, which forwards the quote to IAS. The returned IAS
verification report can be used to authenticate to IssueE that the
AttestE runs on trusted SGXCPU and its measurementmatches
the expected value (hardcoded in IssueE). IssueE calculates a
certificate of the EPID private key and sends it back to AttestE
(Msg 4). The provisioning protocol concludes.

AttestE validation. Similar to IssueE, AttestE also needs to peri-
odically perform an attestation with IAS to validate the authenticity
of the underlying SGX platform. Each attestation is performed us-
ing a fresh nonce as its report data. The AttestE maintains an
internal timestamp to record the most recent time its environment
is verified. After receiving the IAS verification report correspond-
ing to the same nonce, AttestE will update the timestamp using
the one from the report. This timestamp will be sent to the ISV
during attestation to inform the ISV about the time of most recent
validation. To prevent the resolution of the timestamp from being
abused by ISVs to de-anonymize the SGX platform, the timestamp
is discretized (e.g., to date, when the validation is performed daily).

The SGX trusted platform service provides a rich set of function-
ality for enclaves running on the SGX platform. Although AttestE
itself does not use any such services, it records the status of the
SGX trusted platform services, e.g., whether the services are up-to-
date, so that it is able to provide such information to the attested
enclaves that use the services. In addition, the SGX platform also
keeps an up-to-date gvCert and revocation lists that are retrieved
periodically from the IssueE.

3.3 Attestation
Once the registration and preparation steps are completed, the SGX
platform can allow ISVs to leverage OPERA for remote attestation.
When an IsvE needs to attest itself to the ISV or a third party
(possibly upon requests), it first generates a report, with a message
it would like to communicate with the ISV as the report data, to
be transferred to the AttestE via local attestation. The AttestE

Table 2: The structure of the OPERA quote

Name Description
IsvE’s report The report generated by the IsvE
AttestE timestamp The timestamp maintained by AttestE

pseManifest
status

The status of the SGX trusted platform
service

EPID signature EPID signature of the above three entries

Figure 6: OPERA attestation flow

verifies the IsvE’s report and then signs a data structure containing
the report, the timestamp of AttestE, and the status of the SGX
trusted platform service, using its EPID private key. The resulting
quote is called OPERA quote. The structure of the OPERA quote is
shown in Table 2.

The OPERA quote, the gvCert, and the revocation lists are sent
back to the ISV. The ISV then verifies that (1) the gvCert is valid—
the IAS verification report is properly signed by Intel and reflects
the integrity of the gvCert; (2) the EPID signature is verified to be
valid; (3) the timestamps of the IAS verification report, IssueE and
AttestE are up-to-date; (4) The measurements of the IssueE and
IsvE are valid; (5) Optionally, the pseManifest status is valid; (6)
IsvE’s report reflects the integrity of the attestation data. After the
verification, the remote party could be assured that the report data
is indeed generated by the specific IsvE running on a trusted SGX
platform.

We describe an example attestation scheme to demonstrate how
to use OPERA to derive a shared Elliptic CurveDiffie-Hellman (ECDH)
key between an ISV and its IsvE. The attestation workflow is illus-
trated in Fig. 6.

Specifically, the attestation is accomplished in the following four
steps:
• The ISV software first generates a nonce and an ECDH pri-
vate/public key pair (a,дa), and then sends the nonce and ECDH
public key дa to the IsvE launched on a SGX platform.

• The IsvE generates an ECDH private/public key pair (b,дb), and
derives the shared ECDH key дab following standard ECDH
protocol, from its own ECDH private key b and the received
ECDH public key дa such that дab = (дa)b . The hash value of

the received ECDH public key дa , its own ECDH public key дb ,
and the nonce is used as the report data to generate a report
and send it to the AttestE.

• The AttestE verifies the IsvE’s report and then generates an
OPERA quote. Then the OPERA quote, the ECDH public key дb ,
gvCert, and the revocation lists are sent back to the ISV soft-
ware.

• The ISV software verifies (1) the gvCert, (2) the EPID signature,
(3) the timestamps of the IAS verification report, IssueE and
AttestE, (4) The measurements of the IssueE and IsvE, (5)
(Optionally) The pseManifest status, (6) ISV enclave’s report,
and (7) that the decrypted nonce using the ECDH shared key
derived from its ECDH private key and the received ECDH
public keymatches the nonce the ISV client generated previously.
After the verification, the ISV software could provision secrets
to IsvE using a channel encrypted by the ECDH key дab .

3.4 Revocation
The revocation scheme follows the same manner as the original
EPID scheme [22]. One difference between the revocation schemes
of OPERA and IAS is that the latter keeps encrypted backup copies of
the EPID member private keys and disallows a previously revoked
SGX platform from getting new EPID keys. Here, there is no need
for OPERA to keep such backup copies, because OPERA relies on IAS
to verify the revocation status of an SGX platform. When the SGX
platform is revoked, it could not host any IssueE nor AttestE,
since the revoked SGX platform will be identified during setup
and/or validation processes where valid IAS verification reports
are needed.

4 ANALYSIS OF SECURITY AND PRIVACY
In this section, we analyze the security and privacy of OPERA. To
bootstrap the analysis, we assume that Intel SGX is not broken and
the confidentiality of the enclaves are guaranteed if the CPU is
up-to-date. Though recently discovered hardware vulnerabilities
have rendered SGX vulnerable to some speculative and out-of-order
execution based side-channel attacks [12, 43], we anticipate these
vulnerabilities will be addressed eventually with future microcode
patches. We also assume the code of IssueE and AttestE are scru-
tinized and verified so that they behave as expected and do not leak
extra information to unauthorized parties.

4.1 Proof of Security
Given our assumption that up-to-date SGX processors protect the
confidentiality of their hosted enclaves, we first need to show the
protocols of OPERA can verify that the CPUs on which IssueEs and
AttestEs run are up-to-date. OPERA relies on the IssueE to ver-
ify the trustworthiness of the SGX platform running the AttestE.
Specifically, during member private key provisioning, the AttestE
will need to provide an IAS quote, with which the IssueE could
verify the identity of the requesting AttestE and trustworthiness
of the SGX platform running the AttestE. Hence, the IssueE will
only provision the member private key to specific AttestEs (speci-
fied by its measurement that is hardcoded in its binary) running
on a up-to-date CPU. Therefore, the ISV only needs to verify the
IssueE is running on an up-to-date SGX platform. Verifying this

M,N ::= terms
x ,y, z variables
a,b, c,k, s names
f (M1, . . . ,Mn) constructor application

D ::= expressions
M term
h(D1, . . . ,Dn) function application
fail failure

P ,Q ::= processes
0 nil
out(N ,M); P output
in(N ,x : T); P input
P | Q parallel composition
!P replication
new a : T ; P restriction
let x : T = D in P else Q expression evaluation
ifM then P else Q conditional

Figure 7: Syntax of ProVerif [8]

is straightforward since an IAS verification report (indicating the
identity of the IssueE and the status of the SGX platform running
the IssueE) of the group verification certificate is also received
by the ISV. Therefore, it is verifiable by the ISV that secrets in the
IssueE and the AttestE are well-protected within the enclaves.

Next, we prove that the ISV could verify the identity and in-
tegrity of the IsvE using OPERA, and then provision secrets to IsvE
which would not be leaked to the adversary. The proof is conducted
automatically using ProVerif, an automated tool for analyzing
symbolic protocol models. ProVerif uses the π -calculus to model
the protocols and to verify a variety of security properties, such as
secrecy and authentication. ProVerif [8] takes as input protocols
and security properties to be verified, and translates the protocols
into Horn clauses. The security properties are translated into deriv-
ability queries on these clauses. An example query is whether the
attacker could derive a secret given her existing knowledge. If the
verification results indicating the queries are not derivable from the
clauses, then the desired security properties are proven. Otherwise,
a potential attack might be found.

The syntax of the input language of the ProVerif is shown
in Fig. 7. Terms represent data and messages, expressions repre-
sent computations on terms and processes represent programs. In
ProVerif, functions symbols are used to represent constructors
and destructors. Constructors are used for building terms. For ex-
ample, a symmetric encryption scheme can be represented using a
constructor senc, and the ciphertext of a messagem under a sym-
metric key k can be represented as the term senc(m,k). On the other
hand, destructors are used for manipulating terms in expressions.
The semantic of a destructor д(M1, . . . ,Ml) are represented as a set
of rewrite rules д(M1, . . . ,Ml) → M ′, where M1, . . . ,Ml ,M

′ are
constructors or variables. For instance, the decryption algorithm of
a symmetric encryption scheme can be represented as a destructor
sdec, defined by a rewrite rule: sdec(senc(m,k),k) →m.

Each protocol role, (e.g., client or server), can be represented as
a process which can send and receive messages (terms) over public
channels. Following the Dolev-Yao model [14], ProVerif assumes

the protocol is run in the presence of an attacker, who can intercept,
synthesize and send any message she has. The keys and nonces
generated within a process is considered fresh and unguessable.

To use ProVerif to prove the security of OPERA, we model each
enclave (e.g., IssueE and AttestE) as a process. The external world
of the enclaves, including the untrusted OS and system programs,
is modeled as a Dolev-Yao attacker who cannot directly access
the secrets within the enclaves, but handles all communications
between enclaves.

However, it is not straightforward to model SGX enclaves. One
challenge is to model the SGX instructions that take the calling
enclave’s measurement as the input. Particularly, the EGETKEY and
EREPORT instructions are used for local attestation. As an enclave’s
measurements are also available to the adversary, the adversary
could call EGETKEY within an enclave developed by herself. How-
ever, the SGX mechanism prevents EGETKEY using a measurement
other than the calling enclave’s to derive keys. This mechanism
must be modeled properly in our proof. Therefore, we assign a
secret, called SGX specification to each type of enclave, which
will be used as input when calling enclave specific functions, e.g.,
EGETKEY, EREPORT. The measurement is also calculated from the se-
cret, and will then be made public. Specifically, we use a constructor
mr(sgxsp) : mrenc (where sgxsp is the type of SGX specification
secret, and mrenc is the type of enclave measurement) to calcu-
late the enclave measurement. To represent EGETKEY (particularly
for deriving report keys) and EREPORT we use two constructors
egetrpkey(sgxsp) : rpkey and ereport(sgxsp,mrenc, bitstring) : bit-
string, where rpkey is the type of report key. egetrpkey(s) derives
the report key of the enclave with its SGX specification secrete s .
ereport(s, r ,m) generates a report (with message m) from an en-
clave with SGX specification s to an enclave whose measurement is
r . The corresponding destructors egetreport(bitstring) : bitstring,
egetmrfrom(bitstring) : mrenc and everif(bitstring, rpkey) : bitstr-
ing are defined by:

egetreport(ereport(s, r ,m)) →m

egetmrfrom(ereport(s, r ,m)) → mr(s)

everif(ereport(sa ,mr(sb),m), egetrpkey(sb)) →m

egetreport is used by any entity (e.g., the adversary) that obtains
the report to access the report data since EREPORT protects only the
integrity of the report data, but not the confidentiality. egetmrfrom
is used to figure out the identity, i.e., the measurement of the enclave
who generates the report. everif is used by an enclave to verify that
whether the report is meant to be sent to her.

Now we can begin to model our framework:
• Intel’s quoting enclave is modeled as a process that takes a
report, verifies it via everif. An EPID signature will be generated
if the verification passes.

• IssueE is modeled as a process that receives EPID joining re-
quests from another enclave and provisions private member
keys to that enclave if its measurement matches AttestE’s mea-
surement.

• AttestE is modeled as a process that achieves two tasks: first
is to run the EPID joining protocol with IssueE to obtain a

private EPID member key, and second is to take a report from
an attesting enclave, verify it and sign it accordingly.

• An example IsvE and an example ISV client are modeled as two
separate processes that derive an ECDH shared key through
a remote attestation using the OPERA quote generated by the
AttestE. The example ISV client then sends a secret encrypted
using the derived shared key to the example IsvE.
These 5 processes are trusted. The measurements of these en-

claves will be made public by sending them to a public channel.
With these 5 processes, we modeled the OPERA provisioning proto-
col, which involves Intel’s quoting enclave, IssueE and AttestE,
and the OPERA attestation protocol, which involves AttestE, IsvE
and the ISV client. The OPERA provisioning protocol is run first to
provision AttestE a member private key. Then IsvE and the ISV
client run a remote attestation with the help of AttestE. After the
remote attestation, a shared key will be derived by both IsvE and
the ISV client. The ISV client then sends to the IsvE a secret that is
encrypted using the shared key.

The security property to be proved here is the secrecy of the
secret the ISV client tries to provision to IsvE. It is represented
as a query whether the adversary could derive the secret given
that the adversary could access any publicly available information
such as enclaves’ measurements, manipulate messages exchanged
between trusted processes, run her own enclaves, etc. ProVerif
evaluated the modeled processes and protocols and concluded that
the adversary could not derive the secret, indicating that the secret
can be securely provisioned to a trusted IsvE. The related code is
listed in Appendix A.

4.2 Privacy Analysis
We consider the privacy of OPERA-SVs, IsvEs, and SGX platforms:

4.2.1 OPERA-SV Privacy. The OPERA enclaves (i.e., IssueEs and
AttestEs) both use IAS to establish their trustworthiness, an OPERA-
SV must register itself to Intel. Hence, during runtime, its own
identity, i.e., the SPID, will be revealed to Intel. Moreover, the mea-
surements of the OPERA enclaves will also be revealed to Intel since
they are included in IAS quotes.

4.2.2 IsvE Privacy. IAS is not involved in the attestation process
of the IsvE. Moreover, OPERA Servers and IssueEs are not involved
in the attestation other than providing the gvCerts. Therefore, as
long as the AttestE code is verified such that it does not collect
ISV’s information, the IsvE’ identity could be hidden from both
Intel and OPERA. However, SGX platforms will learn the identity
of the IsvEs since as the enclave metadata must be known by the
host to launch an enclave. This is the minimal privacy leakage the
ISV has to accept to run enclaves on a third-party SGX platform.

4.2.3 SGX platform Privacy. Note that the gvCert is completely
generated in the OPERA Server. AttestE provides only its own
maintained timestamp, which should be indicating the current time
interval. Hence, in the OPERA quote sent back to the ISV, there is
no extra information specific to the underlying SGX platform. We
further assume that other identity information of SGX platform,
e.g. IP address, can be concealed via network proxies. As such the
SGX platform remains anonymous to the ISV.

5 IMPLEMENTATION AND EVALUATION
5.1 Implementation
Our implemented OPERA prototype consists of three components:
the software running on OPERA Servers, including the IssueE, the
software running on SGX platforms, including the AttestE, and
the OPERA-SV frontend. In our implementation, we adopted Intel
EPID SDK (version 6.0.0) that comes along with Intel SGX SDK
(version 2.5.101.50123), which is released under Apache License
version 2.0. Intel EPID SDK provides implementations of the EPID
join protocol, signing and verification procedures. But Intel does
not open source the implementation of the EPID issuer. Therefore,
we implemented our own EPID issuer for the IssueE.

5.1.1 OPERA Server Software and IssueE. OPERA Server software is
responsible for launching IssueE and handling the communication
between the IssueE and its external world. Since the IssueE is
stateful (including the revocation lists), it might be a target of replay
attacks [27]. Hence, we leveraged the SGX platform trusted service,
particularly, the monotonic counter, to prevent replay attacks. For
IssueE setup, we implemented three ECall functions:
• create_issuer() creates a new issuer context, i.e., creating
an issuing key and its corresponding group public key, and
initializing two revocation lists. An issuer context represents
an EPID group. A replay protected policy is created to track the
status of the revocation lists, by registering a monotonic counter
with SGX trusted platform service. The monotonic counter’s
ID and its current value will be sealed together with the data it
protects, i.e., the issuing private key, the group public key, and
the hash values of the revocation lists. The complete revocation
lists are maintained by the OPERA Server software and verified
by the IssueE when needed.

• load_issuer() loads an existing issuer context sealed by itself
previously. The replay protected policy is verified: First, the
IssueE extracts the monotonic counter’s ID and queries SGX
trusted platform service to get the value of that counter. If the
counter value is the same as the one sealed previously, the sealed
issuer context is trusted and restored. Then, the IssueE checks
the hash values of the revocation lists against those extracted
from the sealed data to preserve the integrity of the lists.

• delete_issuer() is used to delete the issuer context, i.e., re-
voke the EPID group. The corresponding monotonic counter
will also be deleted.

Note that when deriving the seal key, the IssueEwill use its enclave
measurement MRENCLAVE as input, so that the sealed data could only
be unsealed and accessed by the IssueE, preventing other enclaves
signed by the same OPERA-SV from accessing the issuing key.

After the IssueE either creates or loads an issuer context, IssueE
validation process needs to be performed. We implemented two
ECall functions for this task:
• request_gvcert() takes the current timestamp as input, gener-
ates a nonce, and outputs a report with the hash of the group veri-
fication certificate as the report data, along with the pseManife-
st. The OPERA Server software asks Intel’s quoting enclave to
sign the report and sends the resulting quote and pseManifest
to IAS via an OPERA-SV frontend for verification.

• produce_gvcert() takes the returned IAS verification report,
the corresponding report signature, and the report signing cer-
tificate chain as input, checks its validity, and outputs a gvCert
accordingly. The root certificate, i.e., the Attestation Report Sign-
ing CA Certificate, is hard-coded into the enclave.
We also implemented two ECall functions to support the EPID

provisioning process between the IssueE and the AttestE as de-
scribed in Sec. 3.2: gen_nonce() generates and outputs a nonce, i.e.,
Msg 2, upon receiving a join request, i.e.,Msg 1. certify_member()
takes as inputMsg 3, and outputMsg 4. We implemented two ECall
functions for revocation: revoke_priv() and revoke_sig() are
used for revoking compromised EPID member private keys and
signatures linked with abnormal behaviors. When either revocation
list is updated, the monotonic counter will be increased. The up-
dated issuer context and monotonic counter value will be re-sealed
to reflect this change.

5.1.2 SGX Platform Software and AttestE. Applications running
on the SGX platform are responsible for launching AttestE and
handling the communication between the AttestE and its exter-
nal world. To support the EPID provisioning process between
the IssueE and the AttestE as described in Sec. 3.2, we imple-
mented two ECall functions in AttestE: join_request() takes
as input the nonce received from Msg 2, and generates Msg 3.
create_member() takes as input the Msg 4 and finalize the cre-
ation of a new member private key. Another two ECall func-
tions, seal_member() and unseal_member(), were implemented
for saving and restoring existing member private keys. Note that
the seal key is derived using the AttestE’s enclave measurement
MRENCLAVE, in order to prevent other enclaves signed by the same
OPERA-SV from accessing the sealed secrets.

Two ECall functions were developed for AttestE validation
(i.e., updating its internal timestamp):
• ts_update_request() generates a nonce, and outputs a report
and pseManifest accordingly. The SGX platform software asks
Intel’s quoting enclave to sign the report and sends the resulting
quote and pseManifest to IAS via an OPERA-SV frontend for
verification.

• ts_update_response() verifies the returned IAS verification
report, report signature and report signing certificate chain, and
update its timestamp accordingly.
For OPERA attestation, we implemented an ECall function, opera

_gen_quote(), to generate OPERA quote for remote attestation. Par-
ticularly, it takes as input a report provided by an attested enclave,
and signs a data blob including the attested enclave’s report, its
internal timestamp and pseManifest status using the member pri-
vate key. The resulting OPERA quote, along with the gvCert and
revocation lists will be returned for proving the identities of the
attested enclaves and integrity of the report data.

5.1.3 OPERA-SV Frontend Software. The OPERA-SV frontend is im-
plemented using cURL to communicate with IAS to verify IAS
quotes. We implemented one function for this task: get_ias_repo-
rt() receives IAS quotes and optionally pseManifest from either

Table 3: The latency evaluation

EPID SDK Latency (ms)
EpidSignBasic 5.09
EpidVerifyBasicSig 13.77
Intel’s Remote Attestation Latency (ms)
sgx_get_quote 8.46
send quote to IAS and receive report 195.25
Open Remote Attestation Latency (ms)
get OPERA quote via IPC socket 5.17
verify OPERA quote 13.81

IssueEs or AttestEs, forwards them to IAS, receives the IAS verifi-
cation reports to be returned to the requesting OPERA enclaves. Com-
munication between OPERA-SV frontend server and other servers is
implemented using Internet sockets.

5.1.4 IsvE development tools. We implemented tools for IsvE de-
velopers to adopt OPERA. Specifically, we implemented a function
generate_report() which can be called within the IsvE to gener-
ate a report of attesting message to be signed later. We implemented
a function opera_get_quote() to be used by IsvE host program to
communicate with AttestE for generating OPERA quote. On the ISV
client side, we implemented a function opera_verify_quote() for
OPERA quote verification.

5.1.5 Example IsvE and ISV client. We also implemented an exam-
ple IsvE to demonstrate how to use OPERA. The IsvE has one ECall
function, gen_report() which generates a report. An OPERA quote
is generated by its host program and sent along with the report
to the SGX platform software using inter-process communication
mechanisms (e.g., IPC socket).

With the returned OPERA quote and the group verification cer-
tificate, we implemented two example ISV clients (one written in
C++ and the other in Python) which can verify the validity of the
OPERA quote and determine the identity the IsvE and the integrity
of its report data.

5.2 Evaluation
In this section, we evaluate the performance of OPERA. All exper-
iments were conducted on a Dell Latitude 5480 laptop equipped
with an Intel Core i7-7820HQ processor and 8GBmemory. The CPU
has 4 physical cores and 8 logical cores. Wi-Fi is used for communi-
cation between different servers and access to IAS. Evaluation was
conducted with empty revocation lists.

Latency. We first measured the latencies of different operations.
The results shown in Table 3 are averagemeasurements over 10, 000
runs.

To set up a baseline for our evaluation, we first measured the exe-
cution time of the two basic EPID operations that were implemented
in Intel SGX SDK, i.e., EpidSignBasic() and EpidVerifyBasic-
Sig(). The former is used to sign an enclave quote and generate
an EPID signature, and the latter is used to verify an EPID sig-
nature. Both these operations are computationally intensive. By
running the two operations 10, 000 times and calculating the av-
erage, we found the execution time of the two operations were

 0

 2

 4

 6

 8

 10

1 2 3 4 5 6 7 8

La
te

nc
y

on
 c

or
e

0
(m

s)

Number of logical cores running attestation service

5.17 5.41 5.64
6.05

8.71 8.81 8.93 9.07

Figure 8: Latency of OPERA attestation with multiple
AttestEs

5.09ms and 13.77ms, respectively. We then measured the latency
of Intel’s Remote Attestation operations as a control experiment.
sgx_get_quote() is an API provided by Intel SGX SDK for gener-
ating a quote using Intel’s quoting enclave. Its execution time is
around 8.46ms (average over 10, 000 runs). We also measured the
time taken to send the signed quote to IAS and receive the verifica-
tion report. The average latency (including the network latency)
was 195.25ms.

We then measured the latency of our implemented OPERA. First
of all, the latency of obtaining an OPERA quote, which measures
the time it takes to send a report generated by an IsvE to AttestE
and receive an OPERA quote through an IPC socket, is 5.17ms (over
10, 000 runs). The latency is very close to that of EpidSignBasic()
(i.e., 5.09ms). It means the majority of the time is consumed by the
EpidSignBasic() operations, and the overhead of inter-process
communication is by contrast extremely small.

We also evaluated the latency of attestation with OPERA when
using multiple AttestEs on the same machine. Particularly, we
increase the number of AttestEs from 1 to 8, and assigned these
AttestEs to run on logical CPU core 0, core 1, . . . , core 7 in order.
Each logical core i (i ∈ [0, 1, 2, 3]) is on the same physical core as
core i + 4. In Fig. 8, we show the attestation latency of the AttestE
running on core 0 and how the latency is affected by running more
AttestEs on other CPU cores concurrently. It can be seen that re-
source contention due to Hyper-Threading is muchmore significant
than contention from other physical cores. Nevertheless, OPERA can
be parallelized with multiple AttestEs on the same machine (up
to the number of logical cores) to improve its scalability.

Next, the latency of verifying the received OPERA quote, which in-
volves verification of a chain of certificates, is around 13.81ms. Com-
pared with the execution time of EpidVerifyBasicSig(), which
is 13.77ms, we can see that the group signature verification is dom-
inating the verification latency.

Compared with the attestation with IAS, OPERA attestation is
significantly faster (5.17+13.81ms vs. 8.46+195.25ms). To make the
comparison fair, it is worthy noting that Intel’s remote attestation
involves not only an extra round-trip network communication,
but also reconstructing an EPID context after unsealing the EPID
private key and a verification of the EPID signature at IAS. However,

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

1 2 3 4 5 6 7 8

N
um

be
r o

f r
eq

ue
st

s
pe

r s
ec

on
d

Number of logical cores running attestation service

193.32

368.70

531.23

659.58
702.46

763.08
822.22

878.39

Figure 9: Throughput of OPERA attestation

Table 4: OPERA overhead

IssueE AttestE

One-time setup 279.05ms 397.01ms
Per re-validation 219.17ms 376.10ms

these overheads are unnecessary for frequent attestation requests,
thus can be avoided by OPERA.

Throughput.We measured the number of attestation requests per
second that could be processed by OPERA on the same SGX platform.
Intuitively, the more logical cores running AttestEs that provide
attestation services concurrently, the higher the throughput. The
results are shown in Fig. 9. The throughput ranges from 193.32
requests per second to 878.39 requests per second. In comparison,
sgx_get_quote() generates 118.18 IAS quotes per second1. The
throughput of OPERA can be much higher than that of IAS.

Overhead. We evaluated the overhead of our implemented OPERA.
The overhead consists of two parts: one time setup overhead and
periodic re-validation overhead. The results shown in Table 4 are
average measurements over 1, 000 runs. For IssueE, we measured
an averaged setup time of 279.05ms, consisting of generating a
new EPID issuing key and the corresponding group public key, and
registering a monotonic counter for the replay protected policy. To
measure the validation time, i.e., generating a refreshed gvCert, we
run a frontend on the same machine as the IssueE to access IAS.
The averaged time for IssueE validation is 219.17ms.

To measure the overhead of setting up AttestE, we run an
IssueE and a frontend on another laptop, a Lenovo Thinkpad X1
Carbon (4th Gen) laptop with an Intel Core i5-6200U processor and
8GB memory. The setup time of an AttestE was 397.01ms, includ-
ing running the provisioning protocol with the IssueE and one
round of Intel’s remote attestation via the frontend. The periodic re-
validation of AttestE includes retrieving a refreshed gvCert and
one round of Intel’s remote attestation. We measured an averaged
validation time of 376.10ms.

1This result is measuredwith only one quoting enclave. As Intel’s Architectural Enclave
Service Manager (AESM) implementation launches only one quoting enclave, which
is ensured to be singled threaded (the number of TCS of the quoting enclave is set to
1), hence its throughput would not increase with more logical cores.

While the setup overhead is incurred only once and thus not
critical, the periodic re-validation cost depends on the re-validation
frequency. For example, when the re-validation is needed per hour,
the overhead could be insignificant (≈ 0.01%).

Other Evaluations. IssueE contains 1705 lines of code (including
the EPID issuer implemented by ourselves) and AttestE contains
780 lines of code. The binary sizes of an IssueE and an AttestE are
1.08MB and 1.09MB, respectively. Multiple IssueEs and AttestEs
could be launched on the same machine (even with 128MB EPC).

6 DISCUSSION
6.1 Application Scenarios
OPERA is a generic attestation framework that fits both centralized
and decentralized attestation model.

OPERA can support centralized attestation as in the case of confi-
dential cloud computing [2, 31] and privacy-preserving blockchains
[13, 50], the cloud provider or the blockchain operator may serve
as the OPERA-SV and launch IssueEs and AttestEs for the hosted
applications. Users of such cloud services may use OPERA so they do
not even need to use IAS. Scalability of attestation and privacy of
the execution can be provided by OPERA. As SGX requires enclaves
to be launched with a valid MRSIGNER, the hosted applications may
request the cloud provider or blockchain operator to sign the appli-
cations and run with the providers’ MRSIGNER. Alternatively, if the
SGX platforms support Flexible Launch Control (FLC) feature [19],
the providers may implement customized launch enclaves to allow
the hosted applications to run without registering with Intel.

OPERA can also be implemented to support decentralized attesta-
tion, in which enclave programs on the same SGX platform attest
one another. When an ISV launches her enclave on a SGX plat-
form and requests remote attestation through OPERA. If there is
no AttestE already launched on that SGX platform, the ISV could
launch an AttestE herself to provide attestation service to her own
enclaves and other enclaves to be launched later on the SGX plat-
form. The AttestE will search for an IssueE to join. If no IssueE
is found, the ISV may launch an IssueE somewhere to support
her own AttestE and others’ AttestEs. Since the source code of
OPERA enclaves are publicly available, and the measurements are
calculated unrelated to who signs and/or launches the enclaves.
Therefore, the IssueE setup by one ISV would allow AttestEs from
other ISVs to join.

6.2 Alternative Design Options

Supporting multiple IssueEs. In our design, if the OPERA Server
that runs IssueE goes offline, all associated AttestEs can only pro-
vide attestation service till the current group public key certificate
expires (e.g., after a day or a month). In our current design, OPERA
may launch more than one AttestEs that are associated with dif-
ferent IssueEs on each SGX platform. In this way, an SGX platform
may always find a working AttestE to conduct attestation. An
alternative design is to launch IssueEs that share the same issuing
key on multiple OPERA Servers to eliminate single-point-of-failure.
To do so, these IssueEs must authenticate each other through IAS
attestation process to verify their identities and synchronize the
issuing keys and revocation lists among all these IssueEs.

Running OPERA-SV frontends in enclaves. OPERA may also opt
to run OPERA-SV frontends in enclaves. There are two reasons for
this alternative design choice: First, as the IAS verification reports
are encrypted by IAS with the OPERA-SV’s public key, the OPERA-SV
frontend must be involved to decrypt the quotes. As periodic valida-
tion of IssueEs and AttestEs are required, the OPERA-SV frontend
must be always online. Second, during the periodic validation, these
OPERA-SV frontends may collect information regarding the setup
and validation of both IssueEs and AttestEs. While privacy of
IssueEs and AttestEs are less important in general (as they are
public enclaves), however, under certain circumstances, such as
decentralized attestation schemes, users of OPERA may place less
trust on the OPERA-SV than Intel.

To address this, OPERA-SV can ship the decryption functional-
ity in enclaves (dubbed FrontE) and run the FrontE on the same
OPERA Server as IssueE. The FrontE could attest itself (using IAS)
to other OPERA enclaves to derive shared keys for secure commu-
nications between these enclaves. The EPID private key can be
provisioned into the FrontE after attestation. Hence, the OPERA
Servers do not need to be trusted with OPERA-SV’s private keys.
Alternatively, FrontE may first generate a public/private key pair
inside the enclave and then expose the certificate to the outside. In
this way, even the OPERA-SV could not participate in the validation
process of IssueEs and AttestEs. Thus, privacy of these enclaves
can be preserved.

OPERA onAMD’s Secure EncryptedVirtualization (SEV). OPERA
is primarily designed for Intel’ SGX platforms. However, we do not
see major challenges of adopting OPERA on other trusted execution
environments, such as AMD’s SEV [23]. However, as the time of
writing, we could not obtain the source code to perform remote
attestation for SEV-enabled virtual machines. Neither is AMD’s
attestation service available to us. We leave extension of OPERA to
other platforms to the future work.

6.3 Dependence on Intel
OPERA still relies on Intel (IPS and IAS) to establish the root of trust
on the underlying SGX platforms. As analyzed by by Francillon et
al. [16], a remote attestation protocol requires exclusive accesses
to a long-term key for generating attestation signatures. For Intel
SGX, as its manufacturer, Intel is the only entity that could embed
such long-term secrets into SGX processors, and retain exclusive
accesses to these secrets. Hence, OPERA, and any other alternative
attestation services, must rely on Intel to bootstrap the trust on the
SGX platform.

Intel may decide to ban IssueE and AttestE. However, in its
current design, Intel could only ban OPERA-SVs but not individual
enclaves. This is because enclaves’ launch control is enforced in the
launch enclave using a white list of MRSIGNERs (corresponding to
ISVs), and using IAS’s service requires the ISV’s registered SPID and
certificate. Therefore, Intel could only ban the OPERA-SVs that run
IssueE and AttestE. With the formation of an open attestation
framework, OPERA will invite a large number of ISVs to participate
in the attestation service, and thus preventing Intel from banning
all participating OPERA-SVs. Banning individual enclaves instead of
ISVs would introduce considerable changes to the current design
of SGX.

(a) ISV performs verification. (b) Verifier = Attester.

Figure 10: Third-party attestation models. ➀ISV sends an at-
testation request the the Attester (SGX platform); ➁Attester
sends the attestation report to ISV; ➂ISV requests Verifier to
verify the attestation report; ➃Verifier responds to ISV.

Nevertheless, given the benefit of security, privacy, and usability,
instead of suppressing OPERA, Intel will benefit by supporting it.
OPERA may attract more ISVs with particular security and/or pri-
vacy requirements, e.g., confidential cloud computing and privacy-
preserving blockchains, to adopt SGX for development. We are
discussing with Intel to gain support from the tech-giant to OPERA.

6.4 Intel’s Third-Party Attestation Scheme
Concurrent to our work, Intel announced Data Center Attestation
Primitives (DCAP) to support third-party attestation in on-premise
network, such as data centers [32]. In such a scheme, third-party
quoting enclaves can be used instead of Intel’s quoting enclave. A
pair of attestation keys used by the third-party quoting enclave
are generated from inside, using algorithms such as Elliptic Curve
Digital Signature Algorithm (ECDSA). The public key is exported
to Intel’s Provisioning Certification Enclave (PCE) and signed using
the private Provisioning Certification Key (PCK). PCK is a pair of
asymmetric keys derived from the root provisioning secret burnt
into the SGX platform’s e-fuses.

To establish a chain of trust, Intel needs to publish PCK certifi-
cates for users to verify the public key of PCKs, which can be used
to verify the ECDSA public key certificate generated by the PCE.
Therefore, a user with knowledge of Intel’s public key, PCK cer-
tificates, and ECDSA public key certificates, can verify the ECDSA
attestation result all by herself (i.e., the quote signed by the ECDSA
private key). Similar to OPERA, the revocation list of PCKs still needs
to be periodically retrieved from Intel (and thus the third-party at-
testation service still relies on Intel).

However, what is not made clear by Intel is where the verifi-
cation should be performed [32]. Depending on whether the PCK
certificates could be disclosed to public, two verification models
can exist (Fig. 10): First, when the certificates can be made publicly
available (Fig. 10a), the attestation results could be verified locally
by the users without trusting any third party. However, as a PCK
certificate can uniquely identify an SGX platform [32], such a de-
sign leaks the identity of attester, i.e., the SGX platform that runs
the enclave application, which can be a privacy concern—this is also
the motivation of adopting EPID in SGX original attestation scheme.
In the case of confidential cloud computing, users of public clouds
may use such information to perform co-location attacks [30, 45].

Second, when the certificates are only accessible by the ser-
vice provider (Fig. 10b), to use the third-party attestation service,

users have to fully trust the third-party attestation service. As ar-
gued by Swami [39], collusion between the attester and the verifier
could completely invalidate the attestation results. Specifically, if
the attestation service provider is the same as the operator of the
data center—which is typically the case—enclave programs can be
launched on non-SGXmachines but still pass the remote attestation.

In comparison, OPERA addresses the disadvantages of both de-
signs. On one hand, OPERA adopts EPID schemes to protect SGX
platforms’ privacy. On the other hand, OPERA leverages Intel SGX
to exclude the third party from the trusted domain. Therefore, we
envision OPERA could be used in cases where Internet-based attesta-
tion service is required, such as privacy-preserving permissionless
blockchain [13, 50], confidential public clouds [2, 31], etc.

Build OPERA on top of DCAP. It is also possible to integrate OPERA
and DCAP together. The idea is to replace the functionality of IAS
with DCAP. Note that IAS is used to (1) prove AttestE’s identity
to IssueE and (2) prove IssueE’s identity to the ISV. For the first
purpose, instead of sending an IAS quote, AttestE sends DCAP
quote and the corresponding PCK certificate and ECDSA public
key certificate to IssueE. IssueE could then verify AttestE’s iden-
tity and provision private EPID member key. Note that the PCK
certificate and ECDSA public key certificate of the SGX platform
will not be recorded by IssueE nor forwarded to IsvE so that SGX
platform privacy can be reserved. For the second purpose, instead of
appending IAS verification report in the gvCert, IssueE appends
the PCK certificate and ECDSA public key certificate of the OPERA
Server in gvCert. In this way, IssueE’s identity can be verified by
the ISV, and only the OPERA Server’s identity is disclosed.

7 RELATEDWORK
Intel SGX adopts the EPID scheme which is a group signature with
additional security goals such as anonymity [9], and member revo-
cation [10]. Some of its security guarantees, however, have been
questioned by Swami [39]. In this paper, we further explore prob-
lems in SGX attestation and propose an open attestation platform
to address the privacy and performance issues.

To adapt SGX in clouds, VC3 proposes to use a Cloud Quoting
Enclave to generate an additional attestation signature for the at-
tested enclaves, in order to prove that an SGX platform is not only
authentic but indeed in the possession of the cloud provider [33].
However, this Cloud Attestation scheme does not replace Intel’s
SGX attestation, but rather merely complements it. VC3 could ex-
tend OPERA (by offering a provider specific signature) to replace its
combined use of SGX Attestation and Cloud Attestation.

SafeKeeper [25] and ReplicaTEE [37] addressed a related problem
to ours, i.e., enabling unregistered users to use IAS. They achieved
this by forwarding quotes to IAS via a registered proxy. However,
this design does not address the privacy issues considered in our
paper, as IAS could still collect information from the forwarded
quotes. Concurrent to our work, Alder et al. [1] proposed a tran-
sitive attestation protocol in the context of Function-as-a-Service
clouds, enabling the users to verify the worker enclaves by attesting
only a centralized key distributing enclave. Despite this technical
similarity, however, their protocol targets a specific application,
while ours aims to provide a generic attestation service.

Knauth et al. [24] from Intel proposed to use Intel’s remote attes-
tation to generate X.509 certificates for TLS communication. They
used IAS verification reports to prove the validity of the certificates,
which is similar to how IssueE creates gvCert. Moreover, Intel’s
Data Center Attestation Primitives also enables third parties to
conduct attestation services [32]. However, as discussed in Sec. 6.4,
their scheme has limitations and does not replace OPERA.

Also related to our work is due to Jackson [21], who proposed
several alternative attestation schemes to address similar attesta-
tion problems. However, the schemes were still rudimentary; the
security of the proposed schemes were not formally analyzed, and
no proof-of-concept implementation was provided.

Prior to our work, ProVerif [8] has been used to verify secu-
rity properties for various protocols [5, 7]. In the context of SGX,
ProVerif has also be used for verification of confidentiality prop-
erties of enclave programs [36].

8 CONCLUSION
This paper presents OPERA, an Open Platform for Enclave Remote
Attestation for SGX applications to perform distributed, frequent,
and privacy-preserving remote attestation. The advantages of OPERA,
in comparison to Intel’s attestation service, are its openness, im-
proved privacy and performance. We analyzed and proved the se-
curity and privacy guarantees of OPERA, implemented a prototype,
and evaluated its performance.

ACKNOWLEDGMENTS
The work was supported in part by the NSF grants 1718084 and
1750809, and research gifts from Intel and Dfinity.

REFERENCES
[1] Fritz Alder, N. Asokan, Arseny Kurnikov, Andrew Paverd, and Michael Steiner.

2018. S-FaaS: Trustworthy and Accountable Function-as-a-Service using Intel
SGX. CoRR abs/1810.06080 (2018). arXiv:1810.06080 http://arxiv.org/abs/1810.
06080

[2] Alicloud. 2018. ECS Bare Metal Instance. https://www.alibabacloud.com/product/
ebm.

[3] Ittai Anati, Shay Gueron, Simon P Johnson, and Vincent R Scarlata. 2013. Inno-
vative Technology for CPU Based Attestation and Sealing. In 2nd International
Workshop on Hardware and Architectural Support for Security and Privacy. ACM.

[4] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark L.
Stillwell, David Goltzsche, Dave Eyers, Rüdiger Kapitza, Peter Pietzuch, and
Christof Fetzer. 2016. SCONE: Secure Linux Containers with Intel SGX. In 12th
USENIX Symposium on Operating Systems Design and Implementation. USENIX
Association.

[5] Michael Backes, Matteo Maffei, and Dominique Unruh. [n.d.]. Zero-Knowledge
in the Applied Pi-calculus and Automated Verification of the Direct Anonymous
Attestation Protocol. In Proceedings of the 2008 IEEE Symposium on Security and
Privacy. IEEE Computer Society, Washington, DC, USA.

[6] Andrew Baumann,Marcus Peinado, and GalenHunt. 2014. Shielding Applications
from an Untrusted Cloud with Haven. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14). USENIX Association, Broomfield,
CO.

[7] K. Bhargavan, B. Blanchet, and N. Kobeissi. 2017. Verified Models and Reference
Implementations for the TLS 1.3 Standard Candidate. In 2017 IEEE Symposium on
Security and Privacy (SP).

[8] Bruno Blanchet. 2016. Modeling and Verifying Security Protocols with the
Applied Pi Calculus and ProVerif. Foundations and Trends in Privacy and Security
1, 1–2 (Oct. 2016), 1–135.

[9] Ernie Brickell, Jan Camenisch, and Liqun Chen. 2004. Direct Anonymous Attesta-
tion. In Proceedings of the 11th ACM Conference on Computer and Communications
Security (CCS ’04). ACM, New York, NY, USA.

[10] E. Brickell and J. Li. 2010. Enhanced Privacy ID fromBilinear Pairing for Hardware
Authentication and Attestation. In IEEE Second International Conference on Social
Computing. 768–775.

[11] Chia che Tsai, Donald E. Porter, and Mona Vij. 2017. Graphene-SGX: A Practical
Library OS for Unmodified Applications on SGX. In 2017 USENIXAnnual Technical
Conference (USENIX ATC 17). USENIX Association, Santa Clara, CA.

[12] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and
Ten H. Lai. 2019. Stealing Intel Secrets from SGX Enclaves via Speculative
Execution. In Proceedings of the 2019 IEEE European Symposium on Security and
Privacy.

[13] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah M.
Johnson, Ari Juels, Andrew Miller, and Dawn Song. 2019. Ekiden: A Platform
for Confidentiality-Preserving, Trustworthy, and Performant Smart Contract
Execution. In Proceedings of the 2019 IEEE European Symposium on Security and
Privacy.

[14] D. Dolev and A. C. Yao. 1981. On the Security of Public Key Protocols. In
Proceedings of the 22nd Annual Symposium on Foundations of Computer Science
(SFCS ’81). IEEE Computer Society, Washington, DC, USA.

[15] Fortanix. 2018. Runtime Encryption with Intel SGX. https://fortanix.com/.
[16] Aurélien Francillon, Quan Nguyen, Kasper B. Rasmussen, and Gene Tsudik. 2014.

A Minimalist Approach to Remote Attestation. In Proceedings of the Conference on
Design, Automation & Test in Europe (DATE ’14). EuropeanDesign andAutomation
Association, 3001 Leuven, Belgium, Belgium.

[17] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and Juan
Del Cuvillo. 2013. Using Innovative Instructions to Create Trustworthy Software
Solutions. In 2nd International Workshop on Hardware and Architectural Support
for Security and Privacy. ACM.

[18] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett Witchel. 2016.
Ryoan: A Distributed Sandbox for Untrusted Computation on Secret Data. In
12th USENIX Symposium on Operating Systems Design and Implementation (OSDI
16). USENIX Association.

[19] Intel. 2017. Intel 64 and IA-32 Architectures Software Developer’s Manual,
Combined Volumes:1,2A,2B,2C,3A,3B,3C and 3D. https://software.intel.com/
sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf.

[20] Intel. 2018. Intel Software Guard Extensions (Intel SGX) Services. https://api.
portal.trustedservices.intel.com/.

[21] Alon Jackson. 2017. Trust is in the Keys of the Beholder : Extending SGX Au-
tonomy and Anonymity. M.Sc. dissertation. Interdisciplinary Center, Herzliya.
(2017).

[22] Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie Brickell, and Frank Mckeen.
2016. Intel Software Guard Extensions: EPID Provisioning and Attestation Services.
Technical Report. Intel, Tech. Rep. https://software.intel.com/sites/default/files/
managed/57/0e/ww10-2016-sgx-provisioning-and-attestation-final.pdf.

[23] David Kaplan, Jeremy Powell, and Tom Woller. 2016. AMD memory encryp-
tion. White paper. https://developer.amd.com/wordpress/media/2013/12/AMD_
Memory_Encryption_Whitepaper_v7-Public.pdf.

[24] Thomas Knauth, Michael Steiner, Somnath Chakrabarti, Li Lei, Cedric Xing, and
Mona Vij. 2018. Integrating Remote Attestation with Transport Layer Security.
CoRR abs/1801.05863 (2018). arXiv:1801.05863 http://arxiv.org/abs/1801.05863

[25] Arseny Kurnikov, Klaudia Krawiecka, Andrew Paverd, Mohammad Mannan, and
N. Asokan. 2018. Using SafeKeeper to Protect Web Passwords. In Companion
Proceedings of the The Web Conference 2018 (WWW ’18). International World
Wide Web Conferences Steering Committee, Republic and Canton of Geneva,
Switzerland.

[26] Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnautov, Bohdan Trach, Pramod
Bhatotia, Pascal Felber, and Christof Fetzer. 2017. SGXBOUNDS: Memory Safety
for Shielded Execution. In 12th European Conference on Computer Systems. ACM.

[27] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David Sommer,
Arthur Gervais, Ari Juels, and Srdjan Capkun. 2017. ROTE: Rollback Protection
for Trusted Execution. In 26th USENIX Security Symposium (USENIX Security 17).
Vancouver, BC.

[28] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday Savagaonkar. 2013. Innovative Instructions
and Software Model for Isolated Execution. In 2nd International Workshop on
Hardware and Architectural Support for Security and Privacy. ACM.

[29] Olga Ohrimenko, Felix Schuster, Cedric Fournet, Aastha Mehta, Sebastian
Nowozin, Kapil Vaswani, andManuel Costa. 2016. Oblivious Multi-Party Machine
Learning on Trusted Processors. In 25th USENIX Security Symposium. USENIX
Association.

[30] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. 2009.
Hey, you, get off of my cloud: Exploring information leakage in third-party
compute clouds. In Proceedings of the 16th ACM conference on Computer and
communications security. ACM.

[31] Mark Russinovich. 2017. Introducing Azure confidential computing. https:
//azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/.

[32] Vinnie Scarlata, Simon Johnson, James Beaney, and Piotr Zmijewski. 2018. Sup-
porting Third Party Attestation for Intel SGX with Intel Data Center Attestation
Primitives. (2018). https://software.intel.com/sites/default/files/managed/f1/b8/
intel-sgx-support-for-third-party-attestation.pdf

[33] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-Ruiz, and
M. Russinovich. 2015. VC3: Trustworthy Data Analytics in the Cloud Using SGX.

http://arxiv.org/abs/1810.06080
http://arxiv.org/abs/1810.06080
http://arxiv.org/abs/1810.06080
https://www.alibabacloud.com/product/ebm
https://www.alibabacloud.com/product/ebm
https://fortanix.com/
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://api.portal.trustedservices.intel.com/
https://api.portal.trustedservices.intel.com/
https://software.intel.com/sites/default/files/managed/57/0e/ww10-2016-sgx-provisioning-and-attestation-final.pdf
https://software.intel.com/sites/default/files/managed/57/0e/ww10-2016-sgx-provisioning-and-attestation-final.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://arxiv.org/abs/1801.05863
http://arxiv.org/abs/1801.05863
https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/
https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/
https://software.intel.com/sites/default/files/managed/f1/b8/intel-sgx-support-for-third-party-attestation.pdf
https://software.intel.com/sites/default/files/managed/f1/b8/intel-sgx-support-for-third-party-attestation.pdf

In 36th IEEE Symposium on Security and Privacy.
[34] Jaebaek Seo, Byoungyoung Lee, Seongmin Kim, Ming-Wei Shih, Insik Shin,

Dongsu Han, and Taesoo Kim. 2017. SGX-Shield: Enabling Address Space Layout
Randomization for SGX Programs. In The Network and Distributed System Security
Symposium.

[35] Shweta Shinde, Dat Le Tien, Shruti Tople, and Prateek Saxena. 2017. Panoply:
Low-TCB Linux Applications With SGX Enclaves. In The Network and Distributed
System Security Symposium.

[36] Rohit Sinha, Sriram Rajamani, Sanjit Seshia, and Kapil Vaswani. 2015. Moat: Veri-
fying Confidentiality of Enclave Programs. In 22nd ACM Conference on Computer
and Communications Security. ACM.

[37] Claudio Soriente, Ghassan Karame,Wenting Li, and Sergey Fedorov. 2019. Replica-
TEE: Enabling Seamless Replication of SGX Enclaves in the Cloud. In Proceedings
of the 2019 IEEE European Symposium on Security and Privacy.

[38] Raoul Strackx and Frank Piessens. 2016. Ariadne: A Minimal Approach to State
Continuity. In 25th USENIX Security Symposium. USENIX Association.

[39] Yogesh Swami. 2017. SGX Remote Attestation is not Sufficient. Cryptology ePrint
Archive, Report 2017/736. https://eprint.iacr.org/2017/736.

[40] Sandeep Tamrakar, Jian Liu, Andrew Paverd, Jan-Erik Ekberg, Benny Pinkas,
and N. Asokan. 2017. The Circle Game: Scalable Private Membership Test Using
Trusted Hardware. In ACM on Asia Conference on Computer and Communications
Security. ACM.

[41] Florian Tramer, Fan Zhang, Huang Lin, Jean-Pierre Hubaux, Ari Juels, and Elaine
Shi. 2017. Sealed-Glass Proofs: Using Transparent Enclaves to Prove and Sell
Knowledge. In Proceedings of the 2017 IEEE European Symposium on Security and
Privacy.

[42] D. Tychalas, N. G. Tsoutsos, and M. Maniatakos. 2017. SGXCrypter: IP protection
for portable executables using Intel’s SGX technology. In 22nd Asia and South
Pacific Design Automation Conference.

[43] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient
Out-of-Order Execution. In 27th USENIX Security Symposium (USENIX Security
18). USENIX Association, Baltimore, MD.

[44] Stephan van Schaik, Alyssa Milburn, Sebastian ÃŰsterlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2019. RIDL:
Rogue In-flight Data Load. In 40th IEEE Symposium on Security and Privacy.

[45] Venkatanathan Varadarajan, Yinqian Zhang, Thomas Ristenpart, and Michael
Swift. 2015. A Placement Vulnerability Study in Multi-Tenant Public Clouds. In
USENIX Security Symposium.

[46] SamuelWeiser andMarioWerner. 2017. SGXIO: Generic Trusted I/O Path for Intel
SGX. In Proceedings of the Seventh ACM on Conference on Data and Application
Security and Privacy (CODASPY ’17). ACM, New York, NY, USA.

[47] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. 2016. Town
Crier: An Authenticated Data Feed for Smart Contracts. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security (CCS
’16). ACM, New York, NY, USA.

[48] Fan Zhang, Ittay Eyal, Robert Escriva, Ari Juels, and Robbert Van Renesse. 2017.
REM: Resource-Efficient Mining for Blockchains. In 26th USENIX Security Sym-
posium. USENIX Association.

[49] Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa, Joseph E.
Gonzalez, and Ion Stoica. 2017. Opaque: An Oblivious and Encrypted Distributed
Analytics Platform. In 14th USENIX Symposium on Networked Systems Design and
Implementation. USENIX Association.

[50] Guy Zyskind, Oz Nathan, and Alex Pentland. 2015. Enigma: Decentralized
Computation Platform with Guaranteed Privacy. CoRR abs/1506.03471 (2015).
arXiv:1506.03471 http://arxiv.org/abs/1506.03471

A PROVERIF CODE
The ProVerif code for the security proof is listed below.
(* EPID scheme *)

type epidikey.
type epidvkey.

fun epidvk(epidikey): epidvkey.

type epidmkey.
type epidpkow.
type epidcert.

fun epidpk(epidmkey, bitstring): epidpkow.
fun epidct(epidpkow, epidikey, bitstring): epidcert.
fun epidsign(bitstring, epidmkey, epidcert): bitstring.
reduc forall m: bitstring, k: epidmkey, c: epidcert;
getepidmsg(epidsign(m, k, c)) = m.
reduc forall m: bitstring, mk: epidmkey, ik: epidikey, nonce: bitstring;

checkepidsign(
epidsign(m, mk, epidct(epidpk(mk, nonce), ik, nonce)),
epidvk(ik)
) = m.

fun vk2bs(epidvkey): bitstring.
reduc forall vk: epidvkey; bs2vk(vk2bs(vk)) = vk.

fun pk2bs(epidpkow): bitstring.
reduc forall pk: epidpkow; bs2pk(pk2bs(pk)) = pk.

fun ct2bs(epidcert): bitstring.
reduc forall ct: epidcert; bs2ct(ct2bs(ct)) = ct .

(* Symmetric encryption *)
type sekey.

fun senc(bitstring, sekey): bitstring.
reduc forall m: bitstring, k: sekey;
sdec(senc(m, k), k) = m.

(* Diffie-Hellman *)
type G.
type exponent.
const g: G [data].
fun exp(G, exponent): G.
equation forall x: exponent, y: exponent;
exp(exp(g, x), y) = exp(exp(g, y), x).

fun G2sek(G): sekey.
fun G2bs(G): bitstring.
reduc forall gxy: G; bs2G(G2bs(gxy)) = gxy .

(* SGX related *)
type sgxsp.
typemrenc.
type rpkey.

funmr(sgxsp):mrenc.

fun egetrpkey(sgxsp): rpkey.
fun ereport(sgxsp, mrenc, bitstring): bitstring.
reduc forall sFrom: sgxsp, rTo:mrenc, m: bitstring;
egetreport(ereport(sFrom, rTo, m)) = m.
reduc forall sFrom: sgxsp, rTo:mrenc, m: bitstring;
egetmrfrom(ereport(sFrom, rTo, m)) = mr(sFrom).
reduc forall sFrom: sgxsp, sTo: sgxsp, m: bitstring;
everif(ereport(sFrom, mr(sTo), m), egetrpkey(sTo)) = m.

(* free names *)
free ae_ie: channel.
free ie_qe: channel.
free ae_qe: channel.
free la: channel.
free ra: channel.
free c: channel.

free epidikIntel: epidikey [private].

free sgxIntelQE: sgxsp [private].
free sgxIssueE: sgxsp [private].
free sgxAttestE: sgxsp [private].
free sgxIsvE: sgxsp [private].

free s: bitstring [private].

(* query *)
query attacker(s).

(* protocol *)

let IntelQE(sp: sgxsp, mk: epidmkey, ct: epidcert, la: channel) =
in(la, erpt: bitstring);
let rpt = everif(erpt, egetrpkey(sp)) in
let mrf = egetmrfrom(erpt) in
out(la, epidsign((mrf , rpt), mk, ct)).

let IssueE(sp: sgxsp, epidik: epidikey, aem:mrenc,

https://eprint.iacr.org/2017/736
http://arxiv.org/abs/1506.03471
http://arxiv.org/abs/1506.03471

qem:mrenc, qec: channel, ae: channel) =

(* msg 1 *)
in(ae, req: bitstring);

(* get IAS quote of cert *)
let vk = epidvk(epidik) in
out(qec, ereport(sp, qem, vk2bs(vk)));
in(qec, cert: bitstring);

new nonce: bitstring;

(* msg 2 *)
out(ae, (nonce, cert));

(* msg 3 *)
in(ae, quotepk: bitstring);
let (mrf :mrenc, pk: bitstring)
= checkepidsign(quotepk, epidvk(epidikIntel)) in

(* security check: verify the identity of AttestE *)
if mrf = aem then

(* msg 4 *)
out(ae, epidct(bs2pk(pk), epidik, nonce)).

let AttestE(sp: sgxsp, qem:mrenc, qec: channel,
ie: channel, la: channel) =

(* msg 1 *)
new req: bitstring;
out(ie, req);

(* msg 2 *)
in(ie, (nonce: bitstring, cert: bitstring));
new mk: epidmkey;
let pk = epidpk(mk, nonce) in

(* get IAS quote *)
out(qec, ereport(sp, qem, pk2bs(pk)));
in(qec, quotepk: bitstring);

(* msg 3 *)
out(ie, quotepk);

(* msg 4 *)
in(ie, ct: bitstring);

(* remote attesation *)
in(la, erpt: bitstring);
let rpt = everif(erpt, egetrpkey(sp)) in
let mrf = egetmrfrom(erpt) in
out(la, (epidsign((mrf , rpt), mk, bs2ct(ct)), cert)).

let IsvE(sp: sgxsp, aem:mrenc, la: channel, ra: channel) =

(* rcv isv challenge *)
in(ra, (gx: G, nonce: bitstring));
new y: exponent;
let dhsk = G2sek(exp(gx, y)) in
let enonce = senc(nonce, dhsk) in

(* get OPERA quote *)
out(la, ereport(sp, aem, (exp(g, y), enonce)));
in(la, (quote: bitstring, cert: bitstring));

(* send response *)
out(ra, (quote, cert));

(* rcv isv secret *)
in(ra, emsg: bitstring).

let IsvClient(isvm:mrenc, iem:mrenc, ra: channel) =

(* send challenge *)
new x: exponent;
new nonce: bitstring;
out(ra, (exp(g, x), nonce));

(* rcv response *)
in(ra, (quote: bitstring, cert: bitstring));

let (mrfie:mrenc, asvk: bitstring)
= checkepidsign(cert, epidvk(epidikIntel)) in

(* security check: verify the identity of IssueE *)
if mrfie = iem then
let (mrf :mrenc, (gy: G, enonce: bitstring))
= checkepidsign(quote, bs2vk(asvk)) in

(* security check: verify the identity of the attested enclave *)
if mrf = isvm then
let dhsk = G2sek(exp(gy, x)) in
if sdec(enonce, dhsk) = nonce then

(* send secret *)
out(ra, senc(s, dhsk)).

process
let epidvkIntel = epidvk(epidikIntel) in out(c, epidvkIntel);
new epidmkQE1: epidmkey;
new epidmkQE2: epidmkey;
new nonceQE1: bitstring;
new nonceQE2: bitstring;

let mrQE = mr(sgxIntelQE) in out(c, mrQE);
let mrIE = mr(sgxIssueE) in out(c, mrIE);
let mrAE = mr(sgxAttestE) in out(c, mrAE);
let mrISVE = mr(sgxIsvE) in out(c, mrISVE);

new epidikAS: epidikey;
(

IntelQE(sgxIntelQE, epidmkQE1,
epidct(epidpk(epidmkQE1, nonceQE1),
epidikIntel, nonceQE1), ie_qe) |
IssueE(sgxIssueE, epidikAS, mrAE, mrQE, ie_qe, ae_ie) |
IntelQE(sgxIntelQE, epidmkQE2,
epidct(epidpk(epidmkQE2, nonceQE2),
epidikIntel, nonceQE2), ae_qe) |
AttestE(sgxAttestE, mrQE, ae_qe, ae_ie, la) |
IsvE(sgxIsvE, mrAE, la, ra) |
IsvClient(mrISVE, mrIE, ra)

)

	Abstract
	1 Introduction
	1.1 Intel's Attestation Service
	1.2 Motivation
	1.3 OPERA

	2 An Open Attestation Platform
	2.1 Threat Model
	2.2 Design Overview

	3 Design of OPERA
	3.1 Registration
	3.2 Preparation
	3.3 Attestation
	3.4 Revocation

	4 Analysis of Security and Privacy
	4.1 Proof of Security
	4.2 Privacy Analysis

	5 Implementation and Evaluation
	5.1 Implementation
	5.2 Evaluation

	6 Discussion
	6.1 Application Scenarios
	6.2 Alternative Design Options
	6.3 Dependence on Intel
	6.4 Intel's Third-Party Attestation Scheme

	7 Related Work
	8 Conclusion
	References
	A ProVerif code

