
Defeating Speculative-Execution Attacks on SGX
with HYPERRACE

Guoxing Chen
The Ohio State University

chen.4329@osu.edu

Mengyuan Li
The Ohio State University

li.7533@osu.edu

Fengwei Zhang
Southern University of

Science and Technology
zhangfw@sustech.edu.cn

Yinqian Zhang
The Ohio State University
yinqian@cse.ohio-state.edu

Abstract—Speculative-execution attacks, such as SgxSpectre,
Foreshadow, and MDS attacks, leverage recently disclosed CPU
hardware vulnerabilities and micro-architectural side channels to
breach the confidentiality and integrity of Intel Software Guard
eXtensions (SGX). Unlike traditional micro-architectural side-
channel attacks, speculative-execution attacks extract any data
in the enclave memory, which makes them very challenging to
defeat purely from the software. However, to date, Intel has not
completely mitigated the threats of speculative-execution attacks
from the hardware. Hence, future attack variants may emerge.

This paper proposes a software-based solution to speculative-
execution attacks, even with the strong assumption that con-
fidentiality of enclave memory is compromised. Our solution
extends an existing work called HyperRace, which is a compiler-
assisted tool for detecting Hyper-Threading based side-channel
attacks against SGX enclaves, to thwart speculative-execution
attacks from within SGX enclaves. It requires supports from
the untrusted operating system, e.g., for temporarily disabling
interrupts, but verifies the OS’s behaviors. Additional microcode
upgrades are required from Intel to secure the attestation flow.

Index Terms—Intel SGX, speculative-execution attacks, remote
attestation

I. INTRODUCTION

Intel Software Guard eXtensions (SGX) is introduced in
recent Intel processors aiming to protect data and code within
a secure enclave against its untrusted host operation systems
(OS) or even rogue system administrators. Due to its promise
of shielded execution, both researchers and practitioners have
built various software tools and applications with these fea-
tures, e.g., [1]–[11].

The recently disclosed speculative-execution attacks, i.e.,
Meltdown and Spectre attacks enable a malicious program to
read memory content outside its security domain (e.g., reading
kernel data from userspace). Their variants, SgxPectre [12] and
Foreshadow [13], specifically target Intel SGX to read enclave
memory content, completely breaking the confidentiality guar-
antee of SGX. The newly disclosed Microarchitectural Data
Sampling (MDS) hardware vulnerabilities [14]–[16] could
also enable the adversary to read enclave memory on-the-
fly. Though microcode patches have been released to mitigate
these attacks, the fix does not remove the root cause of the
vulnerabilities—speculative executed instructions beyond se-
curity boundary check and legitimate control flows. Therefore,
new variants of such attacks may be discovered in the future.

In this paper, we aim to address speculative-execution at-
tacks against Intel SGX. Existing solutions typically proposes
to either prevent speculative execution of suspicious memory
loads or close cache side channels [17]–[19], but our solution
is software-based. It (1) requests the untrusted operating sys-
tem (OS) to create a special execution condition for enclaves,
under which speculative-execution attacks are impossible; (2)
verifies such execution condition is met dynamically at runtime
and provides a proof through remote attestation; (3) utilizes
an extended SGX feature that is implementable in microcode
to guard the attestation keys from memory leaks.

The base of our solution is HYPERRACE, which is a soft-
ware framework designed to eliminate all micro-architectural
side-channel threats due to Hyper-Threading and Asyn-
chronous Enclave eXit (AEX) [20]. Particularly, it creates an
auxiliary enclave thread to occupy the sibling hyper thread co-
located on the same physical core. Since thread scheduling is
performed by the OS, which is untrusted, HYPERRACE runs
a statistical tests to verify the threads’ co-location.

To guard against speculative-execution attacks that leak
any data in the enclave memory, HYPERRACE itself is not
enough. In this paper, we propose to disallow interrupts during
the invocation of enclave ECall functions such that secrets
are only allowed to be unsealed into the memory during
invocations. HYPERRACE is used to detect the concurrent
use of hyper threads so that speculative-execution attacks that
leak data from Hyper-Threading is prevented. Eliminating
interrupts during ECall function invocations require mod-
ification of OS kernel to suppress interrupts momentarily;
the enclave code needs to verify the occurrence of interrupts
at the end of it using techniques proposed by Cloak [21],
which is also used in HYPERRACE to detect AEX. As such,
no speculative-execution attacks is possible under such an
execution condition.

We performed a security analysis of the proposed solution,
implemented the kernel components and enclave modules that
create the interrupt-free execution windows, and evaluated its
performance. The main contribution of this work is that it is
the first attempt to mitigate the threats of speculative-execution
attacks from software, even assuming the possibility of new
speculative-execution attack variants discovered in the future.
This idea follows with Intel’s philosophy of TCB recovery [22]
that aims to minimize the security risks enclave data in the

events of SGX compromises.

II. BACKGROUND AND RELATED WORK

A. Intel SGX

Intel Software Guard eXtensions (SGX) is a new hard-
ware feature introduced on recent Intel processors, aiming to
improve the security of application code and data. Sensitive
information can be processed with a shielded execution envi-
ronment called enclave, where the code and data are stored
in Processor Reserved Memory (PRM), a dedicated region of
the DRAM. Any access to an enclave’s memory within the
PRM from any software outside of the enclave, even from the
privileged softwares, will be denied.

Asynchronous Enclave eXit (AEX). To prevent sensitive
information from leaking when interrupts or exceptions occur
during the enclave’s execution, an event called Asynchronous
Enclave eXit (AEX) will be triggered. Particularly, before
transferring control to the OS, the processor saves the enclave’s
execution state in a specific enclave memory area called State
Save Area (SSA). When resuming the enclave’s execution after
the interrupts or exceptions are handled, the processor restores
the enclave’s execution state from SSA.

Remote Attestation. To establish trust between enclaves and
their remote users or clients, remote attestation is introduced
to prove to the remote party that the enclave is running inside
an SGX enabled platform. In current SGX remote attestation
design, an anonymous signature scheme, called Intel Enhanced
Privacy ID (EPID), is adopted [23]. Particularly, an EPID
private key is provisioned by Intel Provisioning Service to
each SGX platform for generating attestation signatures, which
could be verified by Intel Attestation Service. A privileged
enclave, called Quoting Enclave (QE) is issued by Intel to
manage the attestation key and sign attestation data.

Root of Trust. A root provisioning key is generated at Intel’s
internal key generation facility, and burnt into the e-fuse of
SGX platforms. The root provisioning key, as a shared secret,
establishes the root of trust between Intel and the underlying
SGX platform. Besides the root provisioning key, another root
seal key, which is not known by Intel, is also burnt into the
SGX processor during the manufacturing [24]. As root secrets,
these two keys are never exposed in the memory but accessed
by the EGETKEY instruction to derive other keys, which will
be exported to enclave memory for various purposes such as
encryption and decryption.

Local Attestation. Local attestation is used for one enclave to
attest itself to another enclave on the same SGX platform. For
example, to request Intel’s Quoting Enclave to generate remote
attestation signature, an attesting enclave needs to use local
attestation to prove itself to Intel’s Quoting Enclave. Particu-
larly, local attestation is achieved via two SGX instructions:
EREPORT and EGETKEY. EREPORT is called by the attesting
enclave to derive the report key of the target enclave and
generate a cipher-based message authentication code (CMAC)
of the report data. Upon receiving the report data, the target

enclave executes the EGETKEY instruction to derive its report
key to generate a CMAC of the report data and compare it with
the one in the report. If they match, the verification passes. The
derivation of report keys uses both the root provisioning key
and the root seal key, so that the local attestation report could
only be verified locally on the same platform.

Sealing. Sealing is a process used by enclaves to encrypt and
integrity-protect some secrets to be stored outside the enclave.
The encryption is performed using a seal key, which is derived
via the EGETKEY instruction. Both the root provisioning
key and the root seal key will be used in the derivation.
Additionally, a 64-bit KeyID can be specified during the
derivation, enabling an enclave to derive a large number of
different seal keys. The derivation of seals keys uses both the
root provisioning key and the root seal key, so that the sealed
data could only be unsealed locally on the same platform.

Trusted Platform Services. Intel SGX provides trusted plat-
form services, i.e., trusted time and monotonic counters. These
services are enabled by the Intel Converged Security and
Management Engine (CSME). An Intel issued privileged en-
clave, called Platform Service Enclave (PSE) is responsible for
communicating with the CSME and supports these services.

Intel Hyper-Threading. Intel Hyper-Threading is Intel’s
proprietary implementation of simultaneous multithreading
(SMT). When Hyper-Threading is enabled, a single physical
core could execute two separate code streams (called hyper
threads) concurrently. These two hyper threads, regardless
of running in the SGX enclave mode or not, share various
resources on the same physical core, e.g., line fill buffers,
store buffers, branch prediction units (BPU) and translation
lookaside buffers (TLB).

B. Speculative-Execution Attacks and Defenses

Modern CPUs use speculative execution techniques to in-
crease instruction-level parallelism and hence improve CPU
performance. Instructions may be executed speculatively with
regard to their program order but are required to retire in order.
Security checks take place concurrently to the execution of the
instructions, allowing some speculatively executed instructions
to access data across the defined security boundary. Inaccurate
speculation are discarded at retirement.

Speculative-execution attacks. Performance optimization
features in modern CPUs have been exploited by various
speculative-execution attacks. These attacks execute instruc-
tions speculatively to bypass security checks to access secrets
in another domain, e.g., accessing kernel memory or enclave
memory, and exfiltrate secrets using micro-architectural side
channels [25], [26]. According to Canella et al. [27], these
attacks can be categorized into Meltdown-type attacks [13]–
[16], [28], [29] and Spectre-type attacks [12], [30]–[34].

Close to this work are speculative-execution attacks that
work on Intel SGX, such as SgxPectre [12], Foreshadow [13],
Micro-architectural Data Sampling [14], [16]. These attacks
have demonstrated successful extraction of Intel’s secrets from

unpatched SGX processors, breaching the confidentiality and
integrity of SGX enclaves.
• SgxPectre abuses the branch prediction unit (BPU) to

mislead the victim enclave to speculatively execute some
secret-leaking gadgets [12]. One key requirement is for
the adversary to pollute the BPU which is shared by the
two hyper threads on the same physical core, by running
malicious code on the sibling hyper thread of the enclave
thread, or on the same hyper thread and interrupt the
enclave’s execution to pollute the BPU .
• Foreshadow targets the enclave secrets that reside in the

L1 cache [13]. Hence, the attack could be launched on
the sibling hyper thread to leak secrets on-the-fly. Further-
more, even when the enclave is not running, a privileged
adversary could abuse EWB (SGX instruction for evicting
an enclave page, i.e., EPC page, to main memory) and ELD
(SGX instruction for loading an EPC Page back) to load
the enclave data to the L1 cache to launch attacks.
• MDS attacks leak in-flight secret data from CPU-internal

buffers (e.g., line fill buffers, and store buffers) [14]–[16].
Similar to Foreshadow attacks, MDS adversaries have to
launch attacks on the sibling hyper thread, or collect secrets
from the same hyper thread by repeatedly preempting the
enclave’s execution.

Existing defenses. Hardware-based solutions to speculative-
execution attacks introduce new hardware features to prevent
data leakage [17]–[19]. Specifically, Invisispec [17] removes
observable side-effects from data caches; Dynamically Allo-
cated Way Guard (DAWG) [18] isolates caches into protection
domains to prevent data leakage from cache side channels;
SafeSpec [19] introduces shadow structures to store specu-
lative instructions so that speculatively executed instructions
are invisible to the attackers. However, these defenses are yet
to be adopted in commodity processors. Practical mitigation
to speculative-execution attacks on SGX heavily relies on
microcode patches from Intel, which are likely to be bypassed
again once new attack variants are discovered.

Software-based solutions are less explored. Gulmezoglu et
al. proposed FortuneTeller, which leverages deep learning
techniques to predict microarchitectural attacks, including
speculative-execution attacks [35]. Particularly, FortuneTeller
collects program’s execution traces using hardware perfor-
mance counters for training and prediction. However, since
hardware performance counters are not available within SGX
enclaves, FortuneTeller could not be used for detecting
speculative-execution attacks against SGX enclaves. In con-
trast, our work is designed for Intel SGX. And our design
is free of false negatives while deep learning based scheme
is inevitable of false negatives even if hardware performance
counters are extended to be accessible within the enclave.

C. HYPERRACE

HYPERRACE is proposed by Chen et al., aiming to close
all Hyper-Threading side channels [20]. The idea is that when
enclave code is running on one hyper thread, an auxiliary

enclave thread, called shadow thread, will be scheduled by the
OS on the sibling hyper thread so that no malicious program
could share the same physical core with the enclave program.
Since the OS is untrusted, a co-location test is proposed to
verify that the shadow thread does run on the sibling hyper
thread. Specifically, the co-location tests are based on the
contrived data races when the two enclave threads access a
shared variable. Particularly, the two enclave threads keeps
writing their own chosen unique values to the shared variable
and then read from it. When one thread reads a value different
from that she wrote, a data race is observed. Leveraging the
fact that two hyper threads on the same physical core share
L1 cache and two hyper threads on different physical core
communicates via last level cache (LLC), the authors designed
the data race scheme such that when the two hyper threads are
co-located on the same physical core, the measured data race
probabilities will be close to 1, and 0 otherwise. Hypothesis
testing is used to increase the confidence of the test results.
HYPERRACE also adopted AEX detection technique intro-
duced in Cloak [21] to save co-location tests when no AEX
is detected after a successful co-location test. It leverages the
fact that AEX will overwrite the SSA. By setting a marker in
the SSA, the occurrence of an AEX can be detected be check
whether the marker is changed. To date, HYPERRACE remains
the best known approach to detecting Hyper-Threading-based
and AEX-based side-channel attacks against SGX.

III. THREAT MODEL

This paper focuses on speculative-execution attacks against
SGX enclaves from a malicious OS. Although known attacks
have been mostly addressed by microcode updates, we expect
new attacks may at some point breach the confidentiality of
the enclave memory again. Therefore, in the context of this
paper, we assume (1) the confidentiality of the enclave memory
is broken under certain conditions; and (2) the untrusted OS
launches, suspends, resumes, and terminates SGX enclaves
at will. Without the confidentiality of the attestation keys,
however, integrity of the enclaves cannot be maintained.

We assume the processor manufacture, Intel, is trusted, and
the processors’ internal storage is secure. About the adver-
sary’s capability of performing speculative-execution attacks,
we assume one of the follow conditions must be met:
• (R1) Attack via concurrent execution: When Hyper-

Threading is enabled, the malicious code can execute on
the same physical core concurrently as the victim enclave.
• (R2) Attack via AEX: The malicious OS needs to explicitly

preempt the execution of the enclave via AEX, by directly
or indirectly generating interrupts1 or triggering exceptions.

• (R3) Attack after EEXIT: Some attacks could be launched
even when the enclave code is not running. For instance,
Foreshadow could load data into the L1 cache by invoking
EWB and ELD and then perform attacks without triggering
the enclave code.

1Executing EWB will indirectly interrupt all threads of the enclave to flush
invalidated TLB entries.

Algorithm 1: Protected ECall function
Input: Inputs
Output: Outputs, report

1 Set marker in SSA;
2 Co Location Test();
3 Outputs ← ECall Func(Inputs);
4 if the marker in SSA is not changed then
5 report ← Gen Report(Outputs);
6 else
7 report ← NULL;

8 return (Outputs, report)

IV. DESIGN

In this section, we describe our design for defeating
speculative-execution attacks by extending HYPERRACE. Our
design consists of three parts. The first is to detect speculative-
execution attacks within one enclave. The second is to enhance
existing attestation loop to prove to the remote client that the
attesting enclave is free of such attacks. The third is to secure
the trusted platform services to prevent speculative-execution
attacks via replay.

A. Attack Detection

An enclave program usually provides one or more ECall
functions to fulfill sensitive jobs. Each job can be done by
one or multiple invocations of these ECall functions. The
adversary might launch speculative-execution attacks during
one invocation or between two invocations. We first describe
how to detect speculative-execution attacks within one invo-
cation, and then introduce the mechanism to protect secrets
through multiple invocations.

Detection within one invocation. Recall the attack require-
ments in Sec. III, HYPERRACE naturally addresses R1. But
it has limited ability to address R2, because HYPERRACE’s
detection policy has to allow small amount of blocks to be
interrupted for free to tolerate the OS’s normal scheduling ac-
tivities. Hence, within even one single block when secrets are
in plain text in the memory, the adversary could interrupt the
enclave’s execution and launch speculative execution attacks
to leak all secrets in memory. In this case, any detection policy
will fail if it accepts at least one interrupt.

To address this challenge, we suggest disallowing any
interrupt during one invocation of an ECall function. This
cannot be achieved by enclave developers alone. Instead, it
requires support from the OS. So we have our first requirement
for defense:

D1: All interrupts should be eliminated during enclave’s
execution with the help from the OS. Basically, the OS
has to provide extra supports, including but not limited to
disabling timer interrupts and allocating enclave memory
in advance to avoid potential page faults.

Consider that enclave programs are usually designed to
execute minimal critical functions, disabling interrupts for a

short period of time, e.g., one second, should be acceptable
for most platform for better security.

Note that the OS is untrusted even if she agrees to provide
these supports. Hence, the enclave has to verify that these
supports are in place, i.e., by checking whether any interrupt
has occurred during the execution. This can be done by setting
the detection policy such that no AEX is allowed. Now we
can see that an ECall function should be implemented as
shown in Algorithm 1. Line 1 and line 4 are used together
for verifying D1. Any interrupt occurred in between will be
detected since the marker in the SSA will be overwritten
during any AEX. Line 2 runs the co-location test introduced
in HYPERRACE to ensure that the sibling hyper thread is
also under control of the enclave. Line 3 executes operations
specified by the original ECall function. A report of the
outputs will be generated in line 5 if no speculative-execution
attacks are detected during the execution. The report is used
for attestation, which will be explained in further details in
Sec. IV-B.

Confidentiality between different invocations. Now we will
address R3. While secrets can be protected within one in-
vocation, we still need to protect them from being attacked
during the intervals between consecutive invocations if they
are re-used. For example, after remote attestation, a shared
ECDH key used to protect the communication between the
remote party and the attested enclave will be generated and
stored in the enclave memory. Before the invocation of the next
ECall function, the shared ECDH key will be a natural target.
The adversary could launch speculative-execution attacks to
leak the ECDH key without being noticed. For example,
Foreshadow could load the secret to L1 cache using EWB and
ELD without call into any ECall function. Hence, we need
a way to protect such secrets between different invocations.

The challenge here lies in that all content of enclave
memory during the intervals can be learnt by the adversary.
While encryption could help protect secrets, the encryption key
itself is also a secret to be protect. To cover these intervals, we
propose to leverage the sealing mechanism to protect secrets.
The key observation is that the seal key is generated from
within the CPU core and thus there is no need to store it in the
memory. Hence, we could introduce the following mechanism:

Sealing-protected intervals: when an ECall function exits,
all secrets are encrypted using the seal key and the seal key
itself is cleared from the enclave memory.

Algorithm 2 demonstrates an implementation of sealing-
protected intervals, which is supposed to replace line 3 in
Algorithm 1, so that the sealing and unsealing processes can
also be monitored and any speculative-execution attack during
these processes can be detected. Here secrets can be unsealed
from previously sealed copy (line 1 – line 3) or generated
within the enclave (line 5). Line 6 executes operations speci-
fied by the original ECall function. Then the secrets need to
be sealed again and the seal key needs to be cleared (line 7 –
line 9).

Note that each time a new seal key (with a new 64-

Algorithm 2: Sealing-protected intervals
Input: Inputs (might include sealed secrets)
Output: Outputs

1 if sealed secrets is in Inputs then
2 secrets ← Unseal(sealed secrets);
3 Clear the seal key;
4 else
5 secrets ← Gen Secrets();

6 Outputs ← ECall Func(Inputs, [secrets]);
7 Derive a seal key with a new random KeyID;
8 Seal secrets with the seal key;
9 Clear the seal key;

10 return Outputs

bit KeyID) should be used to prevent the adversary from
decrypting the secrets using previously leaked seal key.

B. Attestation Enhancement

Now that the enclave could ensure that it has processed the
secrets during the execution without being attacked, it is still
challenging to convince the remote party that the execution
results are trustworthy if the local attestation and/or remote
attestation mechanisms are compromised by the adversary.
The adversary could learn the report keys (which are used to
sign reports for the local attestation) and/or the EPID member
private keys (which are used to sign the quotes for the remote
attestation). Even if the enclaves could detect that they are
attacked, the adversary could fake any enclave and thus any
result using the leaked report keys and/or attestation keys.

The root cause is that these keys will be exposed to memory.
The report keys will be derived and exposed to the target
enclave’s memory for verification. The remote attestation key
will be exposed to the quoting enclave’s memory to sign the
attestation data. This provides the adversary a chance to obtain
the keys.

To address this problem, we suggest the manufacturer to
extend the functionality of SGX instructions to protect the
attestation keys of both local attestation and remote attestation
processes, and thus enable the remote party to detect attacks.
The proposed extension of SGX for securing local attestation
and remote attestation is described as follows:

Securing local attestation. We first deal with local attestation.
When an attested enclave tries to attest itself to a target en-
clave, it calls EREPORT to sign its attestation data. EREPORT
instruction derives the report key of the target enclave and
signs the report data. Note that this process is done within the
attested enclave using microcode, so that the target enclave’s
report key is not exposed to the attested enclave’s memory.
However, when the target enclave tries to verify the attestation
data, it uses EGETKEY to derive its report key to verify
the signature. In this procedure, the target enclave’s report
key is exported to the target enclave’s memory, offering the
adversary a window to steal the report key. Once the adversary
obtains the report key of a target enclave, she could pretend

to be any enclave to gain the trust of the target enclave. For
example, with the leaked report key of Intel’s quoting enclave,
a malicious program could pretend to be any valid enclave to
deceive the Intel’s quoting enclave to pass the local attestation
and then the remote attestation.

To address this problem, we propose the second require-
ment:

D2: The report key should never be exposed in the enclave
memory. Instead, to verify the report without exposing the
report key, we propose a new SGX leaf instruction, named
as EVERIFY. It takes as input a report and the correspond-
ing report signature, derives the report key, verifies report
signature, and outputs only the verification result (e.g., a
single bit indicating success or failure).

The extra overhead to implement EVERIFY using mi-
crocode should be low, because the main components, i.e.,
deriving report key and generating the CMAC signature of the
report, are already realized in EREPORT. With the introduction
of EVERIFY, the report keys will never be exported to the
enclave’s memory and the local attestation can be secured.

Securing remote attestation. In the current SGX remote
attestation design, the attestation key, i.e. EPID private member
key, is exposed to Intel’s quoting enclave and used to sign the
attestation data, presenting the adversary a chance to extract
the attestation key.

To secure the remote attestation procedure, we introduce the
third requirement:

D3: The remote attestation key should never be exposed in
the enclave memory. We propose to extend the functionality
of EREPORT to allow the derivation of a special report key
using the root provisioning key only (without the root seal
key), to sign the attestation data.

The overhead for extending EREPORT can be even smaller
than implementing EVERIFY. Note that in this way the
original EPID signature scheme is replaced by the message
authentication scheme CMAC. Whether it is feasible to imple-
ment a signature scheme, or even an EPID-like group signature
using microcode is beyond the scope of this paper.

To address the concerns that might rise from switching from
EPID to CMAC. We would like to discuss the trade-offs:
• Privacy: EPID scheme leaks only group ID of the under-

lying SGX platform to both Intel and the remote client,
while CMAC scheme leaks the underlying SGX platform’s
identity to Intel (as Intel has to know the exact identity to
fetch the corresponding attestation key for verification) but
hide the identity from the remote client completely (as the
attestation signature can be encrypted using Intel’s public
key). In cases Intel is fully trusted, CMAC might provide
better privacy protection against the remote client.

• Overhead: EPID scheme uses costly bilinear maps. Switch-
ing to CMAC might benefit applications that require fre-
quent attestation. On the other side, it introduces extra
workload for Intel’s Attestation Service to maintain much

Fig. 1. Workflow of an example enclave application.

larger amount of report keys of all SGX platforms than
EPID group public keys.

Putting it together. With the above extensions to secure both
local and remote attestation, we can mitigate the attacks that
can read the entire memory. Fig. 1 is the workflow of an
example enclave application and the remote ISV client:
• The ISV client generates an ECDH key pair, sends the

ECDH public key and a nonce to the SGX platform.
• The SGX platform launches the ISV enclave, the ISV

enclave generates an ECDH key pair, derives the shared
ECDH key, within one invocation. These secrets will then
be sealed using a new seal key generated using a random
KeyID. If no AEX is detected, the enclave produces a
report with its ECDH public key and nonce (encrypted
using the shared key) as report data using EREPORT. If
any AEX is detected, the enclave terminates and no valid
report will be generated.
• The report is passed to Intel’s quoting enclave and verified

by EVERIFY. The quoting enclave then signs the report
via EREPORT using report key derived from the root
provisioning key, resulting in a quote.
• The signed quote is then returned to the client, and for-

warded to Intel for verification. A secure communication
channel is created between the client and the enclave.
• If the verification passes, the client could then send the

encrypted (using the shared key) secrets to the enclave for
processing.
• The secrets are decrypted and processed, and the results

are encrypted, within one invocation. Note that the shared
ECDH key is unsealed within the invocation for decryption
and encryption, and re-sealed after these operations. If no
AEX is detected, the ISV enclave produces a report for the
encrypted results. The report is signed by Intel’s quoting
enclave and returned to the client along with the encrypted
results. If any AEX is detected, the ISV enclave terminates
and no valid report can be generated. Note that the sealed
ECDH key is within the enclave memory and will be
gone when the enclave terminates. Hence, re-launching the
enclave after attack will not resume the execution.

• After verification by Intel, the client could assure that the
results are reliable and the secrets are not leaked.

Note that the sealing process mentioned here is used for
protecting secrets between different invocations of the same
enclave instance, rather than persisting secrets from one en-
clave instance to anther. Because the adversary could attack
one enclave instance to obtain the seal key and then forge
arbitrary sealed data to fool the other enclave instances. To
enable the original functionality of sealing, we need to address
such replay-assisted speculative-execution attacks.

C. Replay Prevention

Intel SGX has already provided trusted monotonic counters
through trusted platform service to address replay attacks.
However, in its current design, the trusted platform service
itself is vulnerable if memory confidentiality is breached:
• Counter values in sealed data can be manipulated: seal keys

of the ISV enclave might be obtained by the adversary to
forge valid sealed data with up-to-date counter value to
bypass the monotonic counter check.

• Counter values in the CSME can be manipulated: The
adversary might attack the platform service enclave (PSE)
that provides the trusted monotonic counter service, to
obtain the credentials for communication with the Intel
Converged Security and Management Engine (CSME),
which manages the replay-protected storage. In this way,
the adversary could pretend to be the PSE to communicate
with the CSME to manipulate the monotonic counter values
to launch replay attacks.

To address the first issue, we leverage local attestation to
ensure the integrity of counter values. Specifically, the enclave
could generate a local attestation report using EREPORT with
itself as the target enclave, and then verify it using EVERIFY.
Since the report key will not be revealed in both processes,
the adversary could not fake a valid local attestation report,
so that the integrity of the counter values can be guaranteed.

The second issue can be addressed similarly as how we
enhance remote attestation. Here, the CSME can be considered
as the remote client the PSE would like to attest itself to. The
PSE uses the extended EREPORT to generate a report with
a special report key (for replay prevention purpose) derived
using the root provisioning key only. The same report key can
be derived by Intel also. The CSME needs to communicate
with Intel’s Provision Service to obtain this report key to verify
the generated reports.

Secure sealing processes. With the above replay prevention,
we now describe how to secure the sealing process:
• Within one invocation that performs initial sealing, the

enclave increases the monotonic counter value first. Then, a
new seal key with a randomly generated KeyID is derived
to seal secrets. After sealing, the seal key is cleared. If no
attack is detected then, generate a report of the sealed data
to be attached to the sealed data.

• Within one invocation that perform unsealing and re-
sealing, the enclave also increases the monotonic counter

value first, and then verifies the attached report and check
whether the sealed counter value is less than the current
monotonic counter value by 1 (due to the increment at
the beginning). If all checks pass, it unseals the secrets,
processes the secrets and re-seals the secrets with a new
seal key. If no attack is detected in the end, it generates a
report and attaches it to the sealed data.

V. SECURITY ANALYSIS

In this section, we analyze the security of our proposed
scheme. We argue the following secrets can be protected:
• Intel’s secrets: Intel secrets include remote attestation keys

and report keys of Intel issued enclaves, which are used
to secure the attestation loop between the ISV enclave and
the remote client. When the adversary could obtain such
secrets, she could disguise as any valid enclave.
• ISV enclave secrets: ISV enclave secrets include random

generated secret keys, seal keys, report keys and remote
user’s secrets to be processed by ISV enclaves.

For Intel secrets, since they are so critical that any leakage
of them could break SGX’s security guarantees completely.
We proposed D2 and D3 to prevent them from being ex-
posed to the enclave memory, thus eliminating the chances
of speculative-execution attacks on them completely. In this
way, the adversary could never forge a valid quote. When the
remote client received a quote that is verified to be valid by
Intel Attestation Service, she could confirm that the quote data
is generated by the specific ISV enclave.

For ISV enclave secrets, when the remote client receives a
result from the ISV enclave with a valid quote, all ISV enclave
secrets that ever appear in the enclave memory cannot be
leaked via speculative-execution attacks. Since the adversary
might launch speculative-execution attacks at any time, each
result received from the SGX platform should be verified
via remote attestation. With D1 and HYPERRACE in place,
speculative-execution attacks during an ECall invocation will
be detected and no valid quote will be generated. To avoid
being detected, the adversary could only attempt to launch
attacks between invocations. Since secrets are protected by
sealing between invocations, the adversary has to obtain the
seal key that is exposed to enclave memory. In our scheme,
a random new seal key is generated each time, which is
protected by the following means:
• Seal keys used for sealing-protected intervals: each seal key

is exposed to the enclave memory twice, once for sealing
and the other for unsealing. Since the seal key is cleared
before finishing an ECall function invocation, it can only
be attacked during one invocation, which will be detected
by the end of the corresponding ECall function invocation
and thus no valid quote will be generated.
• Seal keys used for persistent storage in general: The

detection of speculative-execution attacks after the sealing
operations guarantees that the seal key is secure after it is
generated and used for sealing. As our scheme associates
a monotonic counter with each sealed data to make sure

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 n
um

er
ic
 s
or

t

 s

tri
ng

 s
or

t

 b

itf
ie
ld

 fp
 e

m
ul
at

io
n

 fo

ur
ie
r

 a
ss

ig
nm

en
t

 id
ea

 h
uf

fm
an

 n

eu
ra

l n
et

lu
 d

ec
om

po
si
tio

n

R
a
ti
o
 #

 o
f
e
x
tr

a
 i
te

ra
ti
o
n
s

 p
e
r

s
e
c
o
n
d

0.011

0.060

0.018

0.033

0.013

0.001

0.013 0.013

0.004

0.011

Fig. 2. Performance gain.

the seal key is only used once for sealing and once for
unsealing, its security can be guaranteed. The unsealed data
should only be trusted if a valid report is attached.

With all the analysis above, we can conclude that no
adversary could learn enclave secrets without being detected.

VI. IMPLEMENTATION AND EVALUATION

We implemented a prototype system on Linux kernel 4.4.40
and Intel SGX SDK (version 2.2.100.45311). Our evaluation
focuses on D1. Since D2 and D3 rely on the manufacturer, we
leave their evaluation to future work.

A. Implementation

To achieve D1 which requires the OS to eliminate interrupts
for logical cores running in the enclave mode, we made two
modifications to the kernel: firstly, we set the scheduler option
isolcpus in the Linux kernel configuration to isolate logical
cores the might run enclave code from the kernel scheduler
so that the OS will not schedule other tasks on the logical
core that runs the enclave code to trigger interrupts. Second,
to eliminate local timer interrupts, we implemented a kernel
module to provide APIs for configuring the local Advanced
Programmable Interrupt Controller (APIC). Specifically, we
disabled and enabled the APIC using the APIC software
enable/disable flag in the spurious-interrupt vector register,
according to Intel manual [24]. Hence, before entering the
enclave’s critical sections, the local APIC will be disabled via
the kernel module. After leaving the enclave’s critial sections,
the local APIC will be enabled again.

We implemented the co-location test and AEX detection
mechanism introduced in HYPERRACE [20] as a shared library
to provide APIs to enclave developers.

B. Evaluation

We evaluated the performance on a Dell Latitude 5480 lap-
top with an Intel Core i7-7820HQ processor and 8GB memory.
We ported nbench, a set of lightweight CPU and memory
performance benchmarks, to run inside SGX enclaves. nbench
includes 10 benchmark applications. It measures the number
of iterations to perform each benchmark per seconds.

Compared to the performance of nbench without our pro-
tection, our evaluation shows that the performance of the

protected application is actually improved. Fig. 2 shows the
performance gain, reflecting the extra percentages of iterations
that could be performed per second with D1 and our protec-
tion. The performance gains for the 10 benchmark applications
range from 0.1% to 6%, with a geometric mean of 1.8%.
The improvement results from two aspects: (1) since AEX
is eliminated, the cost of context switches is saved, (2) there
is no need to periodically detect AEXs during one invocation
(periodical AEX detection contributes most of the overhead in
the original HYPERRACE design); only one co-location test is
needed at the beginning of an invocation.

VII. CONCLUSION

In this paper, we propose to extend HYPERRACE to detect
speculative-execution attacks. The proposed mitigation scheme
requires supports from untrusted OS but is able to verify OS’s
behavior. The security of our proposed solution is analyzed.
Our implementation of an SGX shared library and OS modi-
fications for attack detection is evaluated.

ACKNOWLEDGMENTS

The work was supported in part by the NSF grants 1718084
and 1750809.

REFERENCES

[1] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-
Ruiz, and M. Russinovich, “VC3: Trustworthy Data Analytics in the
Cloud Using SGX,” in IEEE Symposium on Security and Privacy, 2015.

[2] F. Zhang, E. Cecchetti, K. Croman, A. Juels, , and E. Shi, “Town Crier:
An Authenticated Data Feed for Smart Contracts,” in 23rd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2016.

[3] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa, “Oblivious Multi-Party Machine Learning
on Trusted Processors,” in 25th USENIX Security Symposium, 2016.

[4] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and
I. Stoica, “Opaque: An Oblivious and Encrypted Distributed Analytics
Platform,” in 14th USENIX Symposium on Networked Systems Design
and Implementation. USENIX Association, 2017.

[5] A. Baumann, M. Peinado, and G. Hunt, “Shielding Applications from an
Untrusted Cloud with Haven,” in 11th USENIX Symposium on Operating
Systems Design and Implementation. USENIX Association, 2014.

[6] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche,
D. Eyers, R. Kapitza, P. Pietzuch, and C. Fetzer, “SCONE: Secure Linux
Containers with Intel SGX,” in 12th USENIX Symposium on Operating
Systems Design and Implementation. USENIX Association, 2016.

[7] R. Strackx and F. Piessens, “Ariadne: A Minimal Approach to State
Continuity,” in USENIX Security Symposium. USENIX, 2016.

[8] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: A Dis-
tributed Sandbox for Untrusted Computation on Secret Data,” in 12th
USENIX Symposium on Operating Systems Design and Implementation.
USENIX Association, 2016.

[9] C. che Tsai, D. E. Porter, and M. Vij, “Graphene-SGX: A Practical
Library OS for Unmodified Applications on SGX,” in 2017 USENIX
Annual Technical Conference, Santa Clara, CA, 2017.

[10] S. Shinde, D. L. Tien, S. Tople, and P. Saxena, “Panoply: Low-TCB
Linux Applications With SGX Enclaves,” in Network and Distributed
System Security Symposium, 2017.

[11] J. Seo, B. Lee, S. Kim, M.-W. Shih, I. Shin, D. Han, and T. Kim,
“SGX-Shield: Enabling Address Space Layout Randomization for SGX
Programs,” in Network and Distributed System Security Symposium,
2017.

[12] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “Stealing
intel secrets from sgx enclaves via speculative execution,” in Proceedings
of the 2019 IEEE European Symposium on Security and Privacy, June
2019.

[13] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the intel SGX kingdom with transient out-of-order
execution,” in 27th USENIX Security Symposium, 2018.

[14] S. van Schaik, A. Milburn, S. sterlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “RIDL: Rogue in-flight data load,”
in Security and Privacy (SP), 2019 IEEE Symposium on, May 2019.

[15] M. Minkin, D. Moghimi, M. Lipp, M. Schwarz, J. V. Bulck, D. Genkin,
D. Gruss, F. Piessens, B. Sunar, and Y. Yarom, “Fallout: Reading kernel
writes from user space,” arXiv preprint arXiv:1905.12701, 2019.

[16] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “ZombieLoad: Cross-privilege-boundary data
sampling,” in ACM Conference on Computer and Communications
Security, 2019.

[17] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. W. Fletcher, and
J. Torrellas, “Invisispec: Making speculative execution invisible in the
cache hierarchy,” in International Symposium on Microarchitecture,
2018.

[18] V. Kiriansky, I. A. Lebedev, S. P. Amarasinghe, S. Devadas, and J. Emer,
“DAWG: A defense against cache timing attacks in speculative execution
processors,” in International Symposium on Microarchitecture, 2018.

[19] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin, D. Pono-
marev, and N. Abu-Ghazaleh, “Safespec: Banishing the spectre of a
meltdown with leakage-free speculation,” in Proceedings of the 56th
Annual Design Automation Conference 2019. ACM, 2019.

[20] G. Chen, W. Wang, T. Chen, S. Chen, Y. Zhang, X. Wang, T. Lai, and
D. Lin, “Racing in hyperspace: Closing hyper-threading side channels
on sgx with contrived data races,” in 2018 IEEE Symposium on Security
and Privacy (SP), May 2018.

[21] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and M. Costa,
“Strong and efficient cache side-channel protection using hardware
transactional memory,” in 26th USENIX Security Symposium, 2017.

[22] V. Costan and S. Devadas, “Intel sgx explained,” Cryptology ePrint
Archive, Report 2016/086, 2016, https://eprint.iacr.org/2016/086.

[23] S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and F. Mckeen, “Intel
Software Guard Extensions: EPID Provisioning and Attestation Ser-
vices,” Intel, Tech. Rep, Tech. Rep., 2016.

[24] “Intel 64 and IA-32 architectures software developer’s
manual, combined volumes:1,2A,2B,2C,3A,3B,3C and 3D,”
https://software.intel.com/sites/default/files/managed/39/c5/325462-
sdm-vol-1-2abcd-3abcd.pdf, 2017, order Number: 325462-063US.

[25] C. Percival, “Cache missing for fun and profit,” in 2005 BSDCan, 2005.
[26] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and counter-

measures: the case of AES,” in Topics in Cryptology – CT-RSA, 2006.
[27] C. Canella, J. V. Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner,

F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic evaluation
of transient execution attacks and defenses,” in 28th USENIX Security
Symposium (USENIX Security 19). USENIX Association, Aug. 2019.

[28] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in 27th USENIX
Security Symposium, 2018.

[29] J. Stecklina and T. Prescher, “Lazyfp: Leaking FPU register state us-
ing microarchitectural side-channels,” arXiv preprint arXiv:1806.07480,
2018.

[30] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in 40th
IEEE Symposium on Security and Privacy, 2019.

[31] M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and D. Gruss, “Net-
spectre: Read arbitrary memory over network,” in Computer Security –
ESORICS 2019. Cham: Springer International Publishing, 2019.

[32] V. Kiriansky and C. Waldspurger, “Speculative buffer overflows: Attacks
and defenses,” arXiv preprint arXiv:1807.03757, 2018.

[33] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre returns! speculation attacks using the return stack buffer,” in
12th USENIX Workshop on Offensive Technologies, 2018.

[34] G. Maisuradze and C. Rossow, “ret2spec: Speculative execution using
return stack buffers,” in ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2018.

[35] B. Gülmezoglu, A. Moghimi, T. Eisenbarth, and B. Sunar, “For-
tuneteller: Predicting microarchitectural attacks via unsupervised deep
learning,” arXiv preprint arXiv:1907.03651, 2019.

