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Abstract. The excitation of ultrafast dynamics in antiferromagnetic materials is an appealing feature for
the realization of novel spintronic devices. Several experiments have shown that static and dynamic
behaviors of the antiferromagnetic order are strictly related to the stabilization of multidomain states and
the manipulation of their domain walls (DWs). Hence, a full micromagnetic framework should be used as
a comprehensive theoretical tool for a quantitative understanding of those experimental findings. This
model is used to perform numerical experiments to study the antiferromagnetic DW motion driven by the
spin-orbit torque. We have derived simplified expressions for the DW width and velocity that exhibit a
very good agreement with the numerical calculations in a wide range of parameters. Additionally, we
have found that a mechanism limiting the maximum applicable current in an antiferromagnetic racetrack
memory is the continuous domain nucleation from its edges, which is qualitatively different from what
observed in the ferromagnetic case.



I Introduction:

The nucleation and manipulation of ferromagnetic (FM) domain walls (DWs) have
attracted a lot of attention in recent years due to the promising results for the
development of spintronic devices such as racetrack memories,'*> memristors,**> and
sensors. ® Nevertheless, the FM DW velocity, which is a key metric to evaluate the
performance of those devices, driven by an external field drops beyond a certain field
threshold (Walker breakdown),” while it saturates when an electric current is used as a
driving force.>®Recent experiments in synthetic antiferromagnets have demonstrated
that the DW velocity can be as large as 750 m/s ? and does not saturate within the

applicable current ranges.'? Ferrimagnetic DWs can also reach high velocities at the
angular momentum compensation point as well.11'? In addition, it has been predicted
that the velocity of DWs in antiferromagnets (AFM) should reach tens of km/s and it is
limited by the group velocity of spin waves.'*!*!> Here, we will focus on this latter
category of materials due to their intriguing properties (absence of stray fields and low
magnetic susceptibilities)!*!% 10+ 17 1819 and  potential importance either from a
technological point of view, design of high-speed devices and better scaling in storage
devices, and from a fundamental point of view to study the statics and the dynamics of
multidomain states. Out of equilibrium, the antiferromagnetic order exhibits relaxation
processes at ps time scale.?’:2!:22 This THz dynamics makes those materials also
appealing for the development of ultrafast spintronic devices.'? In particular, on the path
towards antiferromagnetic spintronics, antiferromagnetic domains can play the same
role as the FM ones being the information carriers. The writing process can be achieved
employing laser pulses® or spin-orbit-torques (SOT),?*:** the manipulation by using
alternating magnetic fields'** or SOT, and the detection can be performed using one of
the readout mechanism already observed experimentally such as tunneling anisotropic
magnetoresistance (TAMR), anisotropic magnetoresistance (AMR), or spin Hall
magnetoresistance (SMR).2627.28

From a numerical point of view, antiferromagnetic dynamics can be described by
atomistic micromagnetic models, 2-or at mesoscopic scale by a continuous
micromagnetic framework that has proven to be very powerful for its ability to
reproduce experimental observations in FM materials.2? These models are based on the
numerical solution of two Landau-Lifshitz-Gilbert equations, each of them describing
one of the two sublattices of the antiferromagnet, strongly coupled through the
exchange interactions. However, in the continuous formulation derived from atomistic
models the exchange interactions are characterized by homogeneous, inter- and intra-
lattice inhomogeneous terms at least.2! Here, we perform an ideal numerical experiment
to study the role of each of those exchange terms in the DW stability and dynamics.?? In
particular, we find that the homogeneous interlattice exchange does not affect the DW
velocity and its role is limited to the stabilization of the antiferromagnetic order. On the
other hand, the DW wvelocity as a function of either interlattice or intralattice
inhomogeneous exchange field follows a square root dependence. We have derived
simplified expressions for both DW size and velocity exhibiting a good agreement with
numerical calculations that can be used for a fast exploration of DW statics and



dynamics in a large space of material parameters. We also have found that the
mechanism limiting the maximum applicable current is the nucleation of domains from
the edges originating by boundary conditions imposed by the Dzyaloshinskii-Moriya
interaction. In general, the continuous micromagnetic framework should be used for the
qualitative understanding of recent switching experiments on antiferromagnetic devices,
tens of microns in size, involving multiple domain states and memristive behavior.**?
The paper is organized as follows. In Section II the micromagnetic framework is
described. Section III discusses the steps to derive the one-dimensional formulation.
Results and conclusions are discussed in Section IV and Section V, respectively.
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FIG. 1. (a) A schematic of the device under investigation characterized by antiferromagnetic material /
heavy metal bilayer, with the indication of the Cartesian coordinate reference system and the device
dimensions. The panel also includes the directions of the current density, J, and the spin polarization, p,

and an example of the cubic discretization mesh (finite difference scheme) with a 2nm side used in this

work to study the AFM. (b). Example of one computational cell with the magnetization vectors of the two
sublattices m, and m, . (c)-(e) Description of the three different exchange interactions included in this

study, (c) inhomogeneous intralattice 4,, = 4,,, (d) homogeneous interlattice 4, acting on the same
computational cell, and (e) inhomogeneous interlattice 4, = 4,, both acting on the neighbors. Here, we

consider the 6-neighbors for the computation of the inhomogeneous exchange terms indicated in (c) and

(e).

II Micromagnetic Model

Device description. Figure 1 shows a schematic of the system under investigation. It is a
thin slab of an insulating AFM with perpendicular anisotropy, having lateral dimensions
of 400x200x2nm’, on top of a heavy metal (HM) (e.g. Pt, Ta). A Cartesian
coordinate system is introduced (see Fig. 1(a)) with the z-axis being the out-of-plane
direction, while the x and y-axes are related to the length and the width of the device,
respectively. The electric current is applied along the x -direction and flows in the HM



layer, because of the SOT,3233:3* a spin density along the y -direction at the interface
HM/AFM is accumulated.

Model description. Within the micromagnetic approach the AFM order is described by

means of the magnetizations of two sublattices (m, and m,) strongly antiferromagnetic

coupled by the exchange interaction. We consider a finite difference discretization
scheme (see Fig. 1) with the value of m, and m, reflecting the average magnetization

of the spins within the same discretization cell. The AFM dynamics driven by the
current can be described by the following LLG-Slonczewski equations, 3*:36-37

(M

where y, is the gyromagnetic ratio and « is the Gilbert damping parameter, while

Toy = Vollg m; x (mi X P) ()

is the antidamping SOT mainly due to the spin-Hall effect originating from a current
density J flowing through the HM,*3%** with the amplitude given by
_ hlgy,

- 2et p,M
Planck’s constant, the spin Hall angle, the electron charge, the AFM film thickness, and

i J . In the last expression, %, 6, , e<0, t, y, are the reduced

the vacuum permeability respectively. The saturation magnetization is equal in both

sublattices My, =M, =M. p=zxj is the direction of the spin Hall polarization (see

€]

Fig. 1), j being the unit vector of the current density direction. Additionally, H, , and

H, , are the effective fields for the first and second sublattice respectively.’® They

include the wuniaxial anisotropy, the demagnetizing term, and the interfacial
Dzyaloshinskii-Moriya interaction (iDMI) contribution.® ** The exchange energy
density can be written as
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giving an exchange field with three contributions
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where « is the lattice constant. In Eq. (3), the first term, 4, >0, is the inhomogeneous
intralattice contribution (Fig. 1(c)), the second one, 4, <0, is the homogeneous

interlattice (Fig. 1(d)), and the third, 4, <0, is the inhomogeneous interlattice



contribution (Fig. 1(e)). The demagnetizing field is calculated by solving the
magnetostatic problem#® for the total magnetization M, + M, where My =M m, .
Our scheme is based on a field-based approach, so we compute directly the effective
field rather than derive it from the energy density.2! The antiferromagnetic material has
been discretized into cubic cells with a side of 2 nm (Fig. 1 (b)). The following material

parameters have been used:?> ** !l lattice constant ¢=0.35nm , saturation

magnetization M =0.4 MA/m, uniaxial anisotropy constant K, = 64kJ/m’, being z

its easy axis, spin Hall angle 6, =0.044, Gilbert damping « = 0.1, and gyromagnetic

ratio y,=0221Mm/As . The expressions for the iDMI field are
2D 2D

Hpypy == v (w.(Vom,))=Vm,_), Hp,,,=— (u.(V'm,)=Vm,_), where the
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iDMI parameter D =0.11mJ/m*and u_ is the unit z-vector. In order to investigate the

role of exchange fields in statics and dynamics, the exchange constants range from few
pJ/m to few tens of pJ/m.

Boundary conditions. At the edges, the iDMI boundary conditions,* are determined by

D D
the fields H =— d H =— h
e fields H,,, ", (m,x(nxu)) and H,, Y (m,x(nxu,)) where n

(U} (UMY
is the normal vector to the edge as in the case of the FM. In addition, it necessary to take
into account the contribution from the interlayer exchange field, therefore, the boundary
conditions for the i-th sublattice are given by the relation

24,0,m, +A12mi><(6nmjxml.)+Dml.><(n><uZ):0, (5

where n is the unit vector perpendicular to the edge.** At the right edge, we have:

I’)’l(]\])r +1,Cy,CZ )i,x = m(Nx,Cy,CZ )i’x _é(m(Nx’cy’Cz),-,z B 2A12 m(NX’C,V’CZ )j,z]

m(Nx+1,cy,cZ) :m(N c c)i’y (6)
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m(NX +1l,¢,,c. )i,z = m(Nx,cy,cZ )i’z +§[m(Nx,cy,cZ)i,x — 2A12 m(Nx,cy,cz)j,x]
where the couple i and j can be the following values, i, j =(1,2) or, I, ] =(2,1) and
DAx

&= —~- N, is the number of computational cells along the x
24, (1-(4,/24,) )

X

direction, Ax the lateral cell size, and ¢, c, refer to an arbitrary cell along y and z

directions. Similar expressions are also valid for the other edges. For the special case
A, =-24,,athe Eq. (6) becomes



m(NX +1,cy,cz)i’x =m(N

m(NX+1,cy,cz)i,y =m(N ,C ’Cz)i,y , (7)

which is essentially the boundary condition of the ferromagnetic case for an exchange
two times larger.

Domain wall stability. All the simulations were performed considering an
antiferromagnetic Néel DW type as a ground state that are stabilized by the iDMI. The

m, x he/f,1 =0
=0
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with a residual of 10”. Figure 2(a) shows a snapshot (the color is related to the out-of-

plane component) of a typical ground state of the two sublattices.
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equilibrium configuration has been computed by solving the equations
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FIG. 2. (a) A snapshot of an antiferromagnetic Néel DW (the color is related to the out-of-plane
component of the magnetization as indicated in the color bar), where its position, g, and its size, A, are

also indicated. (b) Definition of the Néel order parameter /, the magnetization of the first sublattice m,
and the magnetization of the second sublattice m, used in this work. ®, and @, are the angles of m,
and m, vectors with respect to the x -axis. (¢) An example of the DW profile (z-component of the
magnetization m,_) for the first sublattice as computed from micromagnetic simulations (empty circles)

compared with the Walker ansatz (solid line) considering the parameters listed in Section II, and for
A, =15p)/m and 4, =0pJ/m. q and A are also indicated for comparison with (a).

IIT Analytical derivation of domain wall velocity and width

The derivation of the simplified expressions for the DW velocity and width is based on
the 1-dimensional approximation (only the spatial dependence along the x -direction is
considered) and assuming that the magnetization profile can be described by the Walker



ansatz as reported in Eq. (8) (see Fig. 2(c) for a comparison with the micromagnetic
profile).

A() (8)

D, (2, x) = D,(?)

o(t,x)= 2arctan(exp£Q x_‘l(’)j]

where ¢, A, and ®,,®, are the DW position, width, and sublattice internal angles, as
defined in Figs. 2(a) and (b). Q=+1 allows distinguishing between an up-down

transition (Q =1) or a down-up transition (Q =—1).

Simplified model. Analytical models for the description of DW dynamics in AFM have
been already derived. See for example Appendix A for the sigma model where the

dynamics can be written in term of Néel order parameter / =m, —m, and the small
magnetization m =m, +m, . '>'*3>42 Here, we develop a generalization of the previous

models where: (1) the [ -dependence of the homogeneous exchange and the m -
dependence of the anisotropy are taken into account, (2) 4,, and 4,, are independent

parameters, (3) @, and @, are free to evolve independently, and (4) the DW width is a
dynamical variable A, (t) =A, (t) = A(t). Within these hypotheses, Eq. (1) in spherical

coordinates reads

0 =- l ﬁ—asin@gbi +thH cos @ sing,
Lsin @, op, L
i=12 9)
sin@.¢ —lﬁJraé" +lh cos
iPi 150 i s 2
being L' = Yo hg, = 10 J . It is possible to compute a surface energy density

M7 S ey
from the integral of the energy density along x and taking the Walker ansatz of Eq. (8),
by making the hypothesis that ¢, =¢q,=q, O, =-0, . Within this assumption, the
surface energy density is

e 44, 24, 2—cos(cI>l -0,)
A A 3

— 2hexchA(cos(d)l -®,)+ 1) +70D(cos®, —cos D, )+
+4K, A+ 1AM N (cos®, +cosd, )" + uAM N, (sin®, +sin®, )’
(10)

44 .. . .
where 4, , =—* and N, ( k=x,y,z) are the demagnetizing factors associated with
a

exch —

the DW corresponding to a prism having as size the strip width, the strip thickness and
2A . We wish to stress one more time that, differently from the sigma model, two
different values for the intralattice and the interlattice inhomogeneous exchanges are



considered. It is possible to link the surface energy density with the dynamic variables
of the system through the LLG-Slonczewski Eq. (9), giving the relations between the
variational derivatives and the partial derivatives of the surface energy density with

respect to g, A, @, and ®,. These relations lead to a set of differential equations

describing the dynamics of the DW
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H/ :%,uOM; (N\, (cosCI)1 +C0Sq)2)2 +N, (sin @, +sin(Dz)2) (12)

i# ) D, =0, -, L, =2L

h., =A,/3A" and hy, =7QD/2A. The values of the two in-plane angles @, and @,

are given by a trade-off between the torque exerted by the SHE, which tends to align the
in-plane magnetization for each sublattice along the same direction, and the

exch

antiferromagnetic exchange energy that has a minimum for @, = 7 + ®, . Additionally,
once the values for @, and @, are reached, the DW width also acquires a stationary

value

S E=nEE)
A= . (13)
2K, —h,_, (cos(qnl (J)-,(J))+ 1) +H,(J)

At these stationary conditions, taking the difference between the two last equations of
the system Eq. (11), the expression for the DW velocity reads

q‘=QA(J)%ZIS—’;(costl)l(J)—cos(DZ(J)) (14)

T

and, differently from Eq. (A6), the velocity depends on the stationary values of ®,, @,,
and A (all are a function of the applied current J). As compared to Eq. (A6), a first



qualitative difference is that a saturation velocity is expected for large currents due to
the transformation from Néel to Bloch (®, > t7/2 and ®, - +7/2 depending on
the current sign) domain wall similar to what is found in the ferromagnetic counterpart.
Additionally, a decrement on the velocity with respect to the linear behavior is also
expected due to the contraction of the DW width (note that 4, <0 so —4, ,>0)

However, for the parameters used in this work, a deviation from the linear behavior

below the 0.2% is expected for a homogeneous interlattice exchange of 4, =0.5pJ/m
and a current density J =1TA/m” while is still below the 15% for a current density of

J =10TA/m’. Higher homogeneous interlattice exchanges would fit better with the

linear behaviour and therefore these discrepancies are not easily observed
experimentally.

The expression for the static DW width A is also derived from Eq. (13) taking into
account that at equilibrium, no current is applied and ®, =0,7, @, =7,0 so that the

DW width reads

A, = MQT_A”. (15)

This formula is a generalization of the expression for the DWs in FM* and it is a key
result of this work. At equilibrium there are no misalignments between the two

sublattices and, consequently, the static A, does not depend on the homogeneous

exchange. On the other hand, the two inhomogeneous exchange terms and the
anisotropy have a key role in the determination of the DW size. The DW width A also

does not depend on the iDMI parameter being its energy equal to

(o3

oM = ﬂQD(cos @, —cos @2) . Full numerical simulations confirm this finding,

showing that the A change is less than 1.5% while changing the iDMI parameter from
0.1mJ/m* to 0.5mJ/m”’.

IV . Results and Discussions

Static properties. First of all, we have studied the static properties of the DW width by
comparing calculations from micromagnetic simulations with Eq. (15). The results show
a good agreement in a wide range of parameters. As an example, Fig. 3(a) and (b)
summarize some of those comparisons. The square root dependence emerges when one
of the two inhomogeneous exchange terms is zero (black line in Fig. 3(a)). The good
agreement between numerical calculations and Eg. (15) confirms the lack of
misalignments between both sublattices. Larger values of the inhomogeneous exchange
contributions increase the DW width and, therefore, the minimum domain size.
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FIG. 3. DW width A as a function of (a) the intralattice inhomogeneous exchange, 4,,, for three values

of the interlattice inhomogeneous exchange ( 4, =0,-5,-10p)/m ), and (b) the interlattice

inhomogeneous exchange, 4
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for four different values of the inhomogeneous intralattice exchange (

A,=2,6,10,15p)/ m). In both figures, the symbols stand for micromagnetic simulations and the solid
lines are computed with Eq. (15).
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the inhomogeneous interlattice exchange A4, =0,-5,—10pJ/m . For the inhomogeneous intralattice



exchange, the values are 4, =2 pJ/m for (a) and (b), 4,, =6 pJ/m for (c) and (d), and 4, =15 pJ/m for
(e) and (f). The homogeneous interlattice exchange is 4, =-2 pJ/m for (a), (c) and (e) and 4, =-15

pJ/m for (b), (d) and (f). Lines are calculated by numerically solving Eq. (11) while dots are from full
micromagnetic simulations.

Dynamic properties: DW velocity. Figure 4 compares the DW velocity ¢ computed by

numerically solving Eq. (11) with the one obtained from full micromagnetic simulations
for a wide range of the exchange parameters (see figure caption). The agreement
between micromagnetic simulations and one-dimensional calculations is very good with

slight differences at very high current density J >=7TA/m’.

+1. ._1

x X
FIG. 5. Snapshots of the first sublattice magnetization from uM for (a) equilibrium state and (b) under a
high current density (7 TA/m?). In the latter, both domains acquire a non-negligible in-plane component

affecting the reliability of the simplified models.

At such a high current density the domains themselves acquire a non-negligible in-plane
component as can be seen in Fig. 5(a) and (b), so Eq. (8) is no longer valid. Differently
from the FM case, here the linear behavior of the DW velocity is maintained at larger
currents due to the stabilization role for the Néel configuration of the homogeneous
exchange, analogously to the RKKY interaction in the case of synthetic
antiferromagnets.!® Even though the proposed model allows for misalignments of the in-
plane components of the two sublattice magnetizations, no significant misalignments
are observed for realistic parameters. Nevertheless, it is possible to get the condition for
which this behavior is kept. To do that, we set the stationary conditions,

d)l = d)z =A/A=0. The sum of the dynamic equations for the in-plane angles give us
the condition sin®, =sin®, . It can be checked that ®, =®, is unstable so
®, =7 —D,. Because of this relation the third equation from Eq. (11) can be rewritten

as

ﬂ'.hS[ 1
za (hexch’ + h(),\’ch )

% hD / (hm’ch, + hexch ) + 2 cos q)1

tan®, = (16)



'
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From Eq. (16), it is trivial to demonstrate that if 4, << a‘h

®, =0,7, ®,=7—-®d,, the DW width remains the one at equilibrium (see Eq. (15)) and
the linear behavior for the DW velocity is recovered (see Eq. (14)).

Dynamic properties: DW nucleation. We observe that it exists a maximum current
density, J, =8 TA/m’ for 4, =2pJ/m ( I ~160 mA ), that can be applied without
leading to the nucleation of other domains at the edges. Supplementary Movie 1% shows
these dynamics achieved for J =9 TA/m” (approximately /~180 mA ). This DW
nucleation from the edge driven by the current, already observed in FM,Error! Bookmark
not defined. is determined by the iDMI boundary conditions (in fact simulations without
those boundary conditions show no DW nucleation, see Supplementary Movie 2%°). In
AFM, this mechanism is more efficient due to the stabilization of the x-component of
the magnetization. In other words, in FM the magnetization at the edge rotates towards
the y -direction reducing the SOT, but in AFM this rotation does not take place because
of the antiferromagnetic exchange. A systematic study of the domain nucleation at the
edge as a function of the iDMI parameter, D, for different intralattice and interlattice
inhomogeneous exchange interactions, 4, and A4, respectively, is summarized in Fig.
6. The x-component of the sublattice magnetization in absolute value (the same for
both) is displayed in Fig. 6(a). It increases as a function of D and, on the other hand,
decreases as a function of 4, and |A12|. This tilting originates a torque at the edge
(roughly proportional to the tilting angle) promoting the nucleation of the domain with

the opposite sign of z. As a consequence, the minimum threshold current density Jtu
for domain nucleation decreases as a function of D (see data summarized in Fig. 6(b)).
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and top panels for 4, =—-10pJ/m.

As the current increases, the DWs also acquire a slight curvature (see Supplementary
Movie 1%) due to the smaller torques at the edges caused by the reduction of the x-
component and the increase of the y -component of the magnetization.

We conclude that, in antiferromagnetic racetrack memories, the domain nucleation from
the edges is the mechanism limiting the maximum velocity of an AFM DW, at least
without changing the numbers of DWs and hence the information content of the
racetrack itself.

Dynamic properties: Role of exchange contributions. In this section, we show the
results of a systematic study of the DW velocity as a function of the different exchange
interactions. Figures 7(a)-(c) summarize a comparison (full micromagnetic and the

generalized simplified model) for a current density J =1TA/m”, and a good agreement

is observed in a wide range of parameters. The solid lines are from the generalized
simplified model calculations while the dots indicate the full numerical computations. A
main result is that the DW velocity is insensitive to the homogeneous exchange at low
currents (Figure 7(a)), provided it is large enough to avoid misalignments between the
magnetization of the two sublattices. On the other hand, the DW velocity is a square



root function of both inhomogeneous terms, trend originated by the proportionality with
the DW width A (yellow dashed lines in Fig. 7(b) and (c)), see Eq. (14). This
demonstrates the inhomogeneous terms modify the DW width parameter without
changing the DW structure in the stationary state determined by the two in-plane angles

®, and @,. Since the DW velocity is proportional to the DW width (see Eq. (14)), the

induced increase of the DW width leads to a larger DW velocity. For larger currents, the
DW velocity is expected to depend on the homogeneous exchange by the DW width
dependence on this contribution (see Eq. (13) which predicts a decreasing trend when
the two sublattice magnetizations align). Nevertheless, we are well below the condition

hy, << a(h@,\-(-/,’ +h,, ) and we only observe a small dependence for the largest currents

considered in this work, ./, =7 TA/m” (not show here).
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FIG. 7. DW velocity computed for a current density J=1TA/m’ as a function of the exchange

interactions, (a) dependence on the homogeneous interlattice coefficient for different values of
A4, =2,6,10,15pJ/m, (b) dependence on the inhomogeneous intralattice coefficient for different values of

A4,=-2,-6,-10,—15pJ/m and (c) dependence on the inhomogeneous interlattice coefficient for different

values of 4,,=2,6,10,15pJ/m

Dynamic properties. Interlattice damping. Finally, it has been considered the role of an
interlattice damping parameter ¢, ,*- which enters in the LLG of Eq. (1) in the

following way



(17)

m, =—m, x hgff.’1 +T, +o,m xm +a,m xm,
{mz =—m, X heff,2 + T, + 0y, X, + 0, My X
where the intralattice damping parameter has been renamed for a clearer description (
a =a,, = ,,). In spherical coordinates, Eq. (17) becomes:

0, = Ls11n9 g; a, sl —a, cos((pl+(pj)sm0(pj +— ! hSH cos @, sin g,
(18)
sin 0., = lﬁ+0¢,149'. +thH cos @, —a,, (sin2 0.cos.¢. —cos” 0, sin go.é.)singo.
iri Lé‘@l i L i 1 rry ! L J

Making the same assumption as in the previous case (Walker ansatz, ¢, =¢q, =¢, and

A, =A,=A).Eq. (11) is now

o, —+(1+a, sin®, cos ® )q; —(1+a, sin®, cos ® )q; :%hLﬂ(cosCDl—cosq)z)
T

2 A 2 . : : I
-L, ([ﬂ & _TSmCD sin® ]A +§a12 (sm D, cos DD, +sin P, Cosq)zq)l)j )

44 24 2—cos(D, —D ,

:4](“_ Az11 4 A;z[ (31 2)}_2}1{%’%(005((1)]—CDZ)+1)+2Hd
L,A[Q%—allcbl—alz cos(®, + @, )d }: ~QrDsin®, +2h,_,Asin®,
L,.A[—Q%—alldb —ay, cos(®, +D,)d }:QﬂDsmq) -2h, ,Asin®,

(19)

Because the considerations made previously to derive Eq. (16) are still valid, we can
consider that A is constant and equal to the equilibrium value for low currents. Then we
can omit the second equation. A fast exploration of the system including interlattice

damping parameter (not shown here), with «;, =0.01, 0.05, 0.09, 0.0999 , shows no

changes on the stationary values. Moreover, we observe that the interlattice damping
only affects the terms which are zero at the stationary regime, so no changes are
expected for the stationary DW velocity. Nevertheless, we observe small changes in the
transient regime even for low currents so these new terms could be important when
considering other conditions, such as AFM oscillators.'81:22

V. Conclusions

Velocities up to a few km/s for antiferromagnetic domain walls have been predicted
making antiferromagnets a testbed material for the development of ultrafast racetrack
memories and THz spintronic devices. Here, we have extended results of previous



works on this topic, by deriving a generalized expression for DW width and velocity
that has been benchmarked with continuous micromagnetic simulations in a wide range
of parameters. A systematic study of the role of different exchange interactions shows a
DW velocity independent of the homogeneous interlattice exchange at low currents, and
with a square root dependence on both inhomogeneous exchanges, i.e. intralattice and
interlattice. This dependence is inherited from the behavior of the DW width, which is
predicted to decrease at high currents due to the homogeneous interlattice exchange.
Finally, we show that the domain wall velocity in an antiferromagnetic racetrack
memory will be limited by the nucleation of new domains at the edges of the system,
due to the iDMI boundary conditions that, for example in racetrack memories, can
change the content of stored information. Therefore, it should be noticed that even a
small iDMI parameter is needed to promote the Néel type wall, large D values are
undesirable as they would lead to lower threshold currents. On the contrary, high
inhomogeneous exchange interaction would increase the threshold current, and also the
DW width, promoting higher DW velocities. Nevertheless, the larger DW width would
increase the minimum domain size and then decrease the storage density. The analytical
approach employed here can be used as a starting point for the development of a one-
dimensional model for the description of DW motion in ferrimagnets.
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APPENDIX A: SIGMA MODEL

The DW width A the DW position ¢, and the in-plane angle of the magnetization of
the Néel order parameter, @ for the sigma model are defined in Fig. 2(a) and (b).

Equation (1) can be rewritten in terms of the Néel order parameter / =m, —m, and the

small magnetization m = m, + m, as:'*>>*

m:—}/O(mme+l><H,)+%(m><n'l+IXi)—WTm(mX(mXP)+lX(lXP)) (Al.a)
i:—yo(lem+m><H,)+%(l><m+m><l')—@(l><(mxl’)+mx(lx1’)) (A1.b)

where the dot convention for the time derivative has been adopted and H |, and H, are

the effective fields with respect to m and /.



Let’s start with a simplified formulation, where the energy density u has the following
expression:

AO

2

u=4, (Vi) - ;

m2—%lf+§(mz(v'm)—(m'V)mz+lZ(V'l)—(l'V)lz)- (A2)

The expression derived in Ref. 38 is obtained neglecting the /-dependence of the
homogeneous exchange and m -dependence of the uniaxial anisotropy have been

neglected and assuming that —4,, =24,,. From Eq. (Al.b) it is possible to determine m

as a function of / considering the anisotropy term and the spatial derivatives much
smaller than the other terms,*® neglecting dissipative terms,* and by taking into account

that I x (m x1 ) =ml’ ~4m . Inserting this expression in Eq. (Al.a), the dynamics of /
does not depend on m . Thus, Eq. (Al.a) in spherical coordinates for / reads

0-c*0"+sinOcosO(c’¢" " )+ b’ sinOcos O +d’ sin’ Osin g’ =

=2y,aH, ,0+2y Hy,H, , cose
(A3)
i(sin2 0¢) ~c i(sin2 Q(p’) —d’sin’ @sinp b’ =
dt dx
=-2y,aH,,sin’ 0p+2y Hy H,,, sindcosfsin g
2, \ , 4 27, ) 27, ) , 4
with ¢* = —[ij 25004, , B =—£Aj 2hK = —[i] 24 p
IUOMS a IIJOMS a IUOMS a
2 : o S
weh =5 4 and ' standing for x partial derivative. At equilibrium, one exact
a IUOMs

solution of the system of equations (A3) is the Walker ansatz,*® which describes an
approximate DW profile:

O(t,x) = ZarCtan(exp(Qx_Tqa)jj

D(1,x) = D(t)

(A4)

where g, and A are again the DW position and width and now @ stands for the in-

plane angle of the Néel order parameter, as have been defined in Figs. 2(a) and (b).
O =+1 allows distinguishing between an up-down transition (Q=1) or a down-up

transition (Q = —1). Under the hypothesis that Eq. (A4) is still valid for moving DWs, it

is possible to derive a couple of equations for ¢ and @ which, at stationary conditions (
j=®=®d=0), transforms into:

) Ty, AH g,
= ——COS(D
1=05", (AS)

H,ysm®=0=>®=0,r



where H, = % M. The actual solution for @ (0or 7) is determined by the sign of
0" S
the iDMI and the sign of O, while the modulus of the DW velocity is then:

2170A|HSH|

A 5 (A6)

We stress that this equation is valid within the assumptions previously made, which are
fulfilled for large enough A4, to maintain the @, and ®, at 0 and = for any applied J.
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