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� This study presents the first application of an ensemble machine learning (ML) model to predict the modulus of elasticity (MOE) of recycled aggregate
concrete.

� The ensemble ML model – comprising of random forests (RF) and support vector machine (SVM) – produces accurate predictions of concretes’ MOE
(RMSE of �3.0 GPa).

� Prediction performance of the ensemble ML model is consistently superior than several standalone ML models.
� The ensemble ML model is able to develop optimal mixture designs for RCA concretes that satisfy imposed target MOE.
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a b s t r a c t

This paper presents an ensemble machine learning (ML) model for prediction of modulus of elasticity
(MOE) of concrete formulated using recycled concrete aggregate (RCA), in relation to features of its mix-
ture design (e.g., physiochemical characteristics of RCA). The ensemble ML model’s prediction perfor-
mance was compared with five commonly-used ML models. It is shown that the ensemble ML model
unfailingly produces more accurate predictions compared to standalone models. To demonstrate the abil-
ity of the ensemble ML model to go beyond MOE predictions, the model was used to develop optimal
mixture designs for RCA concretes that satisfy imposed target MOE.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Solid waste produced from demolition of construction infras-
tructure – that is, Construction and Demolition Waste (CDW) –
continues to grow in volume, at a rapid pace, in not just the United
States (U.S.) but across the world [1]. According to the U.S. Environ-
mental and Protection Agency (EPA), 535 million tons of CDWwere
generated in the U.S. in 2014, a 65% increase from 2003 [2,3]. In the
past, when applications for CDW had not been conceived, the
waste material was typically discarded and disposed in landfills,
thus resulting in consumption of valuable land resources that
could otherwise have been used for beneficial purposes (e.g.,
afforestation and new construction). Notwithstanding, in the past
decade or so, there has been burgeoning interest in recycling
CDW (i.e., consolidating and grinding into smaller particulates)
and using the recycled product in various applications (e.g., as
backfilling material and aggregate for concrete) [4], essentially to
address concerns pertaining to progressive reduction in landfilling
capacity as well as to alleviate the exorbitant cost associated with
transportation of CDW to landfilling sites. The EPA estimates that
roughly 70% of CDW can be classified as concrete [1,2]. During
recycling of CDW, the waste concrete is crushed and processed into
three different classes of aggregates: coarse recycled concrete
aggregate (coarse RCA, particulate size >4.75 mm); fine RCA (par-
ticulate size between 0.075 and 4.75 mm); and recycled concrete
fines (RCF, particulate size <0.075 mm) [5,6]. Of these three classes
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of waste concrete, coarse RCA is the major component, embodying
70%–85%mass of the material. This study is focused on the influence
of coarse RCA (subsequently referred to as RCA) on properties of
concrete.

Glushge, in his pioneering work [7], posited that RCA could be
used to replace – either partially or exhaustively – the natural
aggregate that is used in concrete. The original idea was based
on the premise that concrete, given its enormous scale of produc-
tion and use (�46 billion tons per year [8–10]), would serve not
just as an ideal but also a proportionately and adequately large
repository for RCA (which, like concrete, is produced at a large
scale, and has widespread and abundant availability). Furthermore,
replacement of natural aggregate – sourced from natural resources
– with RCA would assuage, at least to some extent, the alarming
rate at which such resources are currently being depleted (primar-
ily, to meet the enormous demand of concrete’s production and
use). Lastly, if locally-produced RCA is used in concrete, costs asso-
ciated with transportation and disposal of RCA would be signifi-
cantly reduced. This would – as an added benefit – free up land
resources, making them available for beneficial purposes as
opposed to being used exclusively for disposal of CDW.

While RCA, based on its nomenclature, is classified as aggregate,
its physiochemical characteristics are disparate from those of nat-
ural aggregate; therefore, its use in concrete is more complex than
the mere exercise of substituting natural aggregate with RCA. The
primary reason for such disparity in properties of RCA with respect
to those of natural aggregates is that the particulates of the former
material are comprised of natural coarse aggregates, the surfaces of
which are either partially or fully covered by a layer of mortar (i.e.,
hydrated cement paste intermixed with sand) [11–18]. The encom-
passing surface layer of mortar is porous and, consequently, highly
permeable; as a result, the water absorption capacity of RCA is gen-
erally higher than that of natural aggregate [5]. Furthermore, on
account of larger surface area of RCA particulates (due to surface
roughness of the mortar layer), concrete provisioned with RCA
(subsequently referred to as RCA concrete) has volumetrically lar-
ger interfacial transition zones (i.e., ITZs: water-filled zones around
the RCA particulates) and, thus, higher water demand compared to
an equivalent conventional concrete (formulated using natural
aggregate) to produce a specific level of workability. Depending
on the strength of bonds at the aggregate-mortar interface, various
mechanical properties (e.g., stiffness and restraining capacity) of
RCA particulates could be rendered slightly to significantly inferior
in comparison to those of equivalent-volume natural aggregate
particulates [17]. Owing to the intrinsically poorer mechanical
properties of RCA vis-à-vis those of natural aggregate, mechanical
properties of RCA concrete are often different – in general, inferior
– compared to its counterpart formulated using natural aggregate
[11–17]. If the aforementioned aggregate-mortar bonds at the
topographical sites of RCA particulates are weak or if the RCA has
high water absorption capacity (leading to large ITZs), the overall
rigidity of RCA concrete is diminished, which, in turn, reduces
the concrete’s modulus of elasticity (MOE) thereby making it more
susceptible to deformation [7,12,17,19]. The presence of microc-
racks in RCA particulates, or in the mortar covering RCA particu-
lates’ surfaces, could result in even further reduction in RCA
concrete’s MOE. At critically low MOE, RCA concrete (or any other
concrete for that matter) becomes highly susceptible to deforma-
tion, cracking, and failure when subjected to environmental and/
or mechanical loads – even those of small magnitudes and even
if they are applied only for short durations [5].

Based on the above discussion, it is clear that partial or
complete substitution of natural aggregate with RCA could have
profound effect on the performance of concrete [20]. Among the
various metrics of concrete’s performance, MOE is deemed a
significant compliance criterion, and often used as one of the prin-
cipal specification criteria to determine constructability of a given
structure [5,21]. In the specific case of RCA concrete, assessment of
MOE gains even more importance because of the overwhelming
evidence in literature [11–17] suggesting that with increasing sub-
stitution of natural aggregate with RCA there is proportional
decline in MOE of concrete. While important, determination of
MOE of concretes – even conventional ones, leave alone those for-
mulated using RCA – using semi-empirical methods (e.g., a math-
ematical function listed in [22]) is unreliable [5]. This is because
the foundational mechanisms, which are at the origin of concrete’s
MOE and its dependency on other features of concrete (e.g., com-
pressive strength, as suggested in [22]), are not well understood
and, therefore, not accurately accounted for in the aforesaid
semi-empirical formalisms. Several studies have employed uncon-
strained/unsupervised statistical approaches [7,12,23–25] in
attempts to develop simple mathematical functions that can pre-
dict MOE of RCA concrete in relation to other properties of the
material that can be readily measured (e.g., unit weight and com-
pressive strength). However, due to the staggeringly large compo-
sitional degrees of freedom in RCA concretes – arising from various
permutations and combinations of mixture design variables and
physiochemical characteristics (e.g., density and maximum partic-
ulate size) of RCA – coupled with the inherent nonlinear relation-
ships between mixture design variables and concrete’s
properties, such statistically-derived functions are not generically
applicable, often failing to make accurate predictions of MOE of
RCA concretes that are compositionally different from those used
to develop the functions [23,25].

In light of the abovementioned deficiencies of unsupervised and
unconstrained statistical models, several researchers have focused
on developing and employing machine learning (ML) frameworks
– both supervised and unsupervised – for prediction, and in some
cases optimization, of concrete properties, including MOE. The
broad appeal of ML models is befitting because such models –
provided that they are trained rigorously using high-quality
datasets – are able to not only reveal the elementary (yet hidden)
semi-empirical rules which dictate the rudimentary linkage
between concrete properties and mixture design, but also perform
predictions in previously untrained data-domains [26,27]. Majority
of past ML-based studies have placed emphasis on prediction of
compressive strength of conventional concretes [26–40] using
their physiochemical attributed [e.g., cement content; water con-
tent; and mass/volume of admixture and/or mineral additive]
and age as inputs; only a handful of articles have been focused
on prediction of mechanical properties of RCA concrete. Duan
et al. [41] applied a nonlinear, regression-based ML model, that
is, artificial neural network (ANN), to predict the 28-day MOE
and compressive strength of RCA concrete. Gholampour et al.
[42] examined the applicability of various regression-based ML
models – multivariate adaptive regression splines (MARS); M5
model tree (M5Tree); and least squares support vector regression
(LSSVR) – to predict mechanical properties of RCA concrete, includ-
ing age-dependent MOE. Deshpande et al. [43] applied ANN to pre-
dict compressive strength of RCA concrete, which, when combined
with semi-empirical equations, can potentially be used to estimate
MOE. Behnood et al. [5] used the M5P model tree algorithm – a rel-
atively new decision tree ML model [44] – to predict the MOE of
RCA concrete. Deng et al. [45] employed a convolutional ANN
based deep learning model to predict compressive strength of
RCA concrete. Sadati et al. [18] used multilayer perceptron artificial
neural network (MLP-ANN) – a subset of artificial neural network,
consisting of multiple hidden layers of neurons – for prediction and
optimization of MOE of RCA concrete. In all of the studies cited
here, it has been shown that nonlinear, regression-based ML
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models, upon adequate training and rigorous testing, are able to
predict mechanical properties of RCA concrete with reasonable
accuracy (i.e., Pearson correlation coefficient, R, up to 0.91).
Nonetheless, it is important to point out that the two most-used
ML models in prior studies – that is, ANN and M5P models – are
often falter at accurately predicting outcomes in data-domains that
feature complex (e.g., greatly nonlinear and/or non-monotonic)
input(s)-output(s) relationship [46–49]. This is because ANN mod-
els – as well as its derivatives such as MLP-ANN – are premised on
local optimization and search algorithms (e.g., the back-
propagation mechanism that is used in several neural network-
based ML models for optimization of activation functions’ parame-
ters) that are highly vulnerable in terms of getting confined in (or
around) a local minima as opposed to converging to the global
minimum [46–49]. Owing to this issue, ANN models often produce
disparate – even inferior – predictions for the same set of inputs
when they are re-trained (e.g., using a larger or a different database).
The other popular model, that is, the M5P model, uses logical-
operators to split the data, and then employs multivariate linear
functions to develop input–output correlations [50,51]. Because of
its inherent reliance on linear – as opposed to nonlinear functions
– the M5P model’s prediction performance in complex data-
domains (e.g., sinusoidal or logistic or dampening functions) could
be poor [49]. In recent studies [27,49], it has been shown that the
random forests (RF) model – a ML model, based on modification of
the bootstrap aggregation decision tree algorithm – outperforms
other standalone ML models, in terms of accuracy of prediction of
compressive strength of concrete. These studies have attributed
the RFmodel’s superior prediction performance to its unique capac-
ity to manage discrete as well as continuous variables over both
monotonic and non-monotonic data-domains [52], while reducing
variance among different subsets of the training dataset. In spite of
themerits of theRFmodel, basedon the authors’ extensive literature
review, it was found that the RFmodel has yet never been employed
to predict MOE, or other properties, of RCA concrete.

The study presents the first application of an ensemble ML
model – developed by combining the RF model with the support
vector machine (SVM) model – to predict MOE of RCA concrete
in relation to its mixture design and physiochemical attributes
(e.g., particle size and water absorption capacity) of the RCA. The
accuracy of predictions of the ensemble ML model is benchmarked
against several standalone ML models [i.e., multilayer perceptron
ANN (MLP-ANN), Gaussian Process Regression (GPR), linear regres-
sion (LR), SVM, and RF] that have been used in prior studies to pre-
dict properties of heterogeneous materials. For assessment of
prediction performance of ML models, a real-world database, com-
prised of >500 unique mixture designs (and RCA characteristics) of
RCA concretes and their corresponding (experimentally measured)
28-day MOE, are used for training and testing of the models. Five
distinct statistical variables, a singular composite performance
index (CPI) derived from the aforesaid variables, are used to quan-
titatively assess the ability of each ML model to predict in previ-
ously untrained compositional domains. The input–output
correlation developed by the ensemble ML model – based on its
training from the real-world database – is ultimately used to
develop optimal mixture designs of RCA concretes that satisfy dif-
ferent imposed target MOEs (i.e., 30–50 GPa).

The paper is structured as follows. Section 2 presents brief
description of the individual and ensemble ML models. In Section 3,
databases used for training and testing of the ML models are
described. Section 4 reports the comparison of prediction perfor-
mances of various ML models as well as the results obtained from
optimizations. Section 5 summarizes the main conclusions drawn
from this study.
2. Overview of machine learning (ML) models

In this section, a succinct overview of five standalone and the
ensemble ML model, implemented in this study, is presented. Fur-
ther details pertaining to all six ML models are provided in
Research Data (Mendeley).

Support vector machine (SVM), a commonly used ML model for
both classification and regression purposes, approximates the cor-
relation – either in the form of multivariate linear or nonlinear
functions – between inputs and output of a dataset. This is accom-
plished by employing an optimization scheme – as opposed to a
regression approach – geared towards minimizing an objective
cost function (i.e., e-insensitive loss function), or simply put, to
transform input data into a higher-dimensional structure such that
data with similar characteristics are sequestered from dissimilar
ones [53]. Artificial neural network – abbreviated as ANN – con-
sists of multiple neurons arranged in hierarchical layers. Each of
the neurons serves as a computational element and is responsible
for processing information relayed from the previous layer of neu-
rons (using sigmoidal or logistic-transfer activation functions) and
transmitting the processed information to the next layer of neu-
rons [54]. The structure of ANN resembles the network of intercon-
nected neurons within the human brain – wherein information is
processed (and simplified) and transmitted from one layer to
another in a hierarchical manner. Multilayer perceptron artificial
neural network (MLP-ANN) is a subset of ANN with multiple layers
of neurons, and, therefore, strong self-learning capabilities [55].
Linear regression (LR) is a simple ML technique that uses piecewise
linear functions – driven by independent predictors – to predict a
numerical target based on a set of independent inputs [56]. Gaus-
sian process regression (GPR) is a regression algorithm based on
the Bayes’ theorem, which identifies the most probable outcome
(or hypothesis) on the basis of prior knowledge acquired from
the training database [57]. The GPR model employs a stochastic
process to collect random variables, any finite number of which
have a joint Gaussian distribution [58]. The variables – which rep-
resent prior knowledge – are used to estimate the probability of a
given outcome, and compare it against the probabilities of all pos-
sible outcomes. Through such comparisons, the prior knowledge is
updated iteratively throughout the training process; ultimately,
the outcome with the highest probability is selected as the final
prediction. Random forests (RF) is a modification of [decision tree
algorithm + bootstrap aggregation], premised on amalgamation of
bagging and adaptive nearest neighbors to achieve logic-based infer-
ence of input–output correlations in a dataset. RF employs two-
stage randomization to grow a large number of uncorrelated
‘‘deep” trees, all without any pruning or smoothening (unlike con-
ventional decision trees-based models, which do require pruning
during the training process) [59,60].

Voting is an ensemble method that uses a voting-based
approach to combine predictions from two or more MLmodels into
a singular prediction. In weighted voting [61], the contribution
(measured in the form of vote) of each ML model is ascertained
based on its prediction accuracy over the training dataset. More
specifically, ML models with higher prediction accuracy are
assigned superior weights than those with lower prediction accu-
racy. The final prediction is obtained by summing up all the votes
– along with their weights – and selecting the ML model with
superior aggregate vote compared to the others. In this study, the
weighted voting method based on the combination of RF and
SVM models was chosen.

The authors would like to point out that all standalone ML mod-
els described above comprise of hyper-parameters that needs to be
adjusted by the user to improve their prediction performance. In
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some models, user intervention is also required to select optimal
functions (e.g., type of kernel function used for transformation of
dimensionality of data in SVM; and type of activation function
used for activation of neurons in MLP-ANN). In this study, for the
selection of optimal functions and hyper-parameters for each ML
model, 10-fold cross-validation (CV) method [26,62,63] was used.
In short, the 10-fold CV method randomly splits the training data-
base into 10 equisized folds. The ML model – the hyper-
parameters/functions of which need to be optimized – is trained
using data-records from 9 folds, and subsequently blind-tested
against data-records in the 10th fold. This process is iteratively
repeated 9 times – each time using a unique combination of folds
for training of the ML model and its blind-testing. During each iter-
ation, the relevant parameters and functions of the ML models are
fine-tuned such that prediction errors [measured in terms of root
mean squared error (RMSE)] are progressively minimized. Func-
tions and parameters’ values after the last iteration are selected
as ‘‘optimum,” and used – without further changes – for subse-
quent testing of the ML model against a blind test dataset.
3. Development of database and assessment of performance
of ML models

3.1. Development of database

Experimental data-records, collated from literature and original
experiments, were used to train the ML models (described in Sec-
tion 2), assess their prediction performance in previously
untrained data-domains, and to conduct optimizations. The data-
base comprised of 526 unique data-records; 483 data-records were
mined (by Sadati et al. [18]) from published articles (which are
enumerated in [18]) and another 43 were obtained from original
experiments. In the context of the said original experiments [18],
two different types of cementitious binders were used for formula-
tion of RCA concretes: plain and blended (binary/ternary) binders.
In plain binders, Type I/II OPC, without any substitution, was used
as the binding cementitious material. In binary binders, 25% of OPC
was replaced with class C fly ash, and in ternary binders, 50% of
OPC was replaced with class C fly ash (35%) and blast furnace slag
(15%). The amount of water was varied so as to maintain a water to
cementitious materials mass ratio (w/cm) of 0.37 (low), or 0.40 (in-
termediate), or 0.45 (high). RCA (coarse recycled concrete aggre-
gates) were obtained from six different sources – five recycling
centers and one manufactured in our own laboratory – each with
different physiochemical characteristics (i.e., density, maximum
particulate size, and water absorption capacity). RCA was used to
replace 0–100%mass of the natural coarse aggregate (i.e., mixture
of crushed dolomite and limestone) in concrete. Siliceous river
sand was used as fine aggregate. Slump and air content were
adjusted according to ASTM C 143 [64] and ASTM 231 [65], using
commercially-available water reducing admixture and air-
entraining agent, respectively. MOE of the concrete specimens
were evaluated using ASTM C 469 [66]; towards this, cylindrical
concrete specimens, with dimensions of 100 � 200 mm (4 � 8
in.), were cast and cured in saturated lime solution at 21 ± 2 �C
for 28 days until the test. To ensure consistency between data
mined from literature and those obtained from experiments [18],
emphasis was given to ensure that: (i) components of RCA concrete
[e.g., types of cement, supplementary cementitious materials
(SCMs), and RCA]; (ii) curing conditions of concrete; and (iii) pro-
tocols used for evaluation of concrete’ MOE were broadly similar.

By consolidating both datasets (i.e., obtained from literature
and experiments), a singular database was devised; within the
database, each data-record had 13 inputs and 1 output. The 13
inputs parameters included: type of binder (‘‘000 for plain binder
and ‘‘1” for binary/ternary binder); contents (in kg�m�3) of cement,
SCMs (i.e., class C fly ash or a combination of class C fly ash and
blast furnace slag), natural coarse aggregate, RCA, fine aggregate,
and water; and density (in kg�m �3), water absorption capacity
(in %) and (nominal) maximum aggregate size (in mm) of the nat-
ural coarse aggregate and RCA. The output parameter included the
28-day MOE (in GPa) of all concrete mixtures. Statistical parame-
ters pertaining to the database are shown in Table 1.

It was previously stated in Section 1 that in RCA concrete the
relationships between input variables and output are complex
(e.g., highly nonlinear and non-monotonic), thus necessitating
the use of ML models to reveal them in order to make predictions
and/or conduct optimizations. To corroborate this argument, Figs. 1
and 2 are shown, wherein it is evident from the two- (2D) and
three-dimensional (3D) plots that the correlation between MOE
and input variables is indeed complex. Such complexity, however,
is foreseeable because each input variable – pertaining to concrete
mixture design or RCA’s characteristics – has a distinct, and pro-
found, effect on the concrete’s MOE. When multiple input variables
are concurrently changed – for example, in Figs. 1 and 2 – decon-
volution of the various effects (exerted by the different input vari-
ables) from 2D/3D plots or simple (semi-)empirical relationships is
not feasible.

3.2. Assessment of performance of ML models

For the purposes of training, and to assess the prediction perfor-
mance, of ML models, the experimental database (described in Sec-
tion 3) was randomly apportioned into two subsets: one for
training and the other for testing. 75% of data-records of the parent
database (i.e., training set) were used to rigorously train (i.e., to
select and optimize functions and hyper-parameters) the ML mod-
els; the remaining 25% of the data-records (i.e., testing set) were
utilized for assessment of prediction performance of the models.
Various past studies [26,27,30,49] have also used such split of
75%–25% in the parent database for training and testing of ML
models. It is clarified that while splitting of the parent database
was done in a randomized manner, care was taken to ensure that
the training dataset was archetypal – albeit a shortened version
– of the parent database. To this end, the training set was formu-
lated in manner that each input variable spanned over a wide
range between (and excluding) its minimum and maximum values
in the parent database.

To quantitatively measure the accuracy of prediction produced
by the ML models (against the test set), 5 distinct statistical mea-
sures were used; these parameters were extracted through com-
parisons of the models’ predictions against actual measurements.
These parameters include: coefficient of determination (R2); root
mean squared error (RMSE); Person correlation coefficient (R);
mean absolute percentage error (MAPE); and mean absolute error
(MAE). Equations used to calculate the aforesaid parameters can be
found in [49].

CPI ¼ 1
N

Xj¼N

j¼1

Pj � Pmin;j

Pmax;j � Pmin;j
ð1Þ

The five statistical parameters, described above, were inte-
grated into the composite performance index (CPI, see Eq. (1))
[26,49,67], to obtain a singular, unified measure of prediction per-
formance of each ML model. In Eq. (1): N (=5) is the total number of
statistical parameters used to measure performance of the models;
Pj is magnitude of the jth statistical parameter; and Pj, min and Pj,max

are the minimum (i.e., worst) and maximum (i.e., best) values of
the jth statistical parameter. With Eq. (1) formulated in the manner
described here, CPI of any given ML model can vary between 0 and
1. The best ML model would acquire a CPI value of 0 (or the lowest



Table 1
A summary of statistical parameters pertaining to each of the 14 attributes (13 input and 1 output) of the database. The database consists of 526 unique data-records (based on
[18]).

Attribute Unit Min. Max. Mean Std. Dev.

Binder type Unitless 0 1 – –
Cement (OPC) content kg�m �3 150.00 597.00 338.68 77.21
SCM (fly ash and/or slag) content kg�m �3 0.00 225.09 32.32 57.82
Natural aggregate (coarse) content kg�m �3 0.00 1950.00 563.09 434.25
RCA (coarse) content kg�m �3 0.00 1800.00 495.38 423.50
Fine aggregate content kg�m �3 465.00 1301.10 730.69 121.87
Natural agg. water absorption capacity % 0.20 6.10 1.22 0.77
RCA water absorption capacity % 1.93 18.91 5.38 2.33
Natural aggregate density kg�m �3 2482 2880 2616 84.67
RCA density kg�m �3 1800 2602 2312 121.88
Natural aggregate max. particle size mm 8.00 32.00 20.00 3.80
RCA max. particle size mm 8.00 32.00 18.95 4.76
Water content kg�m �3 108.30 234.00 170.69 31.55
28-day MOE (output) GPa 11.30 54.80 30.41 7.81

(a) (b) (c) 

Fig. 1. Two-dimensional (2D) plots showing the 28-day MOE of RCA concrete in relation to the: (a) cement content; (b) RCA content; and (c) RCA density. In each plot, in
addition to the one input parameter (in the x-axis) that is listed, there are variations in the 12 other input parameters, thus resulting in significant variation in the concrete’
MOE.

(a) (b)

Fig. 2. 3D plots showing the 28-day MOE of RCA concrete in relation to the: (a) cement and RCA contents; and (b) RCA content and density. In each plot, in addition to the two
input parameters (in the x- and y-axis) that are listed, there are variations in the other 11 other input parameters, thus resulting in significant variation in the concrete’ MOE.

T. Han et al. / Construction and Building Materials 244 (2020) 118271 5
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value) and the worst ML model would obtain a value of 1 (or the
highest value). Therefore, on the sole the basis of CPI values –
which accounts for all five statistical parameters (i.e., performance
measures) – the ML models can be ranked (from best to worst) in
terms of their prediction performances.
4. Results and discussion

4.1. Prediction of MOE of RCA concrete

As described previously in Section 3, each of the five standalone
ML models and the ensemble ML model were firstly trained using
75% (selected randomly) of the database, and then the models’ pre-
diction performances were assessed against the remaining 25% of
the database. Predictions of MOE of concrete from the testing set,
as produced by the six ML models implemented in this study, are
shown in Fig. 3; statistical parameters associated with models’ pre-
diction performances are enumerated in Table 2.

As can be seen in Fig. 3, all ML models produced predictions
with reasonable accuracy, with the Pearson correlation coefficient
(R) ranging from 0.67 to 0.93, and the root mean squared error
(RMSE) ranging from 6.02 GPa to 2.93 GPa. Based on values of
the latter, it can be said that the ML models can predict the MOE
of RCA concrete formulated as per different mixture designs and
contents and characteristics of RCA, within approximately ± 6 GPa
(a) (b)

(d) (e)
Fig. 3. Predictions of MOE of concrete produced by ML models: (a) linear regression (L
multilayer perceptron artificial neural network (MLP-ANN); (e) random forests (RF); and
set (comprising of 25% of the parent database). The dashed line represents the line of id
and ± 3 GPa of the actual value in the worst- and best-case scenar-
ios, respectively. Such margins of error in predictions are reason-
able considering that even in experimental measurements of
concretes’ MOE, the standard deviation could be as high as 1–
3 GPa [13,18]. On the basis of CPI values – the unified measure of
accuracy of (or errors associated with) predictions – the prediction
performance of the ML models can be ranked as ensemble ML
model (voting: RF + SVM) > RF > MLP-ANN > GPR > LR > SVM. It is
interesting to note that the SVM model has the poorest prediction
performance, although several prior studies [26–28,68] have
shown that the model can predict the compressive strength of con-
ventional concretes with relatively high degree of accuracy (i.e.,
R2 � 0.90). This implies that the composition-property correlations
[i.e., links between inputs (concrete mixture design and RCA char-
acteristics) and output (concretes’ MOE)] in RCA concretes are far
more complex than those in conventional concretes. It is conceiv-
able that the additional complexity in the said composition-
property correlations arise from the RCA – which, depending on
its physiochemical characteristics, can drastically affect concrete’s
properties. The inferior prediction performance of the SVM model
can also be explained on the bases of theories advanced in past
studies [49,69,70]. These studies have reported that SVM models,
very much like ANN models, rely on local search and optimization
algorithms; as such, they suffer from the drawback of converging
to a local minimum rather than the global minimum, especially
when the relationship between input variables and output in the
(c)

(f)
R); (b) Gaussian process regression (GPR); (c) support vector machine (SVM); (d)
(f) the ensemble (RF + SVM) ML model compared against measured values of the test
eality, and the solid lines represent a ± 10% bound.



Table 2
Prediction performance of ML models, measured on the basis of the test set (i.e., 25% of the parent database). Five statistical parameters (i.e., R, R2, MAE, MAPE, and RMSE) and the
composite performance index (CPI) are shown. The best and the worst performing ML models are highlighted in bold.

ML Model R R2 MAE MAPE RMSE CPI
Unitless Unitless GPa % GPa Unitless

SVM 0.6672 0.4452 4.4568 69.999 6.0226 0.9880
LR 0.6901 0.4762 4.4064 69.208 5.7421 0.9296
GPR 0.6752 0.4559 4.5284 71.123 5.8773 0.9796
MLP 0.8559 0.7326 3.0973 48.646 4.3859 0.3770
RF 0.9119 0.8316 2.5198 39.577 3.3448 0.1241
Ensemble ML Model 0.9332 0.8709 2.1469 33.719 2.9265 0.0000
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training dataset contains several closely-placed local minima. This,
ultimately, manifests as poor prediction performance. Other stud-
ies have posited that this deficiency of the SVM model can be rec-
tified by using Genetic programing [36,71] or bootstrap
aggregation – for example, bagging, voting, grading, or stacking
[26,72] – of outputs of one or more ML models in conjunction with
output of the SVM model. This aspect – of improving prediction
performance of the SVM model – has been examined in this study
by combining it with the RF model within the ensemble (weighted
voting scheme based) ML model. Further details pertaining to pre-
diction performance of the ensemble ML model are provided later
in this section.

Going back to Table 2, it can be seen that the LR and GPRmodels
produced predictions of concretes’ MOE with superior (albeit, only
by a small margin) accuracy compared to the SVM model, but with
comprehensively lower accuracy compared to the RF and MLP-
ANN models. Such limitations in prediction performances of the
LR and GPR models are not surprising because the former uses lin-
ear functions and the latter uses Gaussian distribution functions
over datasets that – in all likelihood – feature far more complex
correlations between the input variables and the output.

Predictions made by the MLP-ANN model were more accurate
than all but one (i.e., the RF model) of the standalone ML models
implemented in this study (Fig. 3; Table 2). As previously stated
in Section 1, prediction performance of the MLP-ANN model could
be compromised due to its inherent susceptibility to converge to a
local – as opposed to the global – minimum [48,49]. However, in
this study, the hyper-parameters (i.e., number of hidden layers
and number of neurons per hidden layer) of the MLP-ANN model
were rigorously optimized through the 10-fold CV method; on
account of this optimization, it is expected that the aforemen-
tioned drawback of the model was overcome – at least partially
– thereby allowing the model to produce predictions with reason-
able accuracy. It is worth pointing out that in a recent study con-
ducted by Sadati et al. [18], the MLP-ANN model was also used
to predict concretes’ MOE, whilst using a database that was similar
to the one used in our study. As would be expected, due to these
similarities, prediction performances of MLP-ANN models used in
the two studies are similar (i.e., R = 0.86 in the current study and
R = 0.88 in the study of Sadati et al. [18]). The minor difference,
in prediction performances of the models as reported in the two
studies, can be explained on account of differences in the following
factors:

� Splitting of the parent database into training and testing sets: In
the study of Sadati et al. [18], the parent database was split as
per 90% and 10% between the training and test sets, respec-
tively; in this study, a 75% and 25% split was used. The nature
of split in the parent database affects both training and testing
aspects of the model, which could ultimately affect its predic-
tion performance [68].

� Number of input parameters: In the study of Sadati et al. [18],
up to 21 input parameters – including some derivatives (i.e.,
derived from combination of two or more of the input
parameters) – were used as inputs. In contrast, in this study,
the database was pre-processed to ensure that none of the 13
input parameters were redundant.

� Procedure used for hyper-parameter optimization: In the study
of Sadati et al., the number of hidden layers, as well as the num-
ber of neurons in each hidden layer, within the MLP-ANNmodel
were varied manually, in an iterative manner, to determine the
optimal values that produced the most accurate predictions
(assessed in terms of the value of R). In this study, the 10-fold
CV method, as described in Section 2, was used for optimization
of both hyper-parameters of the MLP-ANN model.

� Training methodology: In the study reported in [18], the train-
ing dataset was split into multiple subsets; the splitting was
done on the basis of similarities in RCA characteristics (i.e.,
maximum particulate size, density, and water absorption
capacity). Each subset comprised of one reference system – that
is, concrete devoid of any RCA – with its MOE normalized to 1.0,
and the MOE of all RCA concrete mixtures in the subset were
described as fractions of the MOE of the reference system.
While this procedure enables classification of the training data-
set into multiple subsets, which is potentially beneficial for
training of the model, it could also introduce errors on account
of creating false equivalency among reference systems of the dif-
ferent subsets [MOE of all reference systems, regardless of their
mixture designs (e.g., contents of cement, water, and SCM),
were labelled as 1.0 in the database]. In this study, to avoid
the aforesaid false equivalency, absolute values of MOE (in the
units of GPa) of each concrete specimen – regardless of its
RCA content – were used in the training as well as the testing
datasets.

The RF model outperformed all of the aforementioned stan-
dalone ML models in terms of prediction accuracy (Fig. 3; Table 2).
This result is not surprising – and, in fact, in very good agreement
with prior studies [27,49,73,74] that have also reported that the
prediction performance of RF model often supersedes those of sev-
eral standalone ML models. Superior prediction performance of the
RF model is attributed to its structure – which comprises of a large
number of ‘‘deep” trees that are grown without any smoothening
or pruning. The unpruned ‘‘deep” trees allow data in the training
set to be split in a logical manner, which, in turn, not only reduces
generalization errors but also serves to mitigate overfitting (high
bias) of the training data. Furthermore, the two-stage randomiza-
tion employed in the RF model (see Supplementary Information
for more details) diminishes correlation among the unpruned
trees, thus reducing variation (underfitting) and ensuring homo-
geneity among the data represented in each of the tree-nodes. It
is interesting to note that prediction performance of the RF model
was bolstered when it was hybridized with the SVMmodel to form
the ensemble, voting-based ML model. As shown in Fig. 3, for
majority of concretes in the test set, the ensemble ML model was
able to predict MOE within ±10% of the actual values; even when



Table 3
Parameters used for optimization of mixture design of RCA concretes. Of the 13
parameters, 12 were used as inputs, and 1 (i.e., water content) was calculated by the
ensemble ML model as output. The parameters highlighted in bold were used as
inputs, but varied between different optimizations.

Attribute Unit Scenario 1 Scenario 2

Cement (OPC) content kg�m �3 380 300
SCM (fly ash and/or slag)

content
kg�m �3 0 80

Total coarse aggregate
content

kg�m �3 1000 1000

RCA content kg�m �3 0–100% of 1000 0–100% of 1000
Fine aggregate content kg�m �3 642 642
RCA water absorption

capacity
% 5.3% (low) or

10% (high)
5.3% (low) or
10% (high)

Natural agg. water
absorption capacity

% 0.8 0.8

Natural aggregate density kg�m�3 2590 2590
RCA density kg�m�3 2270 2270
Natural aggregate max.

particle size
mm 20 20

RCA max. particle size mm 20 20
28-day MOE GPa 30–50 GPa 30–50 GPa
Water content kg�m �3 Output Output
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the predictions fell outside of the ±10% bound, the RMSE of MOE
predictions was still very low (i.e., <3 GPa). This improvement in
the accuracy of predictions of the ensemble ML model, vis-à-vis
the standalone SVM and RF, is credited to the ensemble model’s
ability to combine predictions of the SVM and RF model, in a meta-
heuristic manner, such that each prediction is rendered more accu-
rate than the one yielded by either of two standalone ML models.
In order words, the ensemble ML model produces accurate predic-
tions by ensuring that prediction errors made by one model, in a
given subset of the data, are compensated by superior prediction
accuracy of the other model.

4.2. Optimization of mixture design of RCA concrete

The results shown in Section 4, and the accompanying discus-
sions, show that the ensemble ML model – comprised of SVM
and RF models within a weighted voting scheme – is able to reli-
ably predict the MOE of RCA concretes in relation to their mixture
design and RCA characteristics. In this section, the training of the
ensemble ML model (on the basis of which the model learned
the functional input(s)-output correlations), and its ability to
dependably predict MOE of concrete, were leveraged to develop
an optimization module. The objective of the optimization module
is to predict optimal mixture design of RCA concrete to achieve tar-
get (i.e., user-imposed) value(s) of 28-day MOE. The optimization
module was designed to accept the target 28-day MOE as an input
along with selected inputs of concrete mixture design and RCA
characteristics. The module, then, performed predictions in reverse
– using a Bayesian optimization approach [75,76], while leveraging
the input–output correlation(s) learned by the ensemble ML model
during the training process – to reveal optimal values of the
remaining concrete mixture design parameters that would pro-
duce the target 28-day MOE.

Two different scenarios were used for MOE optimization – one
for RCA concrete formulated using 380 kg�m�3 of plain (OPC) bin-
der, and the other for concrete formulated using 380 kg�m �3 of
binary/ternary binders (prepared by replacing up to 50% of OPC
with fly ash and/or blast furnace slag). In both scenarios, certain
input parameters were fixed: total coarse aggregate content
(1000 kg�m �3); fine aggregate content (642 kg�m �3); natural
coarse aggregate water absorption capacity (0.8%); natural coarse
aggregate density (2590 kg�m �3); RCA density (2270 kg�m �3);
natural coarse aggregate nominal maximum particle size
(20 mm); and RCA nominal maximum particle size (20 mm). These
values were chosen as they had the highest frequency (of appear-
ance) in the database. Next, in both scenarios, the RCA content in
the concrete was varied by replacing 0–100% of the natural coarse
aggregate, while keeping the total coarse aggregate content fixed
at 1000 kg�m �3. Furthermore, in both scenarios, two different val-
ues of RCA water absorption capacity were used: a low value of
5.3% and a high value of 10%. Here, it is acknowledged that the
lower bound of RCA water absorption capacity (i.e., 5.3%) is rather
larger than the values that have been reported in past literature
[7,12,17,19]. However, this value was chosen because of its higher
frequency in the training database (compared to values �5.3%);
this is important to ensure that the ML model is adequately trained
and, thus, able to produce accurate results during the optimization
routines. In the last step, the optimization module was used to
determine the optimum contents of water (and, hence, the opti-
mum values of w/cm) that ought to be used for concrete formula-
tion so as to achieve target MOE of 30, 40, or 50 GPa in relation to
the content and water absorption capacity of RCA in the concrete.
Further details pertaining to the (fixed and variable) input param-
eters that were used in the optimizations are listed in Table 3;
results produced by the optimization module are illustrated in
Fig. 4.
As shown in Fig. 4, for all concrete mixtures, the optimumw/cm
(calculated based on the optimum water content, produced as
output of the optimization module) decreases with increasing
RCA content in the concretes. Notably, this trend – decrease in
w/cmwith respect to increasing RCA content – is more pronounced
in plain OPC concrete than in binary/ternary binders-based con-
crete. The aforesaid trend is expected because at higher RCA con-
tent, owing to the intrinsic deficiencies of RCA (e.g., weak
aggregate-mortar interface, microcracks, and enlargement of ITZ
volume [18,77,78]), the MOE of the host material (i.e., RCA con-
crete) progressively reduces. To compensate for this RCA-induced
reduction of MOE, the water content in the concrete – and, thus,
its porosity – ought to be reduced. Fig. 4 also shows that for any
given concrete mixture design – regardless of the content and
water absorption capacity of RCA, or the presence/absence of SCMs
– to enhance MOE (e.g., for 30 to 50 GPa), the w/cm should be
reduced. This trend, again, is stimulated by the porosity; low
w/cm ensures low porosity, thereby enhancing the solid to solid
phase connectivity within the concrete microstructure, which, in
turn, enhances the concrete’s MOE. Lastly, results from the opti-
mizations show that for any concrete mixture design, regardless
of the RCA content, a lower w/cm is needed when RCA with higher
water absorption capacity is used to secure a given MOE. This, akin
to the trends described above, suggests that reducing concrete’s
porosity (by using lower w/cm) can effectively compensate for
the inherent deficiencies of the RCA – in this case, its higher water
absorption capacity [79].

It should be clarified that results shown in Fig. 4 strictly pertain
to concrete formulated using mixture design parameters and RCA
characteristics listed in Table 3. As such, the results merely serve
as examples to exhibit the versatility of the ensemble ML model
– in particular, its ability to go beyond predictions and perform
optimizations of concrete mixture designs based on desired perfor-
mance criterion. Nevertheless, and as elucidated in the above dis-
cussion, the general trends that emerged in Fig. 4 are fully
compliant with theoretical laws, and are in good agreement with
results reported in prior studies [18,78–81]. These results, there-
fore, validate predictions and optimizations produced by the
ensemble ML model. More importantly, the result highlight that
with proper and rigorous training of ML models, rapid and reliable
predictions of RCA concretes’ properties and optimization of their
mixture designs are indeed feasible.



(a) (b)

Fig. 4. Optimal values of water to cementitious materials mass ratio (w/cm) – produced by the ensemble ML model to achieve target MOE of 30 GPa, or 40 GPa, or 50 GPa –
plotted against the RCA content in concrete mixtures formulated using: (a) plain OPC binder (scenario 1); and (b) binary/ternary binder, wherein OPC is partially substituted
with SCMs (fly ash, or blast furnace slag, or a combination of both). RCA was used to replace 0–100%mass of natural coarse aggregate in the concrete. Hollow and solid symbols
represent cases wherein low (5.3%) and high (10%) values of RCA water absorption capacity, respectively, were used. Other fixed and variable input parameters, used in the
optimizations, are listed in Table 3.
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5. Conclusion

This study presented the first application of an ensemble
machine learning (ML) model – formulated by combining the ran-
dom forests (RF) model with support vector machine (SVM) within
a weighted voting framework – to predict the modulus of elasticity
(MOE) of recycled aggregate concrete [i.e., wherein the natural
coarse aggregate component of concrete is partially or fully
replaced by coarse recycled concrete aggregate (RCA)].

The ensemble ML model was trained using 75% of a parent data-
base, comprising of >500 experimentally-obtained, distinct data-
records. Each data-record featured 13 inputs (i.e., variables per-
taining to concrete mixture design and physiochemical character-
istics of aggregates) and 1 output (28-day MOE of concrete). After
the model’s training, input–output correlations learned during the
training process were utilized by the model to enable predictions
in blank, untrained data-domains (i.e., remaining 25% of the parent
database). The hybrid model’s prediction performance was mea-
sured using 5 different statistical parameters and a composite per-
formance index (CPI), and compared against 5 standalone ML
models (i.e., LR, GPR, MLP-ANN, SVM, and RF).

The MLP-ANN model was able to predict flotation outcomes
with reasonable accuracy – with prediction performances that
were better than SVM model and other ML models premised on
linear input–output functions (i.e., LR and ENR models). However,
owing to the inability of MLP-ANN to converge to the global min-
imum, its prediction performance was secondary compared to the
standalone RF and ensemble ML models. Excellent prediction per-
formance of the RF model was attributed to its structure – which
comprises of a large number of ‘‘deep” trees that are grown with-
out any smoothening or pruning. The prediction performance of
the RF model was further bolstered when it was combined with
SVM. Such improvement in prediction performance of the ensem-
ble MLmodel was attributed to its ability to combine predictions of
the SVM and RF model, in a metaheuristic manner, thus rendering
each prediction more accurate than the one yielded by either of
two standalone ML models.

Next, the training of the ensemble ML model, and its ability to
reliably predict MOE of concrete, were leveraged to develop an
optimization module to predict optimal mixture designs of RCA
concretes that are expected to achieve target (i.e., user-imposed)
value(s) of 28-day MOE. Results obtained from such optimizations
showed that in RCA concrete, high MOE (up to 50 GPa at 28 days)
can be achieved provided that the water to cementitious materials
ratio (w/cm) is reduced (within the range of 0.43–0.55) in relation
to: (i) increasing RCA content; (ii) increasing water absorption
capacity of the RCA; and (iii) increasing value of the target MOE.

The excellent prediction performance (i.e., RMSE of � 3.0 GPa)
of the ensemble ML model, and its ability to perform optimizations
that are in alignment with theoretical laws, indicates that the
model could serve as a reliable tool to promptly and accurately
predict and optimize concrete’s properties in relation to its mixture
design. While only 526 data-records were used in this study for
training and testing of the ML model, it is expected that enlarge-
ment of the database volume would further improve the accuracy
and reliability of predictions and optimizations. The authors envi-
sion that the utilization of a superior, more diverse database –
wherein additional influential physiochemical characteristics of
concrete (e.g., particle size distribution; Los Angeles abrasion loss
of RCA; and cement’s, SCM’s and aggregate’s chemical composi-
tion) are properly represented – will elicit even further improve-
ments in prediction and optimization performance of the
ensemble ML model.
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