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A B S T R A C T

Election lines are more than a nuisance. In recent elections, needing to wait in lines deterred hundreds of
thousands from voting and likely changed the winner in multiple cases. Part of the challenge is that even after
the voter reaches the front of the line in some locations, it can require more than ten or twenty minutes to cast a
ballot. Moreover, the ballot in one precinct might be twice the length of another precinct's in the same county
because of additional referenda and levies. We consider the decision problem faced by election officials and
other leaders: How many resources (poll books, workers, booths, or voting machines) should be allocated to each
location so that lines can reasonably be expected to be minimal? We formulate a simulation optimization pro-
blem to identify the combinations that minimize resource requirements while guaranteeing acceptable user-
defined service levels. We propose an Indifference Zone Generalized Binary Search (IZGBS) method with rig-
orous assurances on solution quality, and demonstrate it using the 2016 presidential election. In that election, we
describe how the methods helped to reduce waiting times by more than three hours in at least one location
affecting thousands of voters and likely increasing turnout.

1. Introduction

In the United States, voting is arguably the most important right, the
right from which all other rights flow. However, long waiting lines
experienced by voters in recent elections (e.g., Norden, 2013; Stewart &
Ansolabehere, 2015) have challenged this fundamental right. For ex-
ample, some voters in Ohio waited over 10 h to cast their ballot in the
2004 presidential election, with the last recorded ballot cast at 4:00 am
the next day (Cohen, 2008). Voters at some precincts in Virginia waited
several hours during the 2012 presidential election (Walker, 2013).
Voters’ wait times in Florida could be nearly six hours long during the
early voting period in 2012 (Pastrana, 2012). Voters in Maricopa
County, Arizona, could wait for as long as five hours in the primary
election in 2016 (CBS News, 2016). Some voters across the country,
such as in Georgia, Texas, and Arizona, suffered hours-long lines during
the 2018 presidential election (Cassidy, Long, & Balsamo, 2018).

Unfortunately, long voting lines may “ultimately undermine the
confidence that citizens have in the electoral process” (Stewart III &
Ansolabehere, 2013), because they can result in voter disenfranchise-
ment. Ury v. Santee (303F. Supp. 119, 1969) found that the voters were

“effectively deprived of” their voting rights by forcing them to have
long wait times and therefore a re-election was ordered in the Village of
Wilmette, Illinois. Alvarez et al. (2008) estimated that long lines in the
2008 presidential election prevented 2.6 million voters in the nation
from voting. Spencer and Markovits (2010) estimated that 1.89% of
voters were disenfranchised by long lines during the 2008 primary
election. Long voting lines turned away more than 200,000 voters in
Florida in the 2012 general election (Powers & Damron, 2013). Highton
(2006) discovered that voter turnout rates would be lowered by 10%
for every additional 100 registered voters per voting machine.

Insufficient voting resources (including voting machines, poll books,
and poll workers) and unscientific allocation strategies have caused
long voting lines (Allen, 2013; Allen, 2014; Allen & Bernshteyn, 2006;
Erhardt, Huang, Huerta, & Allen, 2015; Stewart & Ansolabehere, 2015).
In addition, twenty-five states in the United States have placed new
restrictions on voting since 2010 to make it harder to vote, and fifteen
states have more restrictive voter ID laws (Brennan Center for Justice,
2019). These new laws lengthen the time for voters to check in or
register on Election Day (e.g., Stein et al., 2019), which exacerbates the
problem of insufficient voting resources, worsening the long-line
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problem. For example, wait times in New Hampshire during the 2012
election increased by 43% when the voter ID law was partially im-
plemented (The Pew Charitable Trusts, 2014).

The common method used in practice is to allocate voting machines
proportionally to the total number of registered voters in a precinct. For
instance, Ohio stipulates that counties must have one DRE voting ma-
chine for every 175 registered voters. New York requires that a max-
imum of 800 registered voters should be allocated to one voting ma-
chine. Queueing theory has concluded that wait time is affected by both
the arrival process and the service process. Voters’ turnout rates are
likely to be different among precincts. The number of issues on the
ballot often varies across precincts, which affects how long it takes for a
voter to cast a ballot. Voting machine breakdowns further complicate
the problem. Clearly the proportional allocation method, which does
not consider these sources of variation in voting queues, is question-
able.

Counties typically have hundreds of precincts and the voting re-
source allocation is, of course, also an issue of fairness (Bertsimas,
Farias, & Trichakis, 2011; Bertsimas & Gupta, 2011; Gini, 1912;
Kozanidis, 1991; Marsh & Schilling, 1994; Yang, Fry, Kelton, & Allen,
2014; Young, 1995). Unfortunately, many studies have found that long
lines disproportionately affect African American and Latino voters in
urban areas (e.g., Famighetti, 2016). Therefore, there is a critical need
for rigorous and equitable methods to allocate voting resources so that
voters’ wait times can be acceptable.

First, we need to select appropriate wait-time measures to evaluate
voting queues. Although average wait time is the most common mea-
sure, it can mask the real problem. Extremely long waits could still
occur even if the average wait time across all voters is short. It is es-
timated that 16.6% of voters nationwide waited more than 30 min
during the 2008 presidential election (The Marist poll, 2008), and
12.5% of voters waited at least half an hour on Election Day in 2012
(Stewart III & Ansolabehere, 2013). We should therefore include mea-
sures of the order statistics, the percentile wait time and the expected
maximum wait time at a polling station.

Second, we need to define how long would be considered as an
“acceptable” wait time. South Dakota Codified Laws § 12-14-4 deems
more than 30 min waiting time “unreasonable.” New York Code
Election Law stipulates that voter wait time at a poll site should not
exceed 30 min. The Schaefer Center for Public Policy (2014) re-
commended that voters should wait less than 30 min in Maryland.
The Presidential Commission on Election Administration (2014)
reached a conclusion that no voter in America should wait more than
30 min to cast their ballots, a goal underscored by President Obama
in his 2012 inauguration speech. Thus, we take 30 min as the stan-
dard of acceptable wait, and restate the problem as determining the
minimum resource combinations such that the expected longest
waiting time of voters (i.e., an estimator of “order statistic”) to be less
than or equal to 30 minutes, or expected p% of voters would wait no
more than 30 min.

In this paper, we propose a computationally-efficient and rigorous
simulation-optimization method to allocate resources to guarantee ac-
ceptable wait times in elections (i.e., to satisfy a given queue perfor-
mance level) with proven probability bounds, which is particularly
applicable in cases where the standard is written into law. Our proposed
method, which addresses a class of problem where the system perfor-
mance level is non-decreasing in the amount of resources and can only
be evaluated via simulation, has wide applicability. For example,
healthcare policy makers and administrators might want to know how
many doctors are needed so that veterans wait less than thirty days on
average for an appointment, or how many resources are needed to
ensure that transplant recipients can wait fewer than a certain number
of days (Akan, Oguzhan, Baris, Fatih, & Adnan, 2012). Homeland se-
curity officials might want to determine resource levels such that no
one expects to wait more than thirty minutes at the border or the air-
port.

The remainder of this article is organized as follows. Section 2 re-
views related literature. Section 3 introduces the notation and as-
sumptions. In Section 4, methods are proposed to derive the minimum
number of resources to achieve a standard service level for cases in-
volving a single or multiple resource types. Guarantees relating to the
solution quality are also provided. In Section 5, the real-world appli-
cation of the methods in central Ohio in 2016 is described. Numbers of
resources needed to guarantee expected waiting times of less than
30 min for general election problems are provided. Finally, Section 6
presents conclusions and opportunities for future work.

2. Literature review

Queueing formulas have been applied to voting queues (e.g., Allen
& Bernshteyn, 2006; Yang et al., 2014). Despite its simplicity and
transparency, queueing formula may not be a good approximation to
real voting queues because it cannot address non-stationary arrivals and
non-steady state. Moreover, queueing formula tends to underestimate
the number of necessary voting machines for large polling locations in
practice (Yang et al., 2014). As mentioned earlier, average wait time is
not an appropriate measure and the expected maximum wait time,
order statistics, or percentile wait time should be considered instead.
Queueing formula, however, cannot provide such queue performance
measures.

Discrete event simulation models, on the other hand, can capture
many complex characteristics of queues, including voters arriving at
different rates during the day, and can estimate the expected maximum
wait time, order statistics, and percentile wait time. Many previous
research studies on voting queues have used simulation models (e.g.,
Edelstein & Edelstein, 2010; Grant, 1980; Herron & Smith, 2016;
Kumar, Yang, & Goldschmidt, 2018; Yang et al., 2014; Yang, Wang, &
Xu, 2015). Yet, the random errors in discrete event simulation make it
difficult for deterministic integer programming to generate optimal or
even good solutions (Yang, Allen, Fry, & Kelton, 2013; Yang et al.,
2014).

With hundreds or even thousands of precincts, running large num-
bers of discrete event simulations can be computationally prohibitive.
For example, previous simulation optimization methods required 24 h
of run time to achieve a recommended voting machine allocation (Yang
et al., 2013, 2014) and still offered no rigorous guarantee about a pre-
specified performance objective (e.g., a certain percentage of voters
expect to wait no more than 30 min). Besides, these methods can only
allocate a single type of voting resources (e.g., voting machine or voter
check-in station). In fact, election officials usually need to determine
both the number of voter check-in stations and the number of voting
machines (or booths) at a polling location. Therefore, more efficient
and comprehensive methods are needed to enable officials to use them
routinely.

In recent years, there has been considerable effort to determine the
best alternative system in terms of maximum (or minimum) expected
performance by applying ranking and selection (R&S) algorithms
(Chen, Yucesean, & Chick, 2000; Chick & Inoue, 2001; Frazier, 2014;
Hunter & Pasupathy, 2013; Nelson & Goldsman, 2001; Ni, Ciocan,
Henderson, & Hunter, 2017), particularly when the number of alter-
natives is small. These R&S methods are often considered easy to im-
plement and computationally efficient (Bechhofer, Goldsman, &
Santaner, 1995). The “Fully Sequential Procedure” (FSP) from Kim and
Nelson (2006) has been found to be efficient in terms of sample size in
contrast to traditional “comparison with a standard” procedures (Chen,
2006). An input to this procedure specifies an “indifference-zone” as the
smallest difference that is critical to be detected; alternative systems are
eliminated once a certain confidence is achieved. Later, Andradόttir and
Kim (2010) modified the FSP procedure and applied it to problems
where stochastic constraints are present. However, the methods con-
sidered assume that every alternative system will be simulated (at least
an initial number of observations) and terminate with a single “best”
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system. In relation to finding the minimum resource level, evaluating
all possible resource levels is prohibitively expensive and unnecessary.
For example, if six voting machines are found to be insufficient, then
there is no need to evaluate any systems with five (or any number less
than six) voting machines.

In this paper, we seek to identify efficiently all solutions that
minimally satisfy a given performance objective. We formulate the al-
location decision problem as a type of Pareto simulation optimization in
which the numbers of resources of each type are minimized (Amaran,
Sahinidis, Sharda, & Bury, 2016; Gao, Chen, & Shi, 2017). Lee, Chew,
Tseng, and Goldsman (2010) proposed efficient and rigorous simulation
optimization methods to enumerate Pareto sets. However, their
methods provide asymptotic results and we seek finite sample-based
guarantees. Also, they do not exploit the assumption that additional
resources cannot, in our simulation models, harm performance (“non-
decreasing assumption”). We leverage the non-decreasing assumption
to seek more efficient methods that avoid the need to evaluate all
possible systems.

Some researchers have considered effective enumerative methods
exploiting the non-decreasing assumption with noisy system evalua-
tions that use so-called “Generalized Binary Search” (GBS) (Dasgupta,
2005; Nowak, 2011). Unfortunately, the conditions of the theorems
relating to GBS are not easily met when discrete event simulation is
used. This follows because simulation cannot easily guarantee suc-
cessful feasibility declarations with a bounded probability. Comparing a
system mean to a fixed standard, the mean can be close or equal to the
standard such that a large or even infinite number of evaluations could
be needed to prove the mean is above or below the standard. As a result,
for election problems, simulation-based finite sample guarantees are
generally only possible with an indifference-zone parameter, . Another
objective of this research is to extend GBS so that it is relevant to si-
mulation optimization or, more generally, experimentation with con-
tinuous responses.

3. Notations and assumptions

In this section, we define our notation and assumptions.

3.1. Notation and model

Consider a system with m different resource types. For example,
with m = 2 we might have poll books for voter check-in and voting
machines. Then, vector = x xx { , , }m1 denotes the set of resource levels
as our decision variable, and Y x( )j represents the system with x re-
sources from the jth replication. Here, we consider only systems for
which empirical evaluation is needed to evaluate Y x( )j such as a si-
mulation estimate of the mean waiting time of the voter who waits the
longest. Then, the expected performance of the system is

=µ E Yx x( ) [ ( )]j , and we seek to enumerate the smallest combinations
of resources x to satisfy a given performance level of µ0, i.e., xµ µ( ) 0.
If m 2, trade-offs are expected among different types of resources.
The multiple criteria problem (Steuer & Na, 2003) can be formulated as
below:

x xmin{ , , }m1

xµ µs. t. ( ) 0 (1)

xL U

where µ x( ) requires simulation for evaluations. L and U are the lower
and upper limits of resources. The feasible ranges = L LL { , , }m1 and

= U UU { , , }m1 are given, and µ µ µU L( ) ( )0 holds for a non-in-
creasing function. Constraint (1) ensures that the system can satisfy the
given performance level, and a second constraint (2):

>µ x x x µ i m( , .. 1, , ) , [1, ]i m1 0 (2)

implies that if a single resource of any type is removed, the system no

longer satisfies the performance level. For example, in the election
context consider two resources: poll books and voting platforms. By
setting =U {5, 20} and =L {2, 3} as the feasible ranges, we assume
using our judgement that with 5 poll books and 20 voting machines, the
system’s performance is superior to the standard of 30 min; but with 2
poll books and 3 voting machines, its performance is inferior. Suppose
we find two feasible solutions =SP {(4 poll books, 8 machines), (3 poll
books, 10 machines)}, where SP is the feasible region (i.e., a contour
solution set). If any machine or poll book is removed from either of
these solutions, then the performance level of 30 min is no longer sa-
tisfied.

This problem is different from traditional ranking and selection si-
mulation-optimization problems, where the objective can only be
evaluated via simulation rather than the constraints. Considering the
variations and noises, we may be indifferent to the exact value as long
as the true value µ x( ) is at most an “indifference-zone“ parameter,

> 0, above or below the performance requirement. In other words,
only when +µ µx( ) 0 or µ µx( ) 0 , we consider it practically
significant to detect the differences. In practice, we make our declara-
tions based on sample means and the indifference zone value is simply a
parameter of our testing method and concept used in method evalua-
tion.

Next, we follow the notation for Generalized Binary Search (GBS)
from Nowak (2011). A hypothesis matrix, = hh x{ ( )}, is a set of de-
clarations h x( ) about the feasibility or infeasibility of all combinations
of resources, for any x satisfying L Ux . The evaluation of h x( ) is
called a query. The value of an h x( ) is defined by

=
+

h
if declaration is feasible

if declaration is infeasiblex( )
1

1

where a ranking and selection procedure makes the declarations for
each query. Note that Nowak (2011) only considered the case in which
the indifference zone parameter is zero ( = 0). Here, we offer a gen-
eralization taking indifference into account. Technically, if you declare
empirically that the system is feasible, you are declaring µ µx( ) 0.
If you declare the system infeasible, you are declaring + >µ µx( ) 0.

Table 1 gives a hypothetical example of a hypothesis matrix with
correct declarations involving two resources, x1 and x2. Suppose that

= <µ µx( (6, 6)) 0, i.e., =x (6, 6) is feasible. If a ranking and selection
procedure finds = = +h x( (6, 6)) 1, then it is a correct declaration;
otherwise, the procedure makes an incorrect declaration. Suppose

=x (10, 3) in this example corresponds to a situation in which
< < +µ µ µx( )0 0 , either declaration = = +h x( (10, 3)) 1 or

= =h x( (10, 3)) 1 is considered correct within the indifference para-
meter.

3.2. Assumptions

Assumption 1. In this article, batch means from multiple simulation
replications are written, Y x¯ ( )1 , Y x¯ ( )2 ,…, and are assumed to be
independent identically distributed (IID) normally distributed with

Table 1
A hypothesis matrix with correct declarations of a hypothetical example.

x1

6 7 8 9 10 11 12 13

x2 1 −1 −1 −1 −1 −1 −1 −1 −1
2 −1 −1 −1 −1 −1 −1 −1 −1
3 −1 −1 −1 −1 −1/+1 +1 +1 +1
4 −1 −1 +1 +1 +1 +1 +1 +1
5 −1 +1 +1 +1 +1 +1 +1 +1
6 +1 +1 +1 +1 +1 +1 +1 +1
7 +1 +1 +1 +1 +1 +1 +1 +1
8 +1 +1 +1 +1 +1 +1 +1 +1
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finite variance for all possible values of x . As noted by Nelson and
Goldsman (2001), the IID assumption always holds true for
replications. Also, the IID normally distributed assumptions are
approximately true when using batches within a single long
replication if the process is stationary and the batches are sufficiently
large.

Assumption 2. Another assumption used is that the fitness function is
monotone (non-increasing or non-decreasing) in all resource types. In
the context of waits and elections, this could be interpreted as assuming
that the batched average of the longest waiting time is non-increasing
with the numbers of poll workers and voting machines. For example, for
a single resource type this implies:

µ µ µ(1) (2) ( ) (3)

Note that assumption 2 may not apply to all cases. Theoretically, in
some extreme cases, increasing resources in one queue might increase
wait time in other queues within the same queueing network, which
therefore could result in longer total wait time. Practically, however,
such extreme cases are rarely encountered. Previous research has found
monotonicity in certain queueing systems. For example, Yang et al.
(2013) proves that for any given sample path the wait time of any
customer in a single queue system is non-increasing as the number of
server increases. It can be derived that the expected total wait time in
an open network of M/M/m queues is non-increasing as the number of
servers at some nodes increases (Bose, 2002; Jackson, 1963). Niu
(1981) proves that the expected total wait time in a tandem queue with
single server or multiple constant servers decreases as the service time
decreases. Tay (1992) shows that the response time in a tandem queue
with single servers decreases as the service times at any single server
decreases. Wu, Shen, and Zhao (2017) provides an approximation
formula for the mean queue time of a two-stage tandem queue with
multiple servers with finite buffer, from which it can be derived that the
approximated mean queue time is a non-increasing function of the
number of servers. These theoretical results suggest that Assumption 2
is likely to be satisfied in practice.

To investigate the practical relevance of the non-increasing as-
sumption, ten articles published in or after 2011 containing practical
case studies with sufficient details for evaluation are identified
(Gurumurthy & Rambabu, 2011; Inoue & Katsunori, 2012; Lam, Ng,
Lakshmanan, Ng, & Ong, 2016; Pool, Wijngaard, & Zee, 2011;
Robinson, Radnor, Burgess, & Worthington, 2012; Rohleder, Lewkonia,
Bischak, Duffy, & Hendijani, 2011; Seo, Song, Kwon, & Kim, 2011; Sun,
Lee, Chew, & Tan, 2012; Tizzoni et al., 2012; Zhang, Puterman, Nelson,
& Atkins, 2012). In all ten articles, there is no mechanism reported such
that adding resources would harm the service performance in their real-
world applications. Moreover, a voting queue is tested using VBA coded
discrete event simulation with 100 replications to evaluate the average
and maximum expected waiting times (Fig. 1). The scenario is built for
a polling station with 2,976 expected voters, based on an assemblage of
the information supplied by the Ohio Franklin County Board of Elec-
tions for the 2012 presidential election. In Franklin County, polls are
open for 13 h on Election Day, and the arrival process is modeled as a
constrained non-stationary Poisson process. We assume the voter ar-
rival rate doubles for the first two hours (6:30 AM to 8:30 AM) and final
two hours (5:30 PM to 7:30 PM) compared to the rest of the day to
simulate the “pre-work morning rush” and “afternoon rush”. In addi-
tion, we employ an early voter arrival with the base arrival rate starting
at 5:30 AM to preload the system. The registration time follows a dis-
tribution of triangular (0.9, 1.1, 2.9), and the service time using the
voting machines is calculated based on the ballot length. In this sce-
nario it follows a distribution of triangular (4.43, 9.14, 6.7) with an
average of 6.76 min. The simulation outcome complies with the
monotone assumption. As the number of DRE machines increases, both
lines are smooth with error bars representing relatively narrow 95%
confidence intervals. The half-widths of the confidence intervals range

from 0.29 to 3.74 min.
Define H as a finite hypothesis matrix set consisting of all hypoth-

esis matrices, = h hH { , , }M1 . Let Uk and Lk denote the upper and the
lower limits of each resource type k for k m{1, , }. Then, each hy-
pothesis matrix h has += U L( 1)k

m
k k1 declarations, where each

declaration h x( ) is mapped to either “+1” or “-1”. For instance,
Example 1 shown in Table 1 has + + =(8 1 1)(13 6 1) 64 de-
clarations xh ( ). Thus, without assumption 2, there are a total of

+=2 U L( 1)k
m k k1 hypothesis matrices in H. Because of assumption 2, we

only need to consider the effective hypothesis matrices with the fol-
lowing structure:

• For any query generating a declaration of + 1, only h x( ) with + 1
values for higher resource levels are correct. For example, suppose
(3, 5) generate a declaration of + 1, i.e., <µ µ(3, 5) 0, then

<µ x x µ x x( , ) , 3 51 2 0 1 2 .
• For any query generating a declaration of –1, only h x( ) with –1

value for lower resource levels are correct. For example, suppose
(2, 4) generate a declaration of –1, i.e., >µ µ(2, 4) 0, then

>µ x x µ x x( , ) , 2 41 2 0 1 2 .

Therefore, the size of the hypothesis space, H| |, can be reduced
significantly. Table 2 gives a simple example of an initial hypothesis
space H with two types of resources x x( , )1 2 , where each type of resource
has two possible values, and each hypothesis matrix h has × =2 2 4
declarations. Thus, = =H| | 2 164 without assumption 2. However, as
shown in Table 2, because of assumption 2, this hypothesis space has six
effective hypothesis matrices h in total, i.e., =H| | 6.

4. Indifference-Zone Generalized Binary Search algorithm

In this section, the Indifference-Zone Generalized Binary Search
(IZGBS) method is proposed to find the contour solution set of the
problem. This problem has been previously proven as NP-complete
(Hyafil, 1976). Because the true value of each declaration is unknown,
solving the problem involves finding the correct declarations and the
effective hypotheses to enter the next iteration. IZGBS makes use of a
procedure from Andradόttir and Kim (2010), which is reviewed in the
appendix. We refer to this incorporating procedure as Andradόttir and
Kim Phase I (AKPI) because it involves only the first phase of their
method. As noted previously, the proposed method further extends the
Generalized Binary Search because it involves an indifference para-
meter, , with 0 (Dasgupta, 2005; Nowak, 2011). Also, we included
more than a single decision variable. Indifference parameters are re-
levant for empirical or simulation-based feasibility evaluations. Denote
Hi as the current hypothesis space in the ith iteration and = hh x{ ( )}j j .

The Indifference-Zone Generalized Binary Search (IZGBS) Method
Initialize =i 0; significant level , indifference parameter , and objective µ0.

Enumerate all the hypothesis matrices hj in the initial hypothesis space:
=H h h{ , , }M0 1 .

Do While >H| | 1i

Select point = argmin hx x( )
i jx hj H

Use AKPI with =r 1, log H| |0 , , and µ0 to make a declaration on whether
µ µx( ) 0.
If it is declared that >µ µx( ) 0 then,

Set = =+ hH h H x{ : ( ) 1}i i jj1
Else,

Set = = ++ hH h H x{ : ( ) 1}i i jj1
End if

= +i i 1
End Do
=h Hi;
Select the contour solutions from h to the set
= = + =x x h x x x x x i mS {( , , ): ( , , ) 1 ( , 1, , ) 1, [1, ]}.P m m i m1 1 1
Terminate

The algorithm starts with M hypothesis matrices in its initial search
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space H0. At iteration i, we compute h x( )jh Hij
for each point x , and

select an x that minimizes h x( )jh Hi
. We use the AKPI Method to

make a declaration for this point on whether µ µx( ) 0. According to
the declaration, approximately half of the hypothesis matrices in Hi will
be eliminated and the other half will be selected for the new hypothesis
space +Hi 1 at the next iteration +i 1. This query step is performed re-
cursively until there is only one hypothesis (h ) left in the hypothesis
space. Most of the time, h and can be found in Olog H| |0 steps (Nowak,
2011). We then return all contour solutions to set SP from the hy-
pothesis matrix h . A solution x x( , , )m1 will be considered a contour
solution if = +h x x( , , ) 1m1 and =h x x x i m( , 1, , ) 1, [1, ],i m1 in
h . These are the “non-dominated” solutions.

For example, we use the hypothesis space in Table 2 to illustrate the
algorithm. The initial search space = h h h h h hH { , , , , , }0 1 2 3 4 5 6 , with
four possible solutions x {(1, 1), (1, 2), (2, 1), (2, 2)}. At iteration 0,

== h (1, 1) 4j j1
6 , = == =h h(1, 2) (2, 1) 0j j j j1

6
1

6 , == h (2, 2)j j1
6 4.

Because either (1, 2) or (2, 1) minimizes h x( )jh Hi
, either one can be

selected. Suppose point (1, 2) is selected and AKPI method declares that
>µ µ(1, 2) 0. According to the declaration, =h (1, 2) 1.j Thus,

= h h hH { , , }.1 3 5 6 Because = >H| | 3 11 , the algorithm continues to per-
form another iteration. Suppose h3 is the last matrix remaining and then
we set =h h3. In h , only (2, 1) can be considered as a contour solution,
i.e., =S {(2, 1)}P .

The following result provides a probabilistic guarantee of the
quality for the contour solutions in the IZGBS derived set SP.

Theorem 1. Assume Assumptions 1 and 2, and =L L L{ , , }m1 and
=U U U{ , , }m1 are given. The solution set =S x x{ , , }P n1 derived from

applying IZGBS with specified , and µ0, where > 0 and < <0 1,
satisfies

< < +µ µ µ x x x

i n k m

xPr{ ( ) ( , , 1, , ) } 1

[1, ] [1, ]
i i i k i m0 ,1 , ,

(4)

Our proof of Theorem 1 is based on Bonferroni inequality and multiple
applications of AKPI procedures used for the selection of xi.

Proof. IZGBS applies a total of up to log H| |0 GBS iterations and log H| |0
AKPI comparisons (Nowak, 2011). For each AKPI comparison, the
Probability of Correct Selection (PCS) is greater than or equal to

log H1 | |0 (Andradόttir & Kim, 2010). Denote the true value of
selected xi as µ x( )i . Then, we have at least Hlog1 | |0 confidence of
deriving the correct declaration when µ µx( )i 0 or +µ µx( )i 0 .
When < < +µ µ µx( )i0 0 , it does not matter whether the system is
declared as feasible or not according to the problem statement. Thus,
according to the Bonferroni inequalities, after at most log H| |0 times of
AKPI comparisons (Nowak, 2011), we have at least 1 confidence of
picking the correct hypothesis simultaneously after all steps. By
construction, the IZGBS method terminates when there is only one
remaining hypothesis (Nowak, 2011). Also, by construction, all the
neighbors of xi must have been directly or indirectly evaluated based on
the monotone assumption. If the final hypothesis is correctly selected,
all the xi remaining in the solution set SP must be declared as feasible
solutions by AKPI, satisfying +µ µx( )i 0 . Also, due to the contour
solutions’ property in the set SP , their neighbor solutions
x x x i n k m{ , , 1, , } [1, ] [1, ]i i k i m,1 , , have to be declared

infeasible, i.e., µ x x x µ i n( , , 1, , ) [1, ]i i k i m,1 , , 0
k m[1, ]. Otherwise, the neighbor solutions would be better, and

would replace xi in the contour solution set. As previously stated,
Theorem 1 is guaranteed. ■

Note that if the user sets +µ0 = 30 min and the performance
metric is the waiting time, then IZGBS can be used to guarantee that all
voters are expected to wait less than 30 min for each solution generated
with bounded probability. The following corollary establishes condi-
tions for which IZGBS terminates with the true contour set.

Corrolary 1. Assume Assumptions 1 and 2. Also, assume (level separation)
that the elements of the true contour solution set, =S x x{ , , }P n1 x SPi
satisfy xµ µ( )i 0 , > +µ x x x µ k m( , , 1, , ) [1, ]i i k i m,1 , , 0 ,
and + <µ x x x µ k m( , , 1, , ) [1, ]i i k i m,1 , , 0 , then, the set SP that
IZGBS derives satisfies:

=S SPr{ } 1PP (5)

Fig. 1. Election day waiting time performance evaluation using DES and the average of 100 replications.

Table 2
Hypothesis space H with two types of resources.
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Proof. Theorem 1 gives < < +µ µ µ x x xx( ) ( , , 1, , )i i i k i m0 ,1 , ,
i n k m[1, ] [1, ] simultaneously with probability greater than

1 . Also, the separation assumption gives us that no neighboring
solution of a contour solution, xi, has its mean within of µ0 x Si .

Suppose x SP but x SP after performing IZBGS. From the
Theorem 1 conditions, we have µ x( )
< < +µ µ x x x( , , 1, , )k m0 1 . By the separation assumption, there
are no non-contour solutions in this interval so we must have x SP.
Therefore, whenever the Theorem 1 conditions hold we have a con-
tradiction (which occurs with probability greater than 1 ).

Suppose x SP but x SP. The separation assumption then con-
tradicts the conditions of Theorem 1. Both the separation assumption
and the conditions of Theorem 1 hold with probability greater than
1 . Therefore, =S SPr{ } 1P P . ■

5. Empirical evaluation

We compare the IZGBS method with the AKPI procedure using a full
factorial experiment based on systems with multiple bottleneck re-
sources (e.g., =q 2). The responses are average sample number (ASN)
and probability of corrected selection (PCS). ASN is proportional to the
computation time. This experiment involves four factors with two levels
per factor. The first factor is the initial sample size considered at

=n 100 and 30. The second factor represents the feasible range of the
number of resources. This factor relates to resource capacity as well as
initial knowledge of the user. In our case, range sizes of ×5 5
( =U {10, 5}, =L {6, 1}) and ×8 8 ( =U {13, 8}, =L {6, 1}) are con-
sidered. The third factor is the set of example problems as listed below:

Example 1: = +y x x x x x( ) 100 2 3 21 2 1 2
Example 2: = +y x x x x x( ) 25 0.2 0.3 0.41 2 1 2

where follows N (0, 1). The last factor is the method, with the
purpose to compare the effectiveness of AKPI and IZGBS algorithm.

The final hypothesis derived involves the Pareto Optimal solutions,
feasible but not Pareto Optimal solutions, and the remaining solutions
that are infeasible. The combination of those solutions could be re-
presented by hypotheses with feasible/infeasible labels, and a correct
selection is declared only when the correct hypothesis is picked.
Theoretically, more than one correct hypothesis could exist because
both AKPI and IZGBS are -optimality based methods.

In our numerical examples, the value of the indifference parameter,
, is fixed at 0.5, and µ0 is chosen to be 11, which means a feasible

declaration is expected when µ 10.5, and an infeasible conclusion
should be declared when µ 11.5. When < <µ10.5 11.5, either de-
claration can be accepted. The correct hypotheses of the example pro-
blems are listed in Table 1 and Table 3, respectively. In both tables, “-1”
represents an infeasible solution, “+1” represents a feasible solution,
and “-1/+1” indicates both declarations are acceptable.

Each design point is evaluated based on 1,000 replications. The
resulting ASN and PCS as shown in Table 4. PCS denotes the probability

of picking the correct hypotheses listed in Tables 1 and 3.
The interaction plots for ASN and PCS are illustrated in Figs. 2 and

3. In both plots, the horizontal lines generally correspond to insignif-
icant effects (with p-value 0.05). The lines with large slopes in ab-
solute value generally correspond to strong effects (with p-value <
0.05). For example, the size of the range has a large and significant

effect on ASN for the AKPI method but not for the IZGBS method.
Based on Fig. 2, we have the following findings:

1. Generally, IZGBS is uniformly superior to AKPI on the performance
of ASN. This is expected because of the bisection nature of IZGBS as
compared with the sequential approach of AKPI. In addition, the
size of the range dramatically increases the total number of ob-
servations required by AKPI, but not for the IZGBS method due to
the same reason. AKPI method performs evaluations for all systems,
while the bisection nature of IZGBS approach largely reduces the
effect of range on convergence (Nowak, 2011).

2. Different examples minimally affect the computational performance
of both IZGBS and AKPI. These results indicate that the initial
sample size of 10 or 30 is sufficient for the AKPI and IZGBS methods.
For the same reason, ASN is highly associated with Initial Sample
Size n0 for both methods.

Fig. 3 shows the following findings:

1. In general, IZGBS allocates fewer samples but achieves a slightly
higher PCS when compared with AKPI, but IZGBS and AKPI both
perform well in terms of PCS owing to the application of the
Bonferroni inequality. Bonferroni correction is free of any depen-
dence assumption, and therefore leads to conservative results.

2. PCS is also significantly correlated with Initial Sample Size and
Example. Intuitively, allocating more samples is more conservative,
and a higher precision is expected. In addition, the difficulty of
examples also negatively impacts the accuracy. It also seems that the
PCS performance of IZGBS is slightly more robust to the Initial
Sample Size, Range, as well as Example, when compared with AKPI.

Overall, both IZGBS and AKPI methods could achieve a high PCS in
excess of the bounds as guaranteed in Section 3. The IZGBS method
dominates the AKPI in terms of both ASN and PCS due to the more
efficient bisection search design for choosing the next alternative
system for comparison with the standard.

6. Guaranteeing short waits at the polls

In this section, IZGBS is applied in the context of election systems
apportionment using the outputs from a discrete event simulation

Table 3
Correct hypotheses of Example 2 in the full factorial design.

x1

6 7 8 9 10 11 12 13

x2 1 −1 −1 −1 −1 −1 −1 −1 −1
2 −1 −1 −1 −1 −1 −1 −1 −1/+1
3 −1 −1 −1 −1 +1 +1 +1 +1
4 −1 −1/+1 +1 +1 +1 +1 +1 +1
5 +1 +1 +1 +1 +1 +1 +1 +1
6 +1 +1 +1 +1 +1 +1 +1 +1
7 +1 +1 +1 +1 +1 +1 +1 +1
8 +1 +1 +1 +1 +1 +1 +1 +1

Table 4
Full factorial evaluation of AKPI and IZGBS.

Run n0 Range Example Method ASN PCS

1 30 5 × 5 Example 2 IZGBS 241.3 100.0%
2 10 8 × 8 Example 1 IZGBS 178.8 100.0%
3 10 5 × 5 Example 2 IZGBS 118.5 99.9%
4 10 8 × 8 Example 2 AKPI 767.3 99.7%
5 30 8 × 8 Example 2 AKPI 1929.7 99.9%
6 30 5 × 5 Example 2 AKPI 754.1 99.9%
7 30 5 × 5 Example 1 AKPI 756.7 100.0%
8 30 5 × 5 Example 1 IZGBS 242.2 100.0%
9 10 5 × 5 Example 1 AKPI 303.5 100.0%
10 30 8 × 8 Example 1 AKPI 1933.5 100.0%
11 30 8 × 8 Example 1 IZGBS 439.0 100.0%
12 10 8 × 8 Example 2 IZGBS 211.5 99.9%
13 10 5 × 5 Example 1 IZGBS 104.7 100.0%
14 10 8 × 8 Example 1 AKPI 716.1 100.0%
15 10 5 × 5 Example 2 AKPI 315.1 99.5%
16 30 8 × 8 Example 2 IZGBS 423.1 100.0%
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model. In voting systems, IZGBS can derive a minimum number of
machines needed to meet an objective, a relevant number for admin-
istrators who are purchasing and allocating the equipment. In U.S.
election systems, apportionment occurs significantly in advance of the
elections and often involves legislators. A related decision is allocation
in which local officials determine the exact resource level at each lo-
cation. IZGBS is mainly relevant to apportionment but it can also help
in allocation through iterative application. For fixed resource levels,
IZGBS can be applied iteratively to find the maximum attainable per-
formance level.

The simulation model is constructed according to the voting process
at a poll station on Election Day illustrated in Fig. 4, which can be
considered as a two-stage tandem queue. The first process is voter
check-in, where a voter’s identity is validated; the second process is
ballot casting, where a voter casts his ballot on a voting machine or in a
voting booth. Generally, there are multiple poll books and multiple
voting machines (or voting booths) at a poll station. Each process

should ideally have a separate queue to avoid starving the bottleneck.
As discussed in Section 3.2, the guarantee of IZGBS depends on the

approximate normality of the performance metric data, which is the
simulated waiting times in our case studies. However, raw simulation
output, especially the associated order statistics (e.g. the longest
waiting time), rarely follows a normal distribution. Therefore, two
approaches are introduced as a necessary pre-step in Sections 6.1 and

Fig. 2. Interaction plot for ASN of the full factorial design results.

Fig. 3. Interaction plot for PCS of the full factorial design results.

Departure

Arrivals Check-InWaiting Waiting

Ballot 
Casting

Doors open from 
6:30 am to 7:30 pm

Poll Books

Machines

Fig. 4. Voting process.
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6.2 to establish asymptotic normality. Computational comparisons are
described to determine the appropriate batch size for the election
system examples. Then, voting systems with a single resource, as well as
multiple resources are studied in Sections 6.3 and 6.4. Resource levels
associated with the objective that voters can expect to wait less than
30 min are provided for election officials together with information
about the computational performance of the IZGBS method (Table 5
and Fig. 12).

6.1. Batch means

Batching is a typical simulation technique for approximating normal
data. Let Yl j, denote a basic jth observation of the maximum waiting
time for system l as listed in the AKPI procedure (appendix). When the
distribution of Yl j, drifts significantly from normality, we replace in-
dividual observation Yl j, with batch means (Y b[ ]l j, ). Y b[ ]l j, denotes the
averages of b basic observations of Yl j, , which is assumed to be nearer
normal compared to Yl j, due to the central limit theorem (Bekki, Fowler,
Mackulak, & Nelson, 2007; Kim & Nelson, 2001; Law & Kelton, 2000).
For example, with =j 200 simulation runs and a batch sizeb = 5, the
200 maximum waiting time will be grouped into 40 groups, and 40
batch means will be generated as the initial sample size. Therefore,

=n j b0 batch means Y b[ ]l j, are generated in the first state of sampling,
and Sl

2 become the sample variance of Y b[ ]l j, . Andradόttir and Kim
(2010) evaluated the robustness of AKPI method to IID non-normal data
through batching. For an extreme IID Bernoulli distribution, the
minimum observed Probability of Correct Selection of the raw ob-
servation data ( =b 1) equals 67%. As the batch size increases to 2, 5
and 10, the observed PCS quickly improves to 86%, 93% and 95%,
respectively.

In the voting context, the waiting-time distribution for the voter
who waits the longest depends on both the arrival and the service
processes. Therefore, the batch size for approximate normality could
depend on the resource level for a fixed arrival process. Here, we
study two scenarios: scenario one with 2 machines, an average of
4.9 min as service time, and 76 expected voters ( =NTotal 76) as the
minimum count in the 2012 Ohio Franklin Presidential Election;
scenario two with 34 machines, an average service time of 6 min, and
the maximum number of expected voters ( =NTotal 2, 976). The ob-
servations of the waiting times for the voter who waits the longest
are generated and grouped into batches of variable sizes ( =b 1, 2, 5,
10 and 20).

Figs. 5 and 6 illustrate the effect of batch size on the approximate
normality of the batch means for each scenario with 250 replications.
For the cases with large batch size ( =b 20), the approximate normality
is apparent in the plot. Using Kolmogorov-Smirnov testing, p-values are
derived for the batch averages. For scenario one, the normality tests are
rejected when =b 1 and 2 (p-values <0.01). For the other cases, the p-
values are greater than 0.05, indicating some level of support for the
normality assumption. Thus, we can conclude a batch size of 5 is needed
for approximate normality for scenario one. For scenario two, approx-
imate normality is only achieved when =b 20 (p-values >0.05).

6.2. Quantile estimators

The quantile-based approach is another choice to obtain approxi-
mately IID normal data. Compared to the basic observation (e.g.
average/maximum waiting time), a nonparametric estimator of quan-
tiles provides extra power by leveling the entire distribution of the
performance metric, and is more robust against outliers and extremely
skewed distributions.

Bickel and Lehmann (1975) studied three classes of quantile esti-
mators: L-estimator is calculated as a linear function of order statistics;
R-estimator is derived from rank tests; M-estimator is obtained as an
optimizer of a criterion function (e.g. minimizing a sum function of the
data). They found L-estimator is the only measure that provides high
efficiency and robustness at the same time among all three estimators.
Later, Dielman, Lowry, and Pfaffenberger (1994) evaluated ten non-
parametric L-estimators by mean square error (MSE) and mean absolute
deviation (MAD) for various distributions including skewed distribu-
tions, and recommended HD quantile estimator for its great perfor-
mance over a broad range of cases ( q0.98 0.02), with some defi-
ciencies for extreme percentiles. The HD estimator (Harrell & Davis,
1982) is formulated as a linear function by assigning a weight for each
order statistic, and is given by:

=
=

HD w Yl j q
n

NTotal

NTotal n l j n, ,
1

,( ) , ,( )
(6)

where

= + +

+ +

w I q NTotal q NTtotal I

q NTotal q NTtoal

{ ( 1), (1 )( 1)}

{ ( 1), (1 )( 1)}
NTotal n n NTotal n NTotal,( ) ( 1)

Here, I a b( , )c denotes the incomplete beta function. Let Yl j, denote a
basic jth observation representing the maximum waiting time for
system l as listed in the AKPI procedure. Assume system l has NTotal
expected voters, then we let Y Y Yl j l j l j NTotal, ,(1) , ,(2) , ,( ) denote the
order statistics of individual’s voting time of all the voters collected in
jth observation for system l. Then, let HDl j q, , denote the jth HD esti-
mators of qth quantile for system l, and replace the individual ob-
servation Yl j, in the AKPI procedure (Appendix) with HDl j q, , .

The asymptotically normal approximation of the HD estimator is
judged to be adequate when NTotal 20 and =q 0.5 or

NTotal50 30 and =q 0.95 for uniform and normal distributions; for
asymmetric distribution such as exponential, NTotal100 80 may be
required when q 0.9 (Brodin, 2007; Harrell & Davis, 1982). Batur
(2010) applied the HD estimator in a two-stage quantile-based R&S
procedure to address the issue of data non-normality.

In the context of voting, we perform similar batching exercise as in
Section 6.1 for HD estimators to investigate its asymptotic normality.
We are more concerned with the estimation of extreme right-tail
quantiles (e.g. =q 0.95 or =q 0.99), because for most realistic voter
waiting time distributions on Election Day, 0.7-quantile or below are
usually minimal. Here, if we want to investigate the number of re-
sources needed to guarantee that at least 95% of the voters wait for less
than 30 min, then the HD estimators with =q 0.95 have to be de-
termined. Figs. 7–10 illustrate the effect of batch size, number of ex-
pected voters and quantile on the approximate normality of data. Ap-
plying Kolmogorov-Smirnov testing, we find that when =NTotal 76,

=q or0.95 0.99, a batch size of 10 is needed to achieve approximate
normality ( >p 0.05). When =NTotal 2976, =q 0.99, a batch size of 5
can satisfy the assumption of normality. With the same NTotal of 2976,
but a lower q of 0.95, =b 2 is sufficient for the approximate normality.
In general, the normality condition can be more easily satisfied with a
larger sample size (number of expected voters) and less extreme
quantiles. Thus, for the remaining computational study, HD estimator
with =b 10 and =q 0.99 is adopted since it represents relatively low
computational costs with approximately normally distributed data.

Table 5
Computational results for the 8 issues service time case with 20 replicates and
batch size = 10.

Expected
voters

Number of
issues on
ballot

Resource Exp. Quantile
waiting time

SD of
the
mean

Avg. run time
(seconds)

500 8 9 25.8 0.00 5.2
1000 8 17 28.6 0.00 14.2
1500 8 25 27.4 0.00 23.4
2000 8 33 29.1 0.00 45.4
2500 8 41 27.2 0.11 78.1
3000 8 48 28.2 0.17 108.3

T.T. Allen, et al. Computers & Industrial Engineering 140 (2020) 106243

8



6.3. Case study for single resource type

In this section, we apply IZGBS to a voting problem with one type of
scarce resource. Local officials could appropriately apply the IZGBS
method to allocate the bottleneck resource if other types of voting re-
sources are sufficient. Section 6.4 illustrates the IZGBS method in the
situation when multiple bottlenecks occur in a voting system.

Long voting lines were widely reported in central Ohio in 2004, in
central Florida in 2012, and in Sandoval County of New Mexico in

2012. Many poll stations in these three elections involved bottlenecks of
a single resource type, although the type of resource differed. Direct
Recording Electronic (DRE) voting machines were used in central Ohio
in 2004 (Allen & Bernshteyn, 2006); central Florida utilized voting
booths in 2012 (Allen, 2013); and scanning machines were used in
Sandoval County, New Mexico, in 2012 (Allen, 2014). The bottleneck
can occur either at the voter check-in or at the voting machine/booth.
When there is only one bottleneck in the process, the process can be
approximately simplified to a single queueing node.
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Fig. 5. The effect of batch size on approximate normality for maximum waiting time of scenario one.
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The simulation model includes a 13-hour election day with two rush
periods: 6:30–8:30, and 17:30–19:30. The “thinning” method for the
nonhomogeneous Poisson process is used so that the average arrival
rate is doubled during the rush periods. The measure of service times
across voting locations is correlated with the ballot lengths. In general,
service time distributions do not differ greatly by the method of voting.
For example, Fig. 11 shows measured service times for 20 voters during
a mock election using DRE voting machines in Franklin County, Ohio
and 24 voters in Saginaw County, Michigan in 2017.

This follows because methods ranging from DRE voting machines to
voting booths with paper ballots may have approximately similar ser-
vice distributions, which relate to the time during which the voter
monopolizes the resource.

With a batch size =b 10, repeated applications of the IZGBS method
using the simulation model can provide insights. The simulation model
and IZGBS methods are coded in Visual Basic for Applications (VBA) in
Excel for election officials to use. In this example, three service time
distributions are considered motivated by Fig. 11: triangular (2, 7, 4) for
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Fig. 7. The effect of batch size on approximate normality when =NTotal 76 and. =q 0.99
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a ballot length of 4 issues, triangular (4, 9.5, 6) for a ballot length of 6
issues, triangular (6, 12, 8) for a ballot length of 8 issues. These service
times correspond to short, medium, and long ballots cast on DREs or,
alternatively, in voting booths with paper ballots. The simulation model
assumes a known number of voters. In practice, the precise number of
voters is unknown, but, for a conservative estimate, a relatively high,
locally appropriate fraction of the registered voters can be used. In our
experience, election officials are able to predict turnout within a few
percentage points based largely on historical turnout for similar

elections.
In this example, we apply an indifference zone of = 0.5 minute, a

quantile of =q 0.99, and a performance objective =µ 300 minutes. The
objective of the IZGBS method is to derive the minimum number of
resources needed to guarantee that 0.99-quantile of the voter waiting-
time distribution is expected to be less than 30 min, with 0.5 as the
significant difference to be detected.

The results of applying 20 repeated applications of IZGBS are shown
in Table 5 corresponding to the case with 8 issues on the ballot. Six
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Fig. 9. The effect of batch size on approximate normality when =NTotal 2976 and. =q 0.99
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scenarios with different numbers of voters are considered. Also, the
average number of resources derived from IZGBS is shown as well as the
standard deviations (SD) of the mean. The true minimum resource le-
vels are likely to be the nearest rounded-up integer. For example, with
500 voters 9 resources are needed. The average computation run times
are derived using a PC computer with Intel Core i5-5300U 2.30 GHz
2.30 GHz, 8.00 RAM, and 64-bit operating system. Our experiences
indicate that C++ codes are between one and two orders of magnitude
more efficient.

In Fig. 13, we consider six different voter numbers and three dif-
ferent processing times to illustrate the correlations. Fig. 13 may be
immediately relevant for election officials and lawmakers. The results
illustrate a clear correlation between the ballot lengths (average service
times) and the numbers of resources needed.

In our experience, the numbers of machines required and displayed
in Fig. 13 exceed the levels provisioned for voters. This occurs in part
because many officials underestimate average service times. In 2016,
we worked with Franklin County, Ohio and used our software to gen-
erate apportionments for 379 locations around central Ohio. The largest
precinct had 9,237 registered voters and 6,114 expected voters. The
IZGBS algorithm suggested that 34 more machines would be needed to
ensure that 99% of voters in that precinct could expect to wait less than
30 min. This was the largest discrepancy. The officials found 16 more

available machines and moved them to this precinct. Even with this
change, waits of more than 3 h at that location were reported. Still, we
conclude that thousands of voters were saved hours of waiting.

Software was created to determine the allocation and apportion-
ment of resources, incorporating user input on the number of resources
to be explored for just voting or for both voting and check-in (see
Fig. 12). The user also determines whether to consider an average time,
a maximum time, or a quantile for the waiting time. Details of the
election can also be entered, such as start and end time. The distribution
of the arrival rate is also entered. The user can also specify time periods
with higher arrival rates, such as rush periods. And the desired in-
difference-zone is input as well. The number of items on the ballot are
also entered. Based on the user’s time constraints to get a response from
the software, they can also decide if they want to achieve a faster result
without a guarantee (probabilistic on solution quality), or a slower
response with a guarantee.

As another example, in the 2008 election for Franklin County, Ohio
locations with 1,000 voters had only 5 machines, far below the re-
commended number of 17 machines (for an 8 issue ballot) shown in
Table 6. Of course, that election and the relevant locations became
notorious with documented waiting lines longer than 5 h (Yang et al.,
2014). In this example, focusing on the waiting time of the extreme
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Fig. 11. Relative frequency histograms for service times for 20 electronic (DRE)
voters in Franklin County, Ohio 2006 and 24 booth voters in Saginaw, Michigan
2017.

Fig. 12. Screen capture of the software with single resource example for allocation.

Fig. 13. Numbers of machines needed by numbers of voters and issues (single
resource) for an expected 30 maximum minute or less wait.
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right-tail quantiles, the recommended resource levels would effectively
eliminate waiting for most voters.

6.4. Case study for multiple resource types

This section considers a voting process involving multiple types of
resources. Although casting ballots is usually the bottleneck of the en-
tire voting process, a real voting process could be more complicated.
According to Spencer and Markovits (2010) and Stewart and
Ansolabehere (2015), it is important also to consider the balance be-
tween the upstream service at the check-in tables and its cascading
effects at the voting venues: congestions and lines could occur at both
places. For example, some complicated voter-check-in cases may take a
long time to complete before the voter starts to cast a ballot, which can
create waiting lines at check-in even when the voting machine is idle.

In this section, we apply IZGBS to a more complicated voting pro-
blem with =q 2 resource types: poll books at check-in desks (i.e., ser-
vice I) and voting machines to cast ballots (i.e., service II). We add an
upstream check-in process with the service time distribution of
triangular (1, 3, 1.5) to the simulation model used in the previous sec-
tion. We select this distribution based on the observation data collected
in the 2016 Primary Election in Franklin County, which is consistent
with a time baseline of 1.83 min observed by Spencer and Markovits
(2010). The objective of this problem becomes finding the combina-
tions of poll books and voting machines to ensure that the total waiting
time at both services is less than =µ0 30 min with the indifference zone

= 0.5 minutes. The result is displayed in Table 6, which lists all the
contour optimal solutions of resource combinations in the right column.

In Table 6, we verify the dependent relationship between multiple
resources. Taking the scenario with 1,000 voters and 8 issues on the
ballot as an example, we see 17 voting machines are suggested when 5
poll books (devices for efficient check-in) are required at the same time
to ensure the standard of 30 min. When the number of poll books is
reduced, an additional voting machine must be added accordingly to
guarantee the same objective. Election officials may then determine
which solution, (4,18) or (5,17), is subjectively the best. The compu-
tational results of contour solutions are also displayed in Fig. 14, where
the size of the bubble represents the number of expected voters, and the
color represents the number of issues on the ballot. From this, election
officials could use their preferences to decide the best strategy for re-
source allocation from the contour solutions as shown in Fig. 14.

Remark 1. Note that, for lower computational cost, the results here
pertain to the voter who waits at the 0.99-quantile in a single location.
The simulation can also be used to derive resource needs if the

performance metric is the absolute longest wait by adjusting the
batch size as illustrated in Section 6.1. Additionally, in a typical
county there might be hundreds of locations in parallel. Yet,
simulation permits the exploration of the voter who waits the longest
or 0.99-quantile at each individual location, as well as across multiple
locations.

Remark 2. Our algorithm is fast enough to be solved repeatedly with
iterated thresholds (µ0) so that the total resource constraints are met
over hundreds of predicts for minimax optimal performance.

7. Conclusions

This article presents a rigorous method to determine the minimum
resource levels required to satisfy a given service level objective. The
proposed IZGBS method addresses a class of problem, where the system
performance level is non-decreasing in the amount of resources and can
only be evaluated via simulation. The IZGBS method has potentially
wide applicability, particularly in cases where the standard is written
into law. It could provide a defensible approach to satisfy a given
standard with proven probability bounds. The efficiency of IZGBS
permits it to play a “building block” role in the development of opti-
mization methods. The method can be extended to a “dual” problem
with simulated parallel systems to derive resource allocation, with the
objective of achieving the best possible service level for the worst
performing single system, while constraining the total amount of re-
sources below a specified level. The case studies presented in the con-
text of voting resource allocation provide specific insights of potentially
immediate relevance of IZGBS to law makers.

The direct application of IZGBS allows elections officials to predict
waiting times (or line lengths) and create optimal allocation strategies
with solution quality guarantees. Long voting lines have played an
important role in several election lawsuits in recent years. For example,
the long lines during the Arizona primary election in 2016 brought
Arizona election officials into court (Feldman, 2016). Election officials
are accused of not using scientific methods to allocate sufficient voting
resources, which therefore resulted in long voting lines and suppressed
voter turnout. Election officials in Ohio were also charged with dis-
proportionally allocating fewer machines to precincts with pre-
dominately minority voters during the 2004 presidential election
(Tanner, 2005). Clearly, election officials need a scientific and defen-
sible method to allocate voting resources. Election officials are gen-
erally open to optimization methods for resource allocation as long as
they comply with constraints from their state secretary of state direc-
tives. Our method, scientific and defensible, can not only meet such
needs but also avoid the type of discrimination that has occurred in

Table 6
Computational results for the voting problem with multiple resources.

Expected voters Number of issues on
ballot

No. resources needed (poll workers,
machine)

500 8 (2,9)
1,000 8 (4,18)(5,17)
1,500 8 (9,25)
2,000 8 (8,35)(11,33)
2,500 8 (10,42)
3,000 8 (13,51)(15,50)
500 6 (2,7)
1,000 6 (4,13)
1,500 6 (6,20)(8,19)
2,000 6 (8,26)(11,25)
2,500 6 (9,32)(13,31)
3,000 6 (11,39)
500 4 (2,5)
1,000 4 (4,9)
1,500 4 (6,14)
2,000 4 (8,17)
2,500 4 (9,22)
3,000 4 (11,26)

Fig. 14. Numbers of machines needed by number of voters and number of is-
sues (multiple resources).
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recent elections (Allen, 2013, 2014), as well as be used to support laws
that eliminate in-person waiting.

Moreover, our method is relatively computationally efficient com-
pared to the alternatives that we consider. Election officials usually
need to plan for the upcoming elections several months in advance. For
example, election officials start to make the tentative plans for polling
stations in August for a November election. Their forecast for Election
Days could be improved as more information is known, especially after
the early voting period. Our easy-to-use method allows election officials
to run the program whenever necessary, so that they can create the
voting resources allocation plan using the most updated information.
We are posting Excel macros on our personal website, which are
available to all officials with instructions. We selected Excel because it
is currently in wide use by officials for allocation. As described in
Section 6.3, our application of the software and methods likely saved
hours of waiting for thousands of voters in 2016.

As shown in Tables 3 and 4, resource requirements are provided
such that 99% voters are expected to wait less than 30 min. This would
critically change existing provisions that mandate resources per regis-
tered voter and ignore non-stationary arrivals and service time varia-
bility. As ballot lengths differ from county to county and precinct to
precinct (sometimes by over 6 pages) (Allen & Bernshteyn, 2006) these
results can help to account for service time differences when allocating
resources in a way that is rarely done in practice. Even for short and/or
constant length ballots, the results can aid in predicting waiting times
before they occur and prevent potential voter disenfranchisement
caused by long lines.

Several topics remain for future research. First, even faster methods
could increase the usability of the software and its adoption by election
officials for allocation and legislators for apportionment. Such methods
could, conceivably, use metamodeling since the service and waiting

distributions across hundreds of locations are likely similar. Second,
methods that explicitly minimize the maximum waiting time over
hundreds of locations or some other measure of equity with constrained
resources are also of interest. In our Remark 2, we describe how our
software can be used to iteratively set the threshold or maximum value
to employ all available resources, but the process is arguably too slow
for at least some potential users. Third, if the monotone assumption is
known to be violated, the logarithm bound on the number of necessary
steps may not apply. A new way of preprocessing needs to be developed
so that it can eliminate hypotheses using any known structure, and a
more sophisticated approach to reduce the available hypotheses at each
step can be implemented. Fourth, infeasibility alerts could be developed
for cases in which legislators are apportioning too few resources or
space constraints making satisfying relevant thresholds impossible.
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Appendix. Review of methods from Andradόttir and Kim

In this appendix, a comparison with a standard procedure presented by Andradόttir and Kim (2010) is described. A special case of this procedure
is incorporated into the “Indifference-Zone Generalized Binary Search” (IZGBS) method proposed in Section 3.

Formulation of Andradόttir and Kim’s Method
Andradόttir and Kim (2010) presented a constrained R&S method to select the system with the best primary performance measure from a finite

number of parallel systems. Meanwhile, the selected system must satisfy a stochastic constraint of a second performance measure.
Assuming there is a total of r 2 unordered alternative systems indexed by =l r1, , . Let Zl j, and Yl j, be two univariate real-value random

variables derived from simulation, which associate with the primary and secondary performance measures from replication (or batch) j of system l,
respectively. Then, the mean response values for the alternative system l become E Z[ ]l and E Y[ ]l for =l r1, , . The problem seeks to find system l
that satisfies:

=
min E Z[ ]

l r
l

1, ,

s t E Y µ. . [ ]l 0 (A.1)

The Andradόttir and Kim Phase I Method
Andradόttir and Kim’s method (AKPI) is a two-stage procedure with a screening procedure in the first stage to identify all the feasible systems. In

the first phase, AKPI attempts to identify a subset including all the feasible solutions. This effectively solves the formulation in Eq. (A.1) because once
the feasible set is identified, determining the Pareto optimal solution set is trivial. In the second phase of their method, AKPI searches among these
solutions for the single best solution.

The AKPI screening procedure starts with a set of candidate solutions, = rM {1, 2, , } and ends with a set F which consists of all the feasible
solutions. Consider the event of a non-increasing fitness function, the objective becomes to seek the solution set F containing all feasible systems
satisfying E Y µ[ ]l 0 but no infeasible solutions with +E Y µ[ ]l 0 . The rest of the systems satisfying < < +µ E Y µ[ ]l0 0 are considered
as acceptable solutions, which may be declared as either feasible or infeasible. Andradόttir and Kim (2010) proved that AKPI achieves this objective
with a probability greater than 1 for all systems under the normality assumption.

AKPI is efficient in terms of sample size (Chen, 2006). At each stage, it only takes one more sample from each remaining system whose feasibility
is undetermined. Once clear evidence is shown, the undetermined system will be moved to either feasible solution set or infeasible system set.

The Andradόttir and Kim Phase I (AKPI) Procedure
STEP 1. Select n 20 , and nominal Probability of Correct Select decision 1 . Select c as any positive integer, although in practice, =c 1 is

recommended (Kim & Nelson, 2001). Compute > 0, which is the solution to the equation

= = = +=
+ ( )( )g i c( ) 1 (1 ) ( 1) 1 ( ) 1i

c i c i i
c

n
1

1 1
2

2 (2 ) ( 1) 2
r
1 0

T , where T is the indicator function.
STEP 2. Initialize = rM {1, 2, , } and =F { }, which is the set of systems whose feasibility is not determined yet and the set of systems declared

to be feasible, respectively. Let =h c n2 ( 1)1
2

0 . Generate n0 observations of Yl j, for =j n1, 2, , 0 from each system l, and compute the standard
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deviation Sl
2. Set the stage counter to =u n0 and go Step 3.

STEP 3. For each system l M, if = Y µ R u h S( ) ( ; , , )j
u

l j l1 , 0 1
2 2 , then move system l from M to F; else if += Y µ R u h S( ) ( ; , , )j

u
l j l1 , 0 1

2 2 ,

then eliminate l from M. Here, = { }R u h S u( ; , , ) max 0,l
h S

c c1
2 2

2 2
l1

2 2
.

STEP 4. Let M denote the number of elements in set M. If =M 0, then return F as a set of feasible systems. Otherwise, take one additional
observation +Yl u, 1 from each system l M, set = +u u 1, and go to Step 3.

Remark 1. Logically, assuming the alternatives are systems with different combinations of resources x , and the feasible set is correctly identified,
then it is trivial to directly apply AKPI to solve Eq. (A.1) for the single resource type case. For multiple resource type case, one can simply select all
the Pareto Optimal solutions in the feasible solution set F. Therefore, AKPI effectively seeks to solve the formulation in equation (A.1).

Remark 2. A special case of the AKPI method involves a single system being compared with a standard, i.e., =r 1. This is the method incorporated
into the Indifference-Zone Generalized Binary Search (IZGBS) introduced in Section 3. There, a single system characterized by resource level x is
compared with the standard. If the system evaluated is found to be feasible, then the resulting set F is not empty.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cie.2019.106243.
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