Nanoscale

COMMUNICATION

Palladium / Cobalt Nanowires with Improved Hydrogen Sensing Stability at Ultra-Low Temperatures

Lingling Du, a Dongliang Feng, Xiaxia Xing, Yang Fu, Luis F Fonseca and Dachi Yang *a

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

6

7

8

9

10

11

12

15

16

17

18

19

20

21

23

24

25

27

29

The metallic dopants in palladium (Pd) sensing materials enablethey modification to the d-band electrons of Pd, which is expected to tune the $\alpha\text{-}\beta$ phase transitions of PdH_x intermediate, and $th\bar{\underline{\psi}}\bar{\underline{\eta}}$ improving the sensing stability to hydrogen. Here, the boosted hydrogen-sensing stability at ultra-low temperatures has been achieved with palladium / cobalt nanowires (PdCo NWs) as the sensing material. The various Co contents in PdCo NWs are modulated via AAO-template-confined electrodeposition. The temperature - dependent sensing evaluations were performed \Re 0.1-3 v/v% hydrogen. Such sensors integrated with PdCo NWs after able to stably detect hydrogen as low as 0.1 v/v%, even the temperature is lowered to 273 K. Additionally, the critical temperatures of "reverse sensing behavior" of the PdCo NV4s $(Pd_{82}Co_{18}: T_c = 194 \text{ K}, Pd_{63}Co_{37}: T_c = 180 \text{ K}, Pd_{33}Co_{67}: T_c = 184 \text{ K})$ apple observed much lower than that of pristine Pd NWs ($T_c = 287 \text{ K}$)5 Specifically, the Pd₆₃Co₃₇ NWs (~37 at% Co content) sensor shows outstanding stability of sensing hydrogen against α-β phase transitions within the wide temperature range of 180 - 388 K, which is attributed to both the electronic interaction between Pd and c_0^{48} and the lattice compression strain caused by Co dopants? Moreover, the "reverse sensing behavior" of PdCo NWs is explicitive 51 interpreted by using the α - β phase transitions model.

Introduction

Hydrogen (H₂) is a green, sustainable and high-energy carrier \$5 the growing hydrogen economy. However, the flammable and explosive nature of H₂ challenges its practical applications. Hence, a reliable and stable sensor is of considerable importance to safety issues. Pd and its alloys have been intensively studied for hydrogen detection and hydrogen related catalytic reactions as molecular hydrogen eas \$1.5 the growing flower fl

dissociates on the surface of Pd with low activation barrier. $^{6\text{-}8}$ Meanwhile, the hydrogen atoms permeate into the metallic lattice to form PdHx intermedium, 9 inducing an electrical resistance change in a reversible manner at moderated temperatures (< 200°C). 10 In fact, most of the room-temperature hydrogen sensors employ pristine Pd or its alloys as sensing materials. $^{3\text{-}}$, $^{11\text{-}}$, 12

Generally, PdH_x features the interstitial solid solution (α phase, x < 0.01) and Pd hydride (β phase, x > 0.7), and the two phases coexist for 0.01<x<0.7 in bulk.13, 14 However, the interstitial H atoms in the Pd lattice (PdH_x) both perturb the electron flow and expand the volume of the solid, 15-17 which generally results in two hydrogen sensing mechanisms, identified as electron scattering ($\Delta R_H > 0$ in α phase) and hydrogen-induced lattice expansion ($\Delta R_H < 0$ in β phase), respectively.18 The two sensing mechanisms are in conflict and counteraction, and thus deteriorate the performance of hydrogen sensors.¹⁸ Moreover, counteraction and mutual cancellation bring temperature-dependent sensing behaviour in Pd-based nanowires (NWs) sensors with a critical temperature, in which the sensor response is minimal due to a switch on the dominant sensing mechanism, here referred as "reverse sensing behavior". 19 The dual-switching response to H₂ of ultra-small grained Pd nanopattern becomes too weak to be detected during α - β phase transition.²⁰

Additionally, multiple α - β phase transitions of the PdH_x intermedium induced by the hydrogen concentration and the operating temperature, cause mechanical stress on the resistor, resulting in deformation and delamination. Upon repeated exposure to H₂, Pd films suffer from buckling and peeling. NWs prepared from EDTA-contained plating solution have demonstrated that the compact nanograins enable the Pd NWs to be less prone to fracture, even repeated exposure to 10% H₂. Meanwhile, one-dimensional (1D) nanostructures efficiently alleviate swelling stress from hydrogenation. Moreover, previous investigations suggest that Pd alloys

†Electronic Supplementary DOI: 10.1039/x0xx00000x

Information

ESI) available.

See

52

53

54

62

63

^a Department of Electronics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China. E-mail: yanadachi@nankai.edu.cn

b. Department of Physics, University of Puerto Rico Rio Piedras, San Juan, PR 00931, USA.

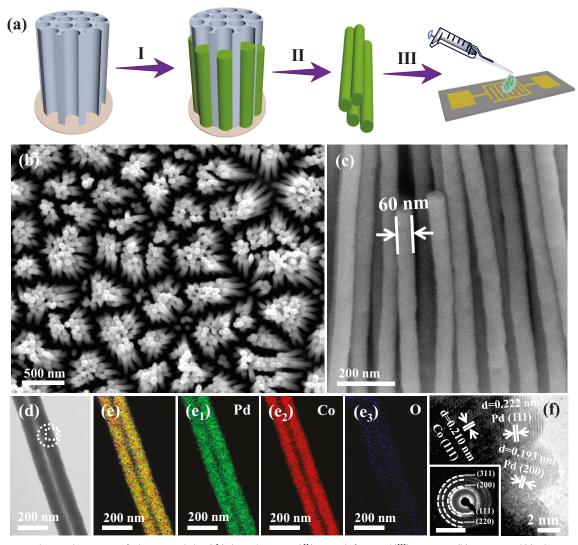


Fig. 1 (a) Schematic synthesis and integration of PdCo NWs including ($\ I$) electrodeposition, ($\ II$) removal of AAO and ($\ II$) integration. (b) Top-view and (c) side-view SEM images of PdCo NWs arrays. (d) TEM image of representative dual PdCo NWs, the overlapped (e) and the separated elemental mappings (e1) Pd, (e2) Co and (e3) O. (f) HR-TEM image with the inset SAED pattern taken from the dashed rectangle and circle in (d), respectively. The scale bars in inset (f) is 1 / (10 nm).

8 the most important requirements for such sensors is the abili27 to stably work over wide temperature range, either 28 extremely cold environments (e.g., liquid hydrogen tanks an 29 pipes), or in much warmer devices (e.g., membrane and fu**30** cell).22 Especially, hydrogen is used as a cryogenic fuel 311 rockets, where it is required to detect hydrogen leakage 32 temperature around 260 K.22 Though the hydrogen sensing materials of metal oxides modified with noble metals (e.g., P34 Pt and Au) 36-39 show superior sensitivity, selectivity and 103/5 detection limit, of which the stability is highly dependent on tb6 working temperature, hence those with high stability are desired at low-temperature environments.

electrodes (IED) to build sensors. The PdCo NWs sensors presented stable sensing response to H₂ in a wide temperature range. Especially, the critical temperature related to the "reverse sensing behaviour" of the Pd₆₃Co₃₇ NWs sensors lowered to 180 K in contrast with that of pristine Pd NWs at 287 K. The outstanding hydrogen-sensing stability at low temperatures is related to the synergistic effect of the electron modification and the lattice compression strain on Pd-based alloy via cobalt doping, which inhibit the α - β phase transition in PdH_x.

onide (1010), and farther integrated onto the inter-digital

37 Results and discussion

9

10

12

13

15

16

17

Nanoscale ation

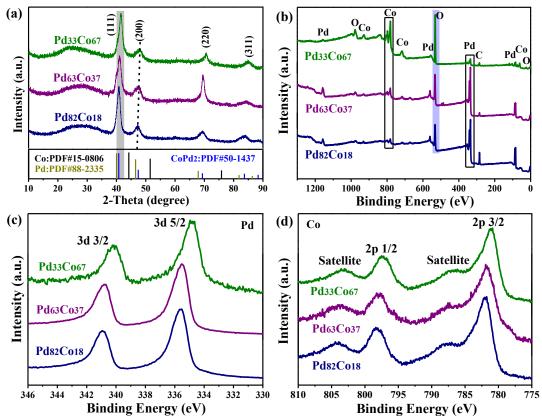


Fig. 2 (a) XRD patterns, (b) XPS survey spectra and the high-resolution XPS spectra of (c) Pd 3d and (d) Co 2p of PdCo NWs with various Co atomic ratios, respectively.

Morphologi

The scanni shows the arrays, ind image in F uniform cy templates.

Figure 4. (a) XRD of PdCo NWs with various Co atomic ratio. (b) XPS fully scanned spectra of PdCo NWs with various Co atomic ratio. The XPS spectra of the Pd 3d region (c) and the Co 2p region (d) for PdCo NWs with various Co atomic ratio, respectively.

at the cated es of....

and

ratio assisting hydrogen adsorption. The transmission electrogy microscopy (TEM) image (Figure 1(d)) taken from two contiguous PdCo NWs further confirms the similar geometrical parameters of the NWs. The corresponding (energy dispersive X-ray spectroscopy (EDS) elemental mappings (Figure 1(e)) illustrate that Pd (Figure 1(e1)) and Co (Figure 1(e2)) distributed homogeneously along the NWs. Oxygen content (Figure 1(e2)) is unavoidable due to the fact that electrodeposition was performed in atmospheric environment, which is consistents with the XPS observation described below.

The detailed surface of PdCo NWs is further seen in the high 7 resolution TEM (HRTEM) image (Figure 1(f)). Specifically, the lattice fringes with spacing of 0.222 and 0.193 nm are indexed to the (111) and (200) planes of Pd (PDF#88-2335), respectively 0 Also, the lattice spacing of 0.210 nm matches well with the (111) planes of Co (PDF#15-0806). Meanwhile, the selective area electron diffraction (SAED) pattern (inset of Figure 1(f)) shows bright diffractive rings, suggesting the polycrystalline nature of the NWs. Practically, the chemical content of palladium/cobals in NWs were primarily modulated by tuning the molar ratio of the precursors in the electrolytes. According to the atomic ration from EDS analysis (Figure S1, Supporting information), these as-

face-centered cubic Pd (PDF#15-0806) and Co (PDF#882335), which further indicates the formation of PdCo alloy. Additionally, the crystallite sizes were evaluated using the classical Scherrer formula to the major diffractive peaks ⁴⁰:

$$D = K\lambda/(\beta\cos\theta) \tag{1}$$

where, D is the average crystallite size, λ is the wavelength of the X-ray radiation (Cu Ka = 0.15418 nm), K is the Scherrer constant (0.89) for spherical shape, θ is the full width at half-maximum height (FWHM), and θ is the Bragg diffraction angle. The calculated results are summarized in Table S1 of the Supporting information. It can be seen that the grain size increases with the increase of Co content. Meanwhile, the diffractive peaks shift positively, revealing that the lattice contraction. As previously reported, 42, 43 the lattice stress of Pd alloys may suppress the excessive expansion of the PdHx intermediate to relieve Pd lattice of the deformation, which lies the foundation for the hydrogen-sensing stability at low temperature.

The X-ray photoelectron spectroscopy (XPS) spectra of PdCo NWs in Figure 2(b) suggest the existence of Pd, Co, O and C elements, in which the C element may arise from

Comn

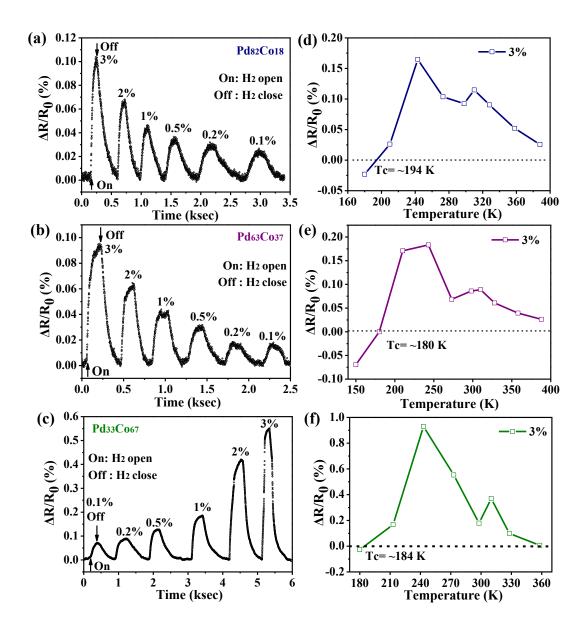


Fig. 3 (a) (f) Pd₃₃C contar

2 intens3 contei4 show

respec

1

5

6

7

8

9

10

11

12

13

14

15

16

17

shifted along with the increasing Co content, which is consiste 244 with the fact that the Co 2p BEs are positively shifted along wi2b the increasing Pd content. The phenomenon is mainly ascribe 265 to the electron interaction between Pd and Co, which implied that the electrons transfer from Co to Pd. Such electron-ri268 state in Pd may assist hydrogen adsorption and dissociatio 290 Consequently, the electron d-band of Pd is modified by alloying with cobalt, which is expected to improve its sensing stability 361 low temperature.

Hydrogen sensing stability

that the "reverse sensing behaviour" for pristine Pd NWs occurs at 287 K,¹⁹ which greatly degraded the sensing stability to hydrogen. Apparently, the critical temperature of the "reverse sensing behaviour" of PdCo NWs is far below 273 K; accordingly, the stable working temperature-range is widened.

Figures S2(a) - (f) in the Supporting information further display the response time (T_{res}) and the recovery time (T_{rec}) of those sensors to 3% and 1% H_2 at 273 K, respectively. Compared to other two sensors, the $Pd_{63}Co_{37}$ NWs sensor presents both faster response to H_2 ($T_{res} \approx 85$ s to 0.1% / $T_{res} \approx 90$ s to 3%) and quicker hydrogen desorption process ($T_{rec} \approx 200$ s to 0.1% / $T_{rec} \approx 170$ s to 3%). By contrast, the $Pd_{33}Co_{67}$ NWs sensor shows

33

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

27

28

29

30

31

Table 1. The critical temperature of various Pd-based NWs sensors

Sensors	The critical temperature (Tc)	R _H (+) mode response working temperature range	Ri
Single Pd NW	263 K	263-370 K	:
Multiple Pd NWs	287 K	287-370 K	:
P-PdCu	264.2 K	264.2-370 K	1
PS-PdCu	257.2 K	257.2-370 K	1
PM-PdCu NWs	239.9 K	239.9-370 K	;
screw- threaded PdCu	259.4 K	259.4-370 K	ı
random- gapped PdCu	261 K	261-370 K	44
RS-PdBi	194.3 K	194.3-400 K	45
Pd ₃₃ Co ₆₇	184 K	184-358 K	This 33 work34
Pd ₈₂ Co ₁₈	194 K	194-388 K	This 35 work36
Pd ₆₃ Co ₃₇	180 K	180-388 K	This 37

higher sensing response (Figure 3(c)) and slower Tres and T 41 (Figure S2(e)-(f), Supporting information), which is caused $\frac{1}{42}$ the affinity adsorption of oxides to the dissociated hydrogen $\frac{1}{43}$ Large amounts of oxides are formed in Pd₃₃Co₆₇ NWs during electrodeposition due to the oxyphilicity of cobalt, which testified by the XPS characterization (Figure 2(b)).

The effect of affinity adsorption of oxides on hydrogen sensing performance was further explored when elevating the $\frac{1}{48}$ temperature. Figures S3 – S5 in the Supporting information show the response to hydrogen of the three sensors at the 298 - 388 K temperature range. We should point that when the Pd₃₃Co₆₇ sensor was exposed to H₂ at 388 K (Figure S5(e) Supporting information), an increase in electrical resistanç value followed by a decrease was observed, which could $b\tilde{\epsilon}_4$ ascribed to the reduction of cobalt oxides. Firstly, the hydrogen atoms dissociated by palladium diffuse into the NWs inducing the electrical resistance increase, and then the cobalt oxide reduce to metallic cobalt by the dissociated hydrogen at 158high temperature that leads to the decrease in resistance. indicated, the excessive content of oxygen in Pd-alloyed NWs unfavourable for H₂ detection at high temperatures. comparison, the Pd₈₂Co₁₈ and Pd₆₃Co₃₇ sensors show more 62 stable response to hydrogen at those temperatures. investigate the repeatability of these sensors, they we exposed to various concentrations of hydrogen over mult cycles at room temperature. As a consequence, the constant response under same concentration with tiny variation wa observed (Figure S3(f), S4(f) and S5(f), Supporting information), suggesting the outstanding repeatability for PdCo sensors.

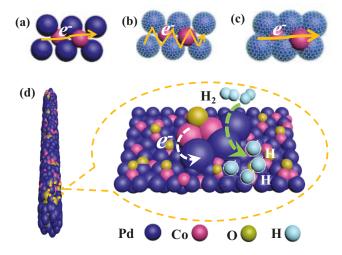


Fig. 4 (a) - (c) The scheme on hydrogen sensing mechanism of "reverse sensing behavior". (d) The schematic diagram of stable hydrogen sensing for PdCo NWs at low temperature.

As known, the "reverse sensing behaviour" and multiple α - β phase transitions of PdHx intermedium cause lattice deformation and trigger poor sensing stability. 21,22,29 To further investigate the low-temperature sensing performance of PdCo NWs, the operating temperature was lowered until the "reverse sensing behaviour" occurred (Figures S6 - S8, Supporting information). Notably, these sensors still rely on the R_H (+) mode for their response to H₂ at temperature as low as 243 K (Figures S6(a), S7(a) and S8(a) in Supporting information). The dependence of the hydrogen response on temperature is summarized in Figures 3(d) - (f), from which one can see that the response signals become weak as the operating temperature approaches the critical temperature (Tc). After further lowering the temperature, R_H (-) mode response was observed (Figures S6(c), S7(d) and S8(b), Supporting information), opposite to the response at higher temperatures. Similarly, such reverse hydrogen-sensing behaviours have been reported in other Pd-base NWs sensors listed in Table 1. In comparison, the critical temperature of Pd₆₃Co₃₇ sensor (T_c = ~180 K) is far lower than those reported in previous studies, 19, ^{29, 44, 45} which means the hydrogen sensor can stably work over a wider temperature range. Meanwhile, the hydrogen-selective evaluation demonstrates that the Pd₆₃Co₃₇ NWs sensor hardly response to the interfering gases, suggesting the excellent selectivity to H₂ (Figure S9, Supporting information). Additionally, the hydrogen-sensing performance of pure Co NWs was studied and no electrical resistance variation was observed when pure Co NWs were exposed to H₂ at various temperatures (Figure S10, Supporting information). To summarize, pure Co NWs have no hydrogen-sensing performance, while the Pd-alloyed NWs with Co greatly improve the sensing stability to hydrogen at low temperature.

Hydrogen sensing model

The α - β phase transition has been reported to explain the dualswitching H₂ response of the ultra-small grained Pd nanopattern. ²⁰ Similarly, the temperature-dependent "reverse

Nanoscale Communication

sensing behaviour" of PdCo NWs is schematically illustrated tra Figures 4(a) - (c). The electrodeposition enables interconnected $\frac{1}{5}$ 2 3 conductive grains formation inside of PdCo NWs (Figure 4(a) On exposure to H₂, the dissociated H atoms on the surface of Pd diffuse into the Pd lattice (α -phase PdH_x), acting as the electron 5 scattering centers, and thus increase the electrical resistance 6 7 (Figure 4(b)). While lowering the temperature, more H atom 8 are adsorbed onto Pd atoms (β-phase PdH_x) due to lower 9 diffusion rate, leading to lattice volume expansion that shortens the interface gaps of grains between bumps on the surface gh 10 PdCo NWs. Thus, the final formation of new conductive pathways by gaps closing reduces the resistance, which further interprets the "reverse sensing behaviour" at low temperatures $\overline{\mathbf{E}}$ 13 14 (Figure 4(c)). 15 To gain insight into the lowered critical temperature of Pd 665

NWs, the mechanism is schematically described in Figure $4(d) = \frac{1}{2}$ Firstly, when Co species dopes into Pd lattice, the lattice compression occurs, testified via the above characterization (Figure 2(a)), which results in lattice stress. ASO 20 known, the alloyed lattice is less altered by hydrogen uploading due to the lattice stress and thus becomes less brittle than pure 21 Pd lattice,⁴² which is an important factor of low-temperatural durability. Further, as suggested by the XPS analysis, electrons 24 transfer from Co species to Pd, and then the electron-rich states promotes Pd to capture and dissociate molecular hydrogen 37 low temperatures. As a result, the synergistic effect of lattice stress and electron modification further shifts the critical temperature of "reverse sensing behaviour" of the PdCo NV $\bar{\psi}_{1}$ towards lower temperatures.

30 Conclusions

16

17

18

19

22

23

25

27

28

29

31 To sum up, low-temperature hydrogen sensors we 32 successfully built with PdCo NWs that show high stability ov 88 wide temperature range. The optimized low-temperature 33 stability is achieved by using AAO-confined electrodeposition $\xi \widetilde{\gamma}$ modulate the Co content in PdCo NWs to further tune the 36 electronic d-bands of Pd. Remarkably, the PdCo NWs senso93 37 show lower critical temperatures related to the "reversed" sensing behavior" ($Pd_{82}Co_{18}$: $T_c = 194$ K; $Pd_{63}Co_{37}$: $T_c = 180$ 38 Pd₃₃Co₆₇: $T_c = 184$ K) compared to pristine Pd NWs ($T_c = 287$ Kg $^{\circ}$ 39 40 which greatly expands the low-temperature range of hydrogen 41 detection. The superior sensing stability arises from alloying 1999 with Co that generates lattice contraction and elect 1000 interaction in NWs, which play crucial roles in suppressing 43 hydrogen brittleness and the α - β phase transition $\frac{1}{103}$ 44 Furthermore, we interpret the "reverse sensing behavior" 10 4 45 46 low temperature with the α - β phase transitions model. TIOS

47 study demonstrates the potential feasibility of tuning 106

chemical contents in Pd sensing materials for improving 108 48

hydrogen-sensing stability at low temperature. Such sensing

have great potential in future Internet of things.

51 Conflicts of interest

52 There are no conflicts to declare.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 21473093), Tianjin Municipal Science and Technology Bureau (Grant No. 18ZXSZSF00070) and the Fundamental Research Funds for the Central Universities, Nankai University (Grant No. 63191745). Prof. Luis F Fonseca is funded by NSF Grant HRF-1736093.

References

- 1 J. Zhang, G. Chen, K. Mullen and X. Feng, Adv. Mater., 2018, e1800528.
- Y. Jiao, Y. Zheng, M. Jaroniec and S. Z. Qiao, Chem. Soc. Rev., 2015, **44**, 2060-2086.
- W. T. Koo, S. Qiao, A. F. Ogata, G. Jha, J. S. Jang, V. T. Chen, I. D. Kim and R. M. Penner, ACS nano, 2017, 11, 9276-9285.
- C. Kuru, C. Choi, A. Kargar, D. Choi, Y. J. Kim, C. H. Liu, S. Yavuz and S. Jin, Adv. Sci., 2015, 2, 1500004.
- C. Wadell, S. Syrenova and C. Langhammer, ACS Nano, 2014, 8, 11925-11940.
- G. Li, H. Kobayashi, J. M. Taylor, R. Ikeda, Y. Kubota, K. Kato, M. Takata, T. Yamamoto, S. Toh, S. Matsumura and H. Kitagawa, Nat. Mater., 2014, 13, 802-806.
- S. Kumar, T. Pavloudis, V. Singh, H. Nguyen, S. Steinhauer, C. Pursell, B. Clemens, J. Kioseoglou, P. Grammatikopoulos and M. Sowwan, Adv. Energy Mater., 2018, 8, 1701326.
- A. Chen and C. Ostrom, Chem. Rev., 2015, 115, 11999-12044.
- S. Dekura, H. Kobayashi, R. Ikeda, M. Maesato, H. Yoshino, M. Ohba, T. Ishimoto, S. Kawaguchi, Y. Kubota, S. Yoshioka, S. Matsumura, T. Sugiyama and H. Kitagawa, Angew. Chem., 2018, 57, 9823-9827.
- 10 F. A. A. Nugroho, I. Darmadi, L. Cusinato, A. Susarrey-Arce, H. Schreuders, L. J. Bannenberg, A. B. da Silva Fanta, S. Kadkhodazadeh, J. B. Wagner, T. J. Antosiewicz, A. Hellman, V. P. Zhdanov, B. Dam and C. Langhammer, Nat. Mater., 2019, 18, 489-495.
- 11 Y. T. Pan, X. Yin, K. S. Kwok and H. Yang, Nano letters, 2014, **14**, 5953-5959.
- 12 N. Y. Chan, M. Zhao, J. Huang, K. Au, M. H. Wong, H. M. Yao, W. Lu, Y. Chen, C. W. Ong, H. L. Chan and J. Dai, Adv. Mater., 2014, 26, 5962-5968.
- 13 N. J. J. Johnson, B. Lam, B. P. MacLeod, R. S. Sherbo, M. Moreno-Gonzalez, D. K. Fork and C. P. Berlinguette, Nat. Mater., 2019, 18, 454-458.
- 14 A. Baldi, T. C. Narayan, A. L. Koh and J. A. Dionne, Nat. Mater., 2014, **13**, 1143-1148.
- 15 J. Lee, W. Shim, E. Lee, J. S. Noh and W. Lee, Angew. Chem., 2011, **50**, 5301-5305.
- 16 J. Zhang, X. Liu, G. Neri and N. Pinna, Adv. Mater., 2016, 28, 795-831.
- 17 C. Sachs, A. Pundt, R. Kirchheim, M. Winter, M. T. Reetz and D. Fritsch, Phys. Rev. B, 2001, 64, 075408.
- 18 Y. Pak, N. Lim, Y. Kumaresan, R. Lee, K. Kim, T. H. Kim, S. M. Kim, J. T. Kim, H. Lee, M. H. Ham and G. Y. Jung, Adv. Mater., 2015, **27**, 6945-6952.
- 19 D. Yang, L. Valentin, J. Carpena, W. Otano, O. Resto and L. F. Fonseca, Small, 2013, 9, 188-192.
- 20 S. Y. Cho, H. Ahn, K. Park, J. Choi, H. Kang and H. T. Jung, ACS Sens., 2018, 3, 1876-1883.
- 21 A. Ulvestad, M. J. Welland, W. Cha, Y. Liu, J. W. Kim, R. Harder, E. Maxey, J. N. Clark, M. J. Highland, H. You, P. Zapol, S. O. Hruszkewycz and G. B. Stephenson, Nat. Mater., 2017, 16, 565-571.
- 22 M. Khanuja, B. R. Mehta, P. Agar, P. K. Kulriya and D. K. Avasthi, J. Appl. Phys., 2009, 106, 093515.

110 111

112

113

Nanoscale communication

31

- 23 T. Xu, M. P. Zach, Z. L. Xiao, D. Rosenmann, U. Welp, W. 27 Kwok and G. W. Crabtree, Appl. Phys. Lett., 2005, 86, 2031028 3 24 N. A. Al-Mufachi and R. Steinberger-Wilckens, J. Membr. S29 30
- 4 2018, 545, 266-274. 5 25 R. M. Penner, Acc. Chem. Res., 2017, 50, 1902-1910.
- 6 7 26 F. Yang, D. K. Taggart and R. M. Penner, Nano Lett., 2009, 32 2177-2182. 8
- 27 F. Yang, S.-C. Kung, M. Cheng, J. C. Hemminger and R. M24 9 Penner, ACS Nano, 2010, 4, 5233-5244.
- 10 M. A. Lim, D. H. Kim, C.-O. Park, Y. W. Lee, S. W. Han, Z. Li, **36** 11 S. Williams and I. Park, ACS Nano, 2012, 6, 598-608.
- 12 29 D. Yang and L. F. Fonseca, *Nano Lett.*, 2013, **13**, 5642-5646.**38**
- 13 30 X. Li, Y. Liu, J. C. Hemminger and R. M. Penner, ACS Nan39 14 2015, 9, 3215-3225.
- C. G. Sonwane, J. Wilcox and Y. H. Ma, J. Phys. Chem. B, 20041 15 16 **110**, 24549-24558.
- 17 32 F. A. A. Nugroho, I. Darmadi, V. P. Zhdanov and **43** 18 Langhammer, ACS Nano, 2018, 12, 9903-9912.
- 19 33 J. S. Jang, S. Qiao, S. J. Choi, G. Jha, A. F. Ogata, W. T. Koo, 45 20 H. Kim, I. D. Kim and R. M. Penner, ACS Appl. Mate46 21 Interfaces, 2017, 9, 39464-39474. 47
- 22 34 C. E. Ho, W. Z. Hsieh, P. T. Lee, Y. H. Huang and T. T. Kuo, Ap 4/8 Surf. Sci., 2018, 434, 1353-1360.
- C. Zhao, A. Goldbach and H. Xu, J. Membr. Sci., 2017, 542, 650 25

- 36 M. Weber, J.-Y. Kim, J.-H. Lee, J.-H. Kim, I. latsunskyi, E. Coy, P. Miele, M. Bechelany and S. S. Kim, J. Mater. Chem. A, 2019, 7, 8107-8116.
- 37 X.-T. Yin, W.-D. Zhou, J. Li, Q. Wang, F.-Y. Wu, D. Dastan, D. Wang, H. Garmestani, X.-M. Wang and Ş. Ţălu, J. Alloys Compd., 2019, 805, 229-236.
- 38 X.-T. Yin, W.-D. Zhou, J. Li, P. Lv, Q. Wang, D. Wang, F.-y. Wu, D. Dastan, H. Garmestani, Z. Shi and Ş. Ţălu, J. Mater. Sci.: Mater. Electron., 2019, 30, 14687-14694.
- 39 M. Weber, J. H. Kim, J. H. Lee, J. Y. Kim, I. latsunskyi, E. Coy, M. Drobek, A. Julbe, M. Bechelany and S. S. Kim, ACS Appl. Mater. Interfaces, 2018, 10, 34765-34773.
- 40 D. Dastan, P. U. Londhe and N. B. Chaure, J. Mater. Sci.: Mater. Electron., 2014, 25, 3473-3479.
- 41 D. Dastan, N. Chaure and M. Kartha, J. Mater. Sci.: Mater. Electron., 2017, 28, 7784-7796.
- 42 S. K. Sengar, B. R. Mehta and G. Gupta, Appl. Phys. Lett., 2011, **98**, 193115.
- 43 A. Pozio, Z. Jovanović, R. Lo Presti, M. De Francesco and S. Tosti, Int. J. Hydrogen Energy, 2012, 37, 7925-7933.
- 44 D. Yang, J. Carpena-Nunez, L. F. Fonseca, A. Biaggi-Labiosa and G. W. Hunter, Sci. Rep., 2014, 4, 3773.
- 45 L. Du, L. Zheng, H. Wei, S. Zheng, Z. Zhu, J. Chen and D. Yang, ACS Appl. Nano Mater., 2019, 2, 1178-1184.