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ABSTRACT oo 1010351508
Oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and
hydrogen evolution reaction (HER) are three critical reactions for energy-related
applications, such as water electrolyzers and metal-air batteries. Graphene-supported
single-atom catalysts (SACs) have been widely explored; however, either experiments
or density functional theory (DFT) computations cannot screen catalysts at high speed.
Herein, based on DFT computations of 104 graphene-supported SACs (M@Cs;,
M@C,, M@pyridine-N4, and M@pyrrole-N4), we built up machine learning (ML)
models to describe the underlying pattern of easily obtainable physical properties and
limiting potentials (mean square errors = 0.027/0.021/0.035 V for ORR/OER/HER,
respectively), and employed these models to predict the catalytic performance of 260
other graphene-supported SACs containing metal-N,C, active sites (M@N,C,). We
recomputed the top catalysts recommended by ML towards ORR/OER/HER by DFT,
which confirmed the reliability of our ML model, and identified two OER catalysts
(Ir@pyridine-N3;C; and Ir@pyridine-N,C,) outperforming noble metal oxides, RuO,
and IrO,. The ML models quantitatively unveiled the significance of various
descriptors and fast narrowed down the candidate list of graphene-supported
single-atom catalysts. This approach can be easily used to screen and design other
SACs, and significantly accelerate the catalyst design for many other important
reactions.
KEYWORDS: Single-Atom Catalysts, Machine Learning, Limiting Potential,

ORR/OER/HER, Density Functional Theory (DFT).
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1. INTRODUCTION POIIO039/CaTALSA048

Oxygen reduction reaction (ORR) oxygen evolution reaction (OER), and
hydrogen evolution reaction (HER) are among the core electrochemical processes in
clean energy conversion and storage devices, such as metal-air batteries, ' water
electrolysers,® and fuel cells.*® However, their inherent reaction rates are rather
sluggish. Noble metal (Pd and Pt) and noble metal oxide (IrO,) are state-of-the-art
electrocatalysts, 7# but the high cost and scarcity of noble metal materials limit their
large-scale and sustainable applications. Thus, developing stable, low-cost, and
high-performance catalysts for these reactions are highly desirable.

Single-atom catalysts (SACs), in which the well-dispersed isolated metal atoms
are anchored on appropriate substrates, have emerged as a new frontier of
heterogeneous catalysts due to their highly increased coverage of active sites, much
enhanced catalytic performance, and maximal (100%) metal utilization.’!> Especially,
metal-nitrogen-carbon (M-N-C) SACs, where a transition metal atom (M = Co, Fe, Ni,

Mn, etc.) is located at the center of nitrogen (N) doped graphene support (C), showed

Published on 05 February 2020. Downloaded by Universite Paris Descartes on 2/5/2020 11:52:24 AM.

great promise as substitutes for precious metal electrocatalysts.!6-23 At least hundreds
of M-N-C SACs exist due to a sequence of physical structural variables, such as
different transition metals and various N/C combinations. Therefore, trial-and-error
approaches are rather inadequate to search for highly efficient catalysts in a
reasonable time scale. Though volcano curves and approximate linear

relationships?*?> between some single factors and the performances of catalysts were
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put forward, the rather simple linear relationships can only give rather“r
judgments, instead of direct predictions of their catalytic performance.

Machine learning (ML) is an efficient statistic method, which builds up models
based on input data’® and computer algorithms to output the desired information.?’-3
Machine learning can be employed to depict the intricate relations between
descriptors and performance, analyze the importance of each descriptor, and predict
the performance of a large number of unknown systems.

The strong ability of ML has been applied to fast screening of materials with
specific properties®'*° and catalysts with high performance.*'*’ So far, ML in
catalysis is mainly focused on two aspects: (1) establishing the correlations of
physical properties and adsorption strength of reaction intermediates (Figure 1, Path I),
because the catalytic activity is significantly affected by the binding strength. For
instance, by the least absolute shrinkage and selection operator (LASSO)
regressions,*® O’Connor et al. revealed that the interfacial binding strength of single
metal atom on oxide supports is correlated with readily available physical properties
of both the absorbed metal (such as oxophilicity) and the support (such as
reducibility);*! (2) Identifying the relationships between the intermediate adsorption
strengths and the performance of the catalyst (Figure 1, Path II). For instance, Ma et
al. demonstrated that ML can well estimate the CO adsorption energy on the surface
of multimetallic alloys, which can be used as a descriptor to screen CO,

electroreduction catalysts.** However, the physical properties are intrinsic and

6%]@?19/C9TA13404B
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easy-obtained, and the limiting potential (Uy) is the most direct standard“forothE’<2™349%
activity of an electrocatalyst, then, is it possible for us to directly predict the limiting
potentials based on the physical properties (Figure 1, Path III)? The powerful ML
algorithms may help find correlations between physical properties and limiting
potentials. If successful, the discovery of electrocatalysts can be remarkably

accelerated.

Physical
Properties

Figure 1. The schematic of three different aspects for catalyst development using ML

techniques

Herein, by taking advantage of the ML algorithm and DFT computations, we

Published on 05 February 2020. Downloaded by Universite Paris Descartes on 2/5/2020 11:52:24 AM.

depicted the underlying pattern of the physical properties of 104 graphene-supported
SACs and their limiting potentials towards ORR/OER/HER reactions. The ML
models for these three reactions were further used to predict the catalytic performance
of 260 other graphene-supported metal-nitrogen/carbon systems (M@N,C,). The
reliability of the ML models was confirmed by the DFT computed limiting potential
(Up) values of the top ML-recommended electrocatalysts (0.61, 1.51, 0.003 V for

ORR, OER, and HER). We further quantitatively unveiled the significance of various

5
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descriptors for M-N-C catalysts, which can significantly narrow down the candidate’="™" %+

lists of M@N,C, SACs and provide deep insights and guidance towards future
catalyst design. This work provides a new paradigm for directly predicting the
catalytic performance from physical properties of catalyst candidates, and vividly

demonstrates the strong capability of ML in screening and design of catalysts.

2. COMPUTATIONAL METHODS

The training data of graphene-supported SACs were obtained from the previous
study,?! which include 104 graphene-supported structure compositions (M@Csi,
M@C4, M@pyridine-N4, and M@pyrrole-Ny4) and their U, values for ORR, OER and
HER of each system.

Random Forest (RF),’%! a widely used integrated algorithm of Decision Tree?
as implemented in scikit-learn software,> was used to train optimal models. RF30->!
randomly selects different features and training samples, generates many decision
trees, and then average the results of these decision trees to perform the final
classification. Following our test computations for different parameters of RF, the
max depths for ORR/HER models were set as eight, and the numbers of trees were set
as 500; while for OER model, the max depth was 7 with 1000 decision trees.

For the pretreatment of data, it is necessary to divide the training set and the
cross-validation set. The training set was used to build the model, and the score of

fitting for the test set would feedback to the model. The ratio of cross-validation sets
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was tested and judged by the training scores and testing scores, and was finalfy'sét't&” <404
around 0.85, 0.83, and 0.82 for ORR, OER, and HER, respectively. The 104 input
data were randomly split into 88 training set and 16 validation set for ORR/HER
models. For OER model, the small data set (with 26 data) for M-N-pyrrole systems
was amplified three times (totally 156 input data), which was divided into 135
training data and 21 validation data. To lower the possibility of over-fitting, we
reproduced the minor class with uniformly distributed random noises from -2% to 2%
of the original data. Due to the large region of feature values, data normalization of all
the features was performed before training. The training/testing score is the
coefficient of determination (R?) of the prediction, which is defined as R> = 1 -
Y(y_true -y pred)?/ Z(y_true - y_average)>. The mean squared error (MSE) represents
the mean difference between the predicted values and the real values, defined as MSE =
I/n Z(y_true -y _pred).

DFT computations were carried out for optimization and frequency computations

Published on 05 February 2020. Downloaded by Universite Paris Descartes on 2/5/2020 11:52:24 AM.

of the 19 top ML-recommended M@N,C, SACs and adsorbates with *H, *O, *OH,
and *OOH. These computations employed an all-electron method within a
generalized gradient approximation (GGA) for the exchange-correlation term, as
implemented in the DMol® code,’** in which the double numerical plus polarization
(DNP) basis set and Perdew, Burke and Ernzerhof (PBE) functional were adopted>®.
Self-consistent field (SCF) computations were performed with a convergence

criterion of 107® a.u. To prevent artificial interactions between periodic images, we
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applied a vacuum space of at least 15 A in the perpendicular direction” Of {40

two-dimensional (2D) layer.

The changes of Gibbs free energy (AG) for each elementary step along the
ORR/OER were evaluated using the computational hydrogen electrode (CHE) model
developed by Nerskov and co-workers.’” The computed electronic energy was
converted into Gibbs free energy by adding zero-point energy. The energy of the
triplet O, molecule cannot be accurately computed by DFT method,*®>° thus, its free
energy was computed relative to the free energies of H,O(/) and H,(g). The chemical
potential of the H/e- pair is equal to half of the gas-phase H, at standard hydrogen

electrode (SHE) conditions.

3. RESULTS AND DISCUSSION
3.1. Graphene-supported SACs for ORR/OER/HER used to construct ML
models

Three types of graphene-supported SACs (Figure 2) were chosen as
representatives of the M-N-C electrocatalysts, in which the central metal atom is (1) at
the single vacancy with three carbon atoms (M@Cs); (2) at the double vacancy with
four nitrogen/carbon atoms (M@pyridine-N4 /M@C,); and (3) coordinated with four
pyrrole nitrogen atoms (M@pyrrole-Ny). The 28 transition metals (except for Hg, La,
and Ac) were employed as the central metal atoms. The data for training and

validation are the limiting potentials and features of these SACs?!.


https://doi.org/10.1039/c9ta13404b

Page 9 of 29

Published on 05 February 2020. Downloaded by Universite Paris Descartes on 2/5/2020 11:52:24 AM.

Journal of Materials Chemistry A

View Article Online

RF051 is a widely used algorithm for both regression and classification probiems, <794
which randomly selects different features and training samples, generates many
decision trees, and then average these decision trees to perform the final results. RF
can not only depict the underlying patent of a complicated problem, but also provide
feature importance for different features after training, which cannot be obtained by
many other algorithms. Moreover, compared with Decision Tree, RF greatly improves
the accuracy of models and avoids the easily attacked characteristic of DT; therefore,

we employed the RF algorithm to train three models.

(c)

Figure 2. Schematic structures of graphene-supported SACs used to build up the ML
models. (a) Single vacancy with three carbon atoms. (b) Double vacancy with four
nitrogen/carbon atoms. (c) Four pyridine nitrogen atoms. The orange, green, and gray

balls represent TM, neighboring N/C, and other C atoms, respectively.

3.2 Training ML Model for ORR
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Feature Set for ORR. Obtaining an appropriate feature set with a Eohipact’=”™"4%*®

composition and sufficient information is the most significant step for a ML process,
since the quality choice of features determines the highest accuracy that a model can
achieve. Focusing on intrinsic properties, we selected five features for ORR: the
electron numbers of d orbital (d), the oxide formation enthalpy (H,),%**' Pauling
electronegativity of the center metal atom (£,,), the sum of Pauling electronegativity
of surrounding atoms (E;), and the average of the pKa values of the surrounding
atoms (pKa).

The first feature, the electron numbers of d orbital (d), highly relates to the
reactivity because the central atom would lose some ability to donate or accept
electrons when its d orbital is filled with either too few or too many electrons.

The second feature, the oxide formation enthalpy (/) of a single atom, firmly
connects with the ability of the metal atom to react with oxygen,®" which can be
obtained by using the following equation:

A Hyr= A Hgyp— Hof, puiks
where A Hg,pis the experimentally determined cohesive energy of the bulk metal
structure, and A H,f pyi 18 the formation enthalpy of the metal’s most stable oxide
relative to the bulk metal and O,. Moreover, the oxide formation enthalpy would not
change along with different systems, which demonstrates that the oxide formation

enthalpy values can be used directly in future studies.

10
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The third and fourth features are the electronegativity values of the centra? mietaf’<>™*49*

atom and its surrounding atoms, respectively. The higher the associated
electronegativity value, the more an atom or a substituent group can attract electrons
towards itself. Notably, the electronegativity of an atom is influenced by its intrinsic
property and the circumstance, thus we included both the electronegativity of the
central atom (£,,) and the sum of electronegativity of surrounding atoms (E;) into the
feature set.

The last feature, the average of the pKa values of the surrounding atoms (pKa),
is introduced, to our best knowledge for the first time, as a feature for catalytic
activity. Note that £ alone cannot well describe the environment of the neighboring
atoms of the metal center, such as pyridine-4N and pyrrole-4N; while pKa can
represent the activity of the neighboring N/C atoms in the M@N,C, subunits. The
pKa values for pyridine-N, pyrrole-N, C¢-C, and Cs-C atoms are 5.25, 16.5, 44.0, and

15.0 (based on the pyridine, pyrrole, benzene, and cyclopentadiene molecules).

Published on 05 February 2020. Downloaded by Universite Paris Descartes on 2/5/2020 11:52:24 AM.

Among these five features, the first three (d, H,, and e,) are the intrinsic
characteristics of the central metal atom itself, while the last two (e; and pKa) describe
the environment of the central atom. Through these five descriptors, we can outline
the connection of the physical properties and the catalysis performance of M-N-C for
ORR.

Performance of the ML Model for ORR. Using the aforementioned five features,

we successfully built up an ML model with excellent performance: the training and

11
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test scores are 0.97 and 0.95, respectively. The ML predicted U, values wélt'agfg&’<2349%

with our previous DFT data (Figure 3a): the average error (0.013 V) approaches the
accuracy of DFT computations, and the mean square error (MSE, 0.027) is rather
small, which verify the great performance of our ORR model. This ML model can
also directly predict the limiting potentials of other related SACs, which will be
discussed in Section 3.4. All the well-trained models and training/test data can be

obtained by the link in Supporting Information.
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Figure 3. Comparison between DFT and ML predicted limiting potential (Up) values
of (a) ORR, (b) OER, and (c) HER, where both training and testing data points are

presented.

To encode the significance of different properties towards U, we compared the
importance of these five features (Figure 4). We found what dominate are the three
features intrinsic to the central metal atom alone (d, H,, and E,), thus the type of
central atoms is the most important factor for the catalytic performance. Among these

three features, the number of d electrons (d) has the largest feature importance of

12
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0.498, followed by the oxygen formation enthalpy (/) and the electronegativity ‘(o) <7404
with the feature importance of 0.173 and 0.155, respectively. The sum of
electronegativity of surrounding atoms (Ej) and the average of pKa (pKa) have less
but still critical importance with the same feature importance of 0.087. The high
training and test scores, as well as the rather high feature importance, verify that our

ML model for ORR is reliable and our feature set is a good choice.

Pk / Hof

/ ; ORR @
OER @

ST HER

Es Hxf

Em

Figure 4. Radar chart on the feature importance of six features (d, pKa, E, E,,, H.y,

and H,) in the ML models for ORR, OER, and HER.

3.3. Training ML Models for OER and HER
Feature Set for OER. The ML model for OER can only be trained well after

involving another feature, namely the hydride formation enthalpy (/) of a single

13
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atom, besides the five features we used for ORR. Our newly introduced feature,
is conceptually similar to /,;, which reflects the hydrogen affinity of the central metal
atom. The H,svalue can be obtained by checking the energy difference between the
most stable metal hydride and the most stable pure substances (H, gas and the metal
bulk). The equation for calculating H,yis:

A Hyr= A Hgyp — Hyp, puiks

where A Hg,is the experimentally determined cohesive energy of the bulk
metal structure, A Hyf py 1s the formation enthalpy of the metal’s most stable
hydride relative to the bulk metal and H,.

Note that the majority of transition metals have stable compounds in nature, and
in recent years many stable 2D metal hydrides (eg. Mn, Cu, Zn, Mo, Ru, Cd, W, Os,
Ir, and Pt) have been achieved.®>%* From the stable 2D metal hydride structures
reported by Zhou et al.®?, we extracted those with the most negative formation energy
for each transition metal. However, for two elements, namely Au and Ag, no stable
compounds and 2D metal hydrides exist, thus, the M-N-C systems with Au and Ag
were not covered in the ML models®?-64 (totally 26 transition metals were considered
here).

Performance of the ML model for OER. Based on six features, the random forest
model for OER also gained satisfactory scores for the training (0.96) and the test sets

(0.92). The ML predicted limiting potentials have a good linear correlation with the

14
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previous DFT results (Figure 3b). The rather low average error (0.005 V) afld MSE’<?"#404
(0.021) confirm the high performance of our ML model.

By examining the importance of six intrinsic features (Figure 4), we can disclose
the relationships between descriptors and catalytic performance of the OER SACs
under investigation. The number of d electrons (d) remains as the most significant
feature for OER, but its importance (0.400) is slightly lower than that for ORR
(0.498). The hydride (H,y) and oxide formation enthalpies (/) are the second and the
third vital features for OER (with the importance of 0.284 and 0.187, respectively).
Compared with ORR (H,, and E,, ranked as the second and third features with the
importance of 0.173 and 0.155, respectively), the formation enthalpy of hydrides (H,)
has a much larger weight for estimating the limiting potentials of OER. The sum of
electronegativity of surrounding atoms (E;) and the average of Pka also play
indispensable roles in the OER model with feature importance of 0.115 and 0.104,
while the Pauling electronegativity of central metal has the lowest feature importance

of 0.064.

Published on 05 February 2020. Downloaded by Universite Paris Descartes on 2/5/2020 11:52:24 AM.

Feature set and performance of the ML model for HER. To build up the ML
models for HER, we used the five descriptors, including /s but not /. This selection
can be easily understood since only the strength of hydrogen bonding with central
metal atom, rather than that of oxygen bonding, affects the catalytic performance for

HER. Our ML model achieved scores of 0.97 and 0.91 for training and test sets,

15
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respectively, and the average error and MSE are only 0.020 V and 0.035 for Both §Etg/ <7340

(Figure 3c).

For feature importance exploration, we found that the same as ORR and OER,
the number of d electrons (d) has the highest feature importance (of 0.614) for HER
(Figure 4), which verifies again the unique role of the central transition metal for
SACs. Ranked by the importance for HER, the electronegativity of central atoms (£,,)
is in the second place (0.189), followed by the sum of Pauling electronegativity of
surrounding atoms (E;, 0.081), the average of the pKa values of the surrounding
atoms (pKa, 0.068), and the hydride formation enthalpy (H,s 0.048).

To summarize, the intrinsic features we selected can be easily obtained and
employed for the feature studies for SACs. The high scores of our three ML models
demonstrate that the compact five/six features we extracted have sufficient
information to describe and distinguish these SACs structures, which make us
confident in using these ML models to predict the activity of other related SCAs

towards these three reactions.

3.4. Predicting the limiting potentials of other graphene-supported SACs
(M@NC,) by ML models
What inspiring most is that ML techniques can quickly identify new materials
with desired properties, thus significantly accelerating materials discovery and design.

In this section, we will use the aforementioned well trained ML models to estimate

16


https://doi.org/10.1039/c9ta13404b

Page 17 of 29 Journal of Materials Chemistry A

View Article Online

the catalytic performance (by predicting the limiting potentials) of many’ M’ <404
graphene-supported SACs with similar structural configurations.

It is known that the coordination environments of the central metal atom are
important factors for the performance of SACs. However, no systematic investigation
on the catalytic performance of enormous graphene-supported SACs towards
ORR/OER/HER has been performed. Thus, we constructed 260 M@N,C, SACs
containing 26 transition metals and with 10 types of metal coordination environments,
including M@N,;C,, M@N,C;, M@N3;, M@pyridine-N;C;, M@pyridine-N,C,,
M@pyridine-N;C;, M@pyrrole-C4, M@pyrrole-N;C;, M@pyrrole-N,C,, and
M@pyridine-N;C;.

In total, 1560 descriptors (six each) were used as input of the ML models to
predict the limiting potentials of these 260 M@N,C, SACs towards ORR/OER/HER.
The whole prediction process took only several seconds, and their limiting potentials

were obtained without any geometry optimization and energy computations. Among

Published on 05 February 2020. Downloaded by Universite Paris Descartes on 2/5/2020 11:52:24 AM.

these 260 SACs, six catalysts show high Up values (~0.55 V) for ORR (corresponding
to overpotential n ~0.68 V), four achieve low U values for OER (~1.64 V, n=~0.41
V), and 12 have close-to-zero Uy values for HER (1 < 0.04 V) (for details, see Table
S1 in Supporting Information).

We then examined the common characteristics of the top 3/4/12 M-N-Cs
catalysts (ranked by overpotentials). The ML-recommended M-N-Cs for ORR are

Fe@N;C,, Fe@pyrrole-N,C,, and Fe@pyrrole-N;C;; for OER are Ir@pyridine-N;C;,

17
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Ir@pyrrole-N;C;,  Ir@pyrrole-N,C,, and  Ir@pyrrole-NsC;;  for HER' '04pg/<7T2048

Mo@pyridine-N,C,, Zn@N;C,, Pd@N,C,, Re@pyridine-N,C,, Rh@N3;, Pt@N,C,,
Rh@N,C,, Zn@N;, Ni@pyridine-N;C;, Re@pyrrole-N;, Re@pyrrole-N;Cs,
Ni@pyrrole-N,C,, and Ni@pyrrole-N;C;. Interestingly, for ORR all the
recommended SACs contain Fe as the metal center, while for OER, Ir serves as the
best active site. These data clearly demonstrate that Fe and Ir are eminent active
centers for ORR and OER, respectively, which echo with previous experimental and
theoretical findings®3-6°.

To examine the accuracy of ML models, we computed the limiting potentials of
these top M-N-Cs for ORR/OER/HER (three for ORR, four for OER, and 12 for HER)
by DFT computations. The SACs with the highest limiting potentials (lowest
overpotentials) for ORR are Fe@pyrrole-N;C; and Fe@pyrrole-N,C,, 1i.e.
Fe@pyrrole-N;C; has the highest Uy value of 0.61 V (Figure 5a, n = 0.62 V), and
Fe@pyrrole-N,C, has the second highest U value of 0.55 V (Figure 5a, n = 0.68 V).
For SACs towards OER, Ir@pyridine-N;C; has the lowest limiting potential (Up =
1.51 V, 1 =0.28 V) (Figure 5b), followed by Ir@pyrrole-N,C, (U, =1.55V, n =0.22
V). These two ML-selected OER catalysts perform better than the generally regarded
best OER catalysts, such as RuO, (Up = 1.60 V)70, IrO, (Up = 1.88 V)?!, and doped
carbon materials (P-doped graphdiyne (Up = 1.58 V)", and previous studied M@N/C
system (Up > 1.52 V)?!. The average errors of the ML predicted limiting potential

values (relative to the DFT values) of the three ORR and four OER catalysts are 0.09
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and 0.06 V, and the corresponding MSE values are 0.11 and 0.03, respectively Whick'<*"**49*

demonstrate the robustness and accuracy of our ML models.

Published on 05 February 2020. Downloaded by Universite Paris Descartes on 2/5/2020 11:52:24 AM.
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Figure 5. Free-energy diagrams and geometries of prominent M@N,C, SACs for (a)
ORR and (b) OER at zero electrode potential. The rate-determining steps are
highlighted by shades; and the blue and gray balls stand for nitrogen and carbon

atoms, respectively.

When compared with the DFT computed values, the average error of the 12
ML-predicted limiting potentials is 0.07 V, and the corresponding MSE value is 0.18,
which demonstrate the rather high reliability of our ML models. The best catalyst for
HER is Ni@pyridine-N;C; with a Uy value of only 0.003 V, which is very close to 0
V (Figure 6, n = 0.003 V). Ni@pyridine-N3;C; also outperforms the conventional
HER catalyst-Pt (Up of Pt is around -0.09 ~ 0.03)”!, previous studied Tc@C; (U ~ -

0.03 72), and has similar performance as Fe@Cs; (U ~ 0.00) 72
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Figure 6. Free-energy diagram and geometry of the best-performed SAC for HER,
Ni@pyridine-N;C,, at zero electrode potential. Blue ashes, navy, and gray balls stand

for transition metal, nitrogen, and carbon atoms, respectively.

4. CONCLUSION

In summary, by machine learning techniques, we built up three models to
describe the underlying pattern of physical properties and limiting potentials towards
ORR/OER/HER of 104 graphene-supported SACs, and quantitatively unveiled the
significance of various descriptors. Furthermore, we employed these ML models to
directly predict the limiting potentials of 260 M@N,C, SACs, and screened out the
most promising ORR/OER/HER catalysts. The excellent catalytic performances of
these ML-recommended SACs were verified by DFT computations, and the best
candidates possess limiting potentials of 0.61, 1.51, and 0.003 V for ORR, OER, and
HER. Especially, two OER catalysts (Ir@pyridine-N;C; U =1.51 V;

Ir@pyridine-N,C,, U =1.55 V) outperform the most commonly used noble metal
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oxides (RuO, and IrO,); and one HER catalyst (Ni@pyridine-N;C;, U;=0.003"V/)'ai§&" <7 1340%
outperform the commonly used noble metal (Pt).

By utilizing only a few easily available intrinsic physical features of M-N-Cs,
our ML models can well predict the limiting potentials of graphene-supported SACs
towards ORR/OER/HER. Without any geometry optimization, total energy
calculation, or examining reaction pathways, this ML process takes only seconds, but
can dramatically narrow down the candidate list of M-N-C SACs. This strategy can be
used to screen and design other electrochemical catalysts, such as towards nitrogen
reduction reactions and CO, reduction reactions. Directly predicting catalytic
performance of electrocatalysts from the easily obtainable parameters of catalysts is
bringing us a revolutionary approach for future catalysts design, and will dramatically
accelerate the discovery of more efficient catalysts towards important chemical

processes in the very near future.
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