
 

Optimal Offline Experimentation for Games 

 

Abstract 
Many business situations can be called “games” because outcomes depend on multiple 
decision makers with differing objectives. Yet, in many cases the payoffs for all 
combinations of player options are not available, but the ability to experiment offline is 
available. For example, war gaming exercises, test marketing, cyber range activities, and 
many types of simulations can all be viewed as offline gaming-related experimentation. 
We address the decision problem of planning and analyzing offline experimentation for 
games with an initial procedure seeking to minimize the errors in payoff estimates. Then, 
we provide a sequential algorithm with reduced selections from option combinations 
that are irrelevant to evaluating candidate Nash, correlated, cumulative prospect theory 
or other equilibria. We also provide an efficient formula to estimate the chance that a 
given Nash equilibria exists, provide convergence guarantees relating to general 
equilibria, and provide a stopping criterion called the estimated expected value of 
perfect offline information (EEVPOI). The EEVPOI is based on bounded gains in expected 
utility from further offline experimentation. An example of using a simulation model to 
illustrate all the proposed methods is provided based on a cyber security Capture the 
Flag (CTF) game. The example demonstrates that the proposed methods enable 
substantial reductions in both the number of test runs (half) compared with a full 
factorial and the computational time for the stopping criterion. 
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1. Introduction 

In many realistic situations, the individual decision maker is not in complete control of all 

factor settings that influence outcomes. Instead, multiple decision makers select options and 

receive rewards that depend on the selections made by all players (Nash 1951). In many of 

these situations, it can be helpful to estimate the rewards for all possible player action 

combinations, perhaps focusing on the combinations most likely to be played. Here, we seek 

efficient experimental methods and stopping criteria to estimate mean rewards or utilities 

to support decision making where the starting point is access to low consequence 

experimentation, e.g., engagement simulations or experimental wargames. 

One well-studied set of action combinations of potential interest is Nash equilibria 

which are setting options such that no player could benefit through individual adjustments. 

The relevance of Nash equilibria is rationalized by Expected Utility Theory (EUT, von 

Neumann and Morganstern 2007). Many other explanations for the relevance of Nash 

equilibria have been provided in the literature. A common view is the “self-enforcing” 

agreement relating to possible communications between players before play 

(Brandenberger and Dekkel 1987). In part because of the possibility of these agreements, 

wargame or other game designers can use the structure of the equilibria to suggest system 

improvements or other incentives to make the equilibria more desirable, i.e., “mechanism” 

design (Conitzer and Sandholm 2002, De Clippel, Saran, and Serrano 2018). 

Correlated equilibria (Aumann 1987) and Cumulative prospect theory (CPT) 

equilibria are generalizations of Nash equilibria (Tversky and Kahneman 1992, Keskin 2016, 

Phade and Anantharam 2019). More general equilibria have motivations that include the 

subjective nature of probabilities and the irrationality of decision makers. Selten and Chmura 

(2008) study multiple types of equilibria and demonstrate that some make more accurate 

predictions of human behavior than Nash equilibria. The purpose of this article is to provide 
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algorithms for pre-experiments “offline” to support a variety of equilibria estimates and 

related mechanism design objectives.  

Player rewards are often not known with certainty by all the players. This uncertainty 

may be an intrinsic property of the game requiring strategies for mitigation (e.g., see 

Harsanyi 1967). More commonly perhaps, it may be possible to learn the rewards and treat 

them afterwards as known constants. It is possible that some apparent violations of EUT 

motivating relevant generalizations such at Cumulative prospect theory (CPT, Keskin 2016 

and Phade and Anantharam 2019) might relate to parametric uncertainty rather than 

irrationality. Also, much research addresses how players can learn to reduce the uncertainty 

by repeatedly playing the real game (e.g., see Foster et al. 2013, Chapman et al. 2016). For 

these problems, Nash equilibria are sometimes not considered to be relevant. Instead, 

learning the so-called no-regret decision options (analogous to Nash equilibria) is an 

important objective. Yet, what if the parameters are unknown and the game is not repeated? 

To overview, we start pregame preparations with unknown payoff matrices but also 

with an ability to experiment offline, e.g., we have a simulation model. We play the game 

offline many times choosing actions for each player following our experimental planning and 

analysis methods. In each run, we observe the payoffs for all players. Then, we use 

metamodels to predict all the mean payoffs and determine whether offline experimental 

stopping conditions are met. Our goal is to predict the information needed to support 

decision making, e.g., the Nash or Cumulative prospect theory equilibria. With offline 

experimentation complete (at least temporarily), the decision maker can either re-design the 

related systems (e.g., mechanism design of a combat aircraft) and/or play the actual game 

(i.e., play the real game). 

Therefore, this paper is focused on a new problem. The decision maker can reduce 

parametric uncertainty using so-called “offline” experimentation for variance reduction 

similar to risk reduction (Delquié 2012). For example, offline testing might involve a 
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simulation or a low consequence pre-game period. Even though the experiments are offline, 

they are not free. For example, creating test ranges and performing sets of war games might 

cost billions of dollars. Consider that one player may have ten or more options as may the 

opponent. Then, offline experimentation would need to support the estimation of literally 

hundreds of payoff parameters from simulation or real-world tests which may have 

replication or other errors.  

The original examples of games in the Management Science literature include the 

design of advertising strategies and military tactics (Shubik 1955, 2002). In the context of 

modern online advertising, the internal working of the ad placement algorithms and the 

decisions of potential customers create an opaque game system. Through relatively 

inexpensive experimentation on test markets, decision makers can develop analytical 

models, predict estimated rewards, and enumerate equilibria to facilitate large scale 

campaigns. Similarly, in military (or cyber security) contexts simulation models with inputs 

from red and blue teams can be tested with replication to produce the inputs for game 

theoretic studies, leading to further insights into system vulnerabilities and strategic policy 

selections. 

This paper makes several important contributions: 

1.  A new class of experimental design problems is introduced that support the 

enumeration of equilibria relevant to predicting behavior or mechanism design. The 

empirical exploration of offline systems can leverage the need to explore in detail option 

combinations that relate to settings that decision makers are likely to select.  

2.  A tractable and scalable sequential algorithm for offline experimentation to 

support single-period games is provided. Empirical models are developed and used to 

predict the expected rewards and the initial batch of experiments minimizes the prediction 
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variance over the player option combinations of interest. The algorithm converges to the 

true equilibria (Nash, correlated, Cumulative prospect theory or other) with probability 1. 

  3.  To clarify the convergence properties, an analytical formula for the probability that 

specific Nash equilibria exist as a function of the available inputs is included. Monte Carlo 

can be applied for other equilibria. The probability relates to an integral over a multivariate 

normal distribution with inputs that depend on the data and often realistic assumptions. 

  4.  Demonstration of the novel methods for a simulation-based cyber security Capture 

the Flag (CTF) red team/blue team game is given. By planning and executing experiments 

involving inputs from more than one decision maker, advice is provided both for participants 

in upcoming games as well as insights for game or system designers.  

The rest of this paper is organized as follows. Section 2 introduces the notation and 

reviews studies of deterministic games, gaming under uncertainty, and relevant empirical 

modeling and experimental design methods. Section 3 combines the previous results to 

provide an initial heuristic procedure and an augmentation algorithm for equilibria 

estimation. Section 4 characterizes the experimental methods with respect to chances for 

identifying the true equilibria both for finite samples and asymptotically. Section 5 describes 

an application in cyber security. Section 6 offers conclusions and opportunities for future 

work. Note that some of the details about the cyber security case study are omitted because 

of space limitation, but these appear in the appendix. 

2. Literature Review 

This research combines methods and results from the game theory and experimental design 

literatures. We begin by introducing the notation. Then, we describe the literature and 

concepts relating to the basic game formulation, empirical modeling methods, and relevant 

experimental design results.  
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2.1. Notation 

Our notation contains elements from both the game theory and experimental design 

literatures. Let 𝑚  and 𝑛  be the number of real game options for player A and player B 

respectively. We use 𝐴𝑖𝑗  and 𝐵𝑖𝑗  as the reward, if player A selects option 𝑖  and player B 

selects option 𝑗, for player A and player B respectively. Also, 𝐴̂𝑖𝑗  and 𝐵̂𝑖𝑗  are the associated 

estimated quantities. Vectors 𝝁𝐴  and 𝝁𝐵  with dimensions 𝑚𝑛  are the vectorized mean 

values of the matrices 𝑨 and 𝑩 respectively with joint (2𝑚𝑛) × (2𝑚𝑛) covariance matrix 

𝚺̃𝑨𝑩 . Let 𝑞  be the number of Nash equilibria (either true or estimated depending on the 

context). The number and location of the equilibria are uncertain because of our uncertainty 

about the rewards or, equivalently, the payoffs. The real game decision variables are 𝒘𝐴 and 

𝒘𝐵  which represent probability over the 𝑚  and 𝑛  options for player A and player B 

respectively. The decision variable 𝒘𝐶  would apply to a third player. The scalars 𝛼𝑖 and 𝛽𝑖  

represent optimal payoff values that players A and B achieve at Nash equilibria 𝑖, and all the 

candidate equilibria are (𝑤𝐴
𝑖 , 𝑤𝐵

𝑖 ) for 𝑖 = 1,… , 𝑞 or simply (𝑤𝐴
0, 𝑤𝐵

0)  for a specific candidate 

under consideration. Equilibria are “pure” if the vector has probability 1 on a single action 

or “mixed” otherwise. The vectors 𝒆 and 𝒍  have all entries equal to 1 and dimensions 𝑚 and 

𝑛 respectively (and 𝒐 is for Player 3). For three players, the tensors 𝐴, 𝐵, 𝐶 are payoff cubes. 

Here, each player action represents a combination of factor level settings. Also, we use 

regression models to predict the mean rewards for all combinations of player actions. Let 𝐾 

represent the number of regression model terms and 𝑁 denote the number of experimental 

runs. The initial number is 𝑁0, and 𝑀𝐴 and 𝑀𝐵 are the number of decision factors for players 

A and B respectively. The assumption parameters 𝜷𝐴  and 𝜷𝐵  relate model coefficients for 

predicting the player A and player B reward matrices respectively. The corresponding 

estimated quantities are 𝜷̂𝐴  and 𝜷̂𝐵 . The standard deviations of repeated experimental 

outputs are σ𝐴 and σ𝐵 under the simplest equal variance assumption considered.  
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 In the context of either linear regression or Gaussian Stochastic Regression (GSR) 

models, the random errors are 𝑁  dimensional vectors 𝜺𝐴  and 𝜺𝐵  for players A and B 

respectively. For GSR, the correlation function between points is 𝜙 and the covariance matrix 

is 𝑪 . Because of experimental uncertainty, the existence of a candidate equilibrium (as 

defined in Section 3) is uncertain with probability  𝑝𝑁(𝒙0, 𝒚0).  

  Decision factors represent dimensions along which specific player options are 

available. For example, in a cyber security Capture the Flag example, player 1 has choices 

relating to whether to try to exploit the firewall or pivot immediately to the internal machine. 

We say that the factor is “firewall-pivot” and the levels are “first” and “never” which means 

that options or player policies are referred to as combination of factor levels. In this example, 

we are implying that the player policies are designed offline before the real game begins and 

then followed. Our analysis activity is intended to help the players design these policies. We 

believe that the decision factor decomposition of the strategy space is relevant for many real-

world situations in which key policies are effectively set in a single round, e.g., the 

combinations of chess openings and team pre-set strategies for cyber Capture the Flag (CTF). 

The experimental design decision variables include 𝑥𝐴,𝑘,𝑙  and 𝑥𝐵,𝑘,𝑟  for the setting 

selection for experimental run indexed by 𝑘, decision factors 𝑙 and 𝑟 and players A and B 

respectively. The vectors 𝒙𝐴,𝑘  and 𝒙𝐵,𝑘  are 𝑀𝐴  and 𝑀𝐵  dimensional vectors of settings for 

run 𝑘  for players A and B respectively, with (𝒙′𝐴,𝑘 |𝒙′𝐵,𝑘 ) in the region of interest set 𝑆𝑒 . 

Corresponding values relate to the decision options in the game, which may be assumed to 

represent a discretization of the factor levels: 𝑥̃𝐴,𝑖,𝑙  and 𝑥̃𝐵,𝑗,𝑟 are the game settings for Player 

A option 𝑖 and decision factor 𝑙 for and Player B option 𝑗 and decision factor 𝑟. These are 𝒙̃𝐴,𝑖 

and 𝒙̃𝐵,𝑖  indexed to run 𝑖 in vector form. The parameters 𝑟𝑖,𝑗 weight the option combinations 

by subjective importance, all set to 1 by default. The vector 𝐟(𝒙𝐴, 𝒙𝐵) is 𝐾 dimensional and 
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includes the model terms (e.g., 1 and 𝑥𝐴,2𝑥𝐵,1). The design matrix 𝑿 is 𝑁 × 𝐾 corresponding 

to the model terms and experimental runs (for coefficient estimation). The vectors 𝒀𝐴 and 

𝒀𝐵 are 𝑁 dimensional response values of players A and B at the experimental points. These 

responses could be simulation game scores or the income from test markets.  

The design matrix 𝑿̃ is 𝑚𝑛 × 𝐾 based on the real game available options (for reward 

matrix estimation). Intermediate matrices for calculating equilibrium probabilities are 𝑾1 

and  𝑾2 , which are 𝑚 × (𝑚𝑛) and 𝑛 × (𝑚𝑛) respectively. Also, 𝑻(𝑚, 𝑛) is an (𝑚𝑛) × (𝑚𝑛) 

permutation matrix. A key intermediate random vector, 𝒁, has dimension (𝑚 + 𝑛). 

In the context of sequential augmentation experimentation, the set of irrelevant 

option combinations for establishing whether all candidates are equilibria is 𝑆𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡  and 

the associated random search parameter is 𝑝𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 .  

2.2. Bimatrix and Multiplayer Games 

In the standard single period (bimatrix) game, player A sets the probability vector 𝒘𝐴 and 

player B sets the probability vector 𝒘𝐵 . The standard formulation assumes that the reward 

or payoff matrices 𝑨 and 𝑩 are known. We preliminarily entertain this (often unrealistic) 

assumption for the sake of reviewing a seminal contribution of Nash (Nash 1951). With 

known 𝑨 and 𝑩, the rewards received for the players are derived using the joint formulation: 

max
𝒘𝐴

𝒘𝐴
′𝑨𝒘𝐵                                                                                                            

s.t  𝒆′𝒘𝐴 − 𝟏 = 0; 𝒘𝐴 ≥ 0,           
max
𝒘𝐵

𝒘𝐴
′𝑩𝒘𝐵                                                                                                                                                  

                       s.t  𝒍′𝒘𝐵 − 1 = 0; 𝒘𝐵 ≥ 0.              (1) 

The payoff values may, in general, represent mean profits or mean utilities. Here, we propose 

regression-based prediction of payoffs A and B from offline experiments and the assumption 

that these matrices represent mean utilities.  
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The joint formulation in Equation (1) leads, without loss of generality, to Nash 

equilibria (𝑤𝐴
𝑖 ,  𝑤𝐵

𝑖 ) for 𝑖 = 1, … , 𝑞 . Selections not among these equilibria indicate 

(potentially) irrationality. Each Nash equilibrium satisfies the well-known property that 

player A cannot do better in the first optimization than 𝑤𝐴
𝑖  if player B does 𝑤𝐵

𝑖  and player B 

cannot do better in the second optimization than 𝑤𝐵
𝑖  if player A does 𝑤𝐴

𝑖 . Players can benefit 

by knowing the equilibria because they can select among them to maximize their game 

rewards. Game designers or system owners can benefit from knowing them because they 

may want to design incentives for players to change their behaviors. 

  Generalizations to multiplayer games have been explored extensively including 

generalizations of Nash equilibria (e.g., Phade and Anatharam 2019). Yet, the numbers of 

rewards needed to be estimated and the notational complexity grow with the number of 

players. For example, consider the extension of Nash Equilibria from a bimatrix game to a 3-

player game. The payoff cubes are 𝐴, 𝐵, 𝐶 and “⊗” is the Kronecker product. Nash equilibria 

satisfy (Lee and Baldick 2003): 

 𝐴 ⊗ [𝑤𝐴
𝑖 , 𝑤𝐵

𝑖 , 𝑤𝐶
𝑖 ] ≥  𝐴 ⊗ [𝑤𝐴, 𝑤𝐵

𝑖 , 𝑤𝐶
𝑖 ]  for all 𝑤𝐴 𝜖 𝑅

𝑁1 , 𝑤𝐴 ≥ 0,  𝑤𝐴′𝑒= 1,   

 𝐵 ⊗ [𝑤𝐴
𝑖 , 𝑤𝐵

𝑖 , 𝑤𝐶
𝑖 ] ≥  𝐵 ⊗ [𝑤𝐴

𝑖 , 𝑤𝐵 , 𝑤𝐶
𝑖 ]  for all 𝑤𝐵 𝜖 𝑅

𝑁2 , 𝑤𝐵 ≥ 0, 𝑤𝐵′𝑙= 1, and   

𝐶 ⊗ [𝑤𝐴
𝑖 , 𝑤𝐵

𝑖 , 𝑤𝐶
𝑖 ] ≥ 𝐶 ⊗ [𝑤𝐴

𝑖 , 𝑤𝐵
𝑖 , 𝑤𝐶]]  for all 𝑤𝐶  𝜖 𝑅

𝑁3 , 𝑤𝐶 ≥ 0, 𝑤𝐶 ′𝑜= 1.        (2) 

2.3. Equilibrium Conditions 

Even with known 𝑨 and 𝑩, the general problems of finding the number of equilibria 𝑞 and 

the actual equilibria (𝑤𝐴
𝑖 , 𝑤𝐵

𝑖 ) are NP-hard in terms of the numbers of options 𝑚 and 𝑛 (Chen 

and Deng 2006; Daskalakis et al. 2009; Conitzer and Sandholm 2008). However, state-of-the-

art solution methods can practically enumerate equilibria for problems in which both 

players have hundreds of options (Savani and von Stengel 2015). Also, necessary and 



 

10 

 

sufficient conditions for the equilibria (Mangasarian and Stone 1964) relate to the existence 

of scalar 𝛼0 and 𝛽0 satisfying: 

     𝒘𝐴
0′𝑨 𝒘𝐵

0 − 𝛼0 = 0, 

𝒘𝐴
0′𝑩 𝒘𝐵

0 − 𝛽0 = 0,  
 𝑨𝒘𝐵

0 − 𝛼0𝒆 ≤ 𝟎,  
𝑩′𝒘𝐴

0 − 𝛽0𝒍 ≤ 𝟎,  
𝒆′𝒘𝐴

0 − 1 = 0; 𝒘𝐴
0 ≥ 𝟎, and 

𝒍′𝒘𝐵
0 − 1 = 0; 𝒘𝐵

0 ≥ 𝟎.                   (3) 
 

More general multi-player conditions like those in Equation (3) are available (Phade and 

Anatharam 2019). The key features of all correlated equilibria only involve the rows and 

columns associated with nonzero values of 𝒘𝐴 and 𝒘𝐵 . 

 

2.4. Empirical Prediction of Payoff Matrices 

Key to our approach is the use of planned experiments and empirical regression models to 

predict simultaneously all the mean parameters in both payoff matrices 𝑨 and 𝑩. Whereas 

the decision variables are weights or probabilities (i.e., 𝒘𝐴,𝒘𝐵) for real games, the empirical 

model building decision variables are the factor level settings (i.e., 𝒙𝐴,𝑖 , 𝒙𝐵,𝑖 ) for offline 

experimental games. The experiments can be offline or not “real” in the sense that they do 

not require playing the game, e.g., one can experiment on a simulation model of the game as 

we illustrate for our cyber security planning example in Section 5. The experiments could 

also be relatively low consequence pre-experiments, e.g., involving test markets.  

Consider that system options are potentially combinations of factor levels, i.e., option 

combination or run 𝑖 is represented by the settings (𝒙𝐴,𝑖 , 𝒙𝐵,𝑖). The standard linear model 

functional form is 𝐟′(𝒙𝐴,1, 𝒙𝐵,1). The “design” matrix (e.g., see Goos and Jones 2011) is: 

𝑿 = (
𝐟′(𝒙𝐴,1, 𝒙𝐵,1)

⋮
𝐟′(𝒙𝐴,𝑁 , 𝒙𝐵,𝑁)

).              (4) 
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Gaussian process regression is a generalization of ordinary linear models (e.g., see 

Gorodetsky and Marzouk 2016). The multivariate expressions of the rewards, 𝒀𝐴 and 𝒀𝐵 , 

derive from model coefficients, 𝜷𝐴 and 𝜷𝐵 , and random errors, 𝜺𝐴 and 𝜺𝐵: 

(
𝒀𝐴
𝒀𝐵
) = (

𝑿𝜷𝐴
𝑿𝜷𝐵

) + (
𝜺𝐴
𝜺𝐵
),       (5) 

where the random errors could derive from simulation lack of repeatability, e.g., Monte Carlo 

random errors in cyber-attack simulations. A common assumption is that the random errors 

follow a multivariate normal (MN) distribution with variance covariance matrix, 𝚺𝑨𝑩: 

(
𝜺𝐴
𝜺𝐵
)~ 𝑀𝑁[𝟎, 𝚺𝑨𝑩].        (6) 

Here, we consider both the standard 𝚺𝑨𝑩 = 𝜎
2𝑰 linear model regression assumption and a 

more general Gaussian stochastic regression (GSR) assumption in terms of scalar variance 

parameter, 𝜏 , variance, 𝜎 , directional parameters, 𝜃𝑘 , and variance-covariance matrix, 𝑪 . 

This gives: 

        𝚺𝑨𝑩 = 𝑰𝜏
2 + [

𝑪 𝟎
𝟎 𝑪

]     

        where 𝑪 = [

𝜙[(𝒙𝐴,1, 𝒙𝐵,1), (𝒙𝐴,1, 𝒙𝐵,1)] ⋯ 𝜙[(𝒙𝐴,1, 𝒙𝐵,1), (𝒙𝐴,𝑁 , 𝒙𝐵,𝑁)]

⋮ ⋱ ⋮
𝜙[(𝒙𝐴,1, 𝒙𝐵,1), (𝒙𝐴,𝑁 , 𝒙𝐵,𝑁)] ⋯ 𝜙[(𝒙𝐴,𝑁 , 𝒙𝐵,𝑁), (𝒙𝐴,𝑁 , 𝒙𝐵,𝑁)]

] 

and 𝜙[(𝒙𝐴,𝑖 , 𝒙𝐵,𝑖), (𝒙𝐴,𝑗 , 𝒙𝐵,𝑗)] = 𝜎
2exp [∑ (

(𝒙𝐴,𝑖,𝒙𝐵,𝑖)−(𝒙𝐴,𝑗,𝒙𝐵,𝑗)

𝜃𝑘
)
2

𝑛
𝑘=1 ].   (7) 

In our case study, we consider only categorical factors so continuous variable GSR is not 

relevant. Yet, we believe that the flexibility of GSR is critical for problems involving 

continuous factors and specific results apply to the more general GSR assumptions as we 

clarify. Using the standard linear model case assumption ( 𝑪 = 𝟎 ), the least squares 

coefficient estimates are: 𝜷̂𝐴 = (𝑿′𝑿)
−1𝑿′𝒀𝐴 and 𝜷̂𝐵 = (𝑿′𝑿)

−1𝑿′𝒀𝐵.    
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 Then, the payoff matrix estimates, 𝑨̂ and 𝑩̂, can be predicted using the regression in 

their vectorization forms, 𝑣𝑒𝑐(𝑨̂) and 𝑣𝑒𝑐(𝑩̂) and a full factorial design matrix 𝑿̃: 

𝑣𝑒𝑐(𝑨̂) =

(

 
 
 
 
 

𝐴̂1,1
⋮
𝐴̂𝑛,1
⋮
𝐴̂𝑖,𝑗
⋮

𝐴̂𝑛,𝑚)

 
 
 
 
 

= 𝑿̃𝜷̂𝐴 ,  𝑣𝑒𝑐(𝑩̂) = 𝑿̃𝜷̂𝐵,  and where  𝑿̃ =

(

 
 
 
 
 

𝐟′(𝒙̃𝐴,1, 𝒙̃𝐵,1)

⋮
𝐟′(𝒙̃𝐴,𝑛 , 𝒙̃𝐵,1)

⋮
𝐟′(𝒙̃𝐴,𝑖, 𝒙̃𝐵,𝑗)

⋮
𝐟′(𝒙̃𝐴,𝑛 , 𝒙̃𝐵,𝑚))

 
 
 
 
 

. (8) 

2.5. Experimental Design 

It is well known that the accuracy of the empirical model greatly depends on the 

experimental design points used in its construction. In our game context, the experimental 

runs are pairings of level settings chosen by both players: (𝒙𝐴,1, 𝒙𝐵,1),… , (𝒙𝐴,𝑁 , 𝒙𝐵,𝑁). The 

accuracy also depends on the discrete points which form the options for the game: 

(𝒙̃𝐴,1, 𝒙̃𝐵,1), … , (𝒙̃𝐴,𝑚 , 𝒙̃𝐵,𝑛) . Typically, perhaps, there may be many more combinations of 

player options than experimental budgets can afford, i.e., 𝑚𝑛 ≫ 𝑁 . This makes the use of 

optimization particularly critical to permit prediction of the payoff matrices and thus 

accurate estimation of the Nash equilibria. 

   The accuracy of a linear model also depends on the terms included or the so-called 

functional form implied by the vector functions 𝐟𝐴′(𝒙𝐴,1, 𝒙𝐵,1)and 𝐟𝐵′(𝒙𝐴,1, 𝒙𝐵,1) for deriving 

estimated payoff matrices 𝑨̂  and 𝑩̂  respectively. A concise and relevant functional form 

includes only the first order terms and Player A and Player B interactions: 

𝐟𝐴′(𝒙𝐴,1, 𝒙𝐵,1) = 𝐟𝐵′(𝒙𝐴,1, 𝒙𝐵,1) = 

(1 𝑥𝐴,1 ⋯ 𝑥𝐴,𝑀𝐴 𝑥𝐵,1 ⋯ 𝑥𝐵,𝑀𝐵 𝑥𝐴,1𝑥𝐵,1 ⋯ 𝑥𝐴,𝑀𝐴𝑥𝐵,𝑀𝐵) (9) 
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For continuous variables, more detailed and accurate models may also be of interest 

including adding quadratic terms, e.g., 𝑥𝐴,1
2 . The standard regression model with parameters 

𝜷̂𝐴 and 𝜷̂𝐵 to predict a generic mean reward is: 

𝑦̂𝐴 = 𝐟′(𝒙̃𝐴, 𝒙̃𝐵)𝜷̂𝐴 and 𝑦̂𝐵 = 𝐟′(𝒙̃𝐴, 𝒙̃𝐵)𝜷̂𝐵.      (10) 

 These models have prediction variances of the form: 

𝑣𝑎𝑟[𝑦̂𝐴(𝒙𝐴, 𝒙𝐵)] = 𝜎𝐴
2𝐟′(𝒙𝐴, 𝒙𝐵)(𝑿′𝑿)

−1𝐟(𝒙𝐴, 𝒙𝐵) and          

𝑣𝑎𝑟[𝑦̂𝐵(𝒙𝐴, 𝒙𝐵)] = 𝜎𝐵
2𝐟′(𝒙𝐴, 𝒙𝐵)(𝑿′𝑿)

−1𝐟(𝒙𝐴, 𝒙𝐵).     (11) 

A natural objective to generate the initial experimental points is to minimize the 

average prediction errors over the lattice of player options. The standard prediction 

variance formula yields the following experimental design formulation. Gorodetsky and 

Marzouk (2016) provide a formulation relevant to Gaussian Process Regression. Here, we 

focus on an initial design with the linear model terms because our application has only 

categorical variables. 

Assume that the relevant variance is 𝜎𝐴
2 (could be 𝜎𝐵

2) and 𝑟𝑖,𝑗  is the weight for player 

A, game option 𝑖  and player B, game option 𝑗. In our example, we assume that all option 

combinations are equally of interest (𝑟𝑖,𝑗 = 1) at the start of experimentation but more 

general assumptions could be important. Therefore, Weighted Prediction Variance (WPV) 

reduces to the Average Prediction Variance (APV) and the optimization is over points in the 

experimental set 𝑺𝑒 . Then, the WPV formulation including the relevant option combinations 

for a fixed number of runs, 𝑁, is:  

Minimize:
(𝒙′𝐴,1,𝒙′𝐵,1),…∈𝑺𝑒

𝜎𝐴
2

𝑚𝑛
∑ ∑ 𝑟𝑖,𝑗𝐟′(𝒙̃𝐴,𝑖, 𝒙̃𝐵,𝑗)(𝑿′𝑿)

−1𝐟(𝒙̃𝐴,𝑖 , 𝒙̃𝐵,𝑗)
𝑚
𝑖=1

𝑛
𝑗=1 .     

For the 𝑟𝑖,𝑗 = 1 case, the APV can be simplified as: 
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   Minimize:
(𝒙′𝐴,1,𝒙′𝐵,1),…∈𝑺𝑒

𝜎𝐴
2

𝑚𝑛
Tr[𝑿̃′𝑿̃(𝑿′𝑿)−1]       (12) 

where 𝑚𝑛 is the number of decision points, the number of runs, 𝑁, is fixed by the dimensions 

of 𝑿, and “Tr” is the trace or sum of the diagonal elements. Even with only linear regression 

modeling, the APV formulation in equation (12) is NP-hard (Ko, Lee, and Queyranne 1995). 

However, using the Meyer and Nachtsheim (1995) coordinate exchange algorithm with 

1,000 random starting points, as suggested by Goos and Jones (2011, p. 36), all the problems 

considered here were approximately solved in 10 seconds to within 0.1% of optimality with 

JMP® software.  

3. Experimental Procedures 

In this section, we combine the previous results to create a one shot and sequential empirical 

equilibrium enumeration procedures. Also, we describe decision making about the initial 

number of experimental runs (𝑁0). 

3.1. Initial Equilibria Estimation Procedure 

Procedure 1 begins by optimally planning and executing offline test runs, e.g., game 

simulations. Then, the payoff matrix inputs to the bimatrix game formulation are predicted. 

Finally, the estimates can be used to enumerate the Nash or other equilibria with standard 

equilibrium enumeration methods (e.g., Savani and von Stengel 2015) based on the 

approximate assumption that the bimatrix inputs in Equation (1) are known.  

Procedure 1 (Initial Experimentation and Equilibria Estimation) 

1. Identify the factors levels for experimentation and 𝑚𝑛 game combinations of interest. 

2. Solve the APV formulation in Equation (12) with 𝑁0 runs (see Section 3.2 for choosing). 

3. Collect experimental data following the optimal plan to derive the vectors 𝒀𝐴 and 𝒀𝐵 . 
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4. Estimate the empirical model parameters, e.g., using least squares estimation. 

5. Estimate the payoff matrices 𝑨̂ and 𝑩̂ using coefficients 𝜷̂𝐴 and 𝜷̂𝐵 with Equation (8). 

6. Derive the candidate equilibria, (𝑤𝐴
𝑖 ,  𝑤𝐵

𝑖 ) for 𝑖 = 1,… , 𝑞 , e.g., by solving Equation (3) 

assuming 𝑨 = 𝑨̂ and 𝑩 = 𝑩̂. 

In general, candidate equilibria from empirical procedures (such as Procedure 1) may 

not be true equilibria of interest. This follows because experimental random errors (and 

model bias) can make it so that 𝑨 ≠ 𝑨̂ and 𝑩 ≠ 𝑩̂. Yet, with sufficiently large experiments, 

i.e., 𝑁 ≫ 0, the empirically derived equilibria can be expected to converge to the desired 

equilibria as we describe in Section 4. 

3.2. Average Prediction Variance Designs 

As mentioned previously, the Average Prediction Variance (APV) objective offers a natural 

formulation for initial experimentation. Intuitively, if the variances of parameters 𝑨̂ and 𝑩̂ 

are minimized, the chances of identifying key insights and the correct equilibria improve. 

Also, excluding interactions from the model that are not critical, e.g., third order or higher 

interactions, is a technique commonly used in many types of experiments to limit costs (Goos 

and Jones 2011). In bimatrix games, the interactions between player one and player two 

variables are intuitively critical for identifying equilibria. Related results can likely be 

established rigorously because, without interactions, players could optimize separately, 

making the games uninteresting to play and study. Higher order interactions are likely 

critical for games with multiple players. Therefore, regression model forms will need to be 

changed to consider multiplayer games. 

Selecting the initial number of runs, 𝑁0 , unavoidably involves some amount of 

subjectivity. In general, 𝑁0, values greater than or equal to the number of model terms, 𝐾, 
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are desirable so that the estimation problem is fully determined. Yet, setting 𝑁0 at much less 

than the full number of option combinations, 𝑚𝑛, is also desirable to reduce costs.  

Table 1 shows the 𝑁0 = 24 experimental plan used in the cyber security Capture the 

Flag (CTF) case study. Additional information about the five factors involved is provided in 

Section 5. Here, we simply note that the model form in Equation (9) includes the three-level 

categorical factor “Firewall-Pivot” (𝑥𝐴,𝑖,1) and 𝐾 = 16 terms.  

Using JMP® software, it is possible to solve the APV formulation with equal weights 

(𝑟𝑖,𝑗 = 1 for 𝑖 = 1,… ,𝑚 and 𝑗 = 1,… , 𝑛) for varying numbers of runs. Figure 1 shows the plot 

of the Average Prediction Variance for these optimal designs. The plot shows the typical 

“elbow” curve such that incurring additional expense beyond a certain point carries 

diminishing returns for prediction accuracy. This explains the choice of 𝑁0 = 24 for the case 

study shown in Table 1. Note that the full factorial experimental design is APV optimal or 

near optimal with 𝑁 = 48 for this problem. Yet, 𝑁 = 48 offers only an incremental benefit 

for prediction accuracy as evidenced in Figure 1 on the right-hand-side.  

Figure 1. Minimum average variances for designs with variable run numbers (𝑁). 

 

 

It is true, however, that using design with 𝑁 > 16  (the minimum number for 

estimating the model we employ) could permit a more complete model form than the one in 
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Equation (9) to be fitted. Yet, in the context of the case study, the resulting model would (with 

high probability see Section 5) result in the same Nash equilibrium being identified with 

increased experimental cost. 

Table 1. Average variance experimental design for cyber security case study with five factors 

and the indexed option selections. 

Run 

Firewall-Pivot 

(𝑥𝐴,𝑖.1) 

Tenacity 

(𝑥𝐴,𝑖.2) 

Start 

(𝑥𝐵,𝑖.1) 

Forensic Firewall 

(𝑥𝐵,𝑖.2) 

Tenacity 

(𝑥𝐵,𝑖.3) Player 1 Player 2 𝑌𝐴,𝑖 𝑌𝐵,𝑖  
1 First Persist Firewall Never Persist 1 3 40.7 60.8 
2 Never Persist PC Inspect Firewall Move On 3 5 63.2 50.5 
3 Never Persist PC Never Persist 3 4 52.6 30.3 
4 Wait Persist Firewall Never Move On 2 7 50.8 64.6 
5 Never Move On Firewall Inspect Firewall Persist 6 1 64.1 58.0 
6 Never Move On PC Inspect Firewall Move On 6 6 47.7 64.0 
7 Never Persist Firewall Inspect Firewall Persist 3 1 63.9 56.8 
8 Never Move On Firewall Never Move On 6 7 41.5 70.7 
9 Wait Persist Firewall Inspect Firewall Persist 2 1 54.1 61.4 

10 Wait Persist PC Inspect Firewall Move On 2 6 51.6 47.8 
11 Never Persist Firewall Never Move On 3 7 52.4 67.6 
12 Wait Persist PC Never Persist 2 4 49.8 28.9 
13 Wait Move On Firewall Never Move On 5 7 40.7 63.6 
14 First Persist Firewall Inspect Firewall Move On 1 5 37.7 60.7 
15 First Persist PC Inspect Firewall Persist 1 2 43.3 50.9 
16 First Move On PC Inspect Firewall Persist 4 2 35.9 56.2 
17 First Move On PC Never Move On 4 8 38.8 31.6 
18 First Move On Firewall Inspect Firewall Move On 4 5 35.2 49.9 
19 First Move On Firewall Never Persist 4 3 37.6 63.0 
20 Never Move On PC Never Persist 3 4 50.4 26.1 
21 First Persist PC Never Move On 1 8 53.5 28.0 
22 Wait Move On Firewall Inspect Firewall Persist 5 1 52.1 65.9 
23 Wait Move On PC Never Persist 5 4 47.8 27.2 
24 Wait Move On PC Inspect Firewall Move On 5 6 50.5 55.1 

 

3.3. An Augmentation Procedure 

After initial experimentation and equilibria estimation, significant uncertainties can remain, 

i.e., the variances in the 𝑨̂ and 𝑩̂ estimates in Equation (12) may not be negligible leading to 

uncertainty about the relevant equilibria. This depends on the variances of the experimental 

random errors 𝜎𝐴
2 and 𝜎𝐵

2 and, possibly, on the bias from the model form approximation in 

Equation (9). The initial procedure unavoidably generates at least a single candidate 
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equilibrium because of the fundamental equilibrium existence theorem and the enumeration 

algorithms (Nash 1951). Intuitively, some experimental options are irrelevant to 

establishing whether candidate equilibria are the true equilibria. Here, the equilibria 

considered could be any type. Yet, the structure of the irrelevant set may vary. Our proposed 

procedure applies to Nash and correlated equilibria because related conditions involve only 

specific row and column values (Phade and Anantharam 2019). 

Definition. True equilibria are those that would be derived after all parametric uncertainty 

is removed (e.g., from suitable infinite experimentation). 

 Avoiding irrelevant experiments for finding true equilibria is the driving objective of the 

proposed random search method (Procedure 2). A key parameter of this method is the 

probability of selecting from among the irrelevant options, 𝑝𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 . We suggest 0.05 as a 

default value to minimally evaluate likely unhelpful options. 

Procedure 2 (Augmentation Algorithm) 

1. Update model (e.g., using sample mean estimates for 𝑨̂ and 𝑩̂ or, alternatively, regression 

prediction) and the associated candidate equilibria (𝑤𝐴
𝑖 , 𝑤𝐵

𝑖 ) for 𝑖 = 1,… , 𝑞. 

2. (Optional) If stopping conditions are met, stop. 

3. Update the irrelevant set: 

𝑆𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 = {𝑖, 𝑗|𝑤𝐴,𝑖
𝑘 = 0,𝑤𝐵,𝑖

𝑘 = 0 ∀ 𝑘 = 1,… , 𝑞}.    (13) 

4. Sample 𝑈~[0,1] 

If 𝑈 ≤ 𝑝𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 , Then, random sample 𝑖, 𝑗 ∈ 𝑆𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 . 

Else, random sample 𝑖, 𝑗 ∉ 𝑆𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 . 

5. Perform experiment at (𝒙̃𝐴,𝑖 , 𝒙̃𝐵,𝑗). 

6. Go to Step 1. 
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In the next section, the rigorous properties of the irrelevant set, 𝑆𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 , and the 

convergence properties of Procedure 2 are investigated. A stopping criterion relating to the 

probability identifying true equilibria is proposed. 

4. Properties of Experimental Procedures 

In this section, the finite sample and asymptotic convergence properties of the procedures 

in Section 3 are characterized. We start with the probability that candidates are correctly 

identified. Then, we apply the results in the context of the initial experimentation and 

analysis (Procedure 1) and provide convergence results of the augmentation methods 

(Procedure 2).  

4.1. The Probability That a Candidate Is a Nash Equilibrium 

Consider that 𝑨  and 𝑩 are uncertain in the sense that the decision maker does not know fully 

what they are, i.e., there is “parametric uncertainty” which can be reduced through 

experimentation. Given a current parametric uncertainty level in the payoff values, there is 

uncertainty about whether a candidate equilibrium (𝒘𝐴
0, 𝒘𝐵

0 ) would be discovered to be an 

equilibrium if all the parametric uncertainty were removed through experimentation.  

Definition. The probability that a candidate equilibrium (𝒘𝐴
0 , 𝒘𝐵

0 ) is a true equilibrium, 𝑝𝑁 , 

is the chance that the equilibrium is a Nash equilibrium for a random realization of the payoff 

matrices, 𝑨  and 𝑩. 

Theorem 1 provides a method to calculate this probability without the need for time-

consuming Monte Carlo simulation of entire enumeration procedures. It also provides 

insights relating to the data sufficiency of many types of empirical methods for Nash 

equilibria estimation. The theorem starts with a given candidate equilibrium (𝒘𝐴
0 , 𝒘𝐵

0 ) , 

which is a pair of probability vectors. The theorem is based on assumed known values for 
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the means (𝝁𝐴, 𝝁𝐵) and variances (𝑽𝐴, 𝑽𝐵) of the vectorized payoff matrices, i.e., 𝑣𝑒𝑐(𝑨)  and 

𝑣𝑒𝑐(𝑩). A key permutation matrix is 𝑻(𝑚, 𝑛) which relates 𝑣𝑒𝑐(𝑩′) to 𝑣𝑒𝑐(𝑩). These payoff 

matrices are assumed to be multivariate normally distributed, 𝑀𝑁 , which is an often-

relevant assumption for estimates derived from regression models. This theorem is relevant 

for general Gaussian stochastic regression (GSR), which is also based on a multivariate 

normal distribution, i.e., not merely least squares regression. 

Theorem 1. Assume that the payoff matrices 𝑨  and 𝑩 are multivariate normally distributed: 

[
 𝑣𝑒𝑐(𝑨)

𝑣𝑒𝑐(𝑩)
]~𝑀𝑁 [(

𝝁𝐴
𝝁𝐵
) , 𝚺̃𝑨𝑩].  Then the probability that the candidate feasible solution 

(𝒘𝐴
0 , 𝒘𝐵

0 ) is a Nash equilibrium for a random instance of 𝑨 and 𝑩, 𝑝𝑁 , is: 

𝑝𝑁(𝒘𝐴
0, 𝒘𝐵

0) = Pr({𝑍1 ≤ 0} ∩ {𝑍2 ≤ 0} ∩ … {𝑍𝑚+𝑛 ≤ 0}}    (14) 

where 𝒁 is a random 𝑚 + 𝑛 dimensional vector. The distribution of 𝒁 is defined in terms of 

𝑻(𝑚, 𝑛) which is a matrix that converts the vectorization of a 𝑚 × 𝑛 matrix into its transpose 

vectorization as: 

𝒁~𝑀𝑁 [(
𝑾1𝝁𝐴
𝑾2𝝁𝐵

) , [
𝑾1 𝟎
𝟎 𝑾2

] 𝚺̃𝑨𝑩 [
𝑾1 𝟎
𝟎 𝑾2

]
′

]     (15) 

and where 𝑾1 = (𝒘𝐵
0′ ⊗ (𝑰 − 𝒆𝒘𝐴

0′)) and  𝑾2 = (𝒘𝐴
0′ ⊗ (𝑰 − 𝒍𝒘𝐵

0′))𝑻(𝑚, 𝑛).      (16) 

Proof. We seek to show that the event in Equation (14) is equivalent to the necessary and 

sufficient conditions in Equation (3) (Mangasarian and Stone 1964). If this is demonstrated, 

the probability in Equation (14) is the probability that (𝒘𝐴
0 , 𝒘𝐵

0 ) is a Nash equilibrium. The 

last sets of constraints in Equation (3) are satisfied automatically since (𝒘𝐴
0 , 𝒘𝐵

0 ) is a feasible 

solution. The first two constraints in Equation (3) are 𝛼0 = 𝒘𝐴
0′𝑨 𝒘𝐵

0 and 𝛽0 = 𝒘𝐴
0′𝑩𝒘𝐵

0. 

Plugging these into the following inequalities in Equation (3) and rearranging using scalar 

properties gives: 

𝑨𝒘𝐵
0 − 𝒘𝐴

0′𝑨 𝒘𝐵
0𝒆 = 𝑰𝑨𝒘𝐵

0 − 𝒆[𝒘𝐴
0′𝑨 𝒘𝐵

0] ≤ 𝟎.      
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(𝑰 − 𝒆𝒘𝐴
0′)𝑨𝒘𝐵

0 ≤ 𝟎.            (17) 

Using the Knonecker product (⊗) and a standard vectorization (vec) identity (Searle 1982, 

p. 333) gives: 

  (𝑰 − 𝒆𝒘𝐴
0′)𝑨𝒘𝐵

0 = 𝑣𝑒𝑐 ((𝑰 − 𝒆𝒘𝐴
0′)𝑨𝒘𝐵

0)  

= (𝒘𝐵
0′ ⊗ (𝑰 − 𝒆𝒘𝐴

0′)) 𝑣𝑒𝑐(𝑨) = 𝑾1𝑣𝑒𝑐(𝑨) ≤ 𝟎.    (18) 

 Similarly, we have: 

𝑩′𝒘𝐴
0 − (𝒘𝐴

0′𝑩 𝒚0)𝒍 = 𝑰𝑩′𝒘𝐴
0 − 𝒍(𝒘𝐵

0′𝑩 𝒘𝐴
0) ≤ 𝟎      

(𝑰 − 𝒍𝒘𝐵
0′)𝑩′𝒘𝐴

0 = (𝒘𝐴
0′ ⊗ (𝑰 − 𝒍𝒘𝐵

0′)) 𝑣𝑒𝑐(𝑩′)      

= (𝒘𝐴
0′ ⊗ (𝑰 − 𝒍𝒘𝐵

0′))𝑻(𝑚, 𝑛) 𝑣𝑒𝑐(𝑩) = 𝑾2𝑣𝑒𝑐(𝑩) ≤ 𝟎.    (19) 

Together, Equations (18) and (19) give 𝑚 + 𝑛 inequalities. Introducing the random vector, 

𝒁, Equations (18) and (19) become: 

𝒁 = [
𝑾1 𝟎
𝟎 𝑾2

] (
𝑣𝑒𝑐(𝑨)

𝑣𝑒𝑐(𝑩)
) ≤ (

𝟎
𝟎
).       (20) 

Substituting the assumption for the multivariate payoff matrices, 𝑣𝑒𝑐(𝑨) and 𝑣𝑒𝑐(𝑩), and 

using standard matrix identities (Searle 1982 p. 400), 𝒁 is multivariate normal: 

 𝒁~𝑀𝑁 [(
𝑨1𝝁𝐴
𝑨2𝝁𝐵

) , [
𝑾1 𝟎
𝟎 𝑾2

] 𝚺̃𝑨𝑩 [
𝑨1 𝟎
𝟎 𝑨2

]
′

].     (21) 

Therefore, the necessary and sufficient conditions for an equilibrium are satisfied if and only 

if each element of the vector, 𝒁, is negative. Then, 𝑝𝑁(𝒘𝐴
0, 𝒘𝐵

0) is equal to the probability 

that this condition occurs assuming Equation (21).  

  The central result in Theorem 1 is intuitive. Once there is a candidate equilibrium, 

there is no need to enumerate all the equilibria for thousands of model scenarios for 

probability estimation. Instead, simulations need only study whether the small number of 

normally distributed parameters exceed the other normally distributed parameters 
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involved in the equilibrium. Equation (14) supports efficient estimation while addressing 

correlated prediction estimates and mixed equilibria, i.e., fractional probabilities. From the 

estimated equilibria, the player may be able to see which equilibrium an opponent would 

likely prefer (if there are more than one). If there is only one equilibrium, as appears to be 

the case in our cyber game example, it may be highly desirable to play related settings. 

Note that Theorem 1 could apply to uncertainty of types other than parametric, i.e., 

uncertainty not caused from limited experimental data. For example, it could relate to games 

with intrinsically random payoffs. Also, Theorem 1 permits the computationally efficient 

estimation of Nash equilibria probabilities. The probabilities for more general equilibria 

such as correlated or Cumulative prospect theory equilibria can, of course, be estimated 

using Monte Carlo simulation. Further, regardless of the specific stopping criterion applied, 

the information about the rewards can support many types of decision support activities. 

Next, we relate Theorem 1 to empirical uncertainties. 

4.2. Application to Procedure 1 

  In real empirical investigations, the analyst does not have the mean values of the 

payoff estimates, 𝝁𝐴 and  𝝁𝐵 , and the true covariances, 𝚺𝑨𝑩. Instead, the analyst has response 

data, 𝒀𝐴 and 𝒀𝐵  which can be derived from Procedure 1. From this data, estimates can be 

generated using regression, e.g., linear regression in Equation (8). Many types of regression 

models are multivariate normal distributions. The standard linear regression multivariate 

normal assumption inspires the following corollary to Theorem 1 which characterizes the 

finite sample properties of Procedure 1. 

Corollary 1. Assume the experimental outputs derive from a standard linear model with 

variances 𝜎𝐴
2  and 𝜎𝐵

2 , i.e., (
𝒀𝐴
𝒀𝐵
)~ 𝑀𝑁 [(

𝑿𝜷𝐴
𝑿𝜷𝐵

) , [
𝜎𝐴
2𝑰 𝟎

𝟎 𝜎𝐵
2𝑰
]] . Also, the functional form,  

𝐟(𝒙𝐴, 𝒙𝐵), for the design matrix, 𝑿, is the same as for the prediction design matrix 𝑿̃. Further, 
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Procedure 1 is applied. Then, the probabilities that any given candidate equilibrium (indexed 

by 𝑖) is a true equilibrium, 𝑝𝑁(𝑤𝐴
𝑖 , 𝑤𝐵

𝑖 ), is given by Equation (14) substituting 𝝁𝐴 = 𝑿̃𝜷𝐴 , 

𝝁𝐵 = 𝑿̃𝜷𝐵, (𝑤𝐴
𝑖 , 𝑤𝐵

𝑖 ) = (𝒘𝐴
0 , 𝒘𝐵

0 ), and 

𝚺̃𝑨𝑩 = [
𝜎𝐴
2𝑿̃(𝑿′𝑿)−1𝑿̃′ 𝟎

𝟎 𝜎𝐵
2𝑿̃(𝑿′𝑿)−1𝑿̃′ 

].      (22) 

Proof. Establishing the conditions for Theorem 1 proves that the probability applies. 

Applying Procedure 1 involves using the least squares estimators gives: 

 𝑣𝑒𝑐(𝑨̂) = 𝑿̃𝜷̂𝐴 = 𝑿̃(𝑿
′𝑿)−1𝑿′𝒀𝐴       (23) 

such that each entry is a linear combination of normally distributed random variables and 

thus is also multivariate normal. Similarly, 𝑣𝑒𝑐(𝑩̂) is multivariate normal. The mean vector, 

𝝁𝐴, is (for mean zero random 𝜺𝐴): 

𝝁𝐴 = 𝐸[𝑣𝑒𝑐(𝑨̂)] = 𝐸[𝑿̃𝜷̂𝐴] = 𝐸[𝑿̃(𝑿
′𝑿)−1𝑿′𝒀𝐴]  

= 𝐸[𝑿̃(𝑿′𝑿)−1𝑿′(𝑿𝜷𝐴 + 𝜺𝐴)] = 𝑿̃𝜷𝐴.     (24) 

Similarly, 𝝁𝐵 = 𝑿̃𝜷𝐵. The variance-covariance matrix is derived using 𝑣𝑎𝑟[𝑻𝒙] = 𝑻𝑣𝑎𝑟[𝒙]𝑻′ 

where 𝑻 is an arbitrary matrix: 

𝑣𝑎𝑟[𝑣𝑒𝑐(𝑨̂)] = 𝑣𝑎𝑟[𝑿̃𝜷̂𝐴] = 𝑉𝑎𝑟[𝑿̃(𝑿
′𝑿)−1𝑿′𝒀𝐴]  

= 𝑿̃(𝑿′𝑿)−1𝑿′𝑣𝑎𝑟[𝒀𝐴]𝑿(𝑿
′𝑿)−1𝑿̃′ = 𝑿̃(𝑿′𝑿)−1𝑿′ [

𝜎𝐴
2𝑰 𝟎

𝟎 𝜎𝐵
2𝑰
]𝑿(𝑿′𝑿)−1𝑿̃′ 

     = [
𝜎𝐴
2𝑿̃(𝑿′𝑿)−1𝑿̃′ 𝟎

𝟎 𝜎𝐵
2𝑿̃(𝑿′𝑿)−1𝑿̃′ 

].          (25) 

Therefore, the payoff matrix estimates are multivariate normal with the prescribed mean 

and covariance and Theorem 1 applies.  

Remark: Corollary 1 inspires an approximate method to estimate the probability that a 

given candidate equilibrium, (𝒘𝐴
0, 𝒘𝐵

0 ) , is a true equilibrium. Procedure 1 generates the 
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regression estimates: 𝜷̂𝐴, 𝜷̂𝐵 , 𝜎̂𝐴
2, and 𝜎̂𝐵

2. Then, one can assume that 𝜷̂𝐴 = 𝜷𝐴, 𝜷̂𝐵 = 𝜷𝐵 , 𝜎̂𝐴
2 =

𝜎𝐴
2, and 𝜎̂𝐵

2 = 𝜎𝐵
2 and use Equation (22) for inputs to estimate the probability the equilibrium 

is a Nash equilibrium from Theorem 1 in Equation (14). This approach can function as a 

stopping criterion in Procedure 2, i.e., stop when the estimated probabilities for all equilibria 

exceed a threshold such as 95%. 

4.3. Irrelevant Experimental Options 

Consider a list of candidate Nash equilibria from Procedure 1. Some of these candidates may 

not be true equilibria. In determining the accuracy of the given candidate equilibria, some 

experimental options are irrelevant. Lemma 1 clarifies conditions under which option 

combinations are known to be irrelevant to equilibrium probability calculations. 

Lemma 1. Assume that the payoff matrices 𝑨  and 𝑩  are random. The probability that 

(𝒘𝐴
0 , 𝒘𝐵

0 ) is a Nash equilibrium neither depends on the values 𝐴𝑖,𝑗  with 𝑤𝐵,𝑗
0 = 0 , nor on the 

values of  𝐵𝑖,𝑗 with 𝑤𝐴,𝑖
0 = 0. 

Proof. If we can show that the values in question are irrelevant to establishing the necessary 

and sufficient conditions to be an equilibrium in Equation (3), the result is proven. From 

Equation (17) we have (𝑰 − 𝒆𝒘𝐴
0′)𝑨𝒘𝐵

0 ≤ 𝟎  and from equation (18) we have (𝑰 −

𝒍𝒘𝐵
0′)𝑩′𝒘𝐴

0 ≤ 𝟎  . From the proof of Theorem 1 (and intuition), these are the only 

dependence that the necessary and sufficient conditions have on the values of the payoff 

matrices 𝑨 and 𝑩. Therefore, columns of 𝐴𝑖,𝑗 with 𝑤𝐵,𝑗
0 = 0  are irrelevant and so are rows of  

𝐵𝑖,𝑗 with 𝑤𝐴,𝑖
0 = 0.  

 Extending this result to all correlated equilibria using the generalized equilibria 

conditions (Phade and Anatharam 2019) is proposed for future work. In a problem with 

numbers of equilibria smaller than the number of option combinations (𝑞 ≪ 𝑚𝑛), few payoff 
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values are relevant. Intuitively, knowing that some option combinations are irrelevant 

should down-weight their importance in empirical data augmentation procedures. This 

suggests the application of the random search Procedure 2. 

4.4. Convergence Results 

For finite amounts of offline data, there is some generally uncertainty about the Nash, 

correlated, Cumulative prospect theory or other equilibria. Lemma 1 sheds light solely on 

which experimental option combinations are relevant with respect to a given list of 

equilibria. Focusing only on relevant experimental options, therefore, could conceivably 

miss some of the equilibria, even in the limit of infinite experimentation. Theorem 2 clarifies 

the implications for long run applications of Procedure 2 augmentation. 

Theorem 2. Assume the experimental outputs derive from a standard linear model with 

variances 𝜎𝐴
2  and 𝜎𝐵

2 , i.e., (
𝒀𝐴
𝒀𝐵
)~ 𝑀𝑁 [(

𝝁𝐴
𝝁𝐵
) , 𝚺̃𝑨𝑩] for finite 𝚺̃𝑨𝑩 . Further, the Augmentation 

Procedure is applied with sample mean-based estimation and no stopping rule. Both: 

i. If 0 < 𝑝𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 < 1, in the limit 𝑁 → ∞ then all true equilibria are identified with 

probability 1, and 

ii. If 𝑝𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 = 0, in the limit 𝑁 → ∞ then all identified candidate equilibria are 

true (correlated or Nash) equilibria with probability 1. 

Proof. If 0 < 𝑝𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 < 1 then in the limit, 𝑁 → ∞, we have 𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛(𝒀𝐴) → 𝝁𝐴 and 

𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛(𝒀𝐵) → 𝝁𝐵  because of the central limit theorem with finite variances. This 

implies that (𝑤𝐴
𝑖 , 𝑤𝐵

𝑖 ) for 𝑖 = 1,… , 𝑞 are the equilibria. Assume that 𝑝𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 = 0 and the 

limiting candidate set (𝑤𝐴
𝑖 , 𝑤𝐵

𝑖 ) for 𝑖 = 1,… , 𝑞. Then, the relevant sample means converge 

and the others are irrelevant to the candidate list. Without loss of generality, we assume that 
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𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛(𝒀𝐴) → 𝝁𝐴  and 𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛(𝒀𝐵) → 𝝁𝐵 . This gives the result for the 

candidate correlated or Nash equilibria in both cases.  

 Theorem 2 implies that focusing on the relevant set of experimental options can 

increase the probability that points on a given list of candidates are true equilibria. Also, 

some amount of focus on (apparently) irrelevant options could conceivably aid in the 

identification of all the true Nash equilibria. This follows because lists of equilibria from finite 

samples may be incomplete. The implications of data from irrelevant combinations for 

related regression model-based, sequential procedures are a topic for future research. 

4.5. A Stopping Criterion Based on the Expected Value of Information 

Even expanded notions of equilibria may not predict behavior accurately. Therefore, 

the decision maker may desire to entertain specific assumptions about the policies of an 

opponent (or opponents) and then decision making can be based on the expected value of 

perfect information, e.g., see Delquié (2012). Assume that a specific 𝑤𝐵
0 is known or assumed, 

perhaps from studying the offline simulations or because there is a single policy of interest. 

The estimated expected value of perfect offline information (EEVPOI) is: 

𝐸𝐸𝑉𝑃𝑂𝐼 = E
𝐴,𝜀
[max
𝒘𝐴
 ((𝒘𝐴′(𝑨𝒘𝐵

0 ) + 𝜀𝐴))] − max
𝒘𝐴
 E
𝐴,𝜀
[(𝒘𝐴′(𝑨𝒘𝐵

0 ) + 𝜀𝐴)]     (26) 

            = E
𝐴,𝜀
[max
𝒘𝐴
 (𝒘𝐴′(𝑨𝒘𝐵

0 )] − max
𝒘𝐴
 (𝒘𝐴′(𝑨̂𝒘𝐵

0 ), 

where 𝑣𝑒𝑐(𝑨) ~ 𝑀𝑁[𝝁̂𝐴, 𝚺̂𝑨] with 𝝁̂𝐴  are regression mean prediction covariance 𝚺̂𝑨 matrix 

estimates. Instead of stopping offline experimentation based on the Nash or other 

equilibrium probability estimates, stopping can be based on threshold values of the EEVPOI. 

In other words, stop when the expected gain in the utility (bound) is sufficiently small. 
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5. An Application to Red Team/Blue Team Capture the Flag 

For our application, we consider a simulated cyber security Capture the Flag (CTF) red 

team/blue team game. This game seeks to help train many types of students to learn both 

cyber security basics and related policy decision making. Additional details about the game 

and the discrete event simulation model are described in the appendix. Briefly, Figure 2 and 

Figure 3 show key tasks for red and blue team players respectively with a port scanner (e.g., 

NMAP or Unicornscan) being a program to find IP addresses and scanning and exploiting 

activities supported by many commercial software.  

Next, we describe the application of experimental methods described in Section 3. 

Zero sum games have (𝑨 = −𝑩). By default, we assume that the game is not zero sum to 

mirror real life cyber security but converting to a zero-sum game is not difficult.  

In applying Procedure 1, we identify the factor levels for experimentation and 𝑚𝑛 

game combinations of interest. Figure 2 shows two player A variables: firewall-pivot (𝑥𝐴,𝑖.1) 

and tenacity (𝑥𝐴,𝑖.2). A major policy decision that the red team needs to consider is what to 

do when they successfully exploit the firewall. Should they pivot to attempting to use the 

firewall as a general-purpose host, exfiltrating any data and launching external attacks or, 

alternatively, pivot to attacking the internal host? Possible levels include: using the firewall 

first, waiting until after the internal host is exploited, or never attempting to use the firewall 

other than to attack the internal host (first, wait, or never). Intuitively, firewalls rarely 

contain helpful data for exfiltration and the access of firewall hosts is generally inferior to 

that of internal hosts. Another major policy choice for attackers is when to give up attempting 

to use the hosts that they compromise, i.e., their tenacity. Levels include giving up 

immediately upon failure (move on) and never (persist).  

Similarly, defenders have policy options as indicated in Figure 3. Unlike attackers, 

defenders can start their activities on either the firewall or the internal host because of their 



 

28 

 

insider access (firewall or PC). Also, defenders can choose to do forensics on the firewall 

(inspect firewall) or to ignore its state of compromise (never inspect). Intuitively, forensic 

activities are time consuming and the compromise state of the firewall is not as important as 

the state of the internal host. Finally, the tenacity of defenders’ in patching attempts can be 

set. They can give up immediately upon failing to find a patch (move on) or they can persist 

in patching attempts (persist). Note that, in our analysis, the game options are the same as 

the experimental level combinations. 

In Step 2 of Procedure 1, we formulate and solve the APV experimental design 

problem in Equation (12) with 𝑁0=24 runs. The solution is in Table 1 based on the factor 

levels in Table 2. The choice of the number of runs, 𝑁0=24, reflects a balance between 

experimental economy and prediction model accuracy. It also represents the “elbow” point 

in Figure 1 as described in Section 3. In Step 3, we collect experimental data using the SIMIO 

model indicated in part in Figure 4 with the 10 replicates following the optimal plan to derive 

the vectors 𝒀𝐴 and 𝒀𝐵 . In Step 4, we estimate the empirical model parameters using least 

squares estimation with the results shown in Table 3.  

Figure 5 plots the prediction model showing the interactions of player level selections 

on the scores for both teams (e.g., XA1*XB1 for the first Player A-Player B interaction). The 

most interesting interaction relates to the choice of the red team never to pivot to use the 

firewall. This choice benefits both teams unless the blue team is persistent in its patching 

attempts. Intuitively, this occurs because exploitation of the firewall permits the blue team 

to successfully patch the internal host, making its later exploitation by the attackers 

significantly more difficult. Also, starting at the firewall is generally more beneficial for the 

blue team regardless of the red team selections.  

Then, in Step 5 we estimate the bimatrix game parameters 𝑨̂ and 𝑩̂, e.g., 𝜷̂𝐴 and 𝜷̂𝐵 

using Equation (8) as shown in Table 4. Enumerating the equilibria which are solutions to 
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Equation (3) by inspection or using standard methods (Savani and von Stengel 2015) results 

in a single equilibrium as indicated in Table 4 (bolded). It is also apparently the only 

correlated equilibrium. The equilibrium is option 3 (never use the firewall and persist in 

using the internal host) for the red team and option 5 (start at the firewall, inspect the 

firewall, and move on if searching for a patch fails) for the blue team. Notice the Nash 

condition applies. The highest value in column 5 in Table 3 (a) corresponds to option 3 and 

the highest value in row 3 corresponds to option 5 in Table 3 (b). 

This candidate equilibrium is then evaluated using 10,000 simulations based on 

Equation (14). The result predicts an estimated (approximate) 96.5% chance of being a true 

equilibrium based on the right-hand-side brute force python code solution of each scenario. 

For this brute force approach, the computation times is approximately 8.9 hours on an i5-

3475 3.2 GHz CPU and python code. This estimate is approximate because correlations 

between predictions are ignored.  

Using the right-hand-side of Equation (14) Monte Carlo estimated the exact 

probability of 95.0% using 0.49 seconds on the MATLAB cloud. This demonstrates the 

potentially critical computational advantage afforded by Theorem 1 in computational 

efficiency and accuracy. Therefore also, Procedure 2 immediately stops using only 24 runs, 

which is half of a full factorial (3 × 2 × 2 × 2 × 2 = 48 runs). 

Similarly, if one assumes that Player 2 will play action 5 with probability one (𝒘𝐵
0 ), 

the estimated expected value of perfect offline information (EEVPOI) can be estimated to a 

good approximation using column 5 in Table 4(a). The table values give estimated means. A 

constant variance of 7.51 utility units squared is based on the regression results. Then, the 

first term in Equation (26) is 60.93 and the second term is 60.80 so that the EVPOI is 0.13 or 

0.21%. This may be regarded as negligible such that offline experimentation can terminate. 
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Figure 2. CTF system diagram, red team tasks, and factors: firewall pivot and tenacity. 

 

Figure 3. CTF system diagram, blue team tasks, and factors: start, tenacity, and forensics. 

 
Table 2. Options as factor level combinations for the (a) red team and (b) blue team. 

 (a)     (b)  

Option Firewall-Pivot Tenacity  Option Start Forensic Firewall Tenacity 

1 First Persist  1 Firewall Inspect Firewall Persist 

2 Wait Persist  2 PC Inspect Firewall Persist 

3 Never Persist  3 Firewall Never Persist 

4 First Move On  4 PC Never Persist 

5 Wait Move On  5 Firewall Inspect Firewall Move On 

6 Never Move On  6 PC Inspect Firewall Move On 

    7 Firewall Never Move On 

    8 PC Never Move On 
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Figure 4. SIMIO model of the red team tasks which change the system states (along with blue 

tasks not shown). 

 

The benefits of Procedure 1 and Procedure 2 for hypothetical players are clear. There 

are higher point values associated with activities for the inner hosts but determining 

sequence and when to give up is difficult. Yet, by selecting the levels indicated by the 

candidate Nash equilibria, the player likely maximizes their payoffs in point scores 

accounting for other players’ selections.  

The benefits for game designers are also clear. Point selections may be adjusted if the 

goal is to make deception and decision making important aspects of the game. After each 

iteration of point value changes by the game designer, Procedure 1 and Procedure 2 can be 

applied to generate the equilibria and balance the game (all equilibria have equal payoffs for 

both players). With the proposed experimental methods, the simulation times are reduced 

by a factor of two from the costs of a full factorial and the stopping condition times are greatly 

reduced (8.9 hours to 0.49 seconds). Therefore, approximate assurance is efficiently 

achieved such that the derived equilibria are actual Nash equilibria of the game irrespective 

of simulation replication errors. 
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Figure 5. Interaction plots showing predictions for scores: (a) red team and (b) blue team. 

(a)               (b) 

 
Table 3. Regression model summaries for (a) red team score and (b) blue team score.  

 

(a) (b)

Term Coef SE Coef T-Value P-Value Term Coef SE Coef T-Value P-Value

Constant 33.1 2.74 12.07 0 Constant 56.38 3.65 15.43 0

XA1-Firewall-Pivot XA1-Firewall-Pivot

  Never 21 3.36 6.25 0   Never 22.5 4.48 5.03 0.001

  Wait 14.1 3.36 4.2 0.003   Wait 20.28 4.48 4.53 0.002

XA2-Tenacity XA2-Tenacity

  Persist 6.7 2.74 2.44 0.04   Persist -2.15 3.65 -0.59 0.572

XB1-Start XB1-Start

  PC 3.87 2.74 1.41 0.196   PC -14.88 3.65 -4.07 0.004

XB2-Forensic Firewall XB2-Forensic Firewall

  Never 3.4 2.74 1.24 0.25   Never -10.16 3.65 -2.78 0.024

XB3-Tenacity XB3-Tenacity

  Persist 1.27 2.74 0.46 0.656   Persist 14.48 3.65 3.96 0.004

XA1-Firewall-Pivot*XB1-Start XA1-Firewall-Pivot*XB1-Start

  Never PC -7.07 3.36 -2.11 0.068   Never PC -3.62 4.48 -0.81 0.441

  Wait PC -4.58 3.36 -1.36 0.21   Wait PC -7.2 4.48 -1.61 0.146

XA1-Firewall-Pivot*XB2-Forensic Firewall XA1-Firewall-Pivot*XB2-Forensic Firewall

  Never-Never -15.13 3.36 -4.5 0.002   Never-Never -0.08 4.48 -0.02 0.987

  Wait Never -9.43 3.36 -2.81 0.023   Wait Never -2.9 4.48 -0.65 0.535

XA1-Firewall-Pivot*XB3-Tenacity XA1-Firewall-Pivot*XB3-Tenacity

  Never Persist 8.47 3.36 2.52 0.036   Never Persist -35.58 4.48 -7.95 0

  Wait Persist 4.48 3.36 1.33 0.219   Wait Persist -27.1 4.48 -6.06 0

XA2-Tenacity*XB1-Start XA2-Tenacity*XB1-Start

  Persist PC 2.42 2.74 0.88 0.404   Persist PC -4.1 3.65 -1.12 0.294

XA2-Tenacity*XB2-Forensic Firewall XA2-Tenacity*XB2-Forensic Firewall

  Persist Never 2.45 2.74 0.89 0.398   Persist Never 3.17 3.65 0.87 0.411

XA2-Tenacity*XB3-Tenacity XA2-Tenacity*XB3-Tenacity

  Persist-Persist -6.38 2.74 -2.33 0.048   Persist-Persist 1.4 3.65 0.38 0.712
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Table 4. The predicted (mean) payoff matrices for scores: (a) red team and (b) blue team. 

    (a)     

 1 2 3 4 5 6 7 8 

1 34.68 40.97 40.53 46.82 39.80 46.08 45.65 51.93 

2 53.26 54.97 49.68 51.39 53.90 55.61 50.33 52.03 

3 64.16 63.37 54.88 54.09 60.80 60.01 51.53 50.73 

4 34.37 38.23 37.77 41.63 33.10 36.97 36.50 40.37 

5 52.94 52.23 46.92 46.21 47.20 46.49 41.18 40.47 

6 63.84 60.63 52.12 48.91 54.10 50.89 42.38 39.17 

         

    (b)     

 1 2 3 4 5 6 7 8 

1 70.10 51.13 63.11 44.13 54.23 35.25 47.23 28.26 

2 63.28 37.10 53.38 27.21 74.50 48.33 64.61 38.43 

3 57.03 34.43 49.96 27.36 76.73 54.13 69.66 47.06 

4 70.85 55.98 60.69 45.82 56.38 41.50 46.22 31.34 

5 64.03 41.95 50.97 28.89 76.65 54.58 63.59 41.52 

6 57.78 39.28 47.54 29.04 78.88 60.38 68.64 50.14 

 

6. Conclusions and Future Work 

In many real management situations, payoff matrices are not readily available, but the ability 

to experiment offline is. For example, the manager might have a simulation model with 

inputs from multiple decision makers or players. Also, there might be an ability to conduct 

relatively inexpensive test marketing experiments or sets of gaming exercises with a variety 

of stakeholders. These considerations have motivated a new class of experimental planning 

and analysis problems. We analyzed these problems and provided experimental plans for 

initial data collection, sequential methods for efficient follow-up experiments, and stopping 

rules, e.g., stop when all candidate Nash equilibria are likely true equilibria. Additionally, we 

characterized the finite sample and convergence properties of the proposed experimental 

procedures. 

In our case study game application, we demonstrated the practical benefits of the 

proposed experimentation and analysis procedures. These procedures permitted the 
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estimation of the Nash equilibrium enumeration procedures at a fraction (half) of the offline 

experimental costs of full factorials. Reduction like this could be a critical enabler as 

simulations can take days to run and war gaming exercises with key stakeholders can be 

difficult to arrange, making test runs extremely expensive. Also, the provided formulas 

greatly reduced the computational burden of the associated probability estimation process 

(from 8.9 hours to less than one second). At the same time, the results here focus on single-

period games with deterministic payoffs. Limited results apply to cases in which the payoffs 

may be intrinsically random or estimated using Gaussian stochastic regression (Theorem 1).  

Therefore, many opportunities for further research exist. First, efficient stopping 

rules like the one in Theorem 1 can be developed for equilibria that more accurately predict 

human behavior than Nash equilibria, e.g., cumulative prospector theory. Second, the subject 

of offline experimental planning and analysis can be extended to address many other types 

of games, e.g., repeated, learning, and distributed games. Third, generalizing to more than 

two players can be explored together with the associated three-factor or higher order 

interactions.  

Fourth, the use of equilibrium probability models for improving the efficiency of 

sequential experimentation procedures can be investigated. Fifth, issues about approximate 

and mixed equilibria (e.g., see Feder, Nazerzadeh, and Saberi 2007) and related support 

points (pure strategy points with positive probability) and empirical estimation-related 

offline supporting runs can be studied. Sixth, many applications additional to cyber CTF game 

design can be explored including test market design and efficient methods for testing 

military systems building on previous experimental design results (Johnson et al. 2012). 

Seventh, results can be generalized to address Cumulative prospect theory. Experiments can 

measure irrationality (in addition to reducing parametric uncertainty) as explored in Phade 

and Anantharam (2019). Finally, more advanced empirical modeling methods than linear 

models can be considered including multi-fidelity modeling (possibly addressing real and 
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offline experiments), multi-response, and Gaussian stochastic regression (Kleijnen and 

Mehdad 2014) methods can reduce total costs and further extend the practical relevance of 

game theoretic analyses and be related to relevant and irrelevant option combinations.  
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Appendix for online publication 

A. The Proposed Cyber Capture the Flag (CTF) Game 

CTF games divide into two types: Jeopardy style in which all participants attack a static 

network and red team/blue team exercises in which some participants attack, and others 

defend (Antonova et al. 2018). In this article, we propose a red team/blue team CTF game 

and a simulation model of that game. From our literature search, we believe that red 

team/blue team game designs are relatively rare. We differentiate in our terminology 

between actions (or equivalently tasks) and policy options (or factor level combinations). 
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Policy options are determined in an initial player meeting and govern action selection 

sequences within the game. Our expectation is that the game period is too short for policy 

changes as only a small number of actions are time feasible. 

We believe that our proposed game offers multiple benefits including that it: 

1. Supports relatively rapid training – Both the red team and the blue team learn three 

actions each of which requires only approximately one hour to study. Students can train 

for six hours (we estimate) and then play for three hours. At the end, they will have an 

understanding of scanning for IP address and vulnerabilities (e.g., bugs, weak 

passwords, or out-of-date encryption), exploiting vulnerabilities (e.g., applying an 

software script to gain access or cause mischief), patching vulnerabilities (i.e., applying 

code from vendors of the software to remove the vulnerability), pivoting to launch 

additional attacks (i.e., using the status gained from an exploit to score points such as 

launching more attacks), exfiltration (i.e., stealing data), escalating privileges (i.e., 

moving up to system administrator), and performing simple forensic analysis (i.e., trying 

to find evidence of intrusions). Of course, the student experiences will be limited and 

many attack options in the MITRE framework (Strom et al. 2017) are omitted.  

2. Actions are relevant to real world cyber security professionals – The activities in the game 

are like those conducted currently by cyber security professionals and relate to multiple 

certifications. 

3. Decision problems are relevant – Problems faced include pivoting options for the red team 

and starting options for the blue team. These choices can greatly affect the expected 

outcomes. 

B. Game Description 

Some Capture the Flag (CTF) games include the exploration of an extensive network over 

multiple days. For example, the MERIT game covers a virtual small town. Our game focuses 
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on a tiny network model in part so that all activities can reasonably occur within three hours. 

Figure 6 shows the network involving two hosts. We can imagine that one host is a firewall 

(Host #1) which is visible to the internet and the other (Host #2) is either: (a) a PC or (b) an 

advanced manufacturing equipment device such as a networked 3D printer. The specifics do 

matter in relation to which vulnerabilities and patches are relevant. Yet, for the purposes of 

our simulation model, the game activities are simply modeled by the associated mean service 

times.  

 Figure 6. Network model for game: (a) PC version, (b) equivalent manufacturing version. 

 

 

 

 

 

There are many ways to define the cyber security state of a computer host which 

could be a personal computer (PC), server, printer, exercise machine, 3D printer, car, or cell 

phone. In the game system, there are four levels relating to the severity of the worst 

vulnerability on the host: low, medium, high, and critical. Recently, we have considered 

adding another state-based scheme including the presence of so-called “celebrity” 

vulnerabilities such as “Heartbleed,” a bug famous enough to have its own logo ( ). Here, we 

consider only two types of hosts, i.e., hosts whose worst vulnerability achieves a medium on 

the CVSS scale and those whose worst vulnerability achieves a critical score for simplicity. 

Critical vulnerabilities are often so problematic that they can be seen externally to the 

organization and exploits are widely published. Then, hackers may gain full or near full 

access to the host almost as easily as by logging in with a known password. 

Internet Internet

Host #1 Host #2
(a)

Host #1 Host #2
(b)

https://www.google.com/imgres?imgurl=https%3A%2F%2Fupload.wikimedia.org%2Fwikipedia%2Fcommons%2Fthumb%2Fd%2Fdc%2FHeartbleed.svg%2F1200px-Heartbleed.svg.png&imgrefurl=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FHeartbleed&docid=gHUmKO1ic9Y56M&tbnid=6m6zJvjque8ZTM%3A&vet=10ahUKEwiFyfC89cvhAhUPY6wKHYdsCx4QMwg-KAAwAA..i&w=1200&h=1435&bih=611&biw=1280&q=heartbleed%20vulnerability&ved=0ahUKEwiFyfC89cvhAhUPY6wKHYdsCx4QMwg-KAAwAA&iact=mrc&uact=8
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Hosts can also be compromised in the sense that unauthorized personnel can have 

partial or full access. Therefore, we consider hosts in four states as indicated in Table 5. If a 

host has a critical vulnerability on it, it is easier to quickly and completely compromise it. If 

it is already compromised, it can be of use to hackers who can “pivot” to attack other hosts 

or exfiltrate data. Blue team personnel naturally seek to identify whether hosts are 

compromised and transform them into not-compromised hosts which have as many of their 

vulnerabilities patched as possible. Yet, of course, patching and forensic analyses take time 

as does compromising hosts through manually applied exploits.  

Table 5. Four host states relating to compromise and vulnerability status. 

Host State Compromise State  Vulnerability Status 
1 Not Compromised  Critical and Medium Vulnerabilities 
2 Not Compromised  Medium Vulnerabilities Only 
3 Compromised  Critical and Medium Vulnerabilities 
4 Compromised  Medium Vulnerabilities Only 

 

We imagine that the multiple members of both red teams and blue teams will follow the same 

workflow by agreement rather than branching out individually, a choice that might seem 

sensible given the limited amount of training. More complicated networks and independent 

team members can be considered in future work. 

Red Team Actions 

In our proposed game under development, we consider three red team actions: 

1. Run script to find visible host IP address(es) & vulnerability scan – On virtually any 

computer you can scan to find the visible IP addresses, e.g., using a port scan program 

(e.g., NMAP). With an address you can scan the host for vulnerabilities, e.g., using the 

Nessus scanner from OpenVAS, Tenable Security, or the Rapid7 scanner.  

2. Exploit vulnerability on host & escalate privileges if needed – After identifying the 

vulnerabilities present on the target host -- generally these are so-called “network” 

vulnerabilities since they are in part visible without full access -- you can look for 
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associated available exploits. A product such as Metasploit facilitates finding the exploits 

and launching them. Depending on the level of the vulnerability and the quality of the 

exploit, one might not gain sufficient access to use the host. A privilege escalation activity 

may then be possible to gain additional access. 

3. Use host for external attacks or exfiltrate data – Once the host is compromised and 

privileges have been achieved, the host is ready for use, i.e., to pivot. Pivoting to external 

attacks (actually they are internal hosts in our game) is possible but risky in that the 

intrusion detection system or firewall rules might identify the compromise and block 

access. In fact, once access is blocked, personnel can easily isolate that host. A less risky 

step might be to exfiltrate or steal the information already on the host. Of course, most 

hosts do not contain monetizable data (e.g., medical records or possibly credit card data). 

Figure 7 shows a workflow that connects the red team actions. In the greedy version 

(Figure 7a), the red team immediately attempts to use the firewall for gain. In Figure 7b, the 

red team is patient. Note that the workflow implies that the red team can use a host with 

either external attack or exfiltration but not both. Also, game rules dictate that the red team 

must attempt a major activity before returning to reuse a compromised host. By “alerts” we 

mean declarations that hosts are compromised that limit direct access to attackers. 
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Figure 7. Red team work flow: (a) Greedy version, (b) Patient version. 

 

 

 

 

 

 

 

 

 

 

Blue Team Actions 

Similarly, we consider three blue team (compound) actions: 

1. Turn on host logging & vulnerability scan – There are many logging options to 

record which hosts authorized or unauthorized are doing during their sessions. 

Enabling basic logging, e.g., through the Windows menus, can reasonably preserve 

privacy (sometimes) while facilitating effective forensic analyses of compromise. 

Also, the blue team needs to scan for vulnerabilities in a manner similar to that used 

by the red team. 

2. Search, download (if any), and apply patch (if any) – Once vulnerabilities have 

been identified, there are often recommended patching or remediation actions 

provided by the scanner. Still, sometimes the security personnel must search the 

internet for patches and related information. Sometimes patches must be 

downloaded manually and applied, often only after successfully demonstrating that 

they do not interfere with needed software and services. 

Run NMAP to find 
Host #1 IP Address & 

Vulnerability Scan

Exploit Vulnerability 
On Host #1 & Escalate 
Privileges If Needed

Use Host #1 For 
External Attacks Or 

Exfiltrate Data

Exploit Vulnerability 
On Host #2 & Escalate 
Privileges If Needed

Use Host #2 For 
External Attacks Or 

Exfiltrate Data

Run NMAP to find 
Host #2 IP Address & 

Vulnerability Scan

Alert? Alert?

N                      Y

Y                      N

(a)

(b)

Start

Fail? Fail?

N N
YY

Run NMAP to find 
Host #1 IP Address & 

Vulnerability Scan

Exploit Vulnerability 
On Host #1 & Escalate 
Privileges If Needed

Use Host #1 For 
External Attacks Or 

Exfiltrate Data

Exploit Vulnerability 
On Host #2 & Escalate 
Privileges If Needed

Use Host #2 For 
External Attacks Or 

Exfiltrate Data

Run NMAP to find 
Host #2 IP Address & 

Vulnerability Scan

Alert? Alert?

N                      Y

Y                      N

Start

Fail? Fail?

N N
YY



 

43 

 

3. Do forensic analysis & re-image & notify if needed – Even during a CTF game with 

only two hosts, it is not clear at any given time whether a given host is compromised. 

Also, log analyses are supported by many software programs, but the process can be 

time consuming. It might also fail to find compromised hosts. If a host is found to be 

compromised, there will often be legal implications. Therefore, notification of affected 

individuals is likely to be legally required. 

  Figure 8 shows two workflows for blue team members. One option is to start with the 

firewall like the red team, hoping to patch it before the red team exploits it. Alternatively, 

they can start on the PC or 3D printer which is associated with many more points or payoffs 

in the game. They can try to patch the worst vulnerability on that host to make it more 

difficult and time consuming for the red team. Note that the red team must start on the left-

hand-side because the firewall is the only host visible to the internet.  
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Figure 8. Blue team workflow: (a) Start on the left and counterclockwise, (b) Opposite.  

 

 

 

 

 

 

 

 

 

 

Our scoring system assigns points to red and blue teams based on the achievements 

of host compromises (minor) and host uses (major) with an emphasis on success with the 

internal host (#2). The blue team scores mirror the red team scores with emphasis on 

successful forensic work on the internal host.  

C. Input Analysis 

For time estimates for the tasks, we use YouTube videos illustrating the actions in 

applications. By selecting vulnerabilities carefully, we believe that we can control the service 

time distributions to some extent. Also, we believe that cyber security activity times are 

associated with a high coefficient of variation such that the exponential distribution might 

reasonably apply.  

  For one vulnerability for which codes are already loaded and available, exploitation 

might be quick. For another, searching, research, downloads, and testing might require 

considerable time in at least some instances. Also, players might not be aware that the 

exploits that they need are preloaded in their Metasploit software, for example. Table 6 
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shows the parameters in our simulation model and their descriptions. It also shows the 

estimated mean values in minutes and the videos used for these estimates. Note that these 

videos describe the actions by team members with realistic example illustrations.  

SIMIO Model 

SIMIO is a commercially available software product with general simulation 

capabilities. It supports three-dimensional animation including objects from the Google 

library. It also offers many experimental design options and associated visualizations. In our 

simulation model (see Figure 4), we use multiple features including some for convenience 

(e.g., “dummy” hosts in which no task is performed): 

Paths –Paths and user-defined properties are used to regulate the chances that activities are 

successful. With the user-defined variables, the model parameters or properties are 

accessible in the spreadsheet associated with the simulation experiments as well as the:  

States – States are used to store the values associated with the hosts. Then, using the 

Math.If() formula construction, the properties and the states can set the service times and 

the success probabilities. 

Dummy servers – By using “dummy” servers such as ScoreHost1, the server features permit 

assignment conditions for the properties and states. This allows the scores of both teams to 

be updated as well as the states of the hosts. If actions fail, paths route the attention away 

from the dummy servers such that the scores and system states remain unchanged. 

Duplication for red and blue teams – Even though the two teams work on the same two 

hosts, they are likely in different rooms and not aware of each other. Also, their service times, 

success probabilities, and attention paths differ greatly. Therefore, we developed three 

copies of the network which mirror the red team and two distinct blue team workflows. The 

blue team has an additional factor and flow because its operations can start either on the 

firewall (Host #1) or on the internal host (Host #2). This relates to having full internal access.  
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Table 6. Mean time estimates (in minutes) and probability estimates with supporting 

YouTube videos used to ballpark initial values for the simulation. 

Parameter (Property) Description Mean Supporting Video or Notes (If Any) 

HRserv1 Exploiting host with critical vuln. 15 https://www.youtube.com/watch?v=ZT7VYsJvh2Q 

HRserv2 Exploiting with medium & escalation. 30 https://www.youtube.com/watch?v=RdnVC0kNxN4 

HRserv3 Entering compromised host. 2 Similar to a usual login. 

HRserv4 Entering compromised host. 2 Similar to a usual login. 

HRharvC Pivoting to third party attack 20 https://www.youtube.com/watch?v=qIEHUUt2Wfc 

HscanTime Mapping and vulnerability scanning 10 https://www.youtube.com/watch?v=hMKIIRhfk74,  

   https://www.youtube.com/watch?v=9LA3iQfGGLY 

HRprob1&2 Chance exploit works. 0.5 Exploits can fail. 

HRharvNoC Discovering access is lost. 5 Attempted logins and failure. 

lowCompScore Game score parameter. 0 Chosen by the game designer. 

lowHarvScore Game score parameter. 10 Chosen by the game designer. 

highCompScore Game score parameter. 5 Chosen by the game designer. 

highHarvScore Game score parameter. 25 Chosen by the game designer. 

HBserv1 Enabling logs & vulnerability scanning. 15 https://www.youtube.com/watch?v=hTK0pywfmDE 

HBserv2 Enabling logs & vulnerability scanning. 5 Fewer vulnerabilities and pre-scanned. 

HBserv3 Enabling logs & vulnerability scanning. 15 https://www.youtube.com/watch?v=hTK0pywfmDE 

HBserv4 Enabling logs & vulnerability scanning. 5 Fewer vulnerabilities and pre-scanned. 

HBprob1 Patching critical vulnerabilities. 0.9 Likely patches are available because of rating. 

HBprob2 Patching non-critical vulnerabilities. 0.5 Likely patches are not available because of rating.  

HBprob3 Patching critical vulnerabilities. 0.9 Likely patches are available because of rating. 

HBprob4 Patching non-critical vulnerabilities. 0.5 Likely patches are not available because of rating.  

HBlogC Forensic inspection, reimage, & notify. 45 https://www.youtube.com/results?search_query=  

   inspect+host+logs+for+cyber+security+compromise 

HBlogNoC Forensic inspection 30 See similar 

HBlogPC Chance inspection finds compromise. 0.9 Chosen by the game designer. 

HBlogPnoC Chance inspection finds compromise. 0.9 Chosen by the game designer. 

LimitBRight  0 Chosen by the game designer. 

lowIndicentRepScore Game score parameter. 20 Chosen by the game designer. 

highIncidentRepScore Game score parameter. 30 Chosen by the game designer. 

 

 


