
1

Fast and Provable Algorithms for Learning
Two-Layer Polynomial Neural Networks

Mohammadreza Soltani and Chinmay Hegde

Abstract—We study the problem of (provably) learning the
weights of a two-layer neural network with quadratic activations.
We focus on the under-parametrized regime where the number
of neurons in the hidden layer is smaller than the dimension of
the input. Our main approach is to “lift” the learning problem
into a higher dimension, which enables us to borrow algorithmic
techniques from low-rank matrix estimation. Using this intuition,
we propose three novel, non-convex training algorithms. We
support our algorithms with rigorous theoretical analysis, and
show that all three enjoy a linear convergence, fast running time
per iteration, and near-optimal sample complexity. Finally, we
complement our theoretical results with numerical experiments.

I. INTRODUCTION

A. Setup

The re-emergence of neural networks has had a remarkable
impact on various machine learning problems including ob-
ject recognition in images, natural language processing, and
automated drug discovery. However, despite their successful
empirical performance, provable algorithms for training neural
networks remain relatively less well understood. In this paper,
we propose a series of training algorithms for a simple class
of shallow neural networks by making connections to the area
of low-rank matrix estimation. Our work can be viewed as a
bridge between matrix recovery and neural network learning,
and we hope that that our building blocks of our theoretical
analysis leads to insights for more complex networks.

Mathematically, we consider the following neural network
architecture. The network comprises p input nodes, a single
hidden layer with r neurons with activation function σ(z), first
layer weights {wj}rj=1 ⊂ Rp, and an output layer comprising
of a single node and weights {αj}rj=1 ⊂ R. If σ(z) = z2, then
the above network is called a polynomial neural network [1].
The input-output relationship between an input, x ∈ Rp, and
the corresponding output, y ∈ R, is given by:

ŷ =
r∑
j=1

αjσ(wTj x) =
r∑
j=1

αj〈wj , x〉2.

In this paper, our focus is in the so-called “under-parameterized”
regime where r � p. While quadratic activation functions are
less common than (say) sigmoid activations or rectified linear
units (ReLUs), they have been shown to be have competitive
expressive power [1], while enabling important safety protocols
in verifiable computing [2].

The authors are with the ECE Department at Iowa State University. Email:
{msoltani,chinmay@iastate.edu}. A conference version featuring the first two
algorithms of this paper appears in the proceedings of AISTATS 2018.

Our goal is to learn this network, given a set of training
input-output pairs {(xi, yi)}mi=1. We do so by finding a set of
weights {αj , wj}rj=1 that minimize the empirical risk:

min
W∈Rr×p,α∈Rr

F (W,α) =
1

2m

m∑
i=1

(yi − ŷi)2
, (1)

where the rows of W and the entries of α indicate the weights
of the two layers. Numerous recent papers have explored
(provable) algorithms to learn the weights of such a network
under distributional assumptions on the input data [1], [3], [4],
[5], [6], [7], [8].

Clearly, the empirical risk defined in (1) is highly nonconvex
function which is difficult to optimize. However, we can
circumvent this difficulty using a lifting trick: if we define the
matrix variable L∗ =

∑r
j=1 αjwjw

T
j , then the input-output

relationship becomes:

ŷi = xTi L∗xi = 〈xixTi , L∗〉, (2)

where xi ∈ Rp denotes the ith training sample. Moreover, the
variable L∗ is a rank-r matrix of size p×p Therefore, (1) can be
viewed as an instance of learning a fixed (but unknown) rank-r
symmetric matrix L∗ ∈ Rp×p with r � p, from a small number
of rank-one linear observations given by Ai = xix

T
i . While still

non-convex, low-rank matrix estimation problems such as (2)
are much better understood. Some specific instances of low-
rank estimation in statistical signal processing and machine
learning include matrix sensing and matrix completion [9],
[10], covariance sketching [11], [12], and generalized phase
retrieval [13], [14].

B. Our Contributions

In this paper, we make concrete algorithmic progress on
solving low-rank matrix estimation problems of the form (2).
In the context of learning polynomial neural networks, once we
have estimated a rank-r symmetric matrix L∗, we can always
produce weights {αj , wj} by an eigendecomposition of L∗.

In general, a range of algorithms for solving (2) (or variants
thereof) exist in the literature, and can be broadly classified
into two categories: (i) convex approaches, all of which involve
enforcing the rank-r assumption in terms of a convex penalty
term, such as the nuclear norm [10], [11], [12]; (ii) nonconvex
approaches based on either alternating minimization [15], [3]
or greedy approximation [1], [16].

Both types of approaches suffer from severe computational
difficulties (which we make more precise below). Typically,
they require multiple invocations of singular value decompo-
sition (SVD), which can incur cubic (Ω(p3)) running time.

2

TABLE I: Our contributions and comparison with existing algorithms.
Here, β = σ1

σr
denotes the condition number of L∗.

Algorithm Sample complexity (m) Running Time

[12], [11], [20] O(pr) O
(
p3√
ε

)
[1], [16] N/A O

(
p2 log(p)poly(r)

ε

)
[15] O

(
pr4 log2(p)β2 log(1

ε
)
)

O
(
mpr log(1

ε
) + p3

)
[3] O(pr3β2 log(1

ε
)) O

(
mpr log(1

ε
) + p3

)
Algorithm 1 O

(
pr2 log4(p) log(1

ε
)
)

O
(
mp2 log(1

ε
)
)

Algorithm 2 O
(
pr3 log4(p) log(1

ε
)
)

O
(
mpr log(p) log(1

ε

)
Algorithm 3 O (pr) O

(
mpr log(p) log(1

ε

)
Moreover, most non-convex approaches require an accurate
initialization, and also require that the underlying matrix L∗
is well-conditioned; if this is not the case, the running time of
all available methods again inflates to Ω(p3), or worse.

In this paper, we take a different approach, and show
how to leverage recent results in low-rank approximation to
our advantage [17], [18], [19]. In contrast with all earlier
works, our methods do not require any full SVD calculations.
Specifically, we propose three iterative algorithms. In our first
two algorithms, we use a careful concatenation of randomized,
approximate SVD methods, coupled with appropriately defined
gradient steps, to arrive at an ε-accurate matrix estimate. To
our knowledge, these approaches constitute the first linearly
convergent methods for low-rank matrix estimation from rank-
one observations.

On the other hand, both these algorithms (at least in theory)
require freshly chosen independent samples in each iteration,
which is somewhat impractical. To resolve this, we propose a
third algorithm that optimizes for a somewhat different loss than
the empirical risk defined in (1). For this algorithm, we prove
that the sample complexity matches the optimal bound already
established by convex methods [11], [12]. This algorithm also
exhibits linear convergence. See Table I for a comparison.

C. Our Techniques

At a high level, our method can be viewed as a variant
of the seminal, nonconvex algorithms proposed in [21] and
[22], which perform iterative projected gradient descent over
the manifold of rank-r matrices. However, since computing
SVD in high dimensions can be a bottleneck, we cannot use
this approach directly. To this end, we use the approximation-
based matrix estimation framework proposed in [18]. This work
demonstrates how to carefully integrate approximate SVD
methods into singular value projection (SVP)-based matrix
estimation algorithms; In particular, they use algorithms that
satisfy certain “head” and “tail” projection properties (see
Section III). Crucially, this framework eliminates the need to
compute even a single SVD.

We also use this “head-tail” framework. However, a direct
application does not succeed for matrix estimation problems
obeying the model (2). Two major obstacles arise:
Obstacle 1. It is well-known that the linear operator that maps
L∗ to y does not satisfy the requisite concentration property
(specifically, the Restricted Isometry Property, or RIP, over
rank-r matrices) [11], [12], [15]. Therefore, the theoretical
analysis of [18] no longer applies. To be more precise, define

the operator A such that (A(L∗))i = xTi L∗xi for i = 1, . . . ,m,
where xi is a standard normal random vector. It is easy to
see that if Lt is the current estimate of the underlying matrix
variable, then we have: EA∗A(Lt − L∗) = 2(Lt − L∗) +
Tr(Lt − L∗)I, where Tr(·) denotes the trace of a matrix.

Obstacle 2. The algebraic structure of the rank-one obser-
vations in (2) inflates the running time of computing even a
simple gradient update to O(p3) (irrespective of the cost of
exact or approximate rank-r projection).

We resolve Obstacle 1 by studying the concentration prop-
erties of certain linear operators of the form of rank-one
projections, leveraging an approach first proposed in [15].
We show that a non-trivial “bias correction” step, coupled
with projected descent-type methods, within each iteration
is sufficient to achieve fast (linear) convergence. We resolve
Obstacle 2 by carefully exploiting the rank-one structure of
the observations through developing a modification of the
randomized block-Krylov SVD (or BK-SVD) algorithm of [17].
This enables us to achieve fast per-iteration running time.

While the above approach produces fast running time (up
to poly-logarithmic factors), its theoretical success depends on
the idea of fresh samples in each iteration. Our next algorithm
removes this restriction by using the `1-loss function instead
of the squared loss used in (1). However, the `1-loss is non-
differentiable, nor does it satisfy our previous concentration
property of the gradient. This motivates us to use the so-called
RIP(`1, `2) [23], [12], [11]. For this, we propose a projected
sub-gradient algorithm which does not require use of fresh
samples within each iteration, and enjoys linear convergence
with an optimal sample complexity.

II. RELATED WORK

In the context of provable methods for learning neural
networks, two-layer networks have received special attention.
For instance, [1] has considered a two-layer network with
quadratic activation function (identical to the model proposed
above), and proposed a greedy, improper learning algorithm.
Recently, in [6], the authors have proposed a linearly convergent
algorithm for learning two-layer networks for several classes
of activation functions, together with rigorous upper bounds
on the sample complexity of their algorithm. However, their
theory does not consider the case of quadratic activations. This
paper closes this gap.

Other works have also studied similar two-layer setups,
including [4], [5], [7], [8]. In contrast with these results, our
framework does not assume the over-parameterized setting
where the number of hidden neurons r is greater than p. We now
briefly contrast our method with other algorithmic techniques
for low-rank matrix estimation. Broadly, two classes of such
techniques exist. The first class is based on convex relaxation
of the rank constraint [11], [12], [20]. For instance, the authors
in [11], [12] demonstrate that the observation operator A
satisfies a specialized mixed-norm isometry condition. Further,
they show that the sample complexity of matrix estimation
using rank-one projections matches the optimal rate O(pr).
However, these methods advocate using either semidefinite
programming (SDP) or proximal sub-gradient algorithms [24],
both of which are too slow for very high-dimensional problems.

3

The second class are non-convex approaches, which are all
based on a factorization-based approach initially advocated by
[25]. Here, the underlying low-rank matrix variable is factorized
as L∗ = UV T , where U, V ∈ Rp×r [26]. In the Altmin-
LRROM method proposed by [15], U and V are updated in
alternative fashion. However, the setup in [15] is different from
this paper, as it uses an asymmetric observation model. In a
subsequent work (called the generalized factorization machine)
by [27], U and V are updated based on the construction of
certain sequences of moment estimators. Both the approaches
of [15] and [27] require a spectral initialization which involves
running a rank-r SVD on a given p× p matrix, and hence the
running time heavily depends on the condition number of L∗.

Finally, Frank-Wolfe type greedy algorithms for solving
(1) also exist [16], [1]. However, their rate of convergence is
sub-linear, and they provide no sample-complexity guarantees.
Indeed, the main motivating factor of our paper was to
accelerate the running time of such greedy approximation
techniques. We complete this line of work by providing (a)
rigorous analysis that precisely establishes upper bounds on
the number of samples required for learning such networks,
and (b) algorithms that provably exhibits linear convergence,
as well as (near) linear per iteration running time.

III. MAIN RESULTS

A. Preliminaries

Let us first introduce some notation. Throughout this paper,
‖ ·‖F and ‖ ·‖2 denote the matrix Frobenius and spectral norm,
respectively, and Tr(·) denotes matrix trace. Also, ‖·‖1 denotes
the `1-norm of a vector. The phrase “with high probability”
indicates an event whose failure rate is exponentially small.
We assume that the training data samples (x, y) ∈ Rp × R
obey a noisy generative model (2) written as:

y =
r∑
j=1

α∗jσ(〈w∗j , x〉) = xTL∗x+ e′, (3)

where L∗ ∈ Rp×p is the “ground-truth” matrix (with rank equal
to r), and e′ ∈ R is an additive noise. Define A : Rp×p →
Rm such that: A(L∗) = [xT1 L∗x1, x

T
2 L∗x2, . . . , x

T
mL∗xm]T ,

and each xi
i.i.d∼ N (0, I) is a normal random vector in Rp

for i = 1, . . . ,m. The adjoint operator of A is defined as
A∗(y) =

∑m
i=1 yixix

T
i . Throughout the paper (for the purpose

of analysis) we assume that e is zero-mean, subgaussian random
vector with i.i.d entries, and independent of xi.

The analysis of our first two algorithms require that the
operators A and A∗ satisfy the following regularity condition
with respect to the set of low-rank matrices. We call this the
Conditional Unbiased Restricted Isometry Property, or CU-
RIP(ρ):

Definition 1. Consider fixed rank-r matrices L1 and L2.
Then, A is said to satisfy CU-RIP(ρ) if there exists 0 <

ρ < 1 such that
∥∥∥L1 − L2 − 1

2mA
∗A(L1 − L2) −

1
2m1T (A(L1)−A(L2)) I

∥∥∥
2
≤ ρ
∥∥∥L1 − L2

∥∥∥
2
.

Let Ur denote the set of all rank-r matrix subspaces, i.e.,
subspaces of Rp×p which are spanned by any r atoms of the

Algorithm 1
Initialization: L0 ← 0, t← 0
Calculate: ȳ = 1

m

∑m
i=1 yi

while t ≤ K do
Bias(Lt) := (1

2m1TA(Lt)− 1
2 ȳ)I

g(Lt) = 1
2m

∑m
i=1

(
(xti)

TLtx
t
i − yi

)
xti(x

t
i)
T − Bias(Lt)

Lt+1 = Pr (Lt − g(Lt))
t← t+ 1

end while
Return: L̂ = LK

form uvT where u, v ∈ Rp are unit `2-norm vectors. We use
the idea of head and tail approximate projections with respect
to Ur first proposed in [28], and instantiated in the context of
low-rank approximation in [18].

Definition 2 (Approximate tail projection). T : Rp×p → Ur
is a ε-approximate tail projection algorithm if for all L ∈
Rp×p, T returns a subspace W = T (L) that satisfies: ‖L−
PWL‖F ≤ (1 + ε)‖L−Lr‖F , where Lr is the optimal rank-r
approximation of L.

Definition 3 (Approximate head projection). H : Rp×p → Ur
is a ε-approximate head projection if for all L ∈ Rp×p, the
returned subspace V = H(L) satisfies: ‖PV L‖F ≥ (1 −
ε)‖Lr‖F , where Lr is the optimal rank-r approximation of L.

We also need the following mixed RIP definition due to [23],
[12], [11] for our third algorithm, proposed in Section III-C.

Definition 4 (RIP(`1, `2) for low-rank matrices). A linear
operator B satisfies RIP(`1, `2) if for any two rank-r matrices
L1 and L2, there exists constants 0 < α < β such the following
holds: α‖L1 − L2‖F ≤ 1

m‖B(L1 − L2)‖1 ≤ β‖L1 − L2‖F .

B. Proposed Algorithms

We now propose methods to estimate L∗ given knowledge
of {xi, yi}mi=1. Our first method is somewhat computationally
inefficient, but achieves nearly good sample complexity and
serves to illustrate the overall algorithmic approach. Consider
the non-convex, constrained risk minimization problem:

min
L∈Rp×p

F (L) =
1

2m

m∑
i=1

(
yi − xTi Lxi

)2
s.t. rank(L) ≤ r.

(4)
To solve this problem, we first propose an algorithm,

described in pseudocode form as Algorithm 11. The following
theoretical result establishes statistical and optimization con-
vergence rates of our algorithm. More precisely, we derive an
upper bound on the estimation error in terms of the spectral
norm. (All proofs are deferred to the appendix.)

Theorem 5. Assume that in each iteration the linear operator
A satisfies CU-RIP(ρ) for some 0 < ρ < 1

2 . Then Alg. 1 outputs
a sequence of estimates Lt such that (where 0 < q < 1):

‖Lt+1 − L∗‖2 ≤ q
∥∥Lt − L∗∥∥2

+
1

2m
(|1T e|+

∥∥A∗e∥∥
2
),

(5)
1In Alg 1, Pr denotes the projection operator onto the set of rank-r matrices.

4

Algorithm 2
Initialization: L0 ← 0, t← 0
Calculate: ȳ = 1

m

∑m
i=1 yi

while t ≤ K do
Bias(Lt) = (1

2m1TA(Lt)− 1
2 ȳ)I

g(Lt) = 1
2m

∑m
i=1

(
(xti)

TLtx
t
i − yi

)
xti(x

t
i)
T − Bias(Lt)

Lt+1 = T (Lt −H (g(Lt)))
t← t+ 1

end while
Return: L̂ = LK

The contraction factor, q, in Equation (5) can be made small
enough if we choose m sufficiently large, and we elaborate on
this point in Theorem (7). The second and third term in (5)
represent the statistical error rate. Next, we show that these
error terms can be suitably bounded.

Theorem 6. Consider the generative model (3) with zero-
mean subgaussian noise vector e ∈ Rm with i.i.d. entries (and
independent of the xi’s) such that τ = max1≤j≤m ‖ej‖ψ2

(Here, ‖ · ‖ψ2
denotes the ψ2-norm; subgaussian norm). Then,

with probability at least 1− γ, we have:

1

m
|1T e|+

∥∥∥ 1

m
A∗e

∥∥∥
2
≤ C ′′τ

√
p log2 p

m
log(

p

γ
). (6)

where C ′′τ > 0 is constant which depends on τ .

To establish linear convergence of our algorithm, we assume
that the CU-RIP holds at each iteration. The following theorem
certifies this assumption.

Theorem 7. At any iteration t of Alg. 1, with probability at
least 1 − ξ, CU-RIP(ρ) is satisfied with parameter ρ < 1

2

provided that m = O
(

1
δ2 pr

2 log3 p log(pξ)
)

for some δ > 0.

Integrating the above results, together with the assumption of
availability of a batch of m independent samples (fresh samples)
in each iteration, and all the assumptions in theorem 5, Alg. 1
needs K = O(log(‖L∗‖2ε)) iterations to achieve ε-accuracy in
terms of the spectral norm. Furthermore, the sample complexity
scales as m = O

(
pr2 log4 p log(1

ε)
)

based on Theorems 6
and 7. Although the assumption of “fresh samples” is an artifact
of our proof techniques; nonetheless, it is a standard mechanism
for theoretically analyzing non-convex problems [29], [6]. In
Section III-C, we revisit this issue.

While the above algorithm exhibits linear convergence, the
per-iteration complexity is still high since it requires projection
onto the space of rank-r matrices. This necessitates the
application of SVD. In the absence of any spectral assumptions
on the input to the SVD, the per-iteration running time can be
as high as cubic (Ω(p3)). Overall, we obtain a running time
of Õ(p3r2) in order to achieve ε-accuracy (please see Section
5.3 in the appendix of [30] for more details).

To reduce the running time, one can instead replace a
standard SVD with approximate heuristics such as Lanczos iter-
ations [31]; however, these do not result in rigorous algorithms
with provable convergence guarantees. Instead, following [18],
we can use a pair of inaccurate rank-r projections (in particular,

tail-and head-approximate projection operators). Based on this
idea, we propose our second algorithm, displayed in pseudocode
form as Algorithm 2.

The specific choice of approximate SVD algorithms that
simulate the operators T (.) and H(.) is flexible. We note that
tail-approximate projections have been widely studied in the
numerical linear algebra literature [32], [33], [34]; however,
head-approximate projection methods are less well-known. In
our method, we use the randomized Block Krylov SVD (BK-
SVD) method proposed by [17], which has been shown to
satisfy both types of approximation guarantees [18]. One can
alternatively use LazySVD, recently proposed by [35], which
also satisfies both guarantees. The nice feature of these two
approaches is that their running time is independent of the
spectral gap of the matrix, which provides an asymptotic
improvements over partial SVD algorithms such as the power
method; see [35].

We now establish that Alg. 2 also exhibits linear convergence:

Theorem 8. Consider the sequence of iterates (Lt) obtained
in Alg. 2. Assume that in each iteration t, A satisfies CU-
RIP(ρ′) for some 0 < ρ′ < 1, then Alg. 2 outputs a sequence
of estimates Lt such that:

‖Lt+1 − L∗‖F ≤ q′1‖Lt − L∗‖F + q′2
(
|1T e|+

∥∥A∗e∥∥
2

)
,
(7)

where q′1 = (2 + ε)(ρ′ +
√

1− φ2), q′2 =
√
r

2m

(
2− ε+ φ(2−ε)(2+ε)√

1−φ2

)
, and φ = (1− ε)(1− ρ′)− ρ′.

Similar to Theorem 7, we can show that CU-RIP is satisfied
in each iteration with probability at least 1− ξ, provided that
m = O

(
1
δ2 pr

3 log3 p log(pξ)
)

. Hence, we require a factor-r
increase compared to our first algorithm.

The above analysis shows that instead of using exact rank-r
projections using SVDs (as in Alg. 1), one can use instead tail
and head approximate projection, as implemented by the BK-
SVD method of [17]. The running time for this method is given
by Õ(p2r) if r � p. While the running time of the projection
step is gap-independent, the calculation of the gradient (i.e.,
the input to the head projection method H) is itself the major
bottleneck. In essence, this is related to the calculation of
the adjoint operator, A∗(d) =

∑m
i=1 d

(i)xix
T
i , which requires

O(p2) operations for each sample. Coupled with the sample-
complexity of m = Ω(pr3), this means that the running time
per-iteration scaled as Ω(p3r3), which overshadows any gains
achieved during the projection step.

To address this challenge, we propose a modified version
of BK-SVD for head approximate projection which uses the
special rank-one structures involved in the calculation of the
gradients. We call this method Modified BK-SVD, or MBK-
SVD. The basic idea is to implicitly evaluate each Krylov-
subspace iteration within BK-SVD, and avoid any explicit
calculation of the adjoint operator A∗ applied to the current
estimate. Due to space constraints, the pseudocode as well
as the running time analysis of MBK-SVD (the proof of the
following theorem) is given in [30].

5

Algorithm 3
Initialization: L0 ← 0, t← 0
while t ≤ K do
Lt+1 = Tκr

(
Lt − ηt

mB
∗sgn(B(Lt)− y)

)
t← t+ 1

end while
Return: L̂ = LK

Theorem 9. Algorithm 2 (with modified BK-SVD) runs in time
K = O

(
p2r4 log2(1

ε)polylog(p)
)
.

C. Achieving Optimal Sample Complexity

In the previous section, we saw that both our proposed
algorithms result in suboptimal sample complexity by loga-
rithmic factors, primarily because their analysis requires a set
of fresh samples in each iteration. In this section, we propose
a third algorithm that removes this assumption and achieves
asymptotically optimal sample complexity, i.e., m = O(pr).
Referring back to Table I, we observe that convex methods [12],
[11] exhibits the same sample complexity, but are very slow.
However, we show that our new algorithm enjoys a fast running
time.

To overcome the issue of fresh samples, our key intuition
is to replace squared loss with the absolute deviation loss
function (i.e., `1-loss), and the CU-RIP with the RIP(`1, `2).
For simplicity, in this section we ignore noise, while noting
that our analysis seamlessly carries over to the noisy case with
a somewhat more tedious (but straightforward) extension.

We introduce a (slightly) different observation model: y′ =
B(L∗), where B : Rp×p → Rm denotes a linear operator
such that B(L)i = A(L)2i − A(L)2i−1, with A as defined
in observation model (3). It is easy to see that B can be
implemented by doubling the number of training samples. The
reason why B is constructed in this way is inspired by [12],
where the authors have shown that B satisfies RIP(`1, `2) if the
number of samples m = O(pr). Based on the above model,
we consider the following risk minimization problem:

min
L∈Rp×p

F (L) =
1

m
‖y − B(L)‖1 s.t. rank(L) ≤ r. (8)

To solve this problem, we propose an approximate projected
sub-gradient algorithm, displayed in pseudocode as Algo-
rithm 3.

Compared to the previous algorithms, Alg. 3 has three major
differences. First, it has only one approximation operator – an
approximate tail projection T – which projects its argument
onto a larger set of matrices with rank κr for κ > 1.
To implement this operator, we use the modified BK-SVD
algorithm similar to the discussion above. The idea of projecting
onto a larger space was first proposed by [22], and subsequently
has been extended for approximate tail projections by [19]. In
that work, we showed that this idea essentially removes the need
for an inner “head” projection. Second, the objective function in
(8) is not differentiable; hence, we have to use a sub-gradients
which, for our case, is given by ∂F (L) = 1

mB
∗sgn(B(Lt)−y).

Third, Algorithm 3 requires a time-varying step-size ηt specified
below.

We now prove that with sufficiently many samples, Algo-
rithm 3 converges linearly, and at termination, provides an
accurate estimate of the true low-rank matrix. This proof
complements the theoretical analysis of [12], [11] with a
simple and easily implementable algorithm with provably fast
convergence guarantees. For establishing the proof, we need the
following Lemma, proved in [19] and adapted to our notation.

Lemma 10. Let κ > (1 + 1
1−ε). For any matrices L,L∗ ∈

Rp×p with rank(L∗) = r, we have

‖Tκr(L)− L∗‖2F ≤
(

1 +
2√

1− ε
√
κ− 1

)
‖L− L∗‖2F ,

where T : Rp×p → Uκr denotes the approximate tail projection
defined in Definition 2 and ε > 0 is the corresponding
approximation ratio.

This lemma says that the near-contraction factor ν = 1 +
2√

1−ε
√
κ−1

can be made arbitrary close to 1, provided that we
increase the parameter κ accordingly. We now establish the
linear convergence of Algorithm 3:

Theorem 11. Suppose that the linear map B is constructed
such that it satisfies RIP(`1, `2) property with constants α and β

in each iteration. Set κ > 1+max
{ 4

(
(α

2

β2
)−1

)2

1−ε , 1
1−ε

}
. Choose

step size as ηt = ‖B(Lt)−y‖1
β2 . Then, Algorithm 3 produces a

sequence of estimates Lt for t = 1, 2 . . . such that

‖Lt+1 − L∗‖2 ≤ λ‖Lt − L∗‖2. (9)

where λ =
√
ν(1− α2

β2).

The RIP assumption for B is justified by Proposition 1
in [12], and the fact that in each iteration, the input matrix
of B is a matrix with rank at most equals to 2κr + r∗ (see
the proof). In addition, the running time of Algorithm 3 scales
as O(p2r2log(p) log(1

ε)) as a result of implementing T with
MBK-SVD.

IV. EXPERIMENTAL RESULTS

We conclude by provided the results of some numerical
experiments to support our proposed algorithms.

We compare Alg. 1 and Alg. 2 with convex (nuclear norm)
minimization as well as the gFM algorithm of [3]. To solve the
nuclear norm minimization, we use FASTA [24] (accelerated
proximal sub-gradient). In addition, SVD and SVDS denote
the projection step in Alg. 1 using Matlab’s SVD and SVDs
functions respectively. In all the experiments, we generate
a low-rank matrix, L∗ = UUT , such that U ∈ Rp×r with
r = 5 where the entries of U is randomly chosen according to
the standard normal distribution. Figures 1(a) and 1(b) show
the phase transition of successful estimation as well as the
evolution of the objective function, 1

2‖y −A(Lt)‖22 versus the
iteration count t for all the algorithms. In figure 1(a), we have
used 50 Monte Carlo trials and the phase transition plot is
generated based on the empirical probability of success; here,
success is when the relative error between L̂ (the estimate of
L∗) and the ground truth L∗ (measured in terms of spectral
norm) is less than 0.05. For solving convex problem, we set the

6

2,000 4,000 6,000 8,000
0

0.2

0.4

0.6

0.8

1

Number of measurements, m

Pr
ob

ab
ili

ty
of

Su
cc

es
s SVD

SVDS
Alg 2
Alg 3

Convex
gFM

20 40 60
0

2

4

6

8

10

Iteration

lo
g
(1 2
‖y
−

(A
)L

t
‖2 2

) SVD
SVDS
Alg. 2
Convex

gFM

0 1,000 2,000 3,000 4,000 5,000

−2

−1

0

Time (sec)

R
el

at
iv

e
er

ro
r

SVD
SVDS
Alg. 2
Convex

gFM

(a) (b) (c)

Fig. 1: Comparison of algorithms. (a) Phase transition plot with p = 100. (b) Evolution of the objective function versus number of iterations
with p = 100, m = 8500, and noise level σ = 0.1. (c) Running time of the algorithm with p = 1000 and m = 75000.

Lagrangian parameter, µ via a grid search. In Figure 1(a), there
is no additive noise. As we can see in this Figure, the phase
transition for the convex method and Alg 3 has comparable
phase transition as predicted by theory, and they are slightly
better than those for non-convex algorithms, which is consistent
with known theoretical results. However, the convex method
is improper, i.e., the rank of L̂ is much higher than the target
rank. In Figure 1(b) we consider an additive standard normal
noise with standard deviation equal to 0.1, and average over 10
Monte Carlo trials. As illustrated in this plot, all non-convex
algorithm have much better performance in decreasing the
objective function compared to convex method.

In Figure 1(c), we compare the algorithms in the high-
dimensional regime where p = 1000, m = 75000, and r = 5
in terms of running time. We let all the algorithms run 15
iterations, and then compute the CPU time in seconds for each
of them. The y-axis denotes the logarithm of relative error in
spectral norm and we report averages over 10 Monte Carlo
trials. As we can see, convex methods are the slowest (as
expected); the non-convex methods are comparable to each
other, while our method is the fastest. This plot verifies that
Alg. 2 is faster than other non-convex methods, which makes it
a promising approach for high-dimensional matrix estimation
applications.

Discussion. It seems plausible that the matrix-based tech-
niques of this paper can be extended to learn networks
with similar polynomial-like activation functions (such as the
squared ReLU). Finally, similar algorithms can be plausibly
used to train multi-layer networks using a greedy (layer-by-
layer) learning strategy.

REFERENCES

[1] R. Livni, S. Shalev-Shwartz, and O. Shamir, “On the computational
efficiency of training neural networks,” in Adv. Neural Inf. Proc. Sys.
(NIPS), 2014, pp. 855–863.

[2] Z. Ghodsi, T. Gu, and S. Garg, “Safetynets: Verifiable execution of deep
neural networks on an untrusted cloud,” in Adv. Neural Inf. Proc. Sys.
(NIPS), 2017, pp. 4675–4684.

[3] M. Lin and J. Ye, “A non-convex one-pass framework for generalized
factorization machine and rank-one matrix sensing,” in In Adv. Neural
Inf. Proc. Sys. (NIPS), 2016, pp. 1633–1641.

[4] M. Janzamin, H. Sedghi, and A. Anandkumar, “Beating the perils of non-
convexity: Guaranteed training of neural networks using tensor methods,”
arXiv preprint arXiv:1506.08473, 2015.

[5] Y. Tian, “Symmetry-breaking convergence analysis of certain two-layered
neural networks with relu nonlinearity,” In Submitted to ICLR 2017,
2016.

[6] K. Zhong, Z. Song, P. Jain, P. L Bartlett, and I. Dhillon, “Recovery
guarantees for one-hidden-layer neural networks,” 2016.

[7] M. Soltanolkotabi, Adel J., and J. Lee, “Theoretical insights into the
optimization landscape of over-parameterized shallow neural networks,”
arXiv preprint arXiv:1707.04926, 2017.

[8] Y. Li and Y. Yuan, “Convergence analysis of two-layer neural networks
with relu activation,” In Adv. Neural Inf. Proc. Sys. (NIPS), 2017.

[9] E. Candès and B. Recht, “Exact matrix completion via convex
optimization.,” Found. Comput. Math., vol. 9, no. 6, 2009.

[10] B. Recht, M. Fazel, and P. Parrilo, “Guaranteed minimum-rank solutions
of linear matrix equations via nuclear norm minimization,” SIAM review,
vol. 52, no. 3, pp. 471–501, 2010.

[11] T. Cai and A. Zhang, “Rop: Matrix recovery via rank-one projections,”
Ann. Stat., vol. 43, no. 1, pp. 102–138, 2015.

[12] Y. Chen, Y. Chi, and A. Goldsmith, “Exact and stable covariance
estimation from quadratic sampling via convex programming,” IEEE
Trans. Inform. Theory, vol. 61, no. 7, pp. 4034–4059, 2015.

[13] E. Candes, T. Strohmer, and V. Voroninski, “Phaselift: Exact and stable
signal recovery from magnitude measurements via convex programming,”
Comm. Pure Appl. Math., vol. 66, no. 8, pp. 1241–1274, 2013.

[14] P. Netrapalli, P. Jain, and S. Sanghavi, “Phase retrieval using alternating
minimization,” in Adv. Neural Inf. Proc. Sys. (NIPS), 2013, pp. 2796–
2804.

[15] K. Zhong, P. Jain, and I. Dhillon, “Efficient matrix sensing using rank-1
gaussian measurements,” in Int. Conf on Algorithmic Learning Theory.
Springer, 2015, pp. 3–18.

[16] S. Shalev-Shwartz, A. Gonen, and O. Shamir, “Large-scale convex
minimization with a low-rank constraint,” in Proc. Int. Conf. Machine
Learning, 2011, pp. 329–336.

[17] C. Musco and C. Musco, “Randomized block krylov methods for stronger
and faster approximate singular value decomposition,” in Adv. Neural
Inf. Proc. Sys. (NIPS), 2015, pp. 1396–1404.

[18] C. Hegde, P. Indyk, and L. Schmidt, “Fast recovery from a union of
subspaces,” in Adv. Neural Inf. Proc. Sys. (NIPS), 2016.

[19] M. Soltani and C. Hegde, “Fast low-rank matrix estimation without the
condition number,” arXiv preprint arXiv:1712.03281, 2017.

[20] R. Kueng, H. Rauhut, and U. Terstiege, “Low rank matrix recovery from
rank one measurements,” Appl. Comput. Harmon. Anal., vol. 42, no. 1,
pp. 88–116, 2017.

[21] P. Jain, R. Meka, and I. Dhillon, “Guaranteed rank minimization via
singular value projection,” in Adv. Neural Inf. Proc. Sys. (NIPS), 2010,
pp. 937–945.

[22] P. Jain, A. Tewari, and P. Kar, “On iterative hard thresholding methods
for high-dimensional m-estimation,” in Adv. Neural Inf. Proc. Sys. (NIPS),
2014, pp. 685–693.

[23] S. Foucart, “Flavors of compressive sensing,” in International Conference
Approximation Theory. Springer, 2016, pp. 61–104.

[24] T. Goldstein, C. Studer, and R. Baraniuk, “FASTA: A general-
ized implementation of forward-backward splitting,” January 2015,
http://arxiv.org/abs/1501.04979.

[25] S. Burer and R. Monteiro, “A nonlinear programming algorithm for
solving semidefinite programs via low-rank factorization,” Mathematical
Programming, vol. 95, no. 2, pp. 329–357, 2003.

[26] S. Tu, R. Boczar, M. Simchowitz, M. Soltanolkotabi, and B. Recht,
“Low-rank solutions of linear matrix equations via procrustes flow,” in
icml, 2016, pp. 964–973.

7

[27] M. Lin, S. Qiu, B. Hong, and J. Ye, “The second order linear model,”
arXiv preprint arXiv:1703.00598, 2017.

[28] C. Hegde, P. Indyk, and L. Schmidt, “Approximation algorithms for
model-based compressive sensing,” IEEE Trans. Inform. Theory, vol. 61,
no. 9, pp. 5129–5147, 2015.

[29] M. Hardt, “Understanding alternating minimization for matrix comple-
tion,” in Proc. IEEE Symp. Found. Comp. Science (FOCS). IEEE, 2014,
pp. 651–660.

[30] M. Soltani and C. Hegde, “Towards provable learning of polynomial
neural networks using low-rank matrix estimation,” in Proc. Int. Conf.
Art. Intell. Stat. (AISTATS), 2017.

[31] C. Lanczos, “An iteration method for the solution of the eigenvalue
problem of linear differential and integral operators1,” Journal of
Research of the National Bureau of Standards, vol. 45, no. 4, 1950.

[32] K. L Clarkson and D. Woodruff, “Low rank approximation and regression
in input sparsity time,” in Proc. ACM Symp. Theory of Comput. ACM,
2013, pp. 81–90.

[33] M. Mahoney and P. Drineas, “Cur matrix decompositions for improved
data analysis,” Proc. Natl. Acad. Sci., vol. 106, no. 3, pp. 697–702, 2009.

[34] V. Rokhlin, A. Szlam, and M. Tygert, “A randomized algorithm for
principal component analysis,” SIAM J. Matrix Anal. Appl., vol. 31, no.
3, pp. 1100–1124, 2009.

[35] Z. Allen-Zhu and Y. Li, “Lazysvd: Even faster svd decomposition yet
without agonizing pain,” in Adv. Neural Inf. Proc. Sys. (NIPS), 2016, pp.
974–982.

[36] R. Vershynin, “Introduction to the non-asymptotic analysis of random
matrices,” arXiv preprint arXiv:1011.3027, 2010.

V. APPENDIX

Proof of Theorem 5. The proof of the theorem is special case
and simpler version of the Theorem 8. Hence, we give a proof
sketch (see [30] for more details). The idea is analogous to
the proof of IHT algorithm in compressive sensing literature
where the projection step along with the triangle inequality
results

∥∥Lt+1 −L∗
∥∥

2
≤2
∥∥b−L∗∥∥2

where b is the update rule
vector. Then, we invoke CU-RIP by the assumption of the
theorem. This establishes our desired linear convergence with
contraction factor q = 2ρ < 1.

Proof of Theorem 8. Assume that Y ∈ M(U2r) such that
Lt − L∗ ∈ Y and

V := Vt = H (A∗(A(Lt)− y)− Tr(Lt − ȳ)I) .

Also, define Bias(Lt) := (1
2m1TA(Lt)− 1

2 ȳ)I

b′ = Lt −H

(
1

m

2m∑
i=1

(
xiLtx

T
i − yi

)
xix

T
i − Bias(Lt)

)
= Lt −

1

2m
H (A∗(A(Lt)− y)− Bias(Lt)) .

Furthermore, by definition of approximate tail projection, Lt ∈
M(Ur). Now, we have:

‖Lt+1 − L∗‖F = ‖L∗ − T (b′)‖F

≤ ‖L∗ − b′‖F + ‖b′ − T (b′)‖F
a1
≤ (2 + ε)‖b′ − L∗‖F

= (2 + ε)
∥∥∥Lt − L∗ −H(

1

2m
A∗(A(Lt)− y)

− (
1

2m
1TA(Lt)−

1

2
ȳ)I)

∥∥∥
F

a2= (2 + ε)
∥∥∥Lt − L∗ − PV (

1

2m
A∗(A(Lt)− y)

− (
1

2m
1TA(Lt)−

1

2
ȳ)I)

∥∥∥
F
,

where a1 is implied by the triangle inequality and the definition
of approximate tail projection, and inequality a2 holds by the
definition of approximate head projection. Next, we have:

‖Lt+1 − L∗‖F
a3
≤ (2 + ε)

∥∥∥PV (Lt − L∗) + PV ⊥(Lt − L∗)

− PV (
1

2m
A∗(A(Lt)− y)− (

1

2m
1TA(Lt)−

1

2
ȳ)I)

∥∥∥
F

a4
≤ (2 + ε)

∥∥∥PV (Lt − L∗)− PV (
1

2m
A∗A(Lt − L∗)

− (
1

2m
1TA(Lt)−

1

2
ȳ)I)

∥∥∥
F

+ (2 + ε)
∥∥∥PV ⊥(Lt − L∗)

∥∥∥
F

+
2 + ε

2m

∥∥∥PVA∗e∥∥∥
F

a5
≤ (2 + ε)

∥∥∥PV+Y (Lt − L∗ − (
1

2m
A∗A(Lt − L∗)

− 1

2m
1TA(Lt − L∗)I))

∥∥∥
F

+ (2 + ε)
∥∥∥PV ⊥(Lt − L∗)

∥∥∥
F

+
2 + ε

2m

(
|1T e|+

∥∥∥PVA∗e∥∥∥
F

)
, (10)

where a3 follows by decomposing the residual Lt − L∗ on
the two subspaces V and V ⊥, and a4 is due to the triangle
inequality, the fact that Lt − L∗ ∈ Y , and V ⊆ V + Y .

Now, we need to bound the three terms in (10). The third
and fourth terms can be bounded by using Theorem 6. For the
first term, we have:

(2 + ε)
∥∥∥PV+Y (Lt − L∗ − (

1

2m
A∗A(Lt − L∗)

− 1

2m
1TA(Lt − L∗)I))

∥∥∥
F

a1
≤ (2 + ε)

∥∥∥Lt − L∗ − (
1

2m
A∗A(Lt − L∗)

− 1

2m
1TA(Lt − L∗)I)

∥∥∥
F

a2
≤ (2 + ε)ρ′

∥∥∥Lt − L∗∥∥∥
F
, (11)

above, a1 holds by the properties of the Frobenius and spectral
norm, and a2 is due to the CU-RIP assumption in the theorem.
To bound the second term in (10), (2 + ε)

∥∥∥PV ⊥(Lt − L∗)
∥∥∥
F

,
we have:∥∥∥PV (1

2m
A∗(A(Lt)− y)− (

1

2m
1TA(Lt)− ȳ)I

)∥∥∥
F

a1
≥ (1− ε)

∥∥∥PY (1

2m
A∗(A(Lt)− y)− (

1

2m
1TA(Lt)− ȳ)I

)∥∥∥
F

a2
≥ (1− ε)

∥∥∥PY (1

2m
A∗A(Lt − L∗)−

1

2m
1TA(Lt − L∗)I

)∥∥∥
F

− 1− ε
2m
|1T e| − 1− ε

2m

∥∥∥PVA∗e∥∥∥
F

a3
≥ (1− ε)(1− ρ′)

∥∥∥Lt − L∗∥∥∥
F
− 1− ε

2m

(
|1T e|+

∥∥∥PVA∗e∥∥∥
F

)
,

(12)

Here, a1 holds by the definition of approximate head projection,
a2 is followed by triangle inequality, a3 is due to Corollary 15,

8

and finally a4 holds due to the fact that rank(Lt − L∗) ≤ 2r.
For the upper bound, we have:∥∥∥PV (1

2m
A∗(A(Lt)− y)− (

1

2m
1TA(Lt)− ȳ)I

)∥∥∥
F

a1
≤
∥∥∥PV+Y

(
1

2m
A∗A(Lt − L∗)−

1

2m
1TA(Lt − L∗)I

)
− PV+Y (Lt − L∗)

∥∥∥
F

+
∥∥∥PV (Lt − L∗)

∥∥∥
F

+
1

2m

(
|1T e|+

∥∥∥PVA∗e∥∥∥
F

)
a2
≤
∥∥∥Lt − L∗ − 1

2m
A∗(A(Lt)− y) +

1

2m
1TA(Lt − L∗)I

∥∥∥
F

+
∥∥∥PV (Lt − L∗)

∥∥∥
F

+
1

2m

(
|1T e|+

∥∥∥PVA∗e+
∥∥∥
F

)
a3
≤ ρ′

∥∥∥Lt − L∗∥∥∥
F

+
∥∥∥PV (Lt − L∗)

∥∥∥
F

+
1

2m

(
|1T e|+

∥∥∥PVA∗e∥∥∥
F

)
, (13)

above, a1 holds by triangle inequality and the fact that
projection onto the extended subspace V +Y (V ⊆ V +Y) does
not decrease the Frobenius norm, a2 is due to the inequality
‖AB‖F ≤ ‖A‖2‖B‖F , and finally a3 is followed by CU-RIP
assumption and the fact that rank(Lt − L∗) ≤ 2r. Putting
together (12) and (13), we obtain:∥∥∥PV (Lt − L∗)

∥∥∥
F
≥ ((1− ε)(1− ρ′)− ρ′)

∥∥∥Lt − L∗∥∥∥
F

− 2− ε
2m

(
|1T e|+

∥∥∥PVA∗e∥∥∥
F

)
. (14)

By the Pythagoras theorem, we know
∥∥∥PV (Lt − L∗)

∥∥∥2

F
+∥∥∥PV ⊥(Lt − L∗)

∥∥∥2

F
=
∥∥∥Lt − L∗∥∥∥2

F
, and hence we can bound

the second term in (10). To use this fact, we apply (14) in [18]
which results:

(2 + ε)
∥∥∥PV ⊥(Lt − L∗)

∥∥∥
F
≤ (2 + ε)

√
1− φ2

∥∥∥Lt − L∗∥∥∥
F

+
φ(2− ε)(2 + ε)

2m
√

1− φ2

(
|1T e|+

∥∥∥PVA∗e∥∥∥
F

)
, (15)

where φ = (1− ε)(1− ρ′)− ρ′. Putting all the bounds in (11),
and (15) altogether, we obtain:

‖Lt+1 − L∗‖F ≤
(

(2 + ε)ρ′ + (2 + ε)
√

1− φ2
)∥∥∥Lt − L∗∥∥∥

F

+

√
r

2m

(
2− ε+

φ(2− ε)(2 + ε)√
1− φ2

)(
|1T e|+

∥∥∥A∗e∥∥∥
2

)
= q′1

∥∥∥Lt − L∗∥∥∥
F

+ q′2

(
|1T e|+

∥∥∥A∗e∥∥∥
2

)
. (16)

We choose q′1 = (2 + ε)(ρ′ +
√

1− φ2), and q′2 =
√
r

2m

(
2− ε+ φ(2−ε)(2+ε)√

1−φ2

)
. Now in order to have convergence,

we have to make sure that 0 < φ < 1 and q′1 < 1. These
conditions are achieved if we let choose m sufficiently large
such that ρ′ < 1

2+ε −
√

1− φ2. The completes the proof.

Lemma 12. (Bernstein-type inequality for symmetric random
matrices). Consider a sequence of symmetric and random inde-
pendent identical distributed matrices {Si}mi=1 with dimension

p× p. Also, assume that ‖Si − ESi‖2 ≤ R for i = 1, . . . ,m.
Then for all t ≥ 0,

P

(∥∥∥ 1

m

m∑
i=1

Si − ESi
∥∥∥

2
≥ t

)
≤ 2p exp

(
−mt2

σ +Rt/3

)
,

where σ = ‖E (S − ES)
2 ‖2 and S is a independent copy of

Si’s.

Before verifying CU-RIP, we need the following lemmas. In
the first lemma, we show that ȳ = 1

m

∑m
i=1 yi is concentrated

around its mean with high probability.

Lemma 13 (Concentration of ȳ). Let A : Rp×p → Rm be
a linear operator defined as (3) and L ∈ Rp×p be some
symmetric matrix. Then with probability at least 1 − ξ1, we
have for some constant C > 0:

| 1
m
1TA(L)− Tr(L)| ≤ C

√
1

m
log(

p

ξ1
)‖L‖2. (17)

Proof. In all the following expressions, cl > 0 for l = 1, . . . , 4
are absolute constants. We start by noting that: EA(L) =
ETr(xixTi L) = Tr(L) where we have used the fact that
xi

i.i.d∼ N (0, I). We have for all t > 0:

P
(∣∣ 1

m
1TA(L)− Tr(L)

∣∣ ≥ t)
= P

(∣∣∣ 1

m

m∑
i=1

〈xixTi , L〉 − Tr(L)
∣∣∣ ≥ t)

= P

(∣∣∣ 1

m

m∑
i=1

∑
u,v

(xui x
v
iL

uv)− Tr(L)
∣∣∣ ≥ t)

= P(
∣∣∣∑
u

1

m

m∑
i=1

((xui)2Luu − Luu)

+
∑
u6=v

1

m

m∑
i=1

(xui x
v
iL

uv)
∣∣∣ ≥ t). (18)

Now we bound two probabilities. First, ∀ t1 ≥ 0:
P
(∣∣∣∑u

1
m

∑m
i=1((xui)2Luu − Luu)

∣∣∣ ≥ t1)≤p exp
(
−c1 mt21

‖L‖22

)
,

where the inequality is due to the union bound over p diagonal
variables and by the fact that (xui)2 is a χ2 random variable
with mean 1 and ‖χ2‖ψ1 = 2; as a result, we can use the
scalar version of Bernstein inequality. Now by choosing

t1 ≥ c2‖L‖2

√
log(p

ξ′1
)

m , with probability at least 1 − ξ′1, we
have:∣∣∣∑

u

1

m

m∑
i=1

((xui)2Luu − Luu)
∣∣∣ ≤√c2

m
log(

p

ξ′1
)‖L‖2. (19)

Second, let k = maxu6=v(L
uv)2. Thus, ∀t2 ≥ 0, we have,

P
(∣∣∣∑u6=v

1
m

∑m
i=1(xui x

v
iL

uv)
∣∣∣ ≥ t2) a2

≤ p2 exp
(
−c2mt

2
2

k2

)
,

where a2 holds by a union bound over p2 − p off-diagonal
variables, and the fact that xui x

v
i is a zero mean subexponential

random variable. Hence, we can again use the scalar version

9

of Bernstein inequality. By choosing t2 ≥
√

c3
m log(p

ξ
′′
1

), with

probability at least 1− ξ′′1 , we have:

∣∣∣∑
u 6=v

1

m

m∑
i=1

(xui x
v
iL

uv)
∣∣∣ ≤√c3

m
log(

p

ξ
′′
1

). (20)

Now from (18), (19), and (20) and by choosing t = t1 + t2
with probability at least 1− ξ1 where ξ1 = ξ

′

1 + ξ
′′

1 , we obtain:

P
(∣∣ 1

m
1TA(L)− Tr(L)

∣∣ ≥ t) ≤√c4
m

log(
p

ξ′1
)‖L‖2.

which proves the stated claim.

Lemma 14 (Concentration of 1
mA

∗A(M)). Let M ∈ Rp×p
be a fixed matrix with rank r and let Si = xix

T
i (M)xix

T
i for

i = 1, . . . ,m. Consider the linear operator A in model (3)
independent of M . Then with probability at least 1− ξ2, we
have:

∥∥∥ 1

m

m∑
i=1

Si − ESi
∥∥∥

2
≤ C ′

√
pr2 log3 p

m
log(

p

ξ2
)‖M‖2. (21)

where C ′ > 0 is a constant.

Proof. In all the following expressions, Cl > 0 for l =
1, . . . , 11 are absolute constants. First we note that by some
calculations, one can show that E

(
1
mA

∗A(M)
)

= ESi =
2(M) +Tr(M)I. Our technique to establish the concentration
of A∗A(Lt − L∗) is based on the matrix Bernstein inequality.
As stated in lemma (12), there should be a spectral bound on the
summands, Si = xix

T
i (M)xix

T
i for i = 1, . . . ,m. Since the

entries of ai are Gaussian, the spectral norm is not absolutely
bounded; hence, we cannot directly use the matrix Bernstein
inequality. Inspired by [15], we will use a truncation trick to
make sure that the spectral norm of summands are bounded.
Define the random variable x̃i

(j) as follows:

x̃i
(j) =

{
x

(j)
i , |x(j)

i | ≤ C1

√
logmp

0, otherwise,
(22)

where x(j)
i is the jth entry of the random vector xi. By this

definition, we immediately have the following properties:

• P
(
x

(j)
i = x̃i

(j)
)
≥ 1− 1

(mp)C2
,

• E
(
x̃i

(j)x̃i
(k)
)

= 0, for j 6= k,

• Ex̃i(j) = 0 for j = 1, . . . , p,

• E
(
x̃i

(j)
)2

≤ E
(
x

(j)
i

)2

= 1, for j = 1, . . . , p,

Let S̃i = x̃ix̃i
TMx̃ix̃i

T for i = 1, . . . ,m. We need to bound
parameters R and σ in the matrix Bernstein inequality. Denote
the SVD of M by M = UMΣV TM . Since xi is a normal random
vector, it is rotationally invariant. As a result, w.l.o.g., we can
assume that UM = [e1, e2, . . . , er] and VM = [e1, e2, . . . , er]
as long as the random vector xi is independent of M . Here,
ej denotes the jth canonical basis vector in Rp. To make sure

this happens, we use m fresh samples of xi’s in each iteration
of the algorithm. Now, we have for each i:

‖x̃ix̃iTMx̃ix̃i
T ‖2 = ‖x̃ix̃iTUMΣV TM x̃ix̃i

T ‖2
≤ |x̃iTUMΣV TM x̃i|‖x̃ix̃i

T ‖2
≤ ‖UTM x̃i‖2‖V TM x̃i‖2‖x̃i‖22‖M‖2
a1
≤ pr‖x̃i‖4∞‖M‖2

a2
≤ C3pr log2(mp)‖M‖2,

above, a1 holds due to rotational invariance discussed above,
and the relation between `2 and `∞ norms. Also, a2 is
due to applying bound in (22). Now, we can calculate
R as: ‖S̃i − ES̃i‖2 ≤ ‖S̃i‖2 + E‖S̃i‖2 ≤ 2‖S̃i‖2 ≤
C4pr log2(mp)‖M‖2 = R, where we have used both the
triangle inequality and Jensen’s inequality in the first inequality
above. For σ, we define S̃ as the truncated version of S,
independent copy of Si’s. Hence:

σ =
∥∥ES̃2 − (ES̃)2

∥∥
2

a1
≤ ‖ES̃2‖2

=
∥∥∥E (x̃x̃TMx̃x̃T x̃x̃TMx̃x̃T

) ∥∥∥
2

=
∥∥∥E(‖x̃‖22 (x̃TMx̃

)2
x̃x̃T

)∥∥∥
2

a2
≤ C5pr

2 log3(pm)‖M‖22
∥∥∥E (x̃x̃T) ∥∥∥

2

a3
≤ C5pr

2 log3(pm)‖M‖22,

where a1 is followed as (ES̃)2 is a positive semidef-
inite matrix. In addition, a2 holds due to the up-
per bound on

(
x̃TMx̃

)2 ‖x̃‖22, i.e.,
(
x̃TMx̃

)2 ‖x̃‖22 =(
x̃TUMΣV TM x̃

)2 ‖x̃‖22 ≤ ‖UTM x̃‖22‖V TM x̃‖22‖M‖22‖x̃‖22 ≤
pr2‖x̃‖6∞‖M‖2 ≤ C6pr

2 log3(mp)‖M‖2, where we have
again used the same argument of rotational invariance. Fi-
nally, a3 holds due to the fact that E

(
x̃ix̃i

T
)
� I . Now,

we can use the matrix Bernstein inequality for bounding∥∥∥ 1
m

∑m
i=1 S̃i − ES̃i

∥∥∥
2
:

P

(∥∥∥ 1

m

m∑
i=1

(S̃i − ES̃i)
∥∥∥

2
≥ t

)
≤ 2p exp

(
−mt2

σ +Rt/3

)
≤ 2p exp

(
−mt2

C5pr2 log3(pm)‖M‖22 + C4pr log2(mp)‖M‖2t/3

)
a1
≤ 2p exp

(
−mt2

C7pr2 log3(pm)‖M‖22

)
, (23)

where a1 holds by choosing constant C7 to be sufficiently large.
Now choose t ≥ ‖M‖2

√
C8

pr2 log3(pm)
m log(pξ′2

). Thus with

probability at least 1− ξ′2, we have,
∥∥∥ 1
m

∑m
i=1(S̃i−ES̃i)

∥∥∥
2
≤√

C8
pr2 log3(pm)

m log(pξ′2
)‖M‖2, This bound shows that by

taking m = O(1
θ2 pr

2 log3 p log(pξ′2
)) for some θ > 0, we can

bound the LHS of the above inequality. Actually, this choice of
m determines the sample complexity of Alg. 1. Recall that S̃i in-
cludes the truncated random variables, i.e, S̃i = x̃ix̃i

TMx̃ix̃i
T .

Also, P
(
x

(j)
i = x̃i

(j)
)
≥ 1− 1

(mp)C2
≥ 1− 1

(p)C9
. Hence, we

need to extend our result to the original xi. By definition of
x̃i in (22) and choosing constant C9 sufficiently large, we
have P

(
‖Si − S̃i‖2 = 0

)
= P

(
‖xixTi − x̃ix̃i

T ‖2 = 0
)
≥

1 − 1
(p)C10

. Here, we have used the union bound over p2

10

variables. Since we have m random matrices Si, we need
to take another union bound. As a result, with probability
1− ξ2 where ξ2 = 1

(p)C11
, we have,

∥∥∥ 1
m

∑m
i=1(Si−ESi)

∥∥∥
2
≤√

C8
pr2 log3 p

m log(pξ2)‖M‖2.

Proof of Theorem 7. Let Lt be the estimation of the algorithm
in iteration t, and L∗ denotes the ground truth matrix. Then
for constants C,C ′C ′′ > 0,∥∥Lt − L∗ − 1

2m
A∗A(Lt − L∗) + (

1

2m
1TA(Lt)

− 1

2m
1TA(L∗))I

∥∥
2

a1
≤
∥∥ 1

2m
A∗A(Lt − L∗)− (Lt − L∗)−

1

2
Tr(Lt − L∗)

− 1

2m
1TA(Lt − L∗)I +

1

2
Tr(Lt − L∗)I

∥∥
2

a2
≤
∥∥ 1

2m
A∗A(Lt − L∗)− (Lt − L∗)−

1

2
Tr(Lt − L∗)I

∥∥
2

+
∥∥ 1

2m
1TA(Lt − L∗)I −

1

2
Tr(Lt − L∗)I

∥∥
2

a3
≤

C ′
√
pr2 log3 p

m
log(

p

ξ2
)

∥∥Lt − L∗∥∥2

+ C

√
1

m
log(

p

ξ1
)
∥∥Lt − L∗∥∥2

a4
≤ C ′′δ

∥∥Lt − L∗∥∥2
= ρ
∥∥Lt − L∗∥∥2

, (24)

where a1 is followed by adding and subtracting of Tr(Lt −
L∗)I , inequality a2 follows from triangle inequality, a3 holds
with probability 1−ξ1−ξ2 = 1−ξ by invoking Lemma 13, and
Lemma 14 (by fixed matrix Lt−L∗ with rank 2r), and finally
a4 is followed by choosing m = O

(
1
δ2 pr

2 log3 p log(pξ)
)

for
some δ > 0. Choose δ sufficiently small to conclude.

Corollary 15. From Theorem 7 we have:
1) Let U be the bases for the column space of fixed matrices

L1 and L2 such that rank(Li) ≤ r for i = 1, 2 and PU is
the projection onto it. Also consider all the assumptions
of Theorem 7. Then

∥∥L1 −L2 − 1
2mPUA

∗A(L1 −L2) +
PU 1

2Tr(L1 − ȳ)I
∥∥

2
≤ ρ‖L1 − L2‖2.

2)
∥∥ 1

2mA
∗A(L1 −L2)− 1

2Tr(L1 − ȳ)I
∥∥

2
≥ (1− ρ)‖L1 −

L2‖2.

Proof of Theorem 6. The proof is very similar to the proof of
Lemma 14 and we only give a brief sketch. The idea is again
to use the matrix Bernstein inequality; to do this, we have
to use the truncation trick both on the random vector xi and
the noise vector e. We introduce x̃i as (22) and similarly ẽ as
(j = 1, . . . ,m): ẽ(j) = e(j) if |e(j)| ≤ c′1

√
logm; otherwise,

ẽ(j) = 0.
In the following expressions, c′l > 0 for l = 1, 4 are absolute

constants and c′l > 0 for l = 2, 3, 5, 6, 7 are some constants
which depend on τ . Let Wi = ẽix̃ix̃i

T for i = 1, . . . ,m
and W = ẽrx̃x̃

T be a independent copy of Wi’s (i.e, ẽr and
x̃ are independent copies of ei and xi, respectively). Hence,
EA

∗e
m = 1

m

∑m
i=1 Eẽix̃ix̃i

T = ESi = 0 and P(ẽi = ei) ≥

1 − 1

mc
′
2

by assumptions on e. Now, parameters R and σ

in the matrix Bernstein inequality can be calculated as σ =

‖EWWT ‖2 =
∥∥∥Eẽr2E(‖x̃‖22x̃x̃T)

∥∥∥
2
≤ c′3p log(m) log(mp),

and R = ‖ẽrx̃x̃T ‖2 ≤ c′4p
√

logm log(mp). As a result,
for all t3 ≥ 0, we have P

(∥∥∥ 1
m

∑m
i=1Wi

∥∥∥
2
≥ t3

)
≤

2p exp
(

mt23
σ+Rt3/3

)
≤ 2p exp

(
mt23

c′5p log(m) log(mp)

)
, where the

last inequality holds by sufficiently large c′5. Now, similar
to Lemma 14 by choosing t3 ≥

√
c′6
p log2 p
m log(pξ3) and the

union bound, we obtain
∥∥∥ 1
mA

∗e
∥∥∥

2
≤
√
c′6
p log2 p
m log(pξ3). with

probability at least 1− ξ3. On the other hand, since ei’s are
subgaussian random variables, by simple application of the
Hoeffding inequality [36], we have, | 1

m1T e| ≤
√

c′7
m log(1

ξ4
)

with probability at least 1− ξ4: Combining the above results
together and letting γ = ξ3 + ξ4, we obtained the claim bound
in the theorem.

Proof of Theorem 11. Let V t, V t+1, and V ∗ denote the bases
for the column space of Lt, Lt+1, and L∗, respectively. Assume
ν = 1 + 2√

1−ε
√
κ−1

. Also, let V t ∪ V t+1 ∪ V ∗ ⊆ Ωt := Ω.
Hence, Ωt is the set of matrices with rank ≤ 2κr+r∗. Define
b = Lt− ηPΩ∂F (Lt), α = α2κr+R∗ , and β = β2κr+r∗ . Thus:

‖Lt+1 − L∗‖2F
a1
≤ ν‖b− L∗‖2F = ν‖Lt − L∗ − ηtPΩ∂F (Lt)‖2F

= ν‖Lt − L∗‖2F − 2ηtν〈Lt − L∗,PΩ
1

m
B∗sgn(B(Lt)− y)〉

+ νη2
t ‖PΩ∂F (Lt)‖2F

= ν‖Lt − L∗‖2F − 2
ηtν

m
〈B(Lt − L∗), sgn(B(Lt − L∗))〉

+ νη2
t ‖PΩ∂F (Lt)‖2F

= ν‖Lt − L∗‖2F − 2
ηtν

m
‖B(Lt − L∗)‖1 + νη2

t ‖PΩ∂F (Lt)‖2F ,

where a1 holds by applying lemma 10, and due to the fact that
Lt+1 is the best low-rank approximation to b, it also happens
to be the best low-rank approximation to b. Now we can bound
the third term, ‖PΩ∂F (Lt)‖2F as follows:

‖PΩ∂F (Lt)‖2F =
1

m
‖PΩB∗sgn(B(Lt)− y)‖2F

=
1

m
〈PΩB∗sgn(B(Lt)− y),PΩB∗sgn(B(Lt)− y)〉

=
1

m
〈sgn(B(Lt)− y),BPΩB∗sgn(B(Lt)− y)〉

a1
≤ 1

m
‖BPΩB∗sgn(B(Lt)− y)‖1

a2
≤ β‖PΩ∂F (Lt)‖F ,

where a1 holds by Hölder’s inequality, and a2 is due to applying
RIP(`1, `2) property. Hence, we obtain, ‖PΩ∂F (Lt)‖F ≤
β. Now we have the error bound as ‖Lt+1 − L∗‖2F ≤
ν‖Lt − L∗‖2F − 2ηtνm ‖B(Lt − L∗)‖1 + νη2β2, Now let
ηt = ‖B(Lt−L∗)‖1

β2 . By using the RIP(`1, `2) property, we have

‖Lt+1 − L∗‖2F ≤ ν(1− α2

β2
)‖Lt − L∗‖2F . (25)

In order to have linear convergence, we need to have√
ν(1− α2

β2) < 1. If we simplify this condition together with
the condition on κ, stated in Lemma 10, we obtain: κ >

1 + max
{ 4

(
(α

2

β2
)−1

)2

1−ε , 1
1−ε

}
. This completes the proof.

