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ABSTRACT

We propose a new algorithm for hyperparameter selection in
machine learning algorithms. The algorithm is a novel modification
of Harmonica, a spectral hyperparameter selection approach using
sparse recovery methods. In particular, we show that a special encod-
ing of hyperparameter space enables a natural group-sparse recovery
formulation, which when coupled with HyperBand (a multi-armed
bandit strategy) leads to improvement over existing hyperparame-
ter optimization methods such as Successive Halving and Random
Search. Experimental results on image datasets such as CIFAR-10
confirm the benefits of our approach.

Index Terms— Hyperparameter optimization, sparse recovery,
deep learning.

1. INTRODUCTION

1.1. Setup

Machine learning (ML) models have been developed successfully to
perform complex prediction tasks in recent years. However, most ML
algorithms, especially in deep learning, require manual selection of
several hyperparameters such as learning rate, regularization penalty
constants, dropout ratio, and model architecture. The quality of the
model depends on how the designer of the ML model has carefully
chosen the hyperparameters; however, the complexity and variety of
ML models magnifies the practical difficulties of selecting appropriate
combinations of parameters to maximize performance. The area
of hyperparameter optimization (HPO) addresses the problem of
searching for the optimal choices in hyperparameter space.

Formally, let X denote the space of hyperparameters (whether
numerical and categorical), and let f be the function mapping from
X to the test loss obtained by training a given ML algorithm with a
particular set of hyperparameters. The goal of HPO is to approximate
a set of hyperparameters “close enough” to the global optimum

x∗ = arg min
x∈X

f(x)

as efficiently as possible.

1.2. Prior Work

Traditionally, ML practitioners have solved the HPO problem via
brute-force techniques such as grid search over X . This strategy
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quickly runs into exponentially increasing computation costs with
each additional dimension in hyperparameter space. As a solution,
Bayesian Optimization (BO) techniques have been proposed. These
assume a certain prior distribution over the cost function f(x) and
updates the posterior distribution with each new “observation” (or
measurement of training loss) at a given set of hyperparameters [1,
2, 3, 4, 5, 6, 7]. Subsequently, an acquisition function samples the
posterior to form a new set of hyperparameters, and the process
iterates.

Despite the popularity of BO techniques, they often provide un-
stable performance, particularly in high-dimensional hyperparameter
space. An alternative technique to BO is Random Search (RS), which
not only provides computational efficiency compared to grid search,
but also strong “anytime” performance with easy parallel implemen-
tation [8].

Multi-armed bandit (MAB) approaches adapt the random search
strategy to allocate the different resources to the randomly chosen
candidate points to speed up the convergence to the optimum instead
of spending full resources as random search and the BO. Successive
Halving (SH) and Hyperband adapt the multi-armed bandit approach
to random search, picking more candidates than random search with
the same amount of budget by pruning poorly-performing hyperpa-
rameters in the early state [9, 10, 11]. In contrast with BO techniques
(which are hard to parallelize), the integration of BO and Hyper-
band achieve both advantages of guided selection and paralleliza-
tion [12, 13, 14].

Gradient descent methods [15, 16, 17, 18, 19] (or more broadly,
meta-learning approaches) have also been applied to solve the HPO
problem, but these are only suitable to optimize continuous hyperpa-
rameters. Since this is a very vast area of current research, we do not
compare our approach with these techniques.

While BO dominates the model-based approach, a recent tech-
nique called Harmonica proposed a spectral approach, applying ideas
from sparse recovery on a Boolean version of the objective function.
Using this approach, Harmonica provides the unique benefit of reduc-
ing the dimensionality of hyperparameter space by quickly finding
highly influential hyperparameters, following which other standard
(search or optimization) techniques can be used [20].

1.3. Our Contributions

Our main contribution is an extension to the Harmonica algorithm.
While it successfully demonstrates finding important categorical fea-
tures, we focus on finding the numerical features by proposing a new
representation on numerical hyperparameter values. The represen-
tation not only reduces the dimension of hyperparameter space, but
also groups the hyperparameters based on knowledge of its structure
to achieve improved accuracy and stability.



To supplement our algorithm, we validate our numerical expres-
sion with hyperparameters grouping to examine its guidance accu-
rately. We visually show that this algorithm closely approximates
the global minimum in hyperparameter space by plotting the loss sur-
face with two hyperparameters. We also show the robustness of our
proposed algorithm combining the guidance to the decision-theoretic
methods with measurable improvements in test loss using a CNN
architecture trained on the CIFAR-10 image classification dataset.

1.4. Techniques

Following [13], we observe three desiderata to be satisfied with any
HPO method: parallelizability, scalability, and strong final perfor-
mance. The first criterion is parallelizability of the algorithm since
HPO requires expensive computations. We use Hyperband, which is
the current state-of-art in multi-armed bandit approaches, as the base
algorithm to satisfy the first qualification.

To achieve the second and third criteria, we use the Harmonica
trick [20]: we first binarize the hyperparameter space, and decompose
the Fourier expansion of the (Boolean) function f . Finding the influ-
ential hyperparameters from a small number of (sampled) training
loss observations reduces to solving a group-sparse recovery problem
from compressive measurements. This leads us to better overall test
error for a given computational budget.

2. MATHEMATICAL MODEL AND ALGORITHM

We now present our HPO algorithm; we restrict our attention to dis-
crete domains (and assume that continuous hyperparameters have
been appropriately binned). Let f : {−1, 1}n 7→ R be the loss func-
tion to be optimized. Let there be k different types of hyperparameters.
In other words, we allocate ni bits to the ith hyperparameter category
such that

∑k
i=1 ni = n. The task of HPO involves searching the

approximate hyperparameters close to the global minimizer

x∗ = arg min
x∈{−1,1}n

f(x). (2.1)

2.1. PGSR-HB

We propose Polynomial Group-Sparse Recovery within Hyperband
(PGSR-HB), a new HPO search algorithm which enables considerable
reduction of the hyperparameter space. We combine Hyperband, the
multi-armed bandit method that balances exploration and exploitation
from uniformly random sampled hyperparameter configurations, with
a group sparse version of Polynomial Sparse Recovery, which is the
main component of the spectral decomposition-based Harmonica
method of HPO. Algorithm 1 shows the pseudo code of PGSR-HB.

PGSR-HB adopts the decision-theoretic approach of Hyperband,
but with the additional features of tracking the history of all loss
values from different resources. Hyperband contains the subrou-
tine algorithm, Successive Halving (abbreviated as SH, see Lines
7-14), following the assumption that the performance of different
hyperparameter choices in the process of training indicates which
configurations are worth investing further resources, and which ones
are fit to discard.

Let R denote the (units of computational) resource to be invested
in one round to observe the final performance of the model; η denote
a scaling factor; and c the total number of rounds. Defining smax =
logη R, the total budget spent from SH is B = (smax + 1)R. The
algorithm samples n configurations with a sub-routine (which we call

Algorithm 1 PGSR-HB

1: Inputs: Resource R, scaling factor η, total cycle c
2: Initialization: smax = blogη(R)c, B = (smax + 1)R, input

history Hinput = ∅, output history Houtput = ∅
3: for round = 1 : c do
4: for s ∈ {smax, smax − 1, . . . , 0} do
5: n = dB

R
ηs

(s+1)
e, r = Rη−s

6: T = PGSR Sampling(n)
7: for i ∈ {0, . . . , s} do
8: ni = bnη−ic
9: ri = rηi

10: L = {f(t, ri) : t ∈ T}
11: Hinput,ri ← Hinput,ri

⋃
T

12: Houtput,ri ← Houtput,ri

⋃
L

13: T = sort(T,L, bni
η
c)

14: end for
15: end for
16: end for
17: return Configuration with the smallest loss

Sub-algorithm - PGSR Sampling
18: Input: Hinput, Houtput, sparsity s, polynomial degree d, mini-

mum observations T , randomness ratio ρ
19: if every |Houtput,r| < T then return random sample from

original domain of f .
20: end if
21: Pick Hinput,r and Houtput,r with largest r: |Houtput,r| ≥ T .
22: Group Fourier basis based on hyperparameter structure.
23: Solve

x∗ = arg min
α

1

2
‖y −

m∑
l=1

Ψlαl‖22 + λ

m∑
l=1

√
pl‖αl‖2

24: Let S1, . . . Ss be the indices of the largest coefficient of α. Then,
g(x) =

∑
i∈[s] αSiχSi(x) and J =

⋃s
i=1 Si

25: With probability ρ, return random sample from original domain
of f ; else return random sample from reduced domain of fJ,x∗ .

PGSR-Sampling, and explain further in the next section). Here, n is
given by:

n = dB
R

ηs

(s+ 1)
e (2.2)

and calculate the test loss with

r = Rη−s (2.3)

epochs of training. The function f(t, ri) in Algorithm 1 (Line 10)
returns the intermediate test loss of a hyperparameter configuration t
with ri of training epochs. Since the test loss is the metric to measure
the performance of the model, the algorithm keeps only the top 1

η
configurations (Line 13) and repeats the process by increasing the
training epochs by the factor of η until r reaches to resourceR. While
SH introduces the new hyperparameter s, SH aggressively explores
the hyperparameter space as s close to smax while SH with s equal
to zero is equivalent to random search (aggressive exploitation). The
algorithm with one cycle contains (smax + 1) subroutines of SH
attempting different levels of exploration and exploitation with all
possible s values (Line 4).



2.2. PGSR Sampling

As PGSR-HB collects the outputs of the function f , the PGSR-
Sampling sub-routine recovers Fourier basis coefficients of the
Boolean function f using techniques from sparse recovery to reduce
the hyperparameter space. Before we discuss about how PGSR
Sampling works and compare differences with Polynomial Sparse
Recovery in the Harmonica method of [20], we first establish some
standard concepts in Fourier analysis of Boolean functions [21].
Consider a function f defined from {−1, 1}n to R. The Fourier
basis corresponding to any subset of indices S (such that S ⊆ [n]) is
defined as

χS(x) =
∏
i∈S

xi (2.4)

where xi is the ith element of the input vector. Then, the function f
can uniquely expressed as the series of a real multilinear polynomial
basis (or Fourier basis) given by:

f(x) =
∑
S⊆[n]

f̂(S)χS(x) (2.5)

where

f̂(S) = Ex∈{−1,1}n [f(x)χS(x)] (2.6)

where the expectation is taken with respect to the uniform distribution
over the nodes of the n-dimensional hypercube. The restriction [21]
of the Boolean function f by a restriction pair (J, z) where J ⊆ [n]
and z ∈ {−1, 1}J is denoted by the function fJ,z over n − |J |
variables by fixing the variables in J to z.

While Harmonica does not explicitly address how to discretize
continuous hyperparameters, we introduce a simple mathematical
expression that efficiently induces additional sparsity in the Fourier
representation of f . Let x be the m-digit binary number mapping to
the set of integers with cardinality 2m by function g, and y be the n-
digits binary number mapping to the set of numbers with cardinality
2n which are evenly spaced in (0,1] by function h. Then we express
the ith numerical hyperparameter value hpi, for all k categories
(i = 1, . . . , k), in a log-linear manner as follows:

hpi = 10g(x) · h(y) (2.7)

Our experimental results section shows how this simple nonlinear
binning representation induces sparsity on function g, which captures
the value’s order of magnitude. As PGSR returns the features regard
to the function g, the new representation efficiently reduces the hy-
perparameter space. While PSR in Harmonica recovers the Boolean
function with Lasso [22], the intuitive extension (arising from the
above log-linear representation) is to replace sparse recovery with
Group Lasso [23]; this is used in Algorithm 1 (Line 23) as we group
them based on the g and h based on hyperparameter categories. Let
y ∈ Rm be the observation vector; let the hyperparameters be di-
vided into m+ n groups (corresponding to functions g and h) and
let Ψl is the submatrix of Ψ ∈ Rm×(md ) where its columns match
the lth group. Similarly, αl is a weight vector corresponding to the
submatrix Ψl and pl be the length of vector αl. In order to con-
struct the submatrices which are the collection of Fourier basis on
its columns by the hyperparameter structure, let there exist a set of
groups G = {g1, . . . , gm, h1, . . . , hn} as defined above. If there
are k possible combinations of groups from G such that a d-degree
Fourier basis exists, we derive the k submatrices Ψ1, . . . ,Ψk using

Eq. (2.4). Then the problem becomes equivalent to a convex op-
timization problem known as the Group Lasso, represented by the
equation:

min
α

1

2
‖y −

m∑
l=1

Ψlαl‖22 + λ

m∑
l=1

√
pl‖αl‖2 (2.8)

Lastly, the algorithm requires the input ρ which represents a
reset probability parameter that produces random samples from the
original reduced hyperparameter space. This parameter prevents
gathering the biased observations in different PGSR stages, since the
measurements with substantial resources mostly arise from the later
stages of Successive Halving.

2.3. Differences between PGSR-HB and Harmonica

The standard Harmonica method samples the measurements under a
uniform distribution before starting the search algorithm to recover
the function f with PSR (the sparse recovery through l1 penalty, or
standard Lasso). Harmonica requires ML designers to choose the
number of randomly sampled measurements and its resources (train-
ing epochs) before starting the search algorithm. The reliability of
measurements, especially in the deep learning literature, hugely de-
pends on the number of resources used on each sampled point. Invest-
ing enormous resources in recovering Fourier coefficients guarantees
that the Lasso regression performs reliably, but this is inefficient with
respect to total budget; however, collecting the measurements with
small resources would make PSR fail to provide the correct guidance
for the outer search algorithm. We have experimented with other
penalties than the standard L1-penalty: for example, Tikhonov regu-
larization prevents model overfitting particularly in deep architectures.
However, the regularized regression tends to learn slower than the
model without a regularization, consequently misleading the search
algorithm with the worst performance. Since PGSR-HB gathers all
the function outputs – from cheap resources to the most expensive
resources – PGSR-HB eliminates the need to set an explicit number
of samples and training epochs as in Harmonica.

The experimental results in [20] shows significant promise in
finding the influential categorical hyperparameters such as pres-
ence/absence of the Batch-normalization layer, or determining the
descent algorithm (stochastic gradient descent vs. Adam) [both of
which can be represented using binary variables], but limitations
in optimizing the numerical hyperparameters such as learning rate,
weight decay l2 penalty, and batch size. PGSR-HB overcomes this
limitation of Harmonica with the log-linear representation capturing
both order-of-magnitude and details in (2.7) and Group Lasso (2.8).

3. EXPERIMENTAL RESULTS

We verify the robustness of PGSR-HB by generating a test loss sur-
face picking two hyperparameter categories as shown in Figure 1.
We calculate the test loss by training 120 epochs with the standard
benchmark image classification dataset, CIFAR-10. We used the con-
volutional neural network architecture from the cuda-convnet-82%
model that has been used in previous work ([9] and [10]). We specifi-
cally choose the range of learning rate and the weight-decay penalty
on the first convolutional layer to be from 10−6 to 102. We keep the
log scale with base ten on both horizontal and vertical axis to visu-
alize the loss surface with more natural interpretation and dynamic
range on the test loss.

Table 1 compares the performance of PGSR and PSR with (2.7),
and PSR with evenly spaced hyperparameter values in log scale. The



Table 1: Guidance Comparison on Learning Rate and Conv1 L2
Method λ Learn Rate Conv1 Penalty
PGSR 0.5 [10−3,10−2] [10−5,10−4]
PGSR 1.0 [10−3,10−2] [10−5,10−4]
PGSR 2.0 [10−3,10−2] [10−5,10−4]
PSR 0.5 [10−3,10−2] [10−6, 102]
PSR 1.0 [10−4, 10−3] [10−3, 10−2]
PSR 2.0 [100, 102] [10−3, 10−2]

PSR w/o (2.7) 0.5 [10−4, 10−2] [10−6, 10−3]
PSR w/o (2.7) 1.0 [10−4, 10−2] [10−6, 10−3]
PSR w/o (2.7) 2.0 [10−4, 10−2] [10−6, 10−4]

third and fourth columns in Table 1 list the reduced hyperparame-
ter space for learning rate and first convolution layer l2 penalty by
each algorithm. The experiment result shows that (2.7) induces im-
proved sparsity to reduce the space further than the conventional
method. Giving extra information of the hyperparameter structure
with grouping not only helped PGSR to return the correct guidance,
but also provided the stability on the lasso coefficient λ as shown in
the test loss surfaces (Figure 2 and Figure 3) with PGSR results in
Table 1. More results of PGSR guidance with loss surfaces are in
https://chomd90.github.io/.

Table 2: CNN Test Loss and Accuracy on CIFAR-10
Algorithm RS 2x SH HB PGSR-HB

Loss (I) 0.7118 0.7001 0.7150 0.6455
Acc (I) 81.17% 79.69% 78.74% 82.79%

Loss (II) 0.6988 0.7179 0.6921 0.6764
Acc (II) 79.51% 79.30% 81.67% 83.00%

Loss (III) 0.6850 0.6747 0.6960 0.6467
Acc (III) 79.02% 79.80% 81.47% 80.39%
Loss (IV) 0.7293 0.6499 0.7215 0.6619
Acc (IV) 77.70% 80.68% 80.81% 81.64%

Next, we optimize the five categories of hyperparameters includ-
ing the learning rate, three convolution layers’ and a fully connected
dense layer’s Tikhonov regularization constants using the same ar-
chitecture and dataset used in the previous section. We trained the
network using the stochastic gradient descent without a momentum
and included the learning rate decay by a factor 0.1 every 100 epochs
of training. We compare SH, Hyperband, Random Search with dou-
bled budgets and PGSR-HB based on test loss and accuracy. We
set the resource R = 243 and the discard ratio input η = 3 and

Fig. 1: Test loss surface with two hyperparameters. Learning rate vs
conv1 l2 penalty.

Fig. 2: The view from learning rate axis.

Fig. 3: The view from conv1 l2 penalty axis.

allocated the equivalent total budget between the algorithm based on
the training epochs except for Random Search 2x. Setting the total
budget of four cycles of Hyperband and PGSR-HB as the baseline,
Random Search 2x evaluates 288 randomly sampled hyperparameter
configurations with the resource R and SH cycles 24 times as one Hy-
perband contains six subroutine SH. Since the randomness involves
in these hyperparameter optimization algorithms, we compare four
different trials of each algorithms as shown in Table 2. The experi-
ment result verifies the effectiveness of reducing the hyperparameter
space through PGSR as the new algorithm returns better performance
for most of the trials. Moreover, PGSR-HB found the optimal hyper-
parameters returning 83% test accuracy which outperforms the other
algorithms from all trials.

4. CONCLUSION

We proposed a new HPO algorithm which learns the most influential
hyperparameters by carefully tracking loss function (measurement)
history in a Hyperband framework. Our new algorithm is based
on a key modification of polynomial sparse recovery (PSR) that
induces further improvement via a group-sparsity constraint. Future
directions include performing a multi-stage Group Lasso to reduce
hyperparameter space further as we obtain new observations. While
the goal of the HPO problem is to approximate the global minimizer
of the loss over hyperparameter space, HPO methods themselves
require tuning, so a fully automatic ML training method is still of
great interest.

https://chomd90.github.io/


5. REFERENCES
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