
Practical Experience Report: Exploiting Memory Corruption
Vulnerabilities in Connman for IoT Devices

K. Virgil English, Islam Obaidat, and Meera Sridhar

Department of Software and Information Systems, UNC Charlotte, Charlotte, NC, USA
{kenglis8,iobaidat,msridhar}@uncc.edu

Abstract—In the recent past, there has been a rapid increase
in attacks on consumer Internet-of-Things (IoT) devices. Several
attacks currently focus on easy targets for exploitation, such as
weak configurations (weak default passwords). However, with
governments, industries, and organizations proposing new laws
and regulations to reduce and prevent such easy targets in the IoT
space, attackers will move to more subtle exploits in these devices.
Memory corruption vulnerabilities are a significant class of
vulnerabilities in software security through which attackers can
gain control of the entire system. Numerous memory corruption
vulnerabilities have been found in IoT firmware already deployed
in the consumer market.

This paper presents an approach for exploiting stack-based
buffer-overflow attacks in IoT firmware, to hijack the device
remotely. To show the feasibility of this approach, we demonstrate
exploiting a common network software application, Connman,
used widely in IoT firmware such as Samsung smart TVs. A
series of experiments are reported on, including: crashing and
executing arbitrary code in the targeted software application in
a controlled environment, adopting the attacks in uncontrolled
environments (with standard software defenses such as W⊕X and
ASLR enabled), and installing publicly available IoT firmware
that uses this software application on a Raspberry Pi. The
presented exploits demonstrate the ease in which an adversary
can control IoT devices.

I. INTRODUCTION

Vulnerabilities in consumer Internet-of-Things (IoT) devices

are quickly becoming rampant [1–7]. Operational factors such

as low power consumption, business factors such as the need

to keep the cost of the device low and the time to market,

and many consumer IoT device manufacturers failing to adopt

reasonable security practices, lead to the usage of IoT devices

without proper security protection [8–12].

While research efforts in IoT security are invested exten-

sively into IoT system and network security solutions [4],

[13], [14], a NIST report indicates that 77% of all reported

vulnerabilities are in the software applications, not in the

operating systems or networks [15].

Recent work shows the increasing prevalence of memory
corruption vulnerabilities in IoT devices (cf., [16]), largely

due to 66% of embedded software development using the C

language [17], [18], which is highly susceptible to such vul-

nerabilities [19]. Generally, buffer-overflow attacks are among

the most widespread exploitations of memory corruption vul-

nerabilities [20]. In this class of attacks, stack-based buffer-

overflows are among the most dangerous [21].

In this paper, we report on a series of proof-of-concept (PoC)

exploits for a known stack-based buffer-overflow vulnerability,

This research was supported in part by NSF CRII award #1566321

published as CVE-2017-12865 [22], in Connman [23], an

open source lightweight network connection manager software

that is widely used in many IoT firmware such as Nest

thermostats [24], NAO robots [25], [26], and most smart

devices from Samsung such as smart watches and smart TVs.

The buffer-overflow vulnerability exists within the DNS proxy

module of Connman. This allows a crafted DNS response

to be sent to the DNS proxy module of Connman, which

can result in denial-of-service (DoS) or remote code execution
(RCE). To our knowledge, there is no existing PoC available

for CVE-2017-12865.
We first report on a series of PoC exploits conducted in a

controlled environment. For this purpose, we install Connman
in a virtual machine running Ubuntu 16.04 LTS (compatible

with x86) and Ubuntu Mate 16.04 LTS (compatible with

ARMv7), and use gdb in both OSes to construct attacks

that are able to bypass different levels of two standard soft-

ware memory protection defenses, Writable XOR Executable
(W⊕X) [27], [28] and Address Space Layout Randomization
(ASLR) [29]. We begin our experiments with a traditional

code-injection attack. Without W⊕X or ASLR enabled, we

send an unexpected long string in DNS responses that consist

of NOP sled, shellcode, and repeated return address [30].

Then, we assume W⊕X protection is enabled, and construct

an attack to bypass W⊕X. Our last experiment assumes

the device has both W⊕X and ASLR enabled. To bypass

these protection mechanisms, we construct a code-reuse at-
tack (cf., [31]). Our proof-of-concept exploits demonstrate a

method for achieving arbitrary code execution (e.g., spawning

a root shell) through this vulnerability.
Having successful PoC exploits that bypass W⊕X and

ASLR in a controlled environment, we conduct the previous

series of PoC exploits in a non-controlled environment. To

achieve this, we install publicly available IoT firmware that

uses Connman on Raspberry Pi. Next, to conduct a

realistic man-in-the-middle attack scenario, we use a Wi-Fi
Pineapple [32], a wireless network tool that is capable of

impersonating any Wi-Fi SSID scan request, to hijack the

IoT traffic and route it to a fake DNS server that constructs

malicious DNS responses to trigger the vulnerability.
Our main contributions include:

• We construct a series of PoC exploits that can execute

arbitrary commands for a known stack-based buffer-

overflow vulnerability in Connman, a software applica-

tion that is used widely in IoT devices.

• Our exploits are constructed for Connman running on

x86 and ARMv7, under different levels of memory pro-

247

2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

978-1-7281-0057-9/19/$31.00 ©2019 IEEE
DOI 10.1109/DSN.2019.00036

tection techniques, including W⊕X and ASLR.

• We adopt these exploit scenarios in non-controlled envi-

ronments, against IoT devices equipped with Connman.

Our experiments demonstrate that: (i) it is easy for adver-

saries to exploit these types of vulnerabilities even if IoT

devices use standard countermeasures such as W⊕X and

ASLR, and (ii) such vulnerabilities persist, even months after

being discovered, especially in up-to-date IoT devices. We

hope that this study will bring better awareness of these

problems to the software security community and lead to

developing more robust defenses.

Buffer-overflow vulnerabilities are extensively targeted in

traditional systems, and we expect will become popular for

exploits in IoT ecosystems. Such attacks are not yet popular

in the IoT ecosystem since attackers are able to conduct

very low-cost attacks that exploit weak configurations, such

as default passwords. However, we expect that as these basic

security holes such as default or weak passwords are fixed, and

governments and IoT vendors start providing protection and

awareness about the above [33–35], code-injection/code-reuse

attacks will provide fertile ground for IoT attackers [36].

The rest of this paper is organized as follows: Section II

presents an overview of Connman and the targeted vulner-

ability; Section III reports on the construction of the PoCs,

including a discussion of the main challenges that were

encountered; Section IV describes suggested mitigations, and

current work towards them; Section V discusses adapting our

approach to exploit other vulnerabilities; Section VI discusses

related work, and Section VII presents future work.

II. OVERVIEW

In this section, we present an overview of Connman and

its buffer-overflow vulnerability. We selected Connman from

recent work that surveys control-flow hijacking vulnerabilities

in IoT devices [16]. We chose Connman because: (1) it

is a networking application that is used in a large number

of IoT devices, (2) it contains a stack-based buffer-overflow

vulnerability, and (3) adversaries can compromise and control

IoT devices with this vulnerability remotely.

Connman: Connman [23] is an open-source network

management daemon with a lightweight, low overhead design,

ideal for Linux embedded devices. Connman can manage con-

nections over Wi-Fi, Ethernet, cellular, and Bluetooth, using

plug-ins such as oFono [37] and Bluez [38]. This plug-

in based architecture provides customizable implementations,

and allows network functions such as DHCP and DNS to

be handled by one daemon instead of multiple. Connman’s

versatility comes from its ability to be used as a whole or

in parts, allowing Connman to work side-by-side with other

network management software to form a comprehensive suite.

The lightweight and customizable design of Connman make

it ideal for use in IoT devices.

Several smart devices and OSes currently use Connman,

such as Nest thermostats [24], Mer [39], Yocto [40], Jolla

OS [41], Ostro [42], Sailfish OS [43], Tizen OS [44], [45],

Controlled Environment Uncontrolled Environment

DEP
ASLR

VM

HOST

SSID: CAFÉ_NET

Forged SSID: CAFÉ_NET

Wi-Fi Pineapple

MITM

DNS Manipulation

1

2

3

DNS_server.py

DNS_server.py

Fig. 1. Experimental Setup for PoCs

used in most Samsung smart devices including tablets, smart-

phones, netbooks, smart TVs, and other smart home devices.

Connman is also the default network manager for NAO

OS [26], used in NAO robots, and many IoT development

platforms, such as Intel Galileo [46].

Vulnerability: CVE-2017-12865 [22] (henceforth refer-

enced as “the vulnerability”) is a stack-based buffer-overflow

vulnerability in the DNS-proxy feature of Connman 1.34 and

earlier. DNS-proxy sends DNS queries from localhost
to external DNS servers. The received DNS response, if

malformed, can cause a DoS or RCE. This vulnerability is

located in the dnsproxy.c file of Connman.

The parse_response function of dnsproxy.c has

a buffer, name, which is used when Connman expands a

compressed DNS name to cache DNS responses of type
A, which is a 32-bit IPv4 lookup response, or type AAAA,

a 128-bit IPv6 lookup response [47]. For this purpose, the

parse_response function calls get_name function. List-

ing 1 shows the call of memcpy libc function in get_name
function with no proper length checking. The pre-defined limit

of the buffer name size is 1024. A DNS response crafted with

a length over this limit overwrites adjacent memory, allowing

DoS and RCE attacks to be executed.

name [(∗ name len) ++] = l a b e l l e n ;
1 memcpy (name + ∗name len , p + 1 , l a b e l l e n + 1) ;
2 ∗name len += l a b e l l e n ;

Listing 1. Unchecked memcpy used in get_name function

The vulnerability has been patched in subsequent versions

of Connman as of August 2017 [48]. Size checks have been

added to the data to be copied into the name buffer, returning

out if the size is larger than the buffer size. The fixed version,

version 1.35, is the latest release. However, all prior versions

(1.34 and below) contain this vulnerability [49].

III. EXPERIMENTS

An attacker-controlled DNS server can exploit the vulnera-

bility by sending crafted messages to execute a DoS attack. We

construct a PoC to simulate this scenario. We create a simple

DNS server to act as a proxy for Connman’s DNS request.

On receiving a request from Connman, our DNS server sends

248

a Type A response with length greater than the name buffer

size. When Connman decompresses and adds the message to

the name buffer, the application crashes.

For this experiment, we use a 32-bit operating system, as

it more accurately portrays the limited resource environment

of most IoT devices. In this section, we report on six usable

attacks we construct that exploit this vulnerability. The six

attacks are conducted using three protection levels: (1) no

protections enabled, (2) (W⊕X) enabled, and (3) W⊕X with

ASLR enabled. We bypass each protection level on two differ-

ent architectures: Intel x86 architecture running Ubuntu 16.04,

and on a Raspberry Pi 3 Model B v1.2 with ARMv7

architecture running Ubuntu Mate, a popular embedded OS.

Each exploit construction presents its own set of require-

ments and challenges, which we discuss in the following

sections. Our experiments demonstrate that unpatched versions

of the vulnerability are susceptible to attack regardless of

what OS-level protections are present. Specifically, we found

three major embedded operating systems that still contain

vulnerable versions of Connman: the Yocto project, a popular

embedded OS development platform, compiles distributions

with Connman 1.31; OpenELEC, a popular media streaming

OS, comes with Connman 1.34, the last vulnerable version

of Connman; Tizen OS, a bedrock for Samsung devices,

utilizes a vulnerable version of Connman up until version

4.0. Following our successful exploitation of the vulnerability

in a controlled environment, we plan to target all three OSes

for simulated attacks.

Experimental Setup: The goal of all these experiments

is to interrupt the flow of Connman and spawn a root

shell. Connman natively runs with root permissions, so no

permission change is required for this to occur. All code

presented is written in Python.

Due to the nature of the vulnerability in Connman, all

exploits have to be sent over DNS responses, specifically

Type A or Type AAAA responses. We select Type A for

its universality. A basic DNS server is created to respond to

requests. The DNS responses must appear legitimate, other-

wise Connman dumps the packet as a bad response and never

enters the vulnerable portion of code. Our DNS server must

first craft a legitimate response header to each DNS query,

then place the exploit code into the returned record itself. A

simple Python DNS server is created to perform this function,

which copies the relevant portions of the query from the target

machine’s packet, inserts the proper flags, and encodes the

malicious code into the record response.

A. No Protections Enabled

1) Intel x86: Our first experiment constitutes a code-

injection exploit on the x86 architecture. W⊕X, ASLR, and

stack protectors (canaries) are all disabled through compilation

options. With no system protections enabled, we utilize a

standard buffer-overflow attack [30]. Upon confirmation that

Connman does crash as expected with the oversized DNS

Type A response, we begin examining Connman’s runtime

activities using a debugging tool. The tool we select for

use is the GNU Project debugger, gdb, in Ubuntu. Using

gdb, we are able to isolate the sections of memory oc-

cupied by the stack of the parse_response function.

After discovering these memory locations, we construct a

payload to exploit the vulnerability. This payload consists

of a NOP sled [30], consisting of repeated \x90 (xchg
eax, eax) instructions, followed by assembly instructions to

execute execve("/bin/sh", ["/bin/sh"], NULL),

and finishes with repeating new return addresses pointing

at the NOP sled. We pass this payload to Connman via

our man-in-the-middle DNS server, and successfully spawn

a root shell on the targeted machine. Subsequently, the same

attack is successfully carried out against Connman on the x86

architecture without the aid of the gdb debugging tool.

2) ARMv7: : In the next exploit, we recreate the Intel x86

buffer-overflow attack on ARMv7 architecture. We make the

following small changes to adapt the x86 attack to ARMv7

(Raspberry Pi v3b+). Unlike x86, ARMv7 does not have

a single-byte NOP command. Instead, we use a 4-byte code

string, \x01\x10\xa0\xe1, which on ARMv7 translates

to mov r1, r1, an effect-free operation. We modify the

shellcode to utilize ARMv7 assembly instructions instead of

x86. On the ARMv7 platform, a few memory locations that are

overwritten which Connman expects to be NULL in a check

prior to the pop {pc} command in parse_response. We

must place NULL values in these locations for the ARMv7

exploit. This exploit is successful on a default configuration

of Connman, installed with developer provided CFLAGS and

ASLR disabled.

B. W⊕X Enabled

1) Intel x86: Our next experiment targets a successful

exploit with stack execution protections enabled. We use a

return-to-libc [50] attack to create the attack on x86. A

return-to-libc attack leverages the fact that, without ASLR

enabled, the location of libc in system memory is static.

In this manner, functions can be accessed through the libc
library that the target executable does not call. In our case,

it allows us to utilize system(), which is not referenced

within the Connman program. With access to the victim

machine, we again utilize gdb to examine the memory layout

of Connman as it executes. Using gdb, we find the location

of the libc functions system() and exit(), allowing us

to construct the payload. This payload utilizes explicit calls to

the __libc_system() function to execute "/bin/sh"
This attack is successful against x86 architecture.

2) ARMv7: Our next experiment is against the ARMv7

architecture with W⊕X protection. Unlike Intel x86, ARMv7

does not pass arguments directly from the stack. Therefore, a

traditional return-to-libc attack is not possible, as the attack

does not have the ability to manipulate registers. Instead, we

utilize a gadget-based approach for this exploit. Gadgets [50]

are small blocks of assembly code, ending in ret commands

(Intel x86), or a branch or pop pc command (ARMv7), that

chain several instruction sequences together.

249

Our approach can be delineated into three steps: (1) we

locate a gadget that can be used to load arguments into

registers; (2) we use this gadget to load the r0 and r1 registers

with the appropriate arguments; and (3) we load the pc register

with the memory address of execlp@plt, the function we

utilize to switch Connman’s execution and spawn a root shell.
To find an appropriate gadget to load the needed registers,

we utilize the open-source program ropper [51]. Among

other functionality, this program allows an easy way to display

information about a binary, including it’s compiled assembly

instructions (gadgets). With ropper, a suitable gadget is

found, in our case pop {r0, r1, r2, r3, r5, r6,
r7, pc}.

Next, we use this gadget to load the r0 and r1 registers

with the appropriate arguments. For our exploit, these argu-

ments are "/bin/sh" and NULL, respectively. The gadget

in step (1) is used to pop these values from the stack into the

correct registers.
Finally, we utilize the gadget to invoke execlp@plt, a

Procedure Linkage Table (PLT) reference. The PLT allows the

program to make calls from its shared text section to external

functions by loading the memory location of libraries at run-

time and linking to specific functions using their offset from

the start of the memory block [52]. This allows the program

to make external function calls without knowing the memory

address of the program, a requirement for an executable to

function with ASLR enabled. While ASLR is not enabled for

this exploit, making a call in this manner allows us to utilize

the same code in our following ASLR exploit. This call is

made by using the gadget in step (1) to pop the value into the

pc register.

. . .
1 + ’\xb1\x12\x01\x00 ’ #Pop r0−r7 , pc
2 + ’\xe4\x53\xd8\x76 ’ 1 r0 , s t a t i c / bin / sh
3 + ’\x00\x00\x00\x00 ’ # r1 , NULL t o t e r m i n a t e

e x e c l p argument a r r a y
4 + ’\x88\xe9\ x f f \x7e ’ # r2
5 + ’\x97\ x f f \ x f f \ x f f ’ # r3
6 + ’\xc4\xd2\ x f f \x7e ’ # r5
7 + ’\x59\x58\ xf0\x76 ’ # r6
8 + ’\x00\x00\x00\x00 ’ # r7 p l a c e h o l d e r s
9 + ’\xd0\xb2\x01\x00 ’) # pc t o e x e c l p @ p l t

Listing 2. execlp ROP chain for ARMv7

Listing 2 shows the code for this exploit. Line 1 shows the

explicit call to the gadget to load registers r0, r1, and pc.

This gadget pops the next 32 bytes of memory, separating

each 4 bytes and placing them into separate registers. The

gadget loads many more registers than are needed simply to

call execlp@plt. However, utilizing a gadget with fewer

registers results in a SIGSEV in the parse_rr function, as

the locations occupied by line 7 and line 8 overwrite portions

of memory required for a mvn.w call in parse_rr. This

gadget is selected to overcome that obstacle.
Line 2 and Line 3 are the 4 byte values assigned to r0 and

r1 respectively. Line 2 is the static memory location of the

full string /bin/sh, loaded into r0. This string is located

in the libc portion of memory, and is not randomized with

ASLR disabled. Line 3 is a 4 byte NULL sequence, loaded into

r1. These two arguments, /bin/sh and NULL, are loaded

into r0 and r1 to be passed to execlp@plt.

The next 20 bytes (Lines 4-8) are placeholder values.

Starting at line 4, the gadget pops these values into r2, r3,

r5, r6, and r7 respectively. We select the values for these

placeholders after examining the parse_rr function during

run-time, and seeing the expected values for those positions.

Finally, the gadget loads the pc with Connman’s PLT

reference to execlp, which is the 4 bytes located on Line 9.

This executes the execlp@plt function call. execlp is a

member of the exec family, similar to execve. The main

differences are execlp allows the use of relative rather than

explicit addresses for the file to be executed, and allows a

variable number of arguments to be passed. For this reason,

the final argument must be a NULL to indicate the end of the

passed arguments [53], which is the reason for line 3.

With this exploit, we successfully spawn a root shell in

Connman utilizing gdb. The exploit is then successful on

a default installation of Connman without the aid of gdb
and with the developer default CFLAGS enabled. ASLR is not

enabled for this exploit.

C. W⊕X and ASLR Enabled

1) Intel x86: Our third experiment involves constructing an

exploit with both W⊕X and ASLR enabled. Enabling ASLR

prevents our previous attack strategy, ret-to-libc, from

working, as ASLR randomizes the location of libc at run-

time. Without a memory leak exposing the current position

of the library, it becomes difficult for an attacker to reliably

guess the position of needed functions within the library to

make explicit calls.

To circumvent this protection, we employ a return-oriented
programming (ROP) attack [50]. ROP attacks work by chain-

ing gadget calls to redirect the execution of a program to

cause arbitrary actions. Each of these gadgets ends in a ret
instruction, allowing these gadgets to be chained together to

perform complicated, multi-step instructions similar to a code-

injection.

Our ROP attack is conducted in three steps: (1) we

locate necessary gadgets and the characters "/bin/sh"
in Connman memory; (2) using these gadgets and

memcpy@plt, we copy the characters into .bss memory

block to form the string /bin/sh; and (3) we invoke

execlp@plt using the crafted string to spawn a root shell.

On ARMv7, we utilize the program ropper to find the

required gadgets, as discussed in §III-B2. On x86, we use an

open-source program called ROPgadget [54]. ROPgadget
provides similar functionality to ropper, displaying com-

piled binary information. To successfully craft this exploit,

a gadget in the form of pop pop pop ret is found. This

gadget is selected for its ability to remove the next 16 bytes

from the stack. The gadget reference comes directly after the

memcpy@plt reference, allowing the instruction pointer to

remove the arguments (Listing 3 Lines 3-6) before proceeding

on to the next call. The first three pop commands remove the

arguments from the stack, and the final pop removes four

250

. . .
1 + ’\ xf0\x29\x05\x08 ’ # e x e c l p @ p l t
2 + ’\x14\x14\x14\x14 ’ #random b y t e s
3 + ’\x01\x02\x12\x08 ’ # b s s s t r i n g (\ b i n \ sh)
4 + ’\x00\x00\x00\x00 ’ # arg a r r a y (n u l l)

Listing 4. memcpy chain ROP exploit

bytes of random values following the memcpy arguments,

required for the add esp, 0xc; pop ebp; at the end

of the memcpy function.

Next, we combine this gadget with memcpy@plt calls to

craft the string /bin/sh in the .bss portion of memory.

Common practice is to use strcpy to accomplish this

goal. However, Connman contains no references to strcpy,

instead replacing them on compilation with _strpy_chk.

Fortunately, since Connman contains references to memcpy,

we still can craft the needed string. The memcpy function

takes three arguments: src, dest, and length. With the

x86 architecture, these variables can be passed via the stack.

Utilizing memcpy, our goal is to put the string "/bin/sh"
somewhere in Connman’s memory. The .bss section is

selected, as it is uninitialized memory and therefore not

randomized with ASLR. Single character references are found

in Connman using the -memstr argument in ROPGadget.

Using these locations as the source, offsets from the beginning

of the .bss section of memory as the destination, and a length

argument of 1, we successfully craft the "/bin/sh" string

in the .bss.

. . .
1 + memcpy #memcpy@plt r e f e r e n c e
2 + ppppr #pop pop pop pop r e t
3 + ’\x01\x02\x12\x08 ’ # b s s + 1
4 + ’\x54\x81\x04\x08 ’ # ’ / ’
5 + i n t v a l # i n t = 1
6 + g a r b a g e # garbage f o r add esp , 0xC ; pop ebp

; @ memcpy end

Listing 3. memcpy chain ROP exploit

Listing 3 shows the memcpy portion of the ROP chain.

The +memcpy and +pppr references are to .text mem-

ory locations of these gadgets, +int_val is a variable with a

hex value of one (0x00000001), and +garbage is 4 bytes

of random values, specifically \xAA\xAA\xAA\xAA. These

random values are required for the aforementioned code at

the end of memcpy. The code snippet in Listing 3 shows

the portion of code used to copy the "/" character into the

.bss portion of memory. This code block is repeated for

each character of the string /bin/sh, increasing the .bss
offset by one each time until the entire string is copied into

attacker-controlled memory.

Having successfully placed the required string into an

accessible portion of memory, the final step is to craft the

call that utilizes this string to spawn a root shell. To do this,

a execlp@plt call is used, as in §III-B2. Listing 4 shows

the execlp portion of the exploit.

The execlp@plt is the .text memory location of

execlp@plt, the random bytes on line 2 is utilized as a

spacer, since x86 architecture skips 4 bytes when looking

for arguments on the stack, followed by the memory location

of the string we copied into .bss and a memory equivalent

NULL argument. The full ROP exploit code is successful in

spawning a root shell on the target machine.

2) ARMv7: As with x86, we utilize ROP for our ASLR

bypass on the Raspberry Pi. The general structure of the

exploit is the same as in §III-C1 (we locate the required

gadgets, copy the needed string into the .bss portion of

Connman’s memory using memcpy, and call execlp@plt).

However, there are three major differences.

First, ARMv7 arguments must be loaded into registers.

This is addressed in the same manner as in §III-C1. As

previously stated, memcpy takes three arguments: dest, src,

and length. Therefore, the same gadget as §III-C1 is utilized

to load the proper arguments into registers r0, r1, and r2,

respectively. The source of these arguments is the same as the

x86 exploit, although on ARMv7 .bss+4 is used.

Second, the length of the gadget required makes copying

the full /bin/sh string impossible. The length of the gadget

prevents more than three calls from executing, as after the

third call in the ROP chain the exploit is overwritten by data

from a subsequent legitimate function reference. If attempting

to copy the full /bin/sh string, the exploit terminates after

copying /bi and a SIGSEV occurs. However, as mentioned

previously, execlp@plt has the ability to use relative file

addresses. This allows us to copy only sh into the .bss
portion of memory, leaving one function call available to

reference execlp@plt.

The final and most challenging difference is the lack of

a ret; function in ARMv7 assembly. In §III-B2, we use

a pop pc command to invoke execlp@plt. A pop pc
command will not by itself return to the previous location.

Instead, ARMv7 utilizes branch-link calls, such as bl (branch-
link) or blx (branch-link-exchange) [55]. Branch-link stores

the address of the next instruction from the call in r14,

also known as the lr or link register, and changes program

execution to the passed memory location. The called function

can then return to the previous location using a branch

command (b or bx), or if necessary push the value of r14 to

the stack, and return using a pop pc command. A suitable

gadget has to be found to facilitate this behavior in our exploit.

We find a blx r3 gadget in Connman that branch-links to

the value stored in r3. We load r3 with the memory location

of execlp@plt and the pc register with the blx r3 gad

get.

. . .
1 + ’\xb1\x12\x01\x00 ’ #Pop r0−r7 , pc
2 + ’\xc4\x9d\x0b\x00 ’ #1 r0 , b s s +4
3 + ’\x68\x01\x01\x00 ’ #2 r1 , ’ s ’
4 + ’\x01\x00\x00\x00 ’ #3 r2 i n t =1
5 + ’\x98\xb7\x01\x00 ’ #4 r3 = memcpy@plt
6 + ’\xc4\xd2\ x f f \x7e ’ #5 r4
7 + ’\x59\x58\ xf0\x76 ’ #6 r5
8 + ’\x00\x00\x00\x00 ’ #7 r6 − a l l p l a c e h o l d e r s

t o p r e v e n t s i g s e v i n p a r s e r r
9 + ’\x1d\xc3\x01\x00 ’ #8 pc t o b l x r3

10 + ’\x00\x00\x00\x00 ’ # o f f s e t c h a r a c t e r s f o r
b l x

Listing 5. memcpy chain ROP exploit

251

The code to copy the string into .bss is a repeated

occurrence of the contents of Listing 5, as described below.

On Line 1, the same gadget for loading the registers is

used as in §III-B2. The gadget loads register r0 (Line 2) with

the destination argument for memcpy, in our case .bss+4.

We then load r1 (Line 3) with the source argument for

memcpy, in this snippet the location of an ’s’ character in the

.text portion of Connman’s memory. Next, the gadget loads

Register r2 (Line 4) with the length argument for memcpy,

an integer of value 1. Lastly, we load r3 (Line 5) with the

memory address of memcpy@plt. We again load r5, r6,

and r7 with placeholders to prevent SIGSEV in parse_rr.

On Line 9, the gadget loads the pc with the memory

location of the gadget blx {r3} which itself branches to the

location stored in r3, memcpy@plt. The final NULL bytes

on line 10 are an offset for blx, which attempts to return to

4 bytes after its calling in our scenario.

Following a string of these calls to put "sh" into the .bss,

we make a call to execlp@plt in the same manner as in

Listing 2, with the exception of placing the address of bss+4
in Line 2.

This exploit is successful in spawning a root shell under

multiple circumstances, with or without the aid of gdb. We are

able to exploit Connman with ASLR enabled as per system

default settings after boot, and with the developer default

CFLAGS enabled. This exploit is successful with no changes

to the compilation of Connman, the system ASLR or other

settings, or the Connman code.

D. Wi-Fi Pineapple

Having successfully bypassed the targeted protection mech-

anisms, our next experiments focus on conducting the attack

remotely with a man-in-the-middle DNS server. To accomplish

this, we use a Wi-Fi Pineapple [32] to mimic a malicious

access point. The Wi-Fi Pineapple is a mobile access point

designed for network reconnaissance and penetration testing.

With the Pineapple, we simulate a specific class of attacks that

can trigger this vulnerability, namely using a rogue access

point or hijacking device traffic. However, this vulnerability

can be triggered by other classes of attacks. For instance, an

attacker can use a malicious domain and lure a target user

to their site, then use the domain’s DNS server to respond to

queries with the exploit code. A cache poisoning attack could

be used to force traffic to a domain, at which point exploit code

designed to create a botnet could be sent to visitors, allowing

a recreation of the Mirai attack from 2016 [10].

With the Wi-Fi Pineapple, we first remotely exploit

Connman on the x86 architecture. The goal of this experi-

ment is to perform the exploit in conditions similar to those

a malicious adversary might use. We set the Pineapple to

broadcast a trusted network SSID, and configure it to utilize

DHCP to assign our malicious DNS server to clients. The

Wi-Fi Pineapple is able to broadcast a stronger signal than the

legitimate access point, causing our targeted machine to switch

its connection. Once this had been achieved, the malicious

DNS server is able to intercept all DNS requests being sent

from the target machine, and provides responses containing

the exploit code. On the x86 architecture, the only attack we

attempt is the basic stack smash, as a proof of feasibility for

the man-in-the-middle setup.

Once we show the Pineapple is able to be used as a man-in-

the-middle DNS server, we perform all three ARMv7 exploits

against the Raspberry Pi with no configuration changes

except connecting to the SSID broadcast by the Pineapple.

The only network configuration set in the Raspberry Pi
under Ubuntu Mate is to utilize DHCP and automatic DNS

server via DHCP. All three ARMv7 exploits are successful

under these conditions.

IV. SUGGESTED MITIGATIONS

The most immediate mitigation for memory corruption

vulnerabilities is patching. However, this puts the onus on the

code-producer to remedy the issue and ensure a critical mass

of devices are updated by users, an obligation developers and

users have struggled with in the past.

Hardware-supported control flow integrity (CFI) techniques

(e.g., [56]) show promise towards securing IoT firmware

against code-reuse attacks, such as the ones we demonstrate.

Hardware-supported security has now been widely introduced

in many embedded architectures. For example, TrustZone [57],

ARM’s hardware-based security technology (ARM spans 60%

of the current embedded device market [58]), is being adapted

into most ARM processor families, and TrustZone-enabled

devices are expected to reach 1 Trillion by 2035 [59]. Intel

and AMD have also introduced similar technologies [60],

[61]. As the next step in our research, we plan to adapt the

CFICaRE [56] technique to our IoT devices running Connman
to gauge the efficacy of protection against code-reuse attacks

we created, and extend the approach if necessary.

Artificial software diversity (ASD) (cf., [62]) protects

against code-reuse attacks through adding probabilistic pro-

tection to a binary by randomizing program implementa-

tions (i.e., randomizing program data space or control-flow

sequences) [62]. This probabilistic protection implies that

a successful attack is not guaranteed to work on multiple

systems, preventing mass attacks from occurring.

Amongst artificial software diversity techniques, compile-
time software diversity (cf., [63]) might be best suited for IoT

devices. Compile-time software diversity moves the additional

performance overhead away from the IoT device and into the

developer’s space, limiting the impact on device performance.

In particular, code-sequence randomization [63], which makes

use of standard code-rewriting compilation time techniques

such as call-inlining and instruction scheduling, and modifies

them so that the output binary is randomized from one

compilation to the next, requires minimal code-producer and

code-user cooperation to implement, making it ideal for the

“it just works” mindset of IoT.

Equivalent-instruction randomization [62] is another ASD

technique that takes advantage of semantically-equivalent in-

struction sets to randomize binaries. An equivalent-instruction

randomization framework for IoT firmware is currently under

252

development at UNC Charlotte. Specifically, we are using a

combination of equivalent-instruction randomization and other

randomization techniques to randomize compiled programs

into dynamically equivalent binaries.

V. ADAPTING FOR OTHER VULNERABILITIES

Our code can work out-of-the-box (with minimal mod-

ification) against DNS-based overflow vulnerabilities such

as CVE-2017-14493, CVE-2018-9445 and CVE-2018-19278.

CVE-2017-14493 and CVE-2018-9445 are stack-based buffer-

overflows in dnsmasq and systemd, respectively. CVE-

2018-19278 is a buffer-overflow vulnerability in DNS handling

in the Digium Asterisk service. Minimal modification includes

basic changes such as changing variables to memory addresses

suitable for the targeted vulnerability.

With moderate modification, our code can be adapted to

work against a range of protocol-based vulnerabilities. Our

code is designed to deliver a payload from a DNS server. How-

ever, by modifying the packet creation algorithm, along with

previously discussed modifications, overflows in other proto-

cols can be targeted. For example, CVE-2019-8985, CVE-

2019-9125, CVE-2018-6692 (buffer-overflow vulnerabilities

exploitable with HTTP packets) and CVE-2018-20410 (buffer-

overflow vulnerability triggered by a crafted TCP packet) can

be exploited by a modified version of our code. In theory, any

protocol-based overflow vulnerability is susceptible, as long

as the code is modified to craft the appropriate packet, rather

than a DNS packet, and the memory values are changed to

the appropriate context for the targeted vulnerability.

Our general exploit generation and delivery approach can

be used for a wide variety of exploits. Our exploit generation

approach includes methods for examining program memory

to determine the standard behavior of the targeted function,

ascertaining the behavior of the targeted function after passing

it corrupted code, and discovering potential exploit path-

ways within the program (e.g., discovering gadgets within

the program that can be called for a code-reuse attack), as

described in §III. Our novel delivery approach of using the

Wi-Fi Pineapple (which facilitates the often formidable task of

allowing control of a devices communication pathway without

compromising the targeted LAN) can be used effectively

in other exploits widely. In theory, any memory-corruption

vulnerability exploitable from a remote posture would be able

to use our approach.

VI. RELATED WORK

Numerous related works address security issues in embed-

ded systems, and many academic papers attempt to enhance

the security of these systems (e.g., [64–72]). However, most

of these concern cryptographic properties (e.g. confidentiality,

integrity, authentication) and hence do not address the problem

of buffer overflow attacks specifically.

Several works in the literature address defenses for memory-

corruption vulnerabilities (including in traditional software),

such as CFI; we discuss these in detail in §IV.

Other works attempt to make C a safer language (e.g.,

AddressSanitizer [73] and SAFECode [?]). These approaches

utilize array-bound checks (tests performed at run-time to

ensure array accesses are safe) and usually involve two steps.

First, they scan the instruction set of the program for vul-

nerabilities, then insert array-bounds checks at the vulnerable

regions. While these approaches are effective at deterring out-

of-bound memory access, they impose significant overhead on

compiled programs, which is incompatible as-is for IoT. For

instance, AddressSanitizer slows programs by more than 70%,

and increases memory usage by more than 200% [74].

Other related works demonstrate how attackers used IoT

firmware flaws to compromise these devices. Tsoutsos [75]

summarizes different types of attacks that compromise mem-

ory corruption vulnerabilities in embedded systems. How-

ever, no PoCs are provided or discussed for these attacks

in his work. Researchers at Google discovered several buffer

overflow vulnerabilities [76] in Dnsmasq [77], a lightweight

open-source DHCP server and DNS forwarder that is used in

IoT devices to manage the DHCP leases and as a caching

DNS stub resolver. They provide several PoC exploits for

these vulnerabilities [78]. However, these PoCs are limited to

causing a DoS attack in the targeted device that contains the

vulnerable version of Dnsmasq. Caceres expands upon this

by providing a PoC for a return-to-libc exploit against the

Dnsmasq vulnerability [79]. However, while he was successful

in bypassing W⊕X protection he was unable to craft a PoC

to bypass ASLR. Researchers at Senrio security [80] found

a stack-based buffer overflow vulnerability in D-link smart

routers firmware (v1.12) [81]. For this vulnerability, a PoC

that is able to bypass W⊕X and ASLR on MIPS and ARM

architectures by brute-force is available online. However, this

PoC requires LAN access and cannot be exploited remotely.

VII. CONCLUSION

Memory corruption vulnerabilities are the most popular se-

curity vulnerabilities affecting software systems. Stack-based

buffer-overflow is one of the main exploits of memory cor-

ruption vulnerabilities that can cause a DoS or RCE. These

vulnerabilities are also introduced in IoT firmware. In this

paper, we demonstrate several attack scenarios to exploit

a stack-based buffer-overflow vulnerability in Connman for

IoT firmware. In these scenarios, we conduct attacks against

two different architectures, x86 and ARMv7, bypass different

levels of memory protections, W⊕X and ASLR, in a con-

trolled environment. These exploits are then adopted in a non-

controlled environment.

In future work, we plan to attack popular IoT OSes Ti-

zenOS, OpenELEC, and Yocto builds on the ARMv7 architec-

ture. We also plan to build an automated exploit generator for

stack-based buffer-overflow attacks in IoT devices. In addition

to shifting to attacking IoT OSes with our current exploits, we

plan on developing a light-weight stack memory protection

mechanism for IoT devices that address the main challenges

in these devices, such as resource constraints.

253

REFERENCES

[1] M. A. Khan and K. Salah, “IoT security: Review, blockchain solutions,
and open challenges,” Future Generation Computer Systems, vol. 82,
pp. 395–411, 2018.

[2] D. Celebucki, M. A. Lin, and S. Graham, “A security evaluation of
popular internet of things protocols for manufacturers,” in 2018 IEEE
International Conference on Consumer Electronics ICCE,, 2018, pp. 1–
6.

[3] C. Bradley, S. El-Tawab, and M. H. Heydari, “Security analysis of an IoT
system used for indoor localization in healthcare facilities,” in Systems
and Information Engineering Design Symposium SIEDS, 2018, pp. 147–
152.

[4] H. Haddadi, V. Christophides, R. Teixeira, K. Cho, S. Suzuki, and
A. Perrig, “SIOTOME: An edge-isp collaborative architecture for IoT
security,” in Proceedings of the 1st International Workshop on Security
and Privacy for the Internet-of-Things (IoTSec), 2018.

[5] Z. B. Celik, P. McDaniel, and G. Tan, “Soteria: Automated iot safety
and security analysis,” in Proceedings of the USENIX Annual Technical
Conference (USENIX ATC), Boston, MA, 2018, pp. 147–158.

[6] R. Sairam, S. S. Bhunia, V. Thangavelu, and M. Gurusamy, “NETRA:
Enhancing IoT security using nfv-based edge traffic analysis,” arXiv
preprint arXiv:1805.10815, 2018.

[7] H. Mouratidis and V. Diamantopoulou, “A security analysis method
for industrial internet of things,” IEEE Transactions on Industrial
Informatics, 2018.

[8] S. Demetriou, “Analyzing & designing the security of shared resources
on smartphone operating systems,” Ph.D. dissertation, University of
Illinois at Urbana-Champaign, 2018.

[9] E. Bertino and N. Islam, “Botnets and Internet of Things security,”
Computer, no. 2, pp. 76–79, 2017.

[10] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzia, M. Kallitsis
et al., “Understanding the mirai botnet,” in Proceedings of the USENIX
Security Symposium, 2017, pp. 1092–1110.

[11] M. Barnes, “Alexa, are you listening?” http://tinyurl.com/y75t2hzh,
August 2017.

[12] I. Clinton, L. Clinton, and S. Banik, “A survey of various methods for
analyzing the amazon echo,” 2016.

[13] J. Mao, Q. Lin, and J. Bian, “Application of learning algorithms in smart
home IoT system security,” Mathematical Foundations of Computing,
vol. 1, no. 1, pp. 63–76, 2018.

[14] M. Burhanuddin, A. A.-J. Mohammed, R. Ismail, M. E. Hameed,
A. N. Kareem, and H. Basiron, “A review on security challenges
and features in wireless sensor networks: IoT perspective,” Journal
of Telecommunication, Electronic and Computer Engineering JTEC,
vol. 10, no. 1-7, pp. 17–21, 2018.

[15] P. E. Black, L. Feldman, and G. A. Witte, “Dramatically reducing
software vulnerabilities,” https://tinyurl.com/ybqtc7fj, May 2017.

[16] A. Mohanty, I. Obaidat, F. Yilmaz, and M. Sridhar, “Control-hijacking
vulnerabilities in IoT firmware: A brief survey,” in Proceedings of the
1st International Workshop on Security and Privacy for the Internet-of-
Things (IoTSec), 2018.

[17] S. Cass, “The 2015 top ten programming languages,” IEEE Spectrum,
July, vol. 20, 2015.

[18] U. E. Group, “2015 embedded markets study,” http://tinyurl.com/
y9wxg3u7.

[19] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Address obfuscation: An
efficient approach to combat a broad range of memory error exploits.”
in Proceedings of the USENIX Security Symposium, vol. 12, no. 2, 2003,
pp. 291–301.

[20] A. Lautenbach, M. Almgren, and T. Olovsson, “What the stack? on
memory exploitation and protection in resource constrained automotive
systems,” in Critical Information Infrastructures Security, Cham, 2018,
pp. 185–193.

[21] Z. Wang, X. Ding, C. Pang, J. Guo, J. Zhu, and B. Mao, “To detect
stack buffer overflow with polymorphic canaries,” in 2018 48th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works DSN, 2018, pp. 243–254.

[22] “CVE-2017-12865,” Available from MITRE, CVE-ID CVE-2017-
12865, Aug. 29 2017. [Online]. Available: http://tinyurl.com/y2t3hndq

[23] “Connman,” https://01.org/connman.
[24] “Nest,” https://nest.com/thermostats/.
[25] “NAO robot,” https://www.softbankrobotics.com/emea/en/nao.

[26] “OpenNAO - NAO OS,” http://tinyurl.com/y5h8tvf8.
[27] P. Team, https://pax.grsecurity.net/.
[28] Microsoft, “A detailed description of the data execution prevention

DEP feature in windows xp service pack 2, windows xp tablet pc
edition 2005, and windows server 2003,” http://support.microsoft.com/
kb/875352/EN-US/.

[29] P. Team, “Address space layout randomization, mar. 2003,” http://pax.
grsecurity.net/docs/aslr.txt.

[30] A. One, “Smashing the stack for fun and profit,” Phrack, 1996.
[31] P. Larsen and A.-R. Sadeghi, The Continuing Arms Race: Code-reuse

Attacks and Defenses, 2018.
[32] Hak5, “Wifi pineapple,” https://www.wifipineapple.com/, 2018.
[33] “New IoT security rules: Stop using default passwords and allow

software updates,” https://tinyurl.com/yctkfuuj.
[34] “New IoT legislation bans shared default passwords,” http://tinyurl.com/

ybb9f6kp.
[35] “California passes law that bans default passwords in connected de-

vices,” https://tinyurl.com/ycr9bpof.
[36] A. Designer, “Internet of things security vulnerabilities: All about buffer

overflow,” https://tinyurl.com/ybfdaob3.
[37] “oFono,” https://01.org/ofono.
[38] “BlueZ,” http://www.bluez.org/.
[39] “Mer,” http://www.merproject.org/.
[40] “yoctoproject,” https://www.yoctoproject.org/.
[41] “Jolla OS,” https://jolla.com/.
[42] “Configuring an IP address in the ostro os,” Avaliable from

Ostro Documentation. [Online]. Available: https://ostroproject.org/
documentation/howtos/ip-address-config.html

[43] “Sailfish OS,” https://sailfishos.org/.
[44] “tizen,” https://www.tizen.org/.
[45] S. Saxena, “Tizen architecture,” in Tizen Developer Conference, San

Francisco, California, 2012.
[46] M. D. Sousa, Internet of Things with Intel Galileo, 2015.
[47] “CVE-2017-12865 detail,” NATIONAL VULNERABILITY

DATABASE, 2017. [Online]. Available: https://www.cvedetails.com/
cve/CVE-2017-12865/

[48] “Dnsproxy: Fix crash on malformed DNS response,” Avaliable
from Connman git page, Aug. 09 2017. [Online]. Available:
http://tinyurl.com/y6erhvg2

[49] “connman śrc/dnsproxy.c´ stack based buffer overflow vulnerability,”
Securityfocus, 2017. [Online]. Available: https://www.securityfocus.
com/bid/100498

[50] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Proceedings of the 14th ACM
Conference on Computer and Communications Security, Alexandria,
Virginia, USA, 2007, pp. 552–561.

[51] S. Schirra, “Ropper,” https://github.com/sashs/Ropper, 2018.
[52] Oracle, “Procedure linkage table (processor-specific),” http://tinyurl.

com/y2zpweh5, 2018.
[53] “execlp(3): execute file,” https://linux.die.net/man/3/execlp, 2018.
[54] J. Salwan, “Ropgadget tool,” https://github.com/JonathanSalwan/

ROPgadget, 2017.
[55] A. Ltd, “4.8.1. B, BL, BX, BLX, and BXJ,” http://tinyurl.com/j7eo7vn,

2010.
[56] T. Nyman, J.-E. Ekberg, L. Davi, and N. Asokan, “CFI CaRE: Hardware-

supported call and return enforcement for commercial microcontrollers,”
in International Symposium on Research in Attacks, Intrusions, and
Defenses, 2017, pp. 259–284.

[57] A. Ltd, “Arm trustzone technology for armv8-m architecture. version
2.1,” http://tinyurl.com/y3yzz2v8, 2017.

[58] S. Pinto and N. Santos, “Demystifying ARM TrustZone: A comprehen-
sive survey,” ACM Computing Surveys CSUR, vol. 51, no. 6, p. 130,
2019.

[59] P. Sparks, “The route to a trillion devices,” White Paper, ARM, 2017.
[60] D. Kaplan, T. Woller, and J. Powell, “AMD memory encryption tutorial,”

White Paper, 2016.
[61] V. Costan and S. Devadas, “Intel SGX explained.” IACR Cryptology

ePrint Archive, vol. 2016, no. 086, pp. 1–118, 2016.
[62] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “SoK: Automated

software diversity,” in Proceedings of the 2014 IEEE Symposium on
Security and Privacy, 2014, pp. 276–291.

[63] T. Jackson, B. Salamat, A. Homescu, K. Manivannan, G. Wagner,
A. Gal, S. Brunthaler, C. Wimmer, and M. Franz, “Compiler-generated
software diversity,” in Moving Target Defense, 2011, pp. 77–98.

254

[64] D. J. Malan, M. Welsh, and M. D. Smith, “A public-key infrastructure
for key distribution in TinyOS based on elliptic curve cryptography,” in
First Annual IEEE Communications Society Conference on Sensor and
Ad Hoc Communications and Networks IEEE SECON 2004, 2004, pp.
71–80.

[65] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz, “Comparing
elliptic curve cryptography and RSA on 8-bit cpus,” in International
workshop on cryptographic hardware and embedded systems, 2004, pp.
119–132.

[66] S. Sultana, D. Midi, and E. Bertino, “Kinesis: a security incident
response and prevention system for wireless sensor networks,” in Pro-
ceedings of the 12th ACM Conference on Embedded Network Sensor
Systems, 2014, pp. 148–162.

[67] R. Watro, D. Kong, S. fen Cuti, C. Gardiner, C. Lynn, and P. Kruus,
“TinyPK: securing sensor networks with public key technology,” in
Proceedings of the 2nd ACM workshop on Security of ad hoc and sensor
networks, 2004, pp. 59–64.

[68] S. Zhu, S. Setia, and S. Jajodia, “LEAP: Efficient security mechanisms
for large-scale distributed sensor networks,” in Proceedings of the
10th ACM Conference on Computer and Communications Security,
Washington D.C., USA, 2003, pp. 62–72.

[69] A. L. M. Neto, A. L. Souza, I. Cunha, M. Nogueira, I. O. Nunes,
L. Cotta, N. Gentille, A. A. Loureiro, D. F. Aranha, H. K. Patil et al.,
“AoT: Authentication and access control for the entire IoT device life-
cycle,” in Proceedings of the 14th ACM Conference on Embedded
Network Sensor Systems CD-ROM, 2016, pp. 1–15.

[70] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, “Security,
privacy and trust in Internet of Things: The road ahead,” Computer
networks, vol. 76, pp. 146–164, 2015.

[71] S. Gisdakis, T. Giannetsos, and P. Papadimitratos, “SHIELD: A data
verification framework for participatory sensing systems,” in Proceed-
ings of the 8th ACM Conference on Security & Privacy in Wireless and
Mobile Networks, 2015, p. 16.

[72] T. Markmann, T. C. Schmidt, and M. Wählisch, “Federated end-to-end
authentication for the constrained internet of things using ibc and ecc,”
in Proceedings of the 2015 ACM Conference on Special Interest Group
on Data Communication, ser. SIGCOMM ’15. New York, NY, USA:
ACM, 2015, pp. 603–604.

[73] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
sanitizer: A fast address sanity checker.” in Proceedings of the USENIX
Annual Technical Conference, 2012, pp. 309–318.

[74] F. A. Teixeira, F. M. Pereira, H.-C. Wong, J. M. Nogueira, and L. B.
Oliveira, “SIoT: Securing internet of things through distributed systems
analysis,” Future Generation Computer Systems, 2017.

[75] N. G. Tsoutsos and M. Maniatakos, “Anatomy of memory corruption
attacks and mitigations in embedded systems,” IEEE Embedded Systems
Letters, vol. 10, no. 3, pp. 95–98, 2018.

[76] “Behind the masq: Yet more DNS, and DHCP, vulnerabilities,” http:
//tinyurl.com/y7l44lmw.

[77] “Dnsmasq,” http://www.thekelleys.org.uk/dnsmasq/doc.html.
[78] “Google security research PoCs for dnsmasq,” http://tinyurl.com/

ycj23hm4.
[79] “Local privilege escalation exploit/PoC for dnsmasq <v2.78 on vyos,”

http://tinyurl.com/y2qujb2n.
[80] “Enterprise security for IoT,” http://senr.io/.
[81] “400,000 publicly available IoT devices vulnerable to single flaw,” https:

//tinyurl.com/ycb2p7q4.

255

