2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

Practical Experience Report: Exploiting Memory Corruption
Vulnerabilities in Connman for IoT Devices

K. Virgil English, Islam Obaidat, and Meera Sridhar
Department of Software and Information Systems, UNC Charlotte, Charlotte, NC, USA
{kenglis8, iobaidat,msridhar}@uncc.edu

Abstract—In the recent past, there has been a rapid increase
in attacks on consumer Internet-of-Things (IoT) devices. Several
attacks currently focus on easy targets for exploitation, such as
weak configurations (weak default passwords). However, with
governments, industries, and organizations proposing new laws
and regulations to reduce and prevent such easy targets in the IoT
space, attackers will move to more subtle exploits in these devices.
Memory corruption vulnerabilities are a significant class of
vulnerabilities in software security through which attackers can
gain control of the entire system. Numerous memory corruption
vulnerabilities have been found in IoT firmware already deployed
in the consumer market.

This paper presents an approach for exploiting stack-based
buffer-overflow attacks in IoT firmware, to hijack the device
remotely. To show the feasibility of this approach, we demonstrate
exploiting a common network software application, Connman,
used widely in IoT firmware such as Samsung smart TVs. A
series of experiments are reported on, including: crashing and
executing arbitrary code in the targeted software application in
a controlled environment, adopting the attacks in uncontrolled
environments (with standard software defenses such as WdX and
ASLR enabled), and installing publicly available IoT firmware
that uses this software application on a Raspberry Pi. The
presented exploits demonstrate the ease in which an adversary
can control IoT devices.

[. INTRODUCTION

Vulnerabilities in consumer Internet-of-Things (10T) devices
are quickly becoming rampant [1-7]. Operational factors such
as low power consumption, business factors such as the need
to keep the cost of the device low and the time to market,
and many consumer IoT device manufacturers failing to adopt
reasonable security practices, lead to the usage of IoT devices
without proper security protection [8—12].

While research efforts in IoT security are invested exten-
sively into IoT system and network security solutions [4],
[13], [14], a NIST report indicates that 77% of all reported
vulnerabilities are in the software applications, not in the
operating systems or networks [15].

Recent work shows the increasing prevalence of memory
corruption vulnerabilities in IoT devices (cf., [16]), largely
due to 66% of embedded software development using the C
language [17], [18], which is highly susceptible to such vul-
nerabilities [19]. Generally, buffer-overflow attacks are among
the most widespread exploitations of memory corruption vul-
nerabilities [20]. In this class of attacks, stack-based buffer-
overflows are among the most dangerous [21].

In this paper, we report on a series of proof-of-concept (PoC)
exploits for a known stack-based buffer-overflow vulnerability,

This research was supported in part by NSF CRII award #1566321

978-1-7281-0057-9/19/$31.00 ©2019 IEEE
DOI 10.1109/DSN.2019.00036

247

published as CVE-2017-12865 [22], in Connman [23], an
open source lightweight network connection manager software
that is widely used in many IoT firmware such as Nest
thermostats [24], NAO robots [25], [26], and most smart
devices from Samsung such as smart watches and smart TVs.
The buffer-overflow vulnerability exists within the DNS proxy
module of Connman. This allows a crafted DNS response
to be sent to the DNS proxy module of Connman, which
can result in denial-of-service (DoS) or remote code execution
(RCE). To our knowledge, there is no existing PoC available
for CVE-2017-12865.

We first report on a series of PoC exploits conducted in a
controlled environment. For this purpose, we install Connman
in a virtual machine running Ubuntu 16.04 LTS (compatible
with x86) and Ubuntu Mate 16.04 LTS (compatible with
ARMYv7), and use gdb in both OSes to construct attacks
that are able to bypass different levels of two standard soft-
ware memory protection defenses, Writable XOR Executable
(WeX) [27], [28] and Address Space Layout Randomization
(ASLR) [29]. We begin our experiments with a traditional
code-injection attack. Without WdX or ASLR enabled, we
send an unexpected long string in DNS responses that consist
of NOP sled, shellcode, and repeated return address [30].
Then, we assume W®X protection is enabled, and construct
an attack to bypass WéX. Our last experiment assumes
the device has both WX and ASLR enabled. To bypass
these protection mechanisms, we construct a code-reuse at-
tack (cf., [31]). Our proof-of-concept exploits demonstrate a
method for achieving arbitrary code execution (e.g., spawning
a root shell) through this vulnerability.

Having successful PoC exploits that bypass W@®X and
ASLR in a controlled environment, we conduct the previous
series of PoC exploits in a non-controlled environment. To
achieve this, we install publicly available [oT firmware that
uses Connman on Raspberry Pi. Next, to conduct a
realistic man-in-the-middle attack scenario, we use a Wi-Fi
Pineapple [32], a wireless network tool that is capable of
impersonating any Wi-Fi SSID scan request, to hijack the
IoT traffic and route it to a fake DNS server that constructs
malicious DNS responses to trigger the vulnerability.

Our main contributions include:

e We construct a series of PoC exploits that can execute
arbitrary commands for a known stack-based buffer-
overflow vulnerability in Connman, a software applica-
tion that is used widely in IoT devices.

e Our exploits are constructed for Connman running on
x86 and ARMvV7, under different levels of memory pro-

IEEE
computer
® psoaety

tection techniques, including WéX and ASLR.
« We adopt these exploit scenarios in non-controlled envi-
ronments, against IoT devices equipped with Connman.

Our experiments demonstrate that: (i) it is easy for adver-
saries to exploit these types of vulnerabilities even if IoT
devices use standard countermeasures such as W@X and
ASLR, and (ii) such vulnerabilities persist, even months after
being discovered, especially in up-to-date IoT devices. We
hope that this study will bring better awareness of these
problems to the software security community and lead to
developing more robust defenses.

Buffer-overflow vulnerabilities are extensively targeted in
traditional systems, and we expect will become popular for
exploits in IoT ecosystems. Such attacks are not yet popular
in the IoT ecosystem since attackers are able to conduct
very low-cost attacks that exploit weak configurations, such
as default passwords. However, we expect that as these basic
security holes such as default or weak passwords are fixed, and
governments and IoT vendors start providing protection and
awareness about the above [33-35], code-injection/code-reuse
attacks will provide fertile ground for IoT attackers [36].

The rest of this paper is organized as follows: Section II
presents an overview of Connman and the targeted vulner-
ability; Section III reports on the construction of the PoCs,
including a discussion of the main challenges that were
encountered; Section IV describes suggested mitigations, and
current work towards them; Section V discusses adapting our
approach to exploit other vulnerabilities; Section VI discusses
related work, and Section VII presents future work.

II. OVERVIEW

In this section, we present an overview of Connman and
its buffer-overflow vulnerability. We selected Connman from
recent work that surveys control-flow hijacking vulnerabilities
in IoT devices [16]. We chose Connman because: (1) it
is a networking application that is used in a large number
of IoT devices, (2) it contains a stack-based buffer-overflow
vulnerability, and (3) adversaries can compromise and control
IoT devices with this vulnerability remotely.

Connman: Connman [23] is an open-source network
management daemon with a lightweight, low overhead design,
ideal for Linux embedded devices. Connman can manage con-
nections over Wi-Fi, Ethernet, cellular, and Bluetooth, using
plug-ins such as oFono [37] and Bluez [38]. This plug-
in based architecture provides customizable implementations,
and allows network functions such as DHCP and DNS to
be handled by one daemon instead of multiple. Connman’s
versatility comes from its ability to be used as a whole or
in parts, allowing Connman to work side-by-side with other
network management software to form a comprehensive suite.
The lightweight and customizable design of Connman make
it ideal for use in IoT devices.

Several smart devices and OSes currently use Connman,
such as Nest thermostats [24], Mer [39], Yocto [40], Jolla
OS [41], Ostro [42], Sailfish OS [43], Tizen OS [44], [45],

248

Controlled Environment Uncontrolled Environment

o{l Wi-Fi Pineapple
Forged SSID: .CAFLLNLT
H
H
H
® |
H
A O
— i
DNS_server.py H
A)]
T -
] e)
DNS_server.py [

SSID: CAFE_NET

HOST

Fig. 1. Experimental Setup for PoCs

used in most Samsung smart devices including tablets, smart-
phones, netbooks, smart TVs, and other smart home devices.
Connman is also the default network manager for NAO
OS [26], used in NAO robots, and many IoT development
platforms, such as Intel Galileo [46].

Vulnerability: CVE-2017-12865 [22] (henceforth refer-
enced as “the vulnerability”) is a stack-based buffer-overflow
vulnerability in the DNS-proxy feature of Connman 1.34 and
earlier. DNS-proxy sends DNS queries from localhost
to external DNS servers. The received DNS response, if
malformed, can cause a DoS or RCE. This vulnerability is
located in the dnsproxy.c file of Connman.

The parse_response function of dnsproxy.c has
a buffer, name, which is used when Connman expands a
compressed DNS name to cache DNS responses of type
A, which is a 32-bit IPv4 lookup response, or type AAAA,
a 128-bit IPv6 lookup response [47]. For this purpose, the
parse_response function calls get_name function. List-
ing 1 shows the call of memcpy libc function in get_name
function with no proper length checking. The pre-defined limit
of the buffer name size is 1024. A DNS response crafted with
a length over this limit overwrites adjacent memory, allowing
DoS and RCE attacks to be executed.

name [(* name_len)++] = label_len;
1 memcpy(name + xname_len, p + 1, label_len + 1);
2 «name_len += label_len;

Listing 1. Unchecked memcpy used in get_name function

The vulnerability has been patched in subsequent versions
of Connman as of August 2017 [48]. Size checks have been
added to the data to be copied into the name buffer, returning
out if the size is larger than the buffer size. The fixed version,
version 1.35, is the latest release. However, all prior versions
(1.34 and below) contain this vulnerability [49].

III. EXPERIMENTS

An attacker-controlled DNS server can exploit the vulnera-
bility by sending crafted messages to execute a DoS attack. We
construct a PoC to simulate this scenario. We create a simple
DNS server to act as a proxy for Connman’s DNS request.
On receiving a request from Connman, our DNS server sends

a Type A response with length greater than the name buffer
size. When Connman decompresses and adds the message to
the name buffer, the application crashes.

For this experiment, we use a 32-bit operating system, as
it more accurately portrays the limited resource environment
of most IoT devices. In this section, we report on six usable
attacks we construct that exploit this vulnerability. The six
attacks are conducted using three protection levels: (1) no
protections enabled, (2) (W&X) enabled, and (3) WHX with
ASLR enabled. We bypass each protection level on two differ-
ent architectures: Intel x86 architecture running Ubuntu 16.04,
and on a Raspberry Pi 3 Model B v1.2 with ARMv7
architecture running Ubuntu Mate, a popular embedded OS.
Each exploit construction presents its own set of require-
ments and challenges, which we discuss in the following
sections. Our experiments demonstrate that unpatched versions
of the vulnerability are susceptible to attack regardless of
what OS-level protections are present. Specifically, we found
three major embedded operating systems that still contain
vulnerable versions of Connman: the Yocto project, a popular
embedded OS development platform, compiles distributions
with Connman 1.31; OpenELEC, a popular media streaming
OS, comes with Connman 1.34, the last vulnerable version
of Connman; Tizen OS, a bedrock for Samsung devices,
utilizes a vulnerable version of Connman up until version
4.0. Following our successful exploitation of the vulnerability
in a controlled environment, we plan to target all three OSes
for simulated attacks.

Experimental Setup: The goal of all these experiments
is to interrupt the flow of Connman and spawn a root
shell. Connman natively runs with root permissions, so no
permission change is required for this to occur. All code
presented is written in Python.

Due to the nature of the vulnerability in Connman, all
exploits have to be sent over DNS responses, specifically
Type A or Type AAAA responses. We select Type A for
its universality. A basic DNS server is created to respond to
requests. The DNS responses must appear legitimate, other-
wise Connman dumps the packet as a bad response and never
enters the vulnerable portion of code. Our DNS server must
first craft a legitimate response header to each DNS query,
then place the exploit code into the returned record itself. A
simple Python DNS server is created to perform this function,
which copies the relevant portions of the query from the target
machine’s packet, inserts the proper flags, and encodes the
malicious code into the record response.

A. No Protections Enabled

1) Intel x86: Our first experiment constitutes a code-
injection exploit on the x86 architecture. WX, ASLR, and
stack protectors (canaries) are all disabled through compilation
options. With no system protections enabled, we utilize a
standard buffer-overflow attack [30]. Upon confirmation that
Connman does crash as expected with the oversized DNS
Type A response, we begin examining Connman’s runtime
activities using a debugging tool. The tool we select for

249

use is the GNU Project debugger, gdb, in Ubuntu. Using
gdb, we are able to isolate the sections of memory oc-
cupied by the stack of the parse_response function.
After discovering these memory locations, we construct a
payload to exploit the vulnerability. This payload consists
of a NOP sled [30], consisting of repeated \x90 (xchg
eax, eax) instructions, followed by assembly instructions to
execute execve ("/bin/sh", ["/bin/sh"], NULL),
and finishes with repeating new return addresses pointing
at the NOP sled. We pass this payload to Connman via
our man-in-the-middle DNS server, and successfully spawn
a root shell on the targeted machine. Subsequently, the same
attack is successfully carried out against Connman on the x86
architecture without the aid of the gdb debugging tool.

2) ARMv7: : In the next exploit, we recreate the Intel x86
buffer-overflow attack on ARMv7 architecture. We make the
following small changes to adapt the x86 attack to ARMv7
(Raspberry Pi v3b+). Unlike x86, ARMv7 does not have
a single-byte NOP command. Instead, we use a 4-byte code
string, \x01\x10\xa0\xel, which on ARMvV7 translates
to mov rl, rl, an effect-free operation. We modify the
shellcode to utilize ARMv7 assembly instructions instead of
x86. On the ARMv7 platform, a few memory locations that are
overwritten which Connman expects to be NULL in a check
prior to the pop {pc} command in parse_response. We
must place NULL values in these locations for the ARMv7
exploit. This exploit is successful on a default configuration
of Connman, installed with developer provided CFLAGS and
ASLR disabled.

B. W&X Enabled

1) Intel x86: Our next experiment targets a successful
exploit with stack execution protections enabled. We use a
return-to-libc [50] attack to create the attack on x86. A
return-to-libc attack leverages the fact that, without ASLR
enabled, the location of 1ibc in system memory is static.
In this manner, functions can be accessed through the 1ibc
library that the target executable does not call. In our case,
it allows us to utilize system (), which is not referenced
within the Connman program. With access to the victim
machine, we again utilize gdb to examine the memory layout
of Connman as it executes. Using gdb, we find the location
of the 1ibc functions system () and exit (), allowing us
to construct the payload. This payload utilizes explicit calls to
the _ libc_system() function to execute "/bin/sh"
This attack is successful against x86 architecture.

2) ARMv7: Our next experiment is against the ARMv7
architecture with W@ X protection. Unlike Intel x86, ARMv7
does not pass arguments directly from the stack. Therefore, a
traditional return-to-libc attack is not possible, as the attack
does not have the ability to manipulate registers. Instead, we
utilize a gadget-based approach for this exploit. Gadgets [50]
are small blocks of assembly code, ending in ret commands
(Intel x86), or a branch or pop pc command (ARMvV7), that
chain several instruction sequences together.

Our approach can be delineated into three steps: (1) we
locate a gadget that can be used to load arguments into
registers; (2) we use this gadget to load the r0 and r1 registers
with the appropriate arguments; and (3) we load the pc register
with the memory address of execlp@plt, the function we
utilize to switch Connman’s execution and spawn a root shell.

To find an appropriate gadget to load the needed registers,
we utilize the open-source program ropper [51]. Among
other functionality, this program allows an easy way to display
information about a binary, including it’s compiled assembly
instructions (gadgets). With ropper, a suitable gadget is
found, in our case pop {r0, rl, r2, r3, r5, ré6,
r7, pc}.

Next, we use this gadget to load the r0 and r1 registers
with the appropriate arguments. For our exploit, these argu-
ments are "/bin/sh" and NULL, respectively. The gadget
in step (1) is used to pop these values from the stack into the
correct registers.

Finally, we utilize the gadget to invoke execlp@plt, a
Procedure Linkage Table (PLT) reference. The PLT allows the
program to make calls from its shared text section to external
functions by loading the memory location of libraries at run-
time and linking to specific functions using their offset from
the start of the memory block [52]. This allows the program
to make external function calls without knowing the memory
address of the program, a requirement for an executable to
function with ASLR enabled. While ASLR is not enabled for
this exploit, making a call in this manner allows us to utilize
the same code in our following ASLR exploit. This call is
made by using the gadget in step (1) to pop the value into the
pc register.

1 +°\xb1\x12\x01\x00" #Pop r0—r7, pc

2 + ’\xe4\x53\xd8\x76" 1 r0, static /bin/sh

3 +7\x00\x00\x00\x00" # ri, NULL to terminate
execlp argument array

4 +7\x88\xe9\ xff\x7e” # r2

5 +\x97\ x ff\ xfE\ xff* # r3

6 +7\xc4\xd2\ xff\x7e’ # r5

7 +7\x59\x58\ xf0\x76° # r6

8 +’\x00\x00\x00\x00" #r7 placeholders

9 +7\xd0\xb2\x01\x00") #pc to execlp@plt

Listing 2. execlp ROP chain for ARMv7

Listing 2 shows the code for this exploit. Line 1 shows the
explicit call to the gadget to load registers r0, r1, and pc.
This gadget pops the next 32 bytes of memory, separating
each 4 bytes and placing them into separate registers. The
gadget loads many more registers than are needed simply to
call execlp@plt. However, utilizing a gadget with fewer
registers results in a SIGSEV in the parse_rr function, as
the locations occupied by line 7 and line 8 overwrite portions
of memory required for a mvn.w call in parse_rr. This
gadget is selected to overcome that obstacle.

Line 2 and Line 3 are the 4 byte values assigned to rO and
r1 respectively. Line 2 is the static memory location of the
full string /bin/sh, loaded into r0. This string is located
in the 1ibc portion of memory, and is not randomized with
ASLR disabled. Line 3 is a 4 byte NULL sequence, loaded into

250

rl. These two arguments, /bin/sh and NULL, are loaded
into rO and r1 to be passed to execlp@plt.

The next 20 bytes (Lines 4-8) are placeholder values.
Starting at line 4, the gadget pops these values into r2, r3,
r5, r6, and r7 respectively. We select the values for these
placeholders after examining the parse_rr function during
run-time, and seeing the expected values for those positions.

Finally, the gadget loads the pc with Connman’s PLT
reference to execlp, which is the 4 bytes located on Line 9.
This executes the execlp@plt function call. execlp is a
member of the exec family, similar to execve. The main
differences are execlp allows the use of relative rather than
explicit addresses for the file to be executed, and allows a
variable number of arguments to be passed. For this reason,
the final argument must be a NULL to indicate the end of the
passed arguments [53], which is the reason for line 3.

With this exploit, we successfully spawn a root shell in
Connman utilizing gdb. The exploit is then successful on
a default installation of Connman without the aid of gdb
and with the developer default CFLAGS enabled. ASLR is not
enabled for this exploit.

C. WX and ASLR Enabled

1) Intel x86: Our third experiment involves constructing an
exploit with both W@ X and ASLR enabled. Enabling ASLR
prevents our previous attack strategy, ret-to-1libc, from
working, as ASLR randomizes the location of 1ibc at run-
time. Without a memory leak exposing the current position
of the library, it becomes difficult for an attacker to reliably
guess the position of needed functions within the library to
make explicit calls.

To circumvent this protection, we employ a return-oriented
programming (ROP) attack [50]. ROP attacks work by chain-
ing gadget calls to redirect the execution of a program to
cause arbitrary actions. Each of these gadgets ends in a ret
instruction, allowing these gadgets to be chained together to
perform complicated, multi-step instructions similar to a code-
injection.

Our ROP attack is conducted in three steps: (1) we
locate necessary gadgets and the characters "/bin/sh"
in Connman memory; (2) using these gadgets and
memcpy@plt, we copy the characters into .bss memory
block to form the string /bin/sh; and (3) we invoke
execlp@plt using the crafted string to spawn a root shell.

On ARMv7, we utilize the program ropper to find the
required gadgets, as discussed in §III-B2. On x86, we use an
open-source program called ROPgadget [54]. ROPgadget
provides similar functionality to ropper, displaying com-
piled binary information. To successfully craft this exploit,
a gadget in the form of pop pop pop ret is found. This
gadget is selected for its ability to remove the next 16 bytes
from the stack. The gadget reference comes directly after the
memcpy@plt reference, allowing the instruction pointer to
remove the arguments (Listing 3 Lines 3-6) before proceeding
on to the next call. The first three pop commands remove the
arguments from the stack, and the final pop removes four

1 + "\ xf0\x29\x05\x08" #execlp@plt

2 + "\x14\x14\x14\x14" #random bytes

3 + "\x01\x02\x12\x08" #bss string (\bin\sh)

4 + "\x00\x00\x00\x00" #arg array (null)
Listing 4. memcpy chain ROP exploit

bytes of random values following the memcpy arguments,
required for the add esp, Oxc; pop ebp; at the end
of the memcpy function.

Next, we combine this gadget with memcpy@plt calls to
craft the string /bin/sh in the .bss portion of memory.
Common practice is to use strcpy to accomplish this
goal. However, Connman contains no references to st rcpy,
instead replacing them on compilation with _strpy_chk.
Fortunately, since Connman contains references to memcpy,
we still can craft the needed string. The memcpy function
takes three arguments: src, dest, and length. With the
x86 architecture, these variables can be passed via the stack.

Utilizing memcpy, our goal is to put the string " /bin/sh"
somewhere in Connman’s memory. The .bss section is
selected, as it is uninitialized memory and therefore not
randomized with ASLR. Single character references are found
in Connman using the -memstr argument in ROPGadget.
Using these locations as the source, offsets from the beginning
of the . bss section of memory as the destination, and a length
argument of 1, we successfully craft the "/bin/sh" string
in the .bss.

memcpy #memcpy@plt reference

ppppr #pop pop pop pop ret

"\x01\x02\x12\x08" #bss + I

"\ x54\x81\x04\x08" # '/’

int_val # int =1

garbage # garbage for add esp,
; @ memcpy end

(o R N O R S
+ o+ o+t

0xC; pop ebp

Listing 3.

Listing 3 shows the memcpy portion of the ROP chain.

The +memcpy and +pppr references are to . text mem-
ory locations of these gadgets, +int_val is a variable with a
hex value of one (0x00000001), and +garbage is 4 bytes
of random values, specifically \xAA\xAA\xAA\xAA. These
random values are required for the aforementioned code at
the end of memcpy. The code snippet in Listing 3 shows
the portion of code used to copy the " /" character into the
.bss portion of memory. This code block is repeated for
each character of the string /bin/sh, increasing the .bss
offset by one each time until the entire string is copied into
attacker-controlled memory.

Having successfully placed the required string into an
accessible portion of memory, the final step is to craft the
call that utilizes this string to spawn a root shell. To do this,
a execlp@plt call is used, as in §III-B2. Listing 4 shows
the execlp portion of the exploit.

The execlp@plt is the .text memory location of
execlp@plt, the random bytes on line 2 is utilized as a
spacer, since x86 architecture skips 4 bytes when looking
for arguments on the stack, followed by the memory location
of the string we copied into .bss and a memory equivalent

memcpy chain ROP exploit

251

NULL argument. The full ROP exploit code is successful in
spawning a root shell on the target machine.

2) ARMv7: As with x86, we utilize ROP for our ASLR
bypass on the Raspberry Pi. The general structure of the
exploit is the same as in §II-C1 (we locate the required
gadgets, copy the needed string into the .bss portion of
Connman’s memory using memcpy, and call execlp@plt).
However, there are three major differences.

First, ARMv7 arguments must be loaded into registers.
This is addressed in the same manner as in §III-CI1. As
previously stated, memcpy takes three arguments: dest, src,
and length. Therefore, the same gadget as §III-C1 is utilized
to load the proper arguments into registers r0, r1, and r2,
respectively. The source of these arguments is the same as the
x86 exploit, although on ARMv7 .bss+4 is used.

Second, the length of the gadget required makes copying
the full /bin/sh string impossible. The length of the gadget
prevents more than three calls from executing, as after the
third call in the ROP chain the exploit is overwritten by data
from a subsequent legitimate function reference. If attempting
to copy the full /bin/sh string, the exploit terminates after
copying /bi and a SIGSEV occurs. However, as mentioned
previously, execlp@plt has the ability to use relative file
addresses. This allows us to copy only sh into the .bss
portion of memory, leaving one function call available to
reference execlp@plt.

The final and most challenging difference is the lack of
a ret; function in ARMv7 assembly. In §III-B2, we use
a pop pc command to invoke execlp@plt. A pop pc
command will not by itself return to the previous location.
Instead, ARMV7 utilizes branch-link calls, such as b1 (branch-
link) or blx (branch-link-exchange) [55]. Branch-link stores
the address of the next instruction from the call in r14,
also known as the 1r or link register, and changes program
execution to the passed memory location. The called function
can then return to the previous location using a branch
command (b or bx), or if necessary push the value of r14 to
the stack, and return using a pop pc command. A suitable
gadget has to be found to facilitate this behavior in our exploit.
We find a blx r3 gadget in Connman that branch-links to
the value stored in r3. We load r3 with the memory location
of execlp@plt and the pc register with the blx r3 gad
get.

1 +’\xb1\x12\x01\x00" #Pop r0—r7, pc

2 +7\xc4\x9d\x0b\x00"* #I r0, bss+4

3 + *\x68\x01\x01\x00" #2 rl, ’s’

4 +’\x01\x00\x00\x00" #3 r2 int=I

5 +°\x98\xb7\x01\x00" #4 r3 = memcpy@plt

6 +’\xc4\xd2\ xff\x7e’ #5 r4

7 +7\x59\x58\xf0\x76° #6 r5

8 +7\x00\x00\x00\x00" #7 r6 — all placeholders
to prevent sigsev in parse_rr

9 +°\x1d\xc3\x01\x00" #8 pc to blx r3

10 + *\x00\x00\x00\x00" #offset characters for
blx
Listing 5. memcpy chain ROP exploit

The code to copy the string into .bss is a repeated
occurrence of the contents of Listing 5, as described below.

On Line 1, the same gadget for loading the registers is
used as in §III-B2. The gadget loads register O (Line 2) with
the destination argument for memcpy, in our case .bss+4.
We then load rl (Line 3) with the source argument for
memcpy, in this snippet the location of an * s’ character in the
. text portion of Connman’s memory. Next, the gadget loads
Register r2 (Line 4) with the 1ength argument for memcpy,
an integer of value 1. Lastly, we load r3 (Line 5) with the
memory address of memcpy@plt. We again load r5, re6,
and r7 with placeholders to prevent SIGSEV in parse_rr.

On Line 9, the gadget loads the pc with the memory
location of the gadget b1x {r3} which itself branches to the
location stored in r3, memcpy@plt. The final NULL bytes
on line 10 are an offset for b1x, which attempts to return to
4 bytes after its calling in our scenario.

Following a string of these calls to put "sh" into the .bss,
we make a call to execlp@plt in the same manner as in
Listing 2, with the exception of placing the address of bss+4
in Line 2.

This exploit is successful in spawning a root shell under
multiple circumstances, with or without the aid of gdb. We are
able to exploit Connman with ASLR enabled as per system
default settings after boot, and with the developer default
CFLAGS enabled. This exploit is successful with no changes
to the compilation of Connman, the system ASLR or other
settings, or the Connman code.

D. Wi-Fi Pineapple

Having successfully bypassed the targeted protection mech-
anisms, our next experiments focus on conducting the attack
remotely with a man-in-the-middle DNS server. To accomplish
this, we use a Wi-Fi Pineapple [32] to mimic a malicious
access point. The Wi-Fi Pineapple is a mobile access point
designed for network reconnaissance and penetration testing.
With the Pineapple, we simulate a specific class of attacks that
can trigger this vulnerability, namely using a rogue access
point or hijacking device traffic. However, this vulnerability
can be triggered by other classes of attacks. For instance, an
attacker can use a malicious domain and lure a target user
to their site, then use the domain’s DNS server to respond to
queries with the exploit code. A cache poisoning attack could
be used to force traffic to a domain, at which point exploit code
designed to create a botnet could be sent to visitors, allowing
a recreation of the Mirai attack from 2016 [10].

With the Wi-Fi Pineapple, we first remotely exploit
Connman on the x86 architecture. The goal of this experi-
ment is to perform the exploit in conditions similar to those
a malicious adversary might use. We set the Pineapple to
broadcast a trusted network SSID, and configure it to utilize
DHCP to assign our malicious DNS server to clients. The
Wi-Fi Pineapple is able to broadcast a stronger signal than the
legitimate access point, causing our targeted machine to switch
its connection. Once this had been achieved, the malicious
DNS server is able to intercept all DNS requests being sent

252

from the target machine, and provides responses containing
the exploit code. On the x86 architecture, the only attack we
attempt is the basic stack smash, as a proof of feasibility for
the man-in-the-middle setup.

Once we show the Pineapple is able to be used as a man-in-
the-middle DNS server, we perform all three ARMv7 exploits
against the Raspberry Pi with no configuration changes
except connecting to the SSID broadcast by the Pineapple.
The only network configuration set in the Raspberry Pi
under Ubuntu Mate is to utilize DHCP and automatic DNS
server via DHCP. All three ARMv7 exploits are successful
under these conditions.

IV. SUGGESTED MITIGATIONS

The most immediate mitigation for memory corruption
vulnerabilities is patching. However, this puts the onus on the
code-producer to remedy the issue and ensure a critical mass
of devices are updated by users, an obligation developers and
users have struggled with in the past.

Hardware-supported control flow integrity (CFI) techniques
(e.g., [56]) show promise towards securing IoT firmware
against code-reuse attacks, such as the ones we demonstrate.
Hardware-supported security has now been widely introduced
in many embedded architectures. For example, TrustZone [57],
ARM’s hardware-based security technology (ARM spans 60%
of the current embedded device market [58]), is being adapted
into most ARM processor families, and TrustZone-enabled
devices are expected to reach 1 Trillion by 2035 [59]. Intel
and AMD have also introduced similar technologies [60],
[61]. As the next step in our research, we plan to adapt the
CFICaRE [56] technique to our IoT devices running Connman
to gauge the efficacy of protection against code-reuse attacks
we created, and extend the approach if necessary.

Artificial software diversity (ASD) (cf., [62]) protects
against code-reuse attacks through adding probabilistic pro-
tection to a binary by randomizing program implementa-
tions (i.e., randomizing program data space or control-flow
sequences) [62]. This probabilistic protection implies that
a successful attack is not guaranteed to work on multiple
systems, preventing mass attacks from occurring.

Amongst artificial software diversity techniques, compile-
time software diversity (cf., [63]) might be best suited for IoT
devices. Compile-time software diversity moves the additional
performance overhead away from the IoT device and into the
developer’s space, limiting the impact on device performance.
In particular, code-sequence randomization [63], which makes
use of standard code-rewriting compilation time techniques
such as call-inlining and instruction scheduling, and modifies
them so that the output binary is randomized from one
compilation to the next, requires minimal code-producer and
code-user cooperation to implement, making it ideal for the
“it just works” mindset of IoT.

Equivalent-instruction randomization [62] is another ASD
technique that takes advantage of semantically-equivalent in-
struction sets to randomize binaries. An equivalent-instruction
randomization framework for IoT firmware is currently under

development at UNC Charlotte. Specifically, we are using a
combination of equivalent-instruction randomization and other
randomization techniques to randomize compiled programs
into dynamically equivalent binaries.

V. ADAPTING FOR OTHER VULNERABILITIES

Our code can work out-of-the-box (with minimal mod-
ification) against DNS-based overflow vulnerabilities such
as CVE-2017-14493, CVE-2018-9445 and CVE-2018-19278.
CVE-2017-14493 and CVE-2018-9445 are stack-based buffer-
overflows in dnsmasq and systemd, respectively. CVE-
2018-19278 is a buffer-overflow vulnerability in DNS handling
in the Digium Asterisk service. Minimal modification includes
basic changes such as changing variables to memory addresses
suitable for the targeted vulnerability.

With moderate modification, our code can be adapted to
work against a range of protocol-based vulnerabilities. Our
code is designed to deliver a payload from a DNS server. How-
ever, by modifying the packet creation algorithm, along with
previously discussed modifications, overflows in other proto-
cols can be targeted. For example, CVE-2019-8985, CVE-
2019-9125, CVE-2018-6692 (buffer-overflow vulnerabilities
exploitable with HTTP packets) and CVE-2018-20410 (buffer-
overflow vulnerability triggered by a crafted TCP packet) can
be exploited by a modified version of our code. In theory, any
protocol-based overflow vulnerability is susceptible, as long
as the code is modified to craft the appropriate packet, rather
than a DNS packet, and the memory values are changed to
the appropriate context for the targeted vulnerability.

Our general exploit generation and delivery approach can
be used for a wide variety of exploits. Our exploit generation
approach includes methods for examining program memory
to determine the standard behavior of the targeted function,
ascertaining the behavior of the targeted function after passing
it corrupted code, and discovering potential exploit path-
ways within the program (e.g., discovering gadgets within
the program that can be called for a code-reuse attack), as
described in §III. Our novel delivery approach of using the
Wi-Fi Pineapple (which facilitates the often formidable task of
allowing control of a devices communication pathway without
compromising the targeted LAN) can be used effectively
in other exploits widely. In theory, any memory-corruption
vulnerability exploitable from a remote posture would be able
to use our approach.

VI. RELATED WORK

Numerous related works address security issues in embed-
ded systems, and many academic papers attempt to enhance
the security of these systems (e.g., [64—72]). However, most
of these concern cryptographic properties (e.g. confidentiality,
integrity, authentication) and hence do not address the problem
of buffer overflow attacks specifically.

Several works in the literature address defenses for memory-
corruption vulnerabilities (including in traditional software),
such as CFI; we discuss these in detail in §IV.

253

Other works attempt to make C a safer language (e.g.,
AddressSanitizer [73] and SAFECode [?]). These approaches
utilize array-bound checks (tests performed at run-time to
ensure array accesses are safe) and usually involve two steps.
First, they scan the instruction set of the program for vul-
nerabilities, then insert array-bounds checks at the vulnerable
regions. While these approaches are effective at deterring out-
of-bound memory access, they impose significant overhead on
compiled programs, which is incompatible as-is for [oT. For
instance, AddressSanitizer slows programs by more than 70%,
and increases memory usage by more than 200% [74].

Other related works demonstrate how attackers used IoT
firmware flaws to compromise these devices. Tsoutsos [75]
summarizes different types of attacks that compromise mem-
ory corruption vulnerabilities in embedded systems. How-
ever, no PoCs are provided or discussed for these attacks
in his work. Researchers at Google discovered several buffer
overflow vulnerabilities [76] in Dnsmasq [77], a lightweight
open-source DHCP server and DNS forwarder that is used in
IoT devices to manage the DHCP leases and as a caching
DNS stub resolver. They provide several PoC exploits for
these vulnerabilities [78]. However, these PoCs are limited to
causing a DoS attack in the targeted device that contains the
vulnerable version of Dnsmasq. Caceres expands upon this
by providing a PoC for a return-to-libc exploit against the
Dnsmasq vulnerability [79]. However, while he was successful
in bypassing WX protection he was unable to craft a PoC
to bypass ASLR. Researchers at Senrio security [80] found
a stack-based buffer overflow vulnerability in D-link smart
routers firmware (v1.12) [81]. For this vulnerability, a PoC
that is able to bypass W®X and ASLR on MIPS and ARM
architectures by brute-force is available online. However, this
PoC requires LAN access and cannot be exploited remotely.

VII. CONCLUSION

Memory corruption vulnerabilities are the most popular se-
curity vulnerabilities affecting software systems. Stack-based
buffer-overflow is one of the main exploits of memory cor-
ruption vulnerabilities that can cause a DoS or RCE. These
vulnerabilities are also introduced in IoT firmware. In this
paper, we demonstrate several attack scenarios to exploit
a stack-based buffer-overflow vulnerability in Connman for
IoT firmware. In these scenarios, we conduct attacks against
two different architectures, x86 and ARMv7, bypass different
levels of memory protections, WdX and ASLR, in a con-
trolled environment. These exploits are then adopted in a non-
controlled environment.

In future work, we plan to attack popular IoT OSes Ti-
zenOS, OpenELEC, and Yocto builds on the ARMv7 architec-
ture. We also plan to build an automated exploit generator for
stack-based buffer-overflow attacks in IoT devices. In addition
to shifting to attacking IoT OSes with our current exploits, we
plan on developing a light-weight stack memory protection
mechanism for [oT devices that address the main challenges
in these devices, such as resource constraints.

(1]

S

[5

[6

—

(91
[10]

(1]
[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

[20]

[21]

[22]

[23]
[24]
[25]

REFERENCES

M. A. Khan and K. Salah, “IoT security: Review, blockchain solutions,
and open challenges,” Future Generation Computer Systems, vol. 82,
pp. 395411, 2018.

D. Celebucki, M. A. Lin, and S. Graham, “A security evaluation of
popular internet of things protocols for manufacturers,” in 2018 IEEE
International Conference on Consumer Electronics ICCE,, 2018, pp. 1-
6.

C. Bradley, S. El-Tawab, and M. H. Heydari, “Security analysis of an IoT
system used for indoor localization in healthcare facilities,” in Systems
and Information Engineering Design Symposium SIEDS, 2018, pp. 147—
152.

H. Haddadi, V. Christophides, R. Teixeira, K. Cho, S. Suzuki, and
A. Perrig, “SIOTOME: An edge-isp collaborative architecture for IoT
security,” in Proceedings of the 1st International Workshop on Security
and Privacy for the Internet-of-Things (loTSec), 2018.

Z. B. Celik, P. McDaniel, and G. Tan, “Soteria: Automated iot safety
and security analysis,” in Proceedings of the USENIX Annual Technical
Conference (USENIX ATC), Boston, MA, 2018, pp. 147-158.

R. Sairam, S. S. Bhunia, V. Thangavelu, and M. Gurusamy, “NETRA:
Enhancing IoT security using nfv-based edge traffic analysis,” arXiv
preprint arXiv:1805.10815, 2018.

H. Mouratidis and V. Diamantopoulou, “A security analysis method
for industrial internet of things,” IEEE Transactions on Industrial
Informatics, 2018.

S. Demetriou, “Analyzing & designing the security of shared resources
on smartphone operating systems,” Ph.D. dissertation, University of
Illinois at Urbana-Champaign, 2018.

E. Bertino and N. Islam, “Botnets and Internet of Things security,”
Computer, no. 2, pp. 76-79, 2017.

M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzia, M. Kallitsis
et al., “Understanding the mirai botnet,” in Proceedings of the USENIX
Security Symposium, 2017, pp. 1092-1110.

M. Barnes, “Alexa, are you listening?” http://tinyurl.com/y75t2hzh,
August 2017.

I. Clinton, L. Clinton, and S. Banik, “A survey of various methods for
analyzing the amazon echo,” 2016.

J. Mao, Q. Lin, and J. Bian, “Application of learning algorithms in smart
home IoT system security,” Mathematical Foundations of Computing,
vol. 1, no. 1, pp. 63-76, 2018.

M. Burhanuddin, A. A.-J. Mohammed, R. Ismail, M. E. Hameed,
A. N. Kareem, and H. Basiron, “A review on security challenges
and features in wireless sensor networks: IoT perspective,” Journal
of Telecommunication, Electronic and Computer Engineering JTEC,
vol. 10, no. 1-7, pp. 17-21, 2018.

P. E. Black, L. Feldman, and G. A. Witte, “Dramatically reducing
software vulnerabilities,” https:/tinyurl.com/ybqtc7fj, May 2017.

A. Mohanty, I. Obaidat, F. Yilmaz, and M. Sridhar, “Control-hijacking
vulnerabilities in IoT firmware: A brief survey,” in Proceedings of the
1Ist International Workshop on Security and Privacy for the Internet-of-
Things (IoTSec), 2018.

S. Cass, “The 2015 top ten programming languages,” IEEE Spectrum,
July, vol. 20, 2015.

U. E. Group, “2015 embedded markets study,” http://tinyurl.com/
y9wxg3u7.

S. Bhatkar, D. C. DuVarney, and R. Sekar, “Address obfuscation: An
efficient approach to combat a broad range of memory error exploits.”
in Proceedings of the USENIX Security Symposium, vol. 12, no. 2, 2003,
pp. 291-301.

A. Lautenbach, M. Almgren, and T. Olovsson, “What the stack? on
memory exploitation and protection in resource constrained automotive
systems,” in Critical Information Infrastructures Security, Cham, 2018,
pp. 185-193.

Z. Wang, X. Ding, C. Pang, J. Guo, J. Zhu, and B. Mao, “To detect
stack buffer overflow with polymorphic canaries,” in 2018 48th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works DSN, 2018, pp. 243-254.

“CVE-2017-12865,” Available from MITRE, CVE-ID CVE-2017-
12865, Aug. 29 2017. [Online]. Available: http://tinyurl.com/y2t3hndq
“Connman,” https://01.org/connman.

“Nest,” https://nest.com/thermostats/.

“NAO robot,” https://www.softbankrobotics.com/emea/en/nao.

254

[26]
[27]
[28]

[29]

[30]
[31]

[32]
[33]

[34]
[35]
[36]
[37]
[38]
[39]
[40]

[41]
[42]

[43]
[44]
[45]
[46]
[47]
[48]
[49]

[50]

[51]
[52]

[53]
[54]

[55]

[56]

[57]
[58]
[59]
[60]
[61]

[62]

[63]

“OpenNAO - NAO OS.” http://tinyurl.com/y5h8tvf8.

P. Team, https://pax.grsecurity.net/.

Microsoft, “A detailed description of the data execution prevention
DEP feature in windows xp service pack 2, windows xp tablet pc
edition 2005, and windows server 2003,” http://support.microsoft.com/
kb/875352/EN-US/.

P. Team, “Address space layout randomization, mar. 2003,” http://pax.
grsecurity.net/docs/aslr.txt.

A. One, “Smashing the stack for fun and profit,” Phrack, 1996.

P. Larsen and A.-R. Sadeghi, The Continuing Arms Race: Code-reuse
Attacks and Defenses, 2018.

Hak5, “Wifi pineapple,” https://www.wifipineapple.com/, 2018.

“New IoT security rules: Stop using default passwords and allow
software updates,” https://tinyurl.com/yctkfuuj.

“New IoT legislation bans shared default passwords,” http://tinyurl.com/
ybb9fokp.

“California passes law that bans default passwords in connected de-
vices,” https:/tinyurl.com/ycr9bpof.

A. Designer, “Internet of things security vulnerabilities: All about buffer
overflow,” https://tinyurl.com/ybfdaob3.

“oFono,” https://01.org/ofono.

“BlueZ,” http://www.bluez.org/.

“Mer,” http://www.merproject.org/.

“yoctoproject,” https://www.yoctoproject.org/.

“Jolla OS,” https://jolla.com/.

“Configuring an IP address in the ostro o0s,” Avaliable from
Ostro Documentation. [Online]. Available: https://ostroproject.org/
documentation/howtos/ip-address-config.html

“Sailfish OS,” https://sailfishos.org/.

“tizen,” https://www.tizen.org/.

S. Saxena, “Tizen architecture,” in Tizen Developer Conference, San
Francisco, California, 2012.

M. D. Sousa, Internet of Things with Intel Galileo, 2015.
“CVE-2017-12865 detail,” NATIONAL VULNERABILITY
DATABASE, 2017. [Online]. Available: https://www.cvedetails.com/
cve/CVE-2017-12865/

“Dnsproxy: Fix crash on malformed DNS response,”
from Connman git page, Aug. 09 2017. [Online].
http://tinyurl.com/y6erhvg2

“connman §rc/dnsproxy.c” stack based buffer overflow vulnerability,”
Securityfocus, 2017. [Online]. Available: https://www.securityfocus.
com/bid/100498

H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Proceedings of the 14th ACM
Conference on Computer and Communications Security, Alexandria,
Virginia, USA, 2007, pp. 552-561.

S. Schirra, “Ropper,” https://github.com/sashs/Ropper, 2018.

Oracle, “Procedure linkage table (processor-specific),” http://tinyurl.
com/y2zpweh5, 2018.

“execlp(3): execute file,” https:/linux.die.net/man/3/execlp, 2018.

J. Salwan, “Ropgadget tool,” https://github.com/JonathanSalwan/
ROPgadget, 2017.

A. Ltd, “4.8.1. B, BL, BX, BLX, and BXJ,” http://tinyurl.com/j7eo7vn,
2010.

T. Nyman, J.-E. Ekberg, L. Davi, and N. Asokan, “CFI CaRE: Hardware-
supported call and return enforcement for commercial microcontrollers,”
in International Symposium on Research in Attacks, Intrusions, and
Defenses, 2017, pp. 259-284.

A. Ltd, “Arm trustzone technology for armv8-m architecture. version
2.1,” http://tinyurl.com/y3yzz2v8, 2017.

S. Pinto and N. Santos, “Demystifying ARM TrustZone: A comprehen-
sive survey,” ACM Computing Surveys CSUR, vol. 51, no. 6, p. 130,
2019.

P. Sparks, “The route to a trillion devices,” White Paper, ARM, 2017.
D. Kaplan, T. Woller, and J. Powell, “AMD memory encryption tutorial,”
White Paper, 2016.

V. Costan and S. Devadas, “Intel SGX explained.” JACR Cryptology
ePrint Archive, vol. 2016, no. 086, pp. 1-118, 2016.

P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “SoK: Automated
software diversity,” in Proceedings of the 2014 IEEE Symposium on
Security and Privacy, 2014, pp. 276-291.

T. Jackson, B. Salamat, A. Homescu, K. Manivannan, G. Wagner,
A. Gal, S. Brunthaler, C. Wimmer, and M. Franz, “Compiler-generated
software diversity,” in Moving Target Defense, 2011, pp. 77-98.

Avaliable
Available:

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]
[78]

[79]

[80]
[81]

D. J. Malan, M. Welsh, and M. D. Smith, “A public-key infrastructure
for key distribution in TinyOS based on elliptic curve cryptography,” in
First Annual IEEE Communications Society Conference on Sensor and
Ad Hoc Communications and Networks IEEE SECON 2004, 2004, pp.
71-80.

N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz, “Comparing
elliptic curve cryptography and RSA on 8-bit cpus,” in International
workshop on cryptographic hardware and embedded systems, 2004, pp.
119-132.

S. Sultana, D. Midi, and E. Bertino, “Kinesis: a security incident
response and prevention system for wireless sensor networks,” in Pro-
ceedings of the 12th ACM Conference on Embedded Network Sensor
Systems, 2014, pp. 148-162.

R. Watro, D. Kong, S. fen Cuti, C. Gardiner, C. Lynn, and P. Kruus,
“TinyPK: securing sensor networks with public key technology,” in
Proceedings of the 2nd ACM workshop on Security of ad hoc and sensor
networks, 2004, pp. 59-64.

S. Zhu, S. Setia, and S. Jajodia, “LEAP: Efficient security mechanisms
for large-scale distributed sensor networks,” in Proceedings of the
10th ACM Conference on Computer and Communications Security,
Washington D.C., USA, 2003, pp. 62-72.

A. L. M. Neto, A. L. Souza, I. Cunha, M. Nogueira, I. O. Nunes,
L. Cotta, N. Gentille, A. A. Loureiro, D. F. Aranha, H. K. Patil et al.,
“AoT: Authentication and access control for the entire IoT device life-
cycle,” in Proceedings of the 14th ACM Conference on Embedded
Network Sensor Systems CD-ROM, 2016, pp. 1-15.

S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, “Security,
privacy and trust in Internet of Things: The road ahead,” Computer
networks, vol. 76, pp. 146-164, 2015.

S. Gisdakis, T. Giannetsos, and P. Papadimitratos, “SHIELD: A data
verification framework for participatory sensing systems,” in Proceed-
ings of the 8th ACM Conference on Security & Privacy in Wireless and
Mobile Networks, 2015, p. 16.

T. Markmann, T. C. Schmidt, and M. Wibhlisch, “Federated end-to-end
authentication for the constrained internet of things using ibc and ecc,”
in Proceedings of the 2015 ACM Conference on Special Interest Group
on Data Communication, ser. SIGCOMM ’15. New York, NY, USA:
ACM, 2015, pp. 603-604.

K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
sanitizer: A fast address sanity checker.” in Proceedings of the USENIX
Annual Technical Conference, 2012, pp. 309-318.

F. A. Teixeira, F. M. Pereira, H.-C. Wong, J. M. Nogueira, and L. B.
Oliveira, “SIoT: Securing internet of things through distributed systems
analysis,” Future Generation Computer Systems, 2017.

N. G. Tsoutsos and M. Maniatakos, “Anatomy of memory corruption
attacks and mitigations in embedded systems,” IEEE Embedded Systems
Letters, vol. 10, no. 3, pp. 95-98, 2018.

“Behind the masq: Yet more DNS, and DHCP, vulnerabilities,” http:
/Mtinyurl.com/y7144lmw.

“Dnsmasq,” http://www.thekelleys.org.uk/dnsmasq/doc.html.

“Google security research PoCs for dnsmasq,” http://tinyurl.com/
ycj23hm4.

“Local privilege escalation exploit/PoC for dnsmasq <v2.78 on vyos,”
http://tinyurl.com/y2qujb2n.

“Enterprise security for IoT,” http://senr.io/.

“400,000 publicly available IoT devices vulnerable to single flaw,” https:
/Mtinyurl.com/ycb2p7q4.

255

