SEMCLUSTER: Clustering of Imperative Programming
Assignments Based on Quantitative Semantic Features

David M. Perry
Purdue University, USA
perry74@purdue.edu

Roopsha Samanta
Purdue University, USA
roopsha@purdue.edu

Abstract

A fundamental challenge in automated reasoning about pro-
gramming assignments at scale is clustering student submis-
sions based on their underlying algorithms. State-of-the-art
clustering techniques are sensitive to control structure vari-
ations, cannot cluster buggy solutions with similar correct
solutions, and either require expensive pair-wise program
analyses or training efforts. We propose a novel technique
that can cluster small imperative programs based on their
algorithmic essence: (A) how the input space is partitioned
into equivalence classes and (B) how the problem is uniquely
addressed within individual equivalence classes. We cap-
ture these algorithmic aspects as two quantitative semantic
program features that are merged into a program’s vector
representation. Programs are then clustered using their vec-
tor representations. The computation of our first semantic
feature leverages model counting to identify the number of
inputs belonging to an input equivalence class. The com-
putation of our second semantic feature abstracts the pro-
gram’s data flow by tracking the number of occurrences
of a unique pair of consecutive values of a variable dur-
ing its lifetime. The comprehensive evaluation of our tool
SEMCLUSTER on benchmarks drawn from solutions to small
programming assignments shows that SEMCLUSTER (1) gen-
erates far fewer clusters than other clustering techniques,
(2) precisely identifies distinct solution strategies, and (3)
boosts the performance of clustering-based program repair,
all within a reasonable amount of time.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6712-7/19/06....$15.00
https://doi.org/10.1145/3314221.3314629

Dohyeong Kim
Purdue University, USA
kim1051@purdue.edu

Xiangyu Zhang
Purdue University, USA
xyzhang@cs.purdue.edu

CCS Concepts « Theory of computation — Program
semantics; Program analysis.

Keywords Program clustering, Program analysis, Quanti-
tative reasoning

ACM Reference Format:

David M. Perry, Dohyeong Kim, Roopsha Samanta, and Xiangyu
Zhang. 2019. SEMCLUSTER: Clustering of Imperative Programming
Assignments Based on Quantitative Semantic Features. In Pro-
ceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’19), June 22-26, 2019,
Phoenix, AZ, USA. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3314221.3314629

1 Introduction

Recent years have witnessed skyrocketing enrollments in
introductory programming courses offered by universities
and as Massive Open Online Courses (MOOCs) [4], as well
as increased participation in online judge systems such as
CodeChef [1], Codeforces [2], and HackerRank [3]. Recog-
nizing the challenges posed by these massive, new learning
environments, researchers in multiple communities have
started developing techniques for automated reasoning about
programming assignments at scale [10, 13-16, 18, 19, 22, 24,
25, 28, 30, 32, 33, 35, 40, 41]. Given large collections of so-
lutions for individual programming assignments, many of
these techniques rely on reducing the solution space by first
clustering similar solutions. For instance, automated feedback
generation or grading systems use a representative correct
solution from each cluster to generate feedback or a grade
for incorrect solutions, respectively [14, 18]. Tools for ana-
lyzing student data help instructors (as well as learners) view
distinct, pedagogically valuable solutions by visualizing rep-
resentative correct solutions from each cluster [13, 16, 22].
Unfortunately, the performance of most approaches for pro-
gram clustering in education [13, 14, 16, 18, 24] is far from
satisfactory. Clustering techniques such as [13, 14] place too
much emphasis on syntactic program features and, more-
over, require the program features to match exactly. This
results in an excessive number of clusters, where semanti-
cally similar programs with small syntactical differences are


https://doi.org/10.1145/3314221.3314629
https://doi.org/10.1145/3314221.3314629
https://doi.org/10.1145/3314221.3314629

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

Test
Suite SEMCLUSTER
T1 CFF1 =2 [
P Exec. || 7 Ps‘
Traces
DFF,
. . K-means ‘; =1
. . Clustering jﬂ
CFF
P —— Exec.
LY traces [] ';'“"
el

Figure 1. High-level overview of SEMCLUSTER.

placed in different clusters. For instance, CLARA [14] gen-
erates 51 clusters for a programming assignment, HORSES,
with 200 submissions and only 4 different solution strategies.
Clustering techniques such as [16, 24] rely on expensive
computations over pairs of programs (tree edit distance be-
tween abstract syntax trees and a notion of probabilistic,
semantic equivalence, respectively). This greatly hinders
the scalability of these clustering techniques. Some cluster-
ing techniques [18] are specialized to a particular problem
domain (e.g., dynamic programming) and are not broadly
applicable. A recent approach [41] successfully uses neural
networks to learn program embeddings and redefines the
state-of-the-art in program clustering. Unfortunately, this
approach requires a substantial training effort, both in terms
of time and in manual effort in selection of training data,
that affects its usability.

This paper advances the state-of-the-art in clustering of
small imperative programs with a new technique based on
program analysis. Our main contribution is a vector repre-
sentation of programs, based on purely semantic program
features, which can be used with standard clustering algo-
rithms from the machine learning literature. Our technique
(sketched in Fig. 1) enjoys several desirable characteristics.
First, it is able to cluster programs based on their high-level
algorithmic solution strategy, ignoring syntactical and low-
level implementation variations across programs. This re-
sults in far fewer clusters than most clustering approaches
(our techniques generate 4 clusters for the prior-mentioned
assignment HORSES). Second, by generating the vector rep-
resentation, our technique avoids expensive pair-wise pro-
gram analyses. Finally, our program analysis-based tech-
nique matches the clustering performance (and, in some
cases, outperforms) that of the state-of-the-art neural network-
based clustering technique [41], without requiring an expen-
sive training effort. Our clustering approach can potentially
be used to drive many automated reasoning tasks in pro-
gramming education and beyond (e.g., personalized feedback,
grading, visualization, similarity detection, fault localization
and program repair).

Our proposed program representation is based on the key
observation that the essence of a solution to a programming

David M. Perry, Dohyeong Kim, Roopsha Samanta, and Xiangyu Zhang

problem lies in the way the problem space is partitioned
into sub-spaces and how the problem is uniquely addressed
within individual sub-spaces. We use control flow features
(CFFs) to represent the former aspect of a solution strategy,
as this aspect typically manifests in the use of control struc-
tures that ensure each sub-space corresponds to a particular
control flow path. We use data flow features (DFFs) to rep-
resent the latter aspect of a solution strategy, as this aspect
typically manifests in the use of different operations (along
the path). Given a program and a test-suite, we compute
CFFs by counting inputs that follow the same control flow
paths as different tests. We compute DFFs as the frequency
of occurrence of distinct pairs of successive values of individ-
ual variables in program executions on tests. CFFs and DFFs
for each program are merged to create a program feature
vector (PFV). Finally, K-means clustering is used to cluster
all programs based on their PFVs.

We have implemented our proposed clustering approach
in a tool, SEMCLUSTER, and evaluated it on a variety of pro-
grams drawn from CodeChef [1], CodeHunt [6] and GitHub.
The evaluation on 17 real-world programming problems with
8,989 solutions shows that SEMCLUSTER generates 4-15 clus-
ters. This is in sharp contrast to the 27-125 clusters generated
by Crara [14] and OverCode [13]. We further demonstrate
the high degree of precision with which SEMCLUSTER iden-
tifies unique algorithms among submissions, the ability of
SEMCLUSTER to successfully drive CLARA’s program repair
system and the reasonable run-time performance of SEM-
CLUSTER (3.6 minutes on average per assignment, with 529
submissions on average per assignment).

In summary, this paper makes the following contributions:

1. We propose an effective and efficient technique for
clustering small, imperative programs based on a quan-
titative, semantic program representation (Sec. 4.3).

2. We present dynamic analyses to compute the control
flow- (Sec. 4.1) and data flow-based (Sec. 4.2) compo-
nents of our program representation.

3. We comprehensively evaluate and demonstrate the
effectiveness of our tool SEMCLUSTER (Sec. 5, Sec. 6) in
identifying distinct solution strategies and in boosting
the performance of clustering-based program repair.

2 Motivating example

We use the example in Fig. 2 to illustrate why many pro-
gram clustering techniques may fail to cluster programs
with similar solution strategies. Existing techniques place
great emphasis on syntactical differences instead of focusing
on the semantic similarities of programs. We describe how
our clustering approach, based on quantitative semantic pro-
gram features, can capture the essence of solution strategies
and address issues with existing techniques.

Fig. 2 contains code snippets from 3 student submissions
for a programming assignment, "Filling the Maze", from
CodeChef [1]. This assignment requires exploring a graph



PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

1 def searchA(graph): 1 def searchB(graph):

2 stack = [0] 2 stack = [0]

3 isChecked = [1,0,0,0] 3 isChecked = [1,0,0,0]

4 result = [0] 4 result = [o]

5 node = 0@ 5 node = 0@

6 while node != -1: 6 while node != 1 def searchC(graph):

7 nodeAdded = False 7 valAdded = 2 queue = [0]

8 for i in range(4): 8 for j in range(4): 3 isChecked = [1,0,0,0]

9 if graph[nodel[i] == 1 and 9 if graph[nodel[j] == 1 and 4 result = [0]
isChecked[i] == 0: isChecked[j] == @ and 5 node = 0@

10 stack.append (i) valAdded == False: 6 for i in range(4):

11 isChecked[i] = 1 10 stack.append(j) 7 node = queue.pop (@)

12 nodeAdded = True 11 isChecked[j] 1 8 for j in range(4):

13 result.append(i) 12 valAdded True 9 if graphlnodel[j] == 1 and

14 break; 13 result.append(j) isChecked[j] == 0:

15 if nodeAdded == False: 14 if valAdded == False: 10 queue . append(j)

16 stack.pop() 15 stack.pop () 11 isChecked[j] = 1

17 if len(stack) > 0: 16 if len(stack) > 0: 12 result.append(j)

18 node = stack[-1] 17 node = stack[-1] 13 return result

19 else: 18 else:

20 node = -1 19 node = -1

21  else: 20 else:

22 node = stack[-1] 21 node = stack[-1]

23 return result 22 return result

Figure 2. Two slightly different implementations of DFS, searchA and searchB and one implementation of BFS, searchC.

and determining if a given node is reachable from the starting
node. The input, graph, to the functions searchA, searchB,
and searchC is an adjacency matrix representing a graph
(with only four nodes for simplicity). The output, result, is
an array representing the order in which the nodes of the
graph are traversed. Array isChecked tracks if a node has
been traversed.

The solution strategies employed by functions searchA
and searchB are significantly different from that used in
searchC. Specifically, searchA and searchB use iterative
depth-first search (DFS) to explore the graph and searchC
uses breadth-first search (BFS). The only difference between
searchA and searchB is how their if statements (line 9) en-
sure that at most one unexplored child of the current node is
explored and added to the stack. searchA implements this by
inserting a break statement within the if’s body. searchB
conditions the if statement on the value of a Boolean vari-
able, valAdded, indicating if a new node has been added to
the stack.

Therefore, an effective clustering technique should cluster

searchA and searchB together and place function searchC
into a different cluster.
Limitations of existing techniques. Existing clustering
techniques such as CLARA [14] and OverCode [13] place
the functions searchA, searchB, and searchC in separate
clusters. This is primarily a limitation of their notions of
program similarity and choice of program representation.
Both CrArA and OverCode only consider whether two pro-
grams exactly match in some chosen features, or not. Nei-
ther clustering technique tracks the degree to which two
programs match in a feature. Such strict clustering strategies
are especially problematic when attempting to cluster buggy
programs with the closest correct version. In fact, CLARA and
OverCode can only cluster correct programs.

Further, while these techniques represent programs using
both syntactic and semantic program features, the syntactic
program features, in particular, are restrictive. For instance,
CLARA requires the control flow structures (i.e., loops and
branches) of two programs match for them to be placed in the
same cluster. The minor (highlighted) implementation dif-
ferences between searchA and searchB cause a significant
difference in their control flow structures. Hence, the pro-
grams are not clustered together by CLARA and may not be
clustered together by any technique that compares programs
using syntactic features such as control flow structures. Over-
Code first cleans programs by renaming common variables
identified using a dynamic analysis. OverCode requires the
set of program statements of two clean programs exactly
match for them to be clustered together. Again, the minor
implementation differences between searchA and searchB
cause a mismatch in the syntactic feature used by Over-
Code and hence, the functions are not clustered together.
Quantitative semantic program features. Our key obser-
vation is that the essence of problem-solving in computing
is divide-and-conquer. Given a problem, the programmer of-
ten first partitions the input space into equivalence classes
such that each class represents a unique way of addressing
the problem. The specific partitioning used, thus, character-
izes the underlying solution. Further, within such an input
equivalence class, the set of operations used and their order
also contribute in identifying the algorithm. We encapsu-
late the former as a control flow program feature and the
latter as a data flow program feature. The overarching idea of
our technique is to generate a quantitative program feature
based on these two features so that a clustering algorithm
can be used to effectively and efficiently cluster (correct and
buggy) programs based on their underlying algorithms. Our



PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

2RI

Gq Gy Ge
Figure 3. Two equivalent input graphs, G, and Gy, for
searchA and searchB, and two equivalent input graphs, G,
and Gy, for searchC.

method avoids an expensive pair-wise comparison of pro-
grams, which is prohibitive in our context due to the large
number of programs considered.

Informally, the control flow program feature tracks the
volume of inputs flowing through different control flow paths
in the program, essentially describing the input space parti-
tioning. To understand how the algorithm implemented in a
program impacts the number of inputs corresponding to each
control flow path in a program, consider the execution of
functions searchA, searchB and searchC on graph G, from
Fig. 3. Regardless of their small implementation differences,
searchA and searchB use DFS to visit the nodes of G, in the
order 1, 2, 3, 4, without any backtracking. Similarly, searchC
uses BFS to visit G, in the same order 1, 2, 3, 4. Observe that
the order of visiting nodes, including backtracking, directly
corresponds to a specific sequence of control flow decisions,
i.e., a specific control flow path, in each program. Now con-
sider the executions of the functions on graph G;. Despite
the extra edge in this graph, functions searchA and searchB
still visit its nodes in the same order as graph G, i.e., 1, 2, 3, 4,
without any backtracking. Thus, the executions of searchA
and searchB on G, and G; follow identical control flow
paths. In other words, these two input graphs fall into the
same input equivalence class for both searchA and searchB.
In contrast, when graph Gy, is given as input to searchC, the
order in which its nodes are explored changes to 1, 2, 4, 3.
That is, G, and G do not belong to the same input equiva-
lence class for searchC. Following similar reasoning, graphs
G, and G4 belong to the same input equivalence class for
searchC but not for searchA and searchB. This is because
the nodes of G, and G, are visited in the same order 1, 2, 4,
3 (i.e. via the same control flow path) by searchC, but not
by searchA and searchB.

The control flow feature represents the sizes of the input
equivalence classes. For our example, the feature is computed
for each program by counting the number of graphs that are
explored in the exact same order by the program. Finally, an
application of K-means clustering using the control flow fea-
ture successfully ignores the small syntactical differences
between searchA and searchB and clusters them together,
while placing searchC into a different cluster.

Remark. In Sec. 4.1, we show that the control flow feature
is not adequate by itself as it only summarizes the control
flow signature of a program. Hence, we introduce the data

David M. Perry, Dohyeong Kim, Roopsha Samanta, and Xiangyu Zhang

flow program feature, which summarizes the data flow sig-
nature of a program. The program representation used by
our technique is computed as an aggregate over the control
flow feature and the data flow feature.

3 Preliminaries

In this section, we present our program model, and review
the concepts of model counting and K-means clustering that
form the basis of our approach.

Program model. We introduce a simple imperative program-
ming language. A program P is composed of a function signa-
ture f(i1,...,iq) : 0, a set of variables X, and a sequence of
labeled statements o = sg;. . .; Sp,. The function f is defined
over a set of input variables I = {ij,. .. iy} and an output vari-
able o for the function’s returned value. The set of variables
X = {x1,...,x,} defines auxiliary variables employed by the
programmer for the specific programming task. All variables
are associated with a specific type and are only assigned
appropriate values from a finite universe U of values'. Pro-
gram statements are skip, return, assignment, conditional, or
loop statements. Each statement is designated by a unique
location identifier from the set L = {ly,1;,...,lp,exit} and
can use any of the variables in I U X U {o}.

A program configuration { is a pair (I,7) consisting of
a program location [ € L and a valuation function,7 that
assigns values to all program variables. Specifically,,7 : I U
{o} UX +— U U {nd} where nd represents an undefined
value. We use (I,7) — (I’y7’) to denote the execution of
the statement at location [ with valuation,7, resulting in a
transfer of control to location I’ with valuation,’. An input
valuation,7r is a valuation such that for all input variables i €
L71(i) # nd and for all other variables x € X U {o},,71(x) =
nd. A program P’s execution, 7p{r), on input valuation,7; is
a sequence of configurations {y,{1,. . .,{; where {y = (lo,71),
for all A, {, = (p+1, and {; = (exit,7;). Thus, all program
executions terminate at the exit location.

A test t is a pair {77,res) where,7; is an input valuation
and res is the expected output. We use 7p(t) to denote a
program execution of P on the input valuation,7; of test ¢.
A control flow path is a projection of a program execution
onto locations. Thus, if 7p(t) is (Io,71), (liy71), - - ., (lj47;), the
control flow path induced by t, denoted CFPp ;, is given by
Iy, 11,. . .,l;. Note that many input valuations may induce the
same control flow path. We say that two tests t and ¢’ belong
to the same input equivalence class [5] iff the control flow
paths induced by them are the same i.e., CFPp ; = CFPp ;.
Model counting. Given a propositional formula F, #SAT or
propositional model counting is the problem of computing
the number of satisfying assignments to propositions in F.
Propositional model counting is the canonical #P-complete

10ur method handles programs over scalars, arrays and pointers of types
Booleans, integers, and characters.



problem. Practical solutions are based on exact counting as
well as approximate counting of models [38, 44].

A less investigated problem, #SMT [7], extends the model

counting problem to measured logical theories. A theory is
measured if for every formula ¢ in the theory, the set of its
models [¢] is measurable. Given a formula ¢ in a measured
theory, #SMT is the problem of computing the measure of
[¢]- This is a well-known hard problem. While algorithms for
exact and approximate model counting have been proposed
for some theories over integer and real arithmetic [7, 11, 23],
the approach used in this paper uses an eager encoding of
#SMT into #SAT via bit-blasting.
K-means clustering. K-means clustering is a method for
partitioning a set of data points into K clusters such that each
data point d belongs to the cluster with the closest centroid
or mean. The distance metric typically used is the squared
Euclidean distance. Formally, given a set {d;,ds,. .. ,d,} of
data points, with each data point d € R™ represented using
an m-dimensional feature vector, K-means clustering seeks
to partition the data points into K sets C,,; = {Cy,...,Ck}
such that: C,p; = argming X, Yyce, ld — pul* . Here, p;,
the centroid of cluster C;, equals ﬁ 2dec; d.

K-means clustering is known to be NP-hard. Effective ap-
proximate solutions [26] work by choosing K means and
assigning data points to clusters with the closest mean. The
means for clusters are then recomputed and the data point as-
signments are updated. This iterative refinement procedure
is repeated until no changes occur.

4 Quantitative Semantic Features

Recall our overall SEMCLUSTER workflow from Fig. 1. Given
a test suite T and a set P of solutions to a programming
problem, for each solution P € P, we first compute two
classes of quantitative semantic features: control flow fea-
tures (CFFs) and data flow features (DFFs). These features
are then combined together into a single program feature
vector (PFV) for each solution. Finally, K-means clustering
is used to cluster all solutions based on their PFVs.

In this section, we describe the computation of CFFs, DFFs
and PFVs. We fix a test suite T = {t1,t2,...,tm ).

4.1 Control Flow Features

Recall from Sec. 2 that, informally speaking, CFFs provide a
quantitative summary of the way a program partitions the in-
put space into equivalence classes. A plausible design of such
a program feature involves counting the number of inputs in
each input equivalence class. However, this requires explor-
ing all possible paths of a program and can be intractable
in general. Instead, we leverage the available test suite to
restrict our focus to a subset of the input equivalence classes.
Intuitively, CFFs only track the number of inputs belonging to
input equivalence classes that contain some test input.

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

Algorithm 1: Computing a CFF for a test

1 procedure ComputeCFF (P,t)
Input :P:aprogram
t: a test
Output:CFFp;: the CFF obtained from P and ¢

CFPp ; = Execute (P, t)

f = CFP2SMT (CFPp,;, P)

CFFp ; = ModelCount (SMT2CNF (f))
return CFFp,;

ga e W N

Table 1. CFVs and their Euclidean distances for searchA,
searchB, and searchC from Fig. 2.

Prosram CFV Euclidean Distance

g G, G, searchA searchB searchC
searchA <8192, 1024> N/A 0 7798.6
searchB <8192, 1024~ 0 N/A 7798.6

searchC <1024, 8192> 7798.6 7798.6 N/A

Given a program P € P and atest t € T, Algo. 1 computes
the corresponding CFF, denoted CFFp ;. First, the algorithm
executes the program on the test input and computes the
control flow path CFPp ; containing all program locations
reached during execution. Next, the path condition for CFPp ;
is generated as an SMT formula, whose satisfying solutions
are inputs that drive P’s execution through CFPp ;. Finally,
the algorithm computes CFFp ; by counting the number of
satisfying solutions for the path condition. This is the well-
known problem of #SMT (Sec. 3). In our implementation, we
solve this by first converting the SMT formula to a SAT for-
mula through bit-blasting, i.e., encoding every variable into a
bitvector and every computation into a set of bit operations.
Next, the SAT formula is transformed to conjunctive normal
form (CNF), and handed off to an exact propositional model
counter [38]. This encoding of #SMT into #SAT is exact as
our input domain is finite.

For each program P € P, Algo. 1 is repeated to compute a
CFF for every test in the test suite T. The resulting CFFs are
then combined into a Control Flow Vector (CFV):

CFVp 1 =(CFFp,,,CFFpy4,,...,CFFp;, ). (1)

Graph Search Example. The CFVs generated when the pro-
grams from Fig. 2 are executed on the input graphs G, and
G, from Fig. 3 are shown in Table 1. The first dimension of
the vectors in the column CFV contains the CFF for input G,,.
The second dimension contains the CFF for input G,. The last
three columns in Table 1 indicate the Euclidean distances be-
tween each pair of vectors. As expected, the distance between
searchA and searchB is small, and the distances between
searchA and searchC and between searchB and searchC
are large. This enables SEMCLUSTER to cluster searchA and
searchB together and place searchC in a different cluster.



PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

Let us take a closer look

0100
at the CFF value, 8192, 0 0 1 0
computed for programs 00 0 1

0000

Figure 4. Graph G, and its
adjacency matrix.

searchA and searchB on
the input graph G, from
Fig. 3. Algo. 1 computes
this result because the size
of the input equivalence
class of G, for both programs is 8192. To understand this
calculation, note that the input equivalence class of G, for
searchA (searchB) consists of all graphs with four nodes
which induce program executions in searchA (searchB) that
explore the graph nodes in the same order as G,. Thus, this
class contains any graph with edges from nodes 1 to 2, 2
to 3, and 3 to 4, or, in other words, any graph that can be
obtained by adding additional edges to G,. Now consider
the adjacency matrix in Fig. 4 corresponding to graph G,:
the entry (i,j) in the matrix is 1 iff there is an edge from
node i to node j, and 0 otherwise. We can calculate the size
of the input equivalence class of G, by counting the number
of additional edges that can be added to the graph based on
the number of 0’s in the matrix. Since every entry that is
0 can be one of two possible values (1 if there is an edge
or 0 otherwise) in each graph, the total number of graphs
belonging to the equivalence class is 2'* = 8192. Note that
this computation is fully automated in SEMCLUSTER using
constraint generation and model counting.

Inadequacy of CFF. While CFFs capture the partitioning of the
input space, they alone may not suffice to make distinctions
between all solution strategies. Consider the two programs
bubSort and selSort in Fig. 5(a). Both programs take an
n-size array of integers as input and return an array sorted in
ascending order. While the algorithms employed by the two
programs are very different — bubble sort and selection sort
— they have the exact same set of input equivalence classes.
To see this, consider the inputs in Fig. 5(b). Inputs I, and
I, belong to the same equivalence class for both programs.
This is because I, and I, have the same size and the same
relative ordering of elements: smallest, largest, second largest,
and smallest. Similarly, inputs I, and I; belong to the same
equivalence class for both programs. As a result, the CFF for
I, (and I.) is the same for bubSort and selSort, as shown in
Fig. 5(c), and the distance between the CFVs of the programs
is 0. Hence, the programs will be clustered together if we
only rely on CFFs.

4.2 Data Flow Features

To cope with this problem, we propose another feature that
provides a quantitative summary of a program’s data flow.
Indeed, when programmers design their programs, they not
only need to design suitable control structures to partition
the input space, but must also decide what operations to use
and define how they interact with inputs and memory.

David M. Perry, Dohyeong Kim, Roopsha Samanta, and Xiangyu Zhang

Existing techniques cluster programs based on a strategy
that attempts to align variables across different student sub-
missions [13, 14]. Two variables from different programs
are aligned if the variables have the exact same sequence
of values in program executions on the same input. This re-
quirement for clustering is very rigid and prevents programs
with slight implementation differences from being clustered
together. Additionally, this variable alignment computation
requires expensive pair-wise analysis across programs.

Therefore, we propose a quantitative program feature,
DFF, that abstracts a program’s data flow, is resilient to re-
ordering of semantically equivalent operations, and is com-
putable locally for each program without requiring pair-wise
analysis. Informally, DFFs track how many times a specific
value in memory is changed to another specific value. Intu-
itively, by modeling frequencies of specific value changes,
we allow the feature computation to be local. By consid-
ering value changes (of variables), we encode part of the
sequence of values of a variable in a program execution.
While more complex data flow features can be designed, our
DFFs were found to be highly effective when combined with
CFFs (Sec. 6).

Given a program P € P, atestt € T, and the set P of
solutions, Algo. 2 computes the corresponding set of DFFs,
as a hash table DFFSp ; p. Note that given a test, while there
is exactly one CFF for each program, there are multiple DFFs
for each program. Let us first formalize our notion of value
changes tracked by Algo. 2. Given a program execution 7p (t),
avalue change, v — v’,1is a pair of distinct values v # v’ such
that there exists variable x € X U {0} and successive program
configurations ¢, = (l,7) and {p41 = (I’y7’) in zp(t) with

,7(x) = vand,#'(x) = v’. Observe that a value change does
not track the variable or program configurations associated
with it. Hence, there can be multiple instances of the same
value change along a program execution (each associated
with a different variable or program configuration). Given
a program P and a test ¢, the CompUTELOCALDFFS function
in Algo. 2 computes the set of unique value changes and the
number of instances of each unique value change in 7p(t).
The algorithm first executes an instrumented version of the
program to collect a trace containing all value changes that
occur during execution (lines 2-3). Next, this trace is scanned
to find the number of times each value change occurs (lines 5-
9). These frequencies are stored in the hash table local DFFS.
The hash table’s key is a string identifying a unique value
change and the value is the number of occurrences of the
value change in the program execution.

To compute DFFs for program P given test ¢, it is not
enough to restrict our focus to the unique value changes in
P’s execution on ¢. Since the number of such unique value
changes can vary across the executions of different programs
on the same test t, computing DFFs of different programs
for test t using CoMpUTELOCALDFES can result in DFFs of
different sizes (which, in turn, can significantly complicate



PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

1 void swap(int *xxp, int *yp) ‘1‘5‘3‘1‘ ‘2‘7‘3‘2‘
’ 1, I

2 { 4
1 void swap(int xxp, int xyp) 3 int temp = *xp; ‘4‘3‘2‘1‘ ‘9‘7‘2‘1‘
2 { 4 *xp = *yp; 1 i
3 int temp = *xp; 5 xyp = temp; ¢ d
4 xxp = xyp; 6 3 (b)
5 =*xyp = temp; 7
6 3} 8 void selSort(int arr[], int n) CFV Euclidean Distance
7 9 { Program

8 void bubSort(int arr[], int n) 10 int i, j, min_idx;

I, I. bubSort selSort

9 { 11 for (i = @; i < n-1; i++) bubSort  <120,210>  N/A 0

10 int i, j; 12 { selSort <120,210> 0 N/A

11 for (i = @0; i < n-1; i++) 13 min_idx = i;

12 for (j = 0; j < n-i-1; j++) 14 for (j = i+1; j < n; j++)

13 if (arr[j]l > arr[j+11) 15 if (arr[j] < arr[min_idx1]) (C)

14 swap (&arr[j], &arr[j+11]1); 16 min_idx =

15 3} 17 swap (&arr[min_idx],&arr[i]);
18} Program 5—3 3—5 5—1 1-5 153 3—1
19 3} bubSort 1 1 1 1 1 1

selSort 0 0 1 1 0 0

(a) )

Figure 5. (a) Two sorting programs, (b) example inputs, (c) CFVs of the programs on I,, I, (d) the DFFs of the programs on I,,.

the computation of a uniformly-sized program feature vector
for all programs). Hence, instead, CompUTEDFFS computes
DFFSp ;. p, by tracking all value changes that occur in the
executions of all programs in P on test t. This ensures that the
size of DFFSp ; p is the same for all P € P for a given test .
The computation in lines 2-3 in Algo. 2 iterates through all
programs in P calculating their local hash tables, local DFFS.
Next, in lines 4-6, each entry in local DFFS is iterated through
and the corresponding key is added to the global hash table
DFFSp ; ¢ with an initial value of zero. Finally, in lines 8-
12, the local DFFS is recomputed for the target program P
and merged with the previously computed DFFSp ; p. Note
the values of entries in DFFSp ; p, that correspond to value
changes absent in 7p(t), are 0. In what follows, let us assume
that DFFSp ; p is sorted according to keys and let DFVp ; de-
note a vector consisting of the values in the sorted DFFSp ; o
(thus, DFVp; is a vector of frequencies of value changes for
some fixed ordering of value changes).

For each program P € P, Algo. 2 is repeated to generate
DFVp,; for every test t in the test suite T. The vectors are
then combined into a Data Flow Vector (DFV) for P:

DFVp 1 =(DFVp:,, DFVp4,, ..., DFVp,, ). (2)

Sorting Example. An example of the simplified DFFs? for the
programs in Fig. 5 on input I, from Fig. 5 can be seen in Fig. 5
(d). Notice that the value changes used to create the DFFs are
representative of the semantics of the programs. bubSort has
to make 6 swaps as the algorithm iterates through the array
making swaps each time two adjacent values are out of order.
On the other hand, selSort only needs to make one swap.
On its first pass, it makes no swaps as the smallest value is

ZFor this figure, DFFs are calculated using only value changes that occur
on the arrays themselves. Changes that occur on variables used for loop
conditions and intermediate calculations are omitted for brevity.

already in the Oth position of the array. On the next pass,
it swaps the values in the 1st and 3rd positions, 5 and 1 re-
spectively, which results in a sorted array. These differences
in DFFs make it possible for SEMCLUSTER to distinguish the
two sorting algorithms and place them in different clusters.

4.3 Program Feature Vector

Finally, we describe how to combine CFVp 1 and DFVp 1 fora
program P into a single program feature vector (PFV) PFVp r.
Unfortunately, this combination cannot be done by simply
concatenating the two feature vectors. As stated earlier, for
each test, CFVs contain one feature, while DFVs contain as
many features as the number of unique value changes that
occur during the execution of all solutions on the specific
test. Thus, a simple concatenation of CFV and DFV would
generate a PFV with many more dimensions related to data
flow. This would result in DFFs having a disproportionate
impact on how programs are clustered.

Hence, we design the PFV for program P by normalizing
each feature as follows. Let M = max(|DFVp |, IDFVp 4,1,
...,|DFVp,, |) denote the maximum length of DFVp ; over
all tests t. The normalized CFV, denoted nCFVp r, is given
by M x CFV), 7. For each test t € T, the vector DFVp ; is
normalized to yield nDFVp;, given by IDFA—ép,zI X DFVp ;.
Finally, the PFV is computed as:

PFVpr = (nCFVp 1, nDFVp,, ..., nDFV, ;). (3)

5 Implementation

Control flow features. To compute CFFs we have imple-
mented an LLVM [20] pass that inserts a logging instruction
at the beginning of each basic block in a submission. An ex-
ecution of the instrumented submission produces a trace file
containing the control flow path induced by the test input.



PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

Algorithm 2: Computing DFFs for a test

1 procedure ComputeDFFS(P, t, P)

Input :P:aprogram
I:atest
P: a set of programs

Output: DFFSp ; p: a hash table containing value
changes and their frequencies

local DFFS = {}

local DFFS = ComputelLocalDFFS (P, t)

foreach key,val € localDFFS do
DFFSp ;. plkey] = val

end

13 return DFFSp; ¢

14 procedure ComputelLocalDFFS(P, t)

15 instProg = InstDF (P)

2 foreach P € £ do

3 local DFFS = ComputelLocalDFFS (P, t)
4 foreach key,val € localDFFS do

5 | DFFSp.p = {key : 0}

6 end

7 end

8

9

- e
N o= o

16 vcTrace = Execute (instProg)

17 local DFFS = {}

18 foreach valueChange € vcTrace do
19 if valueChange € local DFFS then
20 ‘ local DFFS[valueChange]+ = 1
21 else

22 ‘ local DFFS[valueChange] = 1
23 end

24 end

25 return local DFFS

We have also implemented an LLVM pass that walks through
the target submission, using the trace file, to generate an
SMT formula compatible with Microsoft’s Z3 solver [9]. In
addition to the program constraints, additional constraints
are included in the SMT formula to enforce bounds, provided
by an instructor, on the values of symbolic input variables.
These bounds ensure the result of model counting is finite.

We create models to encode the behavior of common li-
braries and data structures. Our models for arrays enforce a
maximum array size and include operations for reading, writ-
ing, and many functions defined in string.h. Our tool also
supports pointer operations by implementing the monolithic
memory model described in [31].

Once our tool creates an SMT formula, we use Z3’s bit-
blast tactic to produce a propositional formula, followed
by the state-of-the-art model counter, SharpSAT [38], to
produce a CFF for the specific program and test combination.
Data flow features. To compute DFFs we have implemented
an LLVM pass that inserts a logging function before and

David M. Perry, Dohyeong Kim, Roopsha Samanta, and Xiangyu Zhang

Table 2. Number of clusters generated by different clustering
techniques.

Avg. # of SC
Problem ;5 subs € 9€ PPE cry pEV PEV CsPA
COINS 38 1033 89 101 10 4 9 8
PRIME1 59 920 120 125 9 14 12 9 8
CONFLIP 34 212 27 27 5 7 6 4 5
MARBLES 40 200 82 &5 5 12 9 6 6
HORSES 36 200 42 51 6 9 7 4 4
LEPER 49 195 50 54 7 8§ 11 7 7
LAPIN 65 175 62 62 9 9 11 7 8
MARCHA1 45 100 37 37 6 6 7 4 5
BUYING2 32 100 33 33 5 7 4 5 5
SetDiff 16 273 52 59 5 4 5 5 6
MostOne 29 297 76 78 8§ 12 11 7 6
Comb 14 706 8 87 9 12 15 10 10
K-th Lar 11 949 120 125 15 17 20 14 13
ParenDep 18 820 101 111 16 22 21 15 16
LCM 15 806 99103 12 17 24 13 12
ArrayInd 3 973 27 27 5 10 12 5 5
FibSum 14 1030 30 32 12 14 17 13 14

after any instruction that modifies memory. When the in-
strumented program is executed, a trace file containing the
values of memory before and after each update is produced
and used to compute DFFs.

Clustering. PFVs are given as input to the K-means cluster-
ing algorithm implemented in the library scikit-learn [26].

6 Evaluation

We present the results of a comprehensive evaluation of
SEMCLUSTER’s clustering performance. We compare SEM-
CLUSTER against the state-of-the-art — two program analysis-
based approaches, CLARA and OverCode, and a deep learning-
based approach, Dynamic PrRogram EMBEDDINGS (DPE) [41].
We evaluate the performance of clustering using the follow-
ing criteria: number of clusters generated (Sec. 6.1), run-time
performance of clustering-based program repair (Sec. 6.2),
precision of clusters w.r.t. known algorithms (Sec. 6.3), and
precision of clusters w.r.t. program repair (Sec. 6.4). Finally,
we do an in-depth comparison with the DPE approach whose
performance is closest to SEMCLUSTER (Sec. 6.5).
Dataset. We collected solutions to various programming as-
signments from the educational platform CodeChef [1] and
Microsoft’s competitive programming site CodeHunt [6]. In
total, our dataset comprises 17 programming assignments,
with a total of 8,989 submissions written in C.
Additionally, we collected 100 array sorting and graph
searching implementations written in C from GitHub to per-
form a ground truth experiment (Sec. 6.3) for assignments
with well-defined algorithms. Each of the GitHub programs
were modified to accept inputs in a consistent format, exe-
cuted on a set of tests to ensure correctness, and inspected
to ensure they match their repositories’ descriptions.



6.1 Number of Clusters

For our first evaluation, we track the number of clusters
produced by different clustering techniques. We show that
SEMCLUSTER clusters correct student submissions into a sig-
nificantly smaller number of clusters than CLARA and Over-
Code, while achieving results similar to DPE. Note that for
this experiment only correct solutions are clustered as CLARA
and OverCode are incapable of clustering incorrect solutions.
The results can be found in Table 2. The first three columns
contain the names of programming assignments, average
number of lines of code per submission, and the number of
submissions for each assignment. Assignments above the
horizontal line are from CodeChef and the ones below are
from CodeHunt (in all tables henceforth).

The number of clusters generated by CLarA, OverCode
and DPE are reported in the columns C, OC and DPE, resp.
We report multiple results for SEMCLUSTER in the SC columns,
corresponding to different strategies for combining CFVs and
DFVs. The CFV and DFV columns show the results when
the program feature vector simply equals the CFV (eq. 1)
and DFV (eq. 2), respectively (and does not combine them).
The PFV column shows the results when the CFV and DFV
are normalized and combined into a single vector (Sec. 4.3).
The CSPA column displays the results of combining CFVs
and DFVs using cluster ensembles, a machine learning ap-
proach for clustering data with multiple representations. The
specific algorithm used is the cluster-based similarity parti-
tioning algorithm (CSPA) [36].

Notice that, for the majority of assignments, CSPA and
PFV return a smaller number of clusters than when using
CFVs or DFVs individually. This justifies our choice in Sec. 4.3
to combine these two classes of features. Also note that CSPA
and PFV achieve very similar results. This further justifies
our PFV design that weighs CFVs and DFVs equally. Finally,
we observed that the run-time performance of SEMCLUSTER
using PFV is better than CSPA on all benchmarks, performing
clustering 1.69x faster on average. For all these reasons,
the rest of our evaluation is performed on the version of
SEMCLUSTER that uses the PFV representation.

The number of clusters generated by SEMCLUSTER (PFV)
is dramatically lower than CLARA and OverCode. This is
expected as our approach is insensitive to syntactical dif-
ferences among submissions and only considers semantic
features when clustering. Finally, note that the cluster sizes
reported by SEMCLUSTER and DPE are similar. This speaks
volumes about the performance of SEMCLUSTER as it avoids
the expensive task of training a neural network like DPE.

6.2 Run-time

To evaluate the scalability of SEMCLUSTER, we track the total
amount of time required to compute clusters and perform a
specific automated reasoning task — program repair. This
experiment was performed by using CLARA, OverCode, DPE

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

Table 3. Run-time performance of repair generation using
clusters generated by different tools. (T in minutes)

Problem C oC DPE SC

T M A T MA TMATMA
COINS 104.2 39 62.0 112.0 42 64.0 2.0 1 19 69 1 1.8
PRIME1  89.5 55 773 93.2 64 832 1.8 1 1.7 95 1 1.5
CONFLIP 55 8101 55 8101 6 1 1.123 1 1.2
MARBLES 3.9 37 403 4445558 5 1 1621 1 14
HORSES 49 23314 5629406 .7 1 1728 1 1.9
LEPER 54 22302 5924325 712344 1 23
LAPIN 59 35478 6.1 35478 .7 1 1557 1 1.7
MARCHA1 25 15221 2315221 4 1 1723 1 15
BUYING2 24 12 187 2412 187 4 1 1326 1 13
SetDiff 35 22303 4232386 61 1228 1 14
MostOne 6.7 35 47.2 6.9 35 49.8 .7 1 2.7 6.0 1 2.9
Comb 10.1 46 594 105 49 633 14 1 21 24 1 1.8
K-thLar 11.8 63 78.2 134 68 81.2 1.8 1 1.7 22 1 2.1
ParenDep 12.6 50 69.7 153 59 773 15 1 1.7 31 1 1.9
LCM 12.2 45 59.2 134 47 623 14 1 2.0 28 1 2.2
ArrayInd 6.3 12 173 651217313 1 1309 1 13
FibSum 63 16 21.2 6.8 17 253 16 1 2.1 3.0 1 14

and SEMCLUSTER to cluster student submissions and using
the respective clusters to drive CLARA’s automated program
repair engine.? All resulting repairs were manually inspected
to ensure correctness. The total time taken in minutes can
be seen in Table 3 in the T column for each tool. Notice that
for most assignments, CLARA and OverCode take an order
of magnitude more time than DPE and SEMCLUSTER.

To understand why the run-times of CLarA and OverCode
are worse than both DPE and SEMCLUSTER we recorded the
number of program comparisons required by each to gener-
ate effective repairs. The results are also reported in Table 3
for each tool in the M and A columns, where M and A show
the median and average number of required comparisons,
resp. Notice that the number of comparisons required for
Crara and OverCode are much higher than those for SEm-
CrusTER and DPE. This is expected as CLARA and OverCode
cannot cluster incorrect and correct submissions together.
Therefore, these tools need to compare the incorrect submis-
sion to submissions from each cluster of correct submissions,
until a correct submission with an almost identical control
structure is found. In contrast, the median number of compar-
isons required when using DPE and SEMCLUSTER is always 1.
Since these tools cluster semantically similar incorrect and
correct submissions together, it often suffices to use a random
correct submission from the same cluster when repairing.
Note that the average number of comparisons for both DPE
and SEMCLUSTER are not 1. This occurs because there are
some incorrect submissions that cannot be fixed using any

3Note that while CLARA uses its program repair engine to automatically
generate feedback for students, evaluation of the pedagogic value of the
generated feedback is outside the scope of this work. OverCode does not
have a repair generation mechanism and the repair engine used by DPE is
not publicly available.



PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

HORSES MARCHAL1

MBS Qs M RrsS ISS
B NSNA NSA Epr BC

Figure 6. Solution strategy distributions for two assign-
ments.

correct submissions in the dataset. When (unsuccessfully)
attempting to repair such submissions, DPE and SEMCLUs-
TER end up comparing them against all correct programs in
their cluster, driving up the average number of comparisons.

Note that the overall amount of time is the smallest when
using DPE. This is because the reported run-time for DPE
only includes the generation of embeddings for every sub-
mission and the application of K-means clustering. The most
computationally expensive part of DPE — training — is omit-
ted. An evaluation of DPE’s training time and a discussion
of its issues related to deployment can be found in Sec. 6.5.

6.3 Precision of Clusters: Solution Strategy

To judge the quality of clustering it is also important to
evaluate the precision with which the clustering can identify
high-level solution strategies across submissions.
Manual review of CodeChef submissions. In our first experi-
ment to evaluate the precision of SEMCLUSTER’s clustering,
we manually reviewed the clusters of two programming as-
signments, HORSES and MARCHA1. Our evaluation consid-
ers 100 randomly chosen submissions of both assignments.
HORSES requires students to read in a list of integers and
find two values with the smallest difference. Both DPE and
SEMCLUSTER classified the 100 solutions into 4 different clus-
ters, while CLarA and OverCode generated 42 and 51 clusters,
respectively. A manual review of the clustering generated
by SEMCLUSTER revealed the common high-level solution
strategies in submissions within clusters (see Fig. 6). The
first and second clusters, BS and QS, sort the list of numbers
and then do a linear traversal of the sorted list, calculating
the differences between adjacent values. The only difference
is that BS uses bubble sort and QS uses quicksort. The third
(NSNA) and fourth (NSA) clusters do not employ a sorting
algorithm. As a result, they must perform an O(n?)-traversal
through the list, comparing all differences between pairs of
values in the array. Their implementations differ in how they
compute these differences. NSNA uses an if statement to
determine if differences are negative and multiplies them by
—1. In contrast, NSA uses an absolute value function.
MARCHAL1 is essentially the subset sum problem: given
a list of integers and another integer m, is it possible to ob-
tain a combination of list elements whose sum is m? While

David M. Perry, Dohyeong Kim, Roopsha Samanta, and Xiangyu Zhang

# Clusters

Problem C OC DPE SC

Sorting 72 100 4 45 51 4 4
Search 47 100 2 39 43 2 2

Selection DFS

Bubble

Merge Insertion BFS

Figure 7. The clustering results for four sorting algorithms
and two graph search algorithms.

DPE and SEMCLUSTER generated 4 clusters, both CLARA and
OverCode generated 37 clusters. The breakdown of the four
high-level solution strategies corresponding to the four clus-
ters shown in Fig. 6 are as follows: iterative subset sum (ISS),
recursive subset sum (RSS), dynamic programming (DP), and
binary conversion (BC). The two most common strategies,
RSS and ISS, explore all possible value combinations of var-
ious sizes until the desired combination sum is observed,
in a recursive or iterative fashion, respectively. The third
most common strategy is a more efficient implementation
and employs dynamic programming. The final strategy uses
binary conversion and is not as straight-forward a solution
as the others. These submissions iterate from 0 to 2" — 1 in
binary notation, using the binary numbers to index into the
list and select elements for examination in each iteration
(e.g. the binary number 1001 corresponds to a combination
consisting of list elements at index 0 and 3). This approach
can be more space-efficient.

This ability to cluster together a large number of student
submissions with similar solution strategies, while still distin-
guishing such esoteric solutions, illustrates the effectiveness
and precision of our clustering approach.

Ground truth experiment with GitHub programs. We further
evaluated the precision of SEMCLUSTER’s clustering with
a ground truth experiment using a collection of programs
from GitHub that implement well-known sorting algorithms
(bubble sort, selection sort, insertion sort, merge sort) and
graph search algorithms (DFS, BES). The results can be seen
in Fig. 7. Notice that SEMCLUSTER and DPE are able to per-
fectly partition the programs into clusters that correspond
to the algorithm they implement.

6.4 Precision of Clusters: Program Repair

To evaluate the usefulness of our approach in driving auto-
mated reasoning tasks, we performed an experiment, similar
to the one in Sec. 6.2, that uses CLARA’s program repair



engine. For this task, CLARA takes as input a correct and
incorrect version of a student submission, aligns them, and
generates suggestions for repairing the buggy submission.
For this to work effectively, the provided correct solution
and buggy submission must implement a similar algorithm.

All submissions from our dataset were first clustered us-
ing DPE and SEMCLUSTER. For each cluster, every correct
submission was used to generate repairs for every incorrect
submission belonging to the same cluster. The percentages
of correct submissions that allowed CLARA to generate cor-
rect repairs are reported in the In columns of Table 4. The
suggested repair was applied to the buggy submissions and
checked to ensure it passed all test cases. Note that the per-
centages reported for successful in-cluster repairs are quite
high for both DPE and SEMCLUSTER, thereby indicating the
usefulness of these clustering approaches in driving auto-
mated program repair.

We further examined the performance of CLARA’s repair
mechanism when aligning buggy submissions with correct
submissions from different clusters. For each cluster, every
correct submission was used to generate repairs for every
incorrect submission belonging to a different cluster. The
percentages of correct submissions that allowed CLARA to
generate correct repairs are reported in the Out columns of
Table 4. As expected, the percentages reported for successful
out-of-cluster repairs for both tools are small.

CLARA targets generation of on minimal repairs. In the
above experiment, we did not explore the question of how to
choose correct submissions to minimally repair an incorrect
submission from the same cluster. We hypothesize that min-
imal repairs can be generated using the correct submissions
whose program representations are closest (in terms of Eu-
clidean distance) to the incorrect submission. We test this
hypothesis by tracking the average percentage of incorrect
submissions for which the minimal repair is generated from
the Top-1 and Top-3 closest correct submissions in the same
cluster. The results in the Top-1 and Top-3 columns of Ta-
ble 4 show that both SEMCLUSTER and DPE can be effectively
used to generate minimal repairs based on our hypothesis.
Note that SEMCLUSTER has a higher Top-1 accuracy for all
but 3 programming assignments.

6.5 Comparison With DPE

As seen in the previous evaluations, DPE and SEMCLUSTER
produce a similar number of clusters and have comparable
precision . The aspect in which the largest difference occurs
is run-time. To better understand this difference, we take a
closer look at the run-time behavior of DPE and SEMCLUs-
TER in Table 5. The Training, Rep., K-means and Total
columns depict the time taken for training, for generating
representations for all submissions, for clustering using K-
means and in total, respectively (in minutes).

Observe that the total times required by SEMCLUSTER are
the same as Table 3; however, the total times for DPE have

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

Table 4. Using clusters to drive program repair.

Program In Out Top-1 Top-3

0gram  npr SC DPE SC DPE SC DPE SC
COINS 852 832 7.3 94 853 872 934 952
PRIME1 772 809 14.2 125 81.9 82.1 88.7 89.3

CONEFLIP 82.9 827 9.7 10.8 77.8 853 96.7 96.2
MARBLES 78.7 81.1 123 94 812 79.2 843 87.7
HORSES 89.9 843 103 12.1 852 884 93.7 954
LEPER 82.1 82.1 9.7 9.7 835 873 954 97.2
LAPIN 88.9 87.7 10.8 11.3 81.3 82.1 88.5 89.2
MARCHA1 828 793 6.6 7.2 832 854 90.7 925
BUYING2 88.2 88.2 11.1 11.1 753 77.2 84.7 853

SetDiff 86.1 87.2 169 158 90.1 88.2 96.8 94.3
MostOne 784 757 113 122 77.2 793 86.5 89.2
Comb 84.9 843 87 9.2 845 86.5 93.7 94.2

K-th Lar 772 799 17.2 143 748 73.2 912 835
ParenDep 88.2 873 119 129 714 738 843 87.2

LCM 77.4 79.1 20.2 18.2 83.4 82.8 93.2 914
ArrayInd 89.7 89.7 13.2 132 914 932 97.1 974
FibSum 77.2 879 9.1 52 873 912 973 96.9

Table 5. Run-time performance of clustering in minutes.

Training Rep. K-means Total

Assignment 1,0 o’ DPE SC DPE SC DPE SC

COINS 691 0 16 67 04 03 711 69
PRIME1 748 0 15 91 03 04 76.6 95
CONFLIP 377 0 03 20 03 0.2 383 23
MARBLES 350 0 03 1.8 0.2 02 356 2.1
HORSES 341 0 04 24 03 04 347 28
LEPER 717 0 03 40 04 04 724 44
LAPIN 1011 0 03 52 05 051019 5.7
MARCHA1 380 0 02 20 03 03 384 23
BUYING2 274 0 02 22 0.2 03 278 2.6
SetDiff 445 0 04 25 02 02 451 28
MostOne 653 0 05 57 02 03 659 6.0
Comb 379 0 12 22 02 02 393 24
K-th Lar 335 0 16 20 02 02 353 22
ParenDep 321 0 13 28 02 03 336 3.1
LCM 295 0 12 25 0.2 02 310 28
ArrayInd 239 0 12 07 02 02 253 09
FibSum 380 0 14 27 02 0.2 396 3.0

increased drastically. This is because of DPE’s very expen-
sive training phase. First, the training data is generated. This
requires identifying common mistakes made in program-
ming assignment submissions and using this information to
generate hundreds of thousands of mutants that implement
an incorrect version of the solution. Next, each one of these
mutated programs is executed to collect data that captures
its semantic behavior. Finally, this data is used to train a
neural network that generates program representations (i.e.
embeddings) from programs.



PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

Table 6. Number of clusters generated by DPE when using
different training sets.

# of Clusters

Problem o0 700 807 90% Syn
COINS 44 32 19 16 10
PRIME1 41 32 20 15 9
CONFLIP 31 24 16 9 5
MARBLES 37 22 12 10 5
HORSES 33 20 14 9 6
LEPER 41 23 11 9 7
LAPIN 55 32 21 12 9
MARCHA1 39 22 12 10 6
BUYING2 41 25 14 10 5
SetDiff 22 15 10 6 5
MostOne 33 25 16 8 8
Comb 45 31 19 12 9
K-th Lar 57 35 21 17 15
ParenDep 55 31 22 19 16
LCM 43 29 17 13 12
ArrayInd 34 20 10 7 5
FibSum 57 39 22 17 12

Unfortunately, training data may not always be available
or possible to generate, affecting the possibility of deploy-
ment. To highlight this drawback, we show that the amount
of training data available to DPE directly affects the num-
ber of clusters it report (see Table 6). Each column indicates
the number of clusters reported by DPE when using the re-
spective percentage of assignment submissions for training
their model. Notice that the number of clusters is much larger
when the amount of available training data is smaller. Finally,
the last column reports the number of clusters generated by
DPE when using a synthetic training set. This is the training
strategy used in [41]. These mutants are used as training
data to the neural network that generates the embeddings.

We emphasize that the number of clusters generated by
DPE are similar to SEMCLUSTER only when using a difficult-
to-generate synthetic training set. Additionally, because SEmM-
CLUSTER does not require a training phase, the approach is
more generalizable and does not overfit to a specific domain.

7 Related Work

Program clustering, similarity and representations in
education. Early clustering approaches for student submis-
sions represent programs using abstract syntax trees (ASTs)
and compute their similarity using edit distances [16, 32],
or canonicalization [32, 45]. Codewebs [24] uses a notion of
probabilistic semantic equivalence that clusters functionally
equivalent but syntactically different AST sub-graphs. Clus-
tering techniques such as OverCode [13] and CLARA [14]
employ a combination of control flow structures and vari-
ables values. However, these clustering techniques place a
great deal of emphasis on syntactic details of programs, re-
sulting in the generation of far too many clusters.

David M. Perry, Dohyeong Kim, Roopsha Samanta, and Xiangyu Zhang

A recent direction in program clustering is the use of
deep learning to learn program embeddings based on rep-
resenting programs as ASTs, sequences of tokens, control
flow structures, Hoare triples and sequences of program
states [22, 27, 28, 30, 40, 41]. While this is a promising di-
rection, these techniques require substantial training efforts
and careful selection of training inputs.

There are clustering approaches developed for specialized
usage scenarios. CoderAssist [18] is a clustering technique
that clusters student submissions for dynamic programming
assignments based on domain-specific characteristics of var-
ious solution strategies. The approach in [10] is a statisti-
cal approach for classifying interactive programs using a
combination of syntactic features. The clustering approach
in [15] clusters programs by inferring transformations to fix
incorrect programs. The transformations are learned from
examples of students fixing their code.

Finally, outside of the context of clustering, different no-

tions of syntactic as well as semantic program similarity
have been proposed to drive automated feedback generation
and repair [8, 35].
Code similarity, code cloning. Static analysis based ap-
proaches for code similarity compare ASTs [39, 46], tokens
[17, 29, 34], and program dependence graphs [12, 21] to find
similar code. However, these approaches may fail to detect
similar code because of differences in syntactical features.
Other methods use dynamic analysis to extract characteris-
tics of programs by observing execution behaviors, or birth-
marks [37, 42, 43]. However, they tend to (intentionally)
ignore algorithmic differences of individual components.

8 Conclusion

We develop a novel clustering technique for small imperative
programs based on program features that are quantitative
summaries of a program’s partitioning of its input space
and a program’s data flow. Our results show that SEMCLrus-
TER is highly effective in generating far fewer clusters than
most existing techniques, precisely identifies distinct solu-
tion strategies, and, boosts the performance of automated
program repair, all within a reasonable amount of time.

Acknowledgments

We thank the shepherd, Shriram Krishnamurthi, and the
anonymous reviewers for their constructive comments. This
research was supported, in part, by DARPA under contract
FA8650-15-C-7562, NSF under awards CCF-1846327, 1748764
and 1409668, ONR under contracts N000141410468 and
N000141712947, and Sandia National Lab under award
1701331. Any opinions, findings, and conclusions in this
paper are those of the authors only and do not necessarily
reflect the views of our sponsors.



References
[1] [n.d.]. CodeChef. https://www.codechef.com/.
[2] [n.d.]. Codeforces. http://codeforces.com/.
[3] [n.d.]. HackerRank. https://www.hackerrank.com//.
[4] 2017. The 50 Most Popular MOOCs of All Time. https://www.
onlinecoursereport.com/the-50-most-popular-moocs-of-all-time/.
[5] Boris Beizer. 2003. Software Testing Techniques. Dreamtech Press.
[6] Judith Bishop, R. Nigel Horspool, Tao Xie, Nikolai Tillmann, and

[10

[11

[12

[13

(14

[15

[16

(17

—

]

—

—

[t

[l

[

—

—

Jonathan de Halleux. 2015. Code Hunt: Experience with Coding Con-
tests at Scale. In Proceedings of the 37th International Conference on
Software Engineering - Volume 2 (ICSE ’15). IEEE Press, Piscataway, NJ,
USA, 398-407. http://dl.acm.org/citation.cfm?id=2819009.2819072
Dmitry Chistikov, Rayna Dimitrova, and Rupak Majumdar. 2017. Ap-
proximate Counting in SMT and Value Estimation for Probabilistic
Programs. Acta Informatica 54, 8 (2017), 729-764.

Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. 2016. Qlose:
Program Repair with Quantitative Objectives. In International Con-
ference on Computer Aided Verification. Springer, Toronto, Ontario,
Canada, 383-401.

Leonardo De Moura and Nikolaj Bjgrner. 2008. Z3: An Efficient SMT
Solver. In International conference on Tools and Algorithms for the Con-
struction and Analysis of Systems. Springer, Warsaw, Poland, 337-340.
Anna Drummond, Yanxin Lu, Swarat Chaudhuri, Christopher Jer-
maine, Joe Warren, and Scott Rixner. 2014. Learning to Grade Stu-
dent Programs in a Massive Open Online Course. In Proceedings of
the 2014 IEEE International Conference on Data Mining (ICDM ’14).
IEEE Computer Society, Washington, DC, USA, 785-790. https:
//doi.org/10.1109/ICDM.2014.142

Matthew Fredrikson and Somesh Jha. 2014. Satisfiability Modulo
Counting: A New Approach for Analyzing Privacy Properties. In
Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual
Conference on Computer Science Logic (CSL) and the Twenty-Ninth
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)
(CSL-LICS ’14). ACM, New York, NY, USA, Article 42, 10 pages. https:
//doi.org/10.1145/2603088.2603097

Mark Gabel, Lingxiao Jiang, and Zhendong Su. 2008. Scalable Detection
of Semantic Clones. In Proceedings of the 30th International Conference
on Software Engineering (ICSE "08). ACM, New York, NY, USA, 321-330.
https://doi.org/10.1145/1368088.1368132

Elena L Glassman, Jeremy Scott, Rishabh Singh, Philip ] Guo, and
Robert C Miller. 2015. OverCode: Visualizing Variation in Student
Solutions to Programming Problems at Scale. ACM Transactions on
Computer-Human Interaction (TOCHI) 22, 2 (2015), 7.

Sumit Gulwani, Ivan Radicek, and Florian Zuleger. 2018. Automated
Clustering and Program Repair for Introductory Programming As-
signments. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2018). ACM,
New York, NY, USA, 465-480. https://doi.org/10.1145/3192366.3192387
Andrew Head, Elena Glassman, Gustavo Soares, Ryo Suzuki, Lu-
cas Figueredo, Loris D’Antoni, and Bjérn Hartmann. 2017. Writing
Reusable Code Feedback at Scale with Mixed-Initiative Program Syn-
thesis. In Proceedings of the Fourth (2017) ACM Conference on Learn-
ing @ Scale (L@S ’17). ACM, New York, NY, USA, 89-98. https:
//doi.org/10.1145/3051457.3051467

Jonathan Huang, Chris Piech, Andy Nguyen, and Leonidas Guibas.
2013. Syntactic and Functional Variability of a Million Code Sub-
missions in a Machine Learning MOOC. In AIED 2013 Workshops
Proceedings Volume, Vol. 25.

Jeong-Hoon Ji, Gyun Woo, and Hwan-Gue Cho. 2007. A Source Code
Linearization Technique for Detecting Plagiarized Programs. In Pro-
ceedings of the 12th Annual SIGCSE Conference on Innovation and Tech-
nology in Computer Science Education (ITiCSE '07). ACM, New York,
NY, USA, 73-77. https://doi.org/10.1145/1268784.1268807

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

Shalini Kaleeswaran, Anirudh Santhiar, Aditya Kanade, and Sumit
Gulwani. 2016. Semi-supervised Verified Feedback Generation. In
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE 2016). ACM, New York,
NY, USA, 739-750. https://doi.org/10.1145/2950290.2950363
Dohyeong Kim, Yonghwi Kwon, Peng Liu, I Luk Kim, David Mitchel
Perry, Xiangyu Zhang, and Gustavo Rodriguez-Rivera. 2016. Apex: Au-
tomatic Programming Assignment Error Explanation. ACM SIGPLAN
Notices 51, 10 (2016), 311-327.

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In Proceedings
of the International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization (CGO *04). IEEE Computer
Society, Washington, DC, USA, 75-. http://dl.acm.org/citation.cfm?
id=977395.977673

Chao Liu, Chen Chen, Jiawei Han, and Philip S. Yu. 2006. GPLAG:
Detection of Software Plagiarism by Program Dependence Graph Anal-
ysis. In Proceedings of the 12th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD °06). ACM, New York,
NY, USA, 872-881. https://doi.org/10.1145/1150402.1150522

Lannan Luo and Qiang Zeng. 2016. SolMiner: Mining Distinct Solutions
in Programs. In Proceedings of the 38th International Conference on
Software Engineering Companion (ICSE '16). ACM, New York, NY, USA,
481-490. https://doi.org/10.1145/2889160.2889202

Feifei Ma, Sheng Liu, and Jian Zhang. 2009. Volume Computation for
Boolean Combination of Linear Arithmetic Constraints. In Interna-
tional Conference on Automated Deduction. Springer, Montreal, Canada,
453-468.

Andy Nguyen, Christopher Piech, Jonathan Huang, and Leonidas
Guibas. 2014. Codewebs: Scalable Homework Search for Massive Open
Online Programming Courses. In Proceedings of the 23rd International
Conference on World Wide Web (WWW ’14). ACM, New York, NY, USA,
491-502. https://doi.org/10.1145/2566486.2568023

Sagar Parihar, Ziyaan Dadachanji, Praveen Kumar Singh, Rajdeep Das,
Amey Karkare, and Arnab Bhattacharya. 2017. Automatic Grading
and Feedback Using Program Repair for Introductory Programming
Courses. In Proceedings of the 2017 ACM Conference on Innovation and
Technology in Computer Science Education (ITiCSE ’17). ACM, New
York, NY, USA, 92-97. https://doi.org/10.1145/3059009.3059026

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
2011. Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research 12 (2011), 2825-2830.

Hao Peng, Lili Mou, Ge Li, Yuxuan Liu, Lu Zhang, and Zhi Jin. 2015.
Building Program Vector Representations for Deep Learning. In Inter-
national Conference on Knowledge Science, Engineering and Manage-
ment. Springer, Chongqing, China, 547-553.

Chris Piech, Jonathan Huang, Andy Nguyen, Mike Phulsuksombati,
Mehran Sahami, and Leonidas Guibas. 2015. Learning Program Em-
beddings to Propagate Feedback on Student Code. In Proceedings of the
32Nd International Conference on International Conference on Machine
Learning - Volume 37 (ICML’15). JMLR.org, Lille, France, 1093-1102.
http://dl.acm.org/citation.cfm?id=3045118.3045235

Lutz Prechelt, Guido Malpohl, and Michael Philippsen. 2002. Finding
Plagiarisms Among a Set of Programs with JPlag. Journal of Universal
Computer Science 8, 11 (2002), 1016.

Yewen Pu, Karthik Narasimhan, Armando Solar-Lezama, and Regina
Barzilay. 2016. Skp: A Neural Program Corrector for MOOCs. In Com-
panion Proceedings of the 2016 ACM SIGPLAN International Conference
on Systems, Programming, Languages and Applications: Software for Hu-
manity (SPLASH Companion 2016). ACM, New York, NY, USA, 39-40.
https://doi.org/10.1145/2984043.2989222


https://www.codechef.com/
http://codeforces.com/
https://www.hackerrank.com//
https://www.onlinecoursereport.com/the-50-most-popular-moocs-of-all-time/
https://www.onlinecoursereport.com/the-50-most-popular-moocs-of-all-time/
http://dl.acm.org/citation.cfm?id=2819009.2819072
https://doi.org/10.1109/ICDM.2014.142
https://doi.org/10.1109/ICDM.2014.142
https://doi.org/10.1145/2603088.2603097
https://doi.org/10.1145/2603088.2603097
https://doi.org/10.1145/1368088.1368132
https://doi.org/10.1145/3192366.3192387
https://doi.org/10.1145/3051457.3051467
https://doi.org/10.1145/3051457.3051467
https://doi.org/10.1145/1268784.1268807
https://doi.org/10.1145/2950290.2950363
http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=977395.977673
https://doi.org/10.1145/1150402.1150522
https://doi.org/10.1145/2889160.2889202
https://doi.org/10.1145/2566486.2568023
https://doi.org/10.1145/3059009.3059026
http://dl.acm.org/citation.cfm?id=3045118.3045235
https://doi.org/10.1145/2984043.2989222

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

(31]

(32]

(33]

(34]

(35

[

(36]

(37]

(38]

Zvonimir Rakamari¢ and Alan J. Hu. 2009. A Scalable Memory Model
for Low-Level Code. In Proceedings of the 10th International Conference
on Verification, Model Checking, and Abstract Interpretation (VMCAI
’09). Springer-Verlag, Berlin, Heidelberg, 290-304. https://doi.org/10.
1007/978-3-540-93900-9_24

Kelly Rivers and Kenneth R Koedinger. 2013. Automatic Generation of
Programming Feedback: A Data-driven Approach. In The First Work-
shop on Al-supported Education for Computer Science (AIEDCS 2013),
Vol. 50.

Kelly Rivers and Kenneth R. Koedinger. 2015. Data-Driven Hint Gener-
ation in Vast Solution Spaces: a Self-Improving Python Programming
Tutor. International Journal of Artificial Intelligence in Education (2015),
1-28. https://doi.org/10.1007/540593-015-0070-z

Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. 2003. Winnowing:
Local Algorithms for Document Fingerprinting. In Proceedings of the
2003 ACM SIGMOD International Conference on Management of Data
(SIGMOD °03). ACM, New York, NY, USA, 76-85. https://doi.org/10.
1145/872757.872770

Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. 2013.
Automated Feedback Generation for Introductory Programming As-
signments. ACM SIGPLAN Notices 48, 6 (2013), 15-26.

Alexander Strehl and Joydeep Ghosh. 2002. Cluster Ensembles—a
Knowledge Reuse Framework for Combining Multiple Partitions. Jour-
nal of machine learning research 3, Dec (2002), 583-617.

Haruaki Tamada, Keiji Okamoto, Masahide Nakamura, Akito Monden,
and Ken-ichi Matsumoto. 2004. Dynamic Software Birthmarks to
Detect the Theft of Windows Applications. In International Symposium
on Future Software Technology, Vol. 20. Citeseer.

Marc Thurley. 2006. sharpSAT-Counting Models with Advanced
Component Caching and Implicit BCP. In International Conference on
Theory and Applications of Satisfiability Testing. Springer, 424-429.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

David M. Perry, Dohyeong Kim, Roopsha Samanta, and Xiangyu Zhang

Nghi Truong, Paul Roe, and Peter Bancroft. 2004. Static Analysis
of Students’ Java Programs. In Proceedings of the Sixth Australasian
Conference on Computing Education - Volume 30 (ACE *04). Australian
Computer Society, Inc., Darlinghurst, Australia, Australia, 317-325.
http://dl.acm.org/citation.cfm?id=979968.980011

Ke Wang, Rishabh Singh, and Zhendong Su. 2018. Search, Align, and
Repair: Data-driven Feedback Generation for Introductory Program-
ming Exercises. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2018). ACM,
New York, NY, USA, 481-495. https://doi.org/10.1145/3192366.3192384
Ke Wang, Zhendong Su, and Rishabh Singh. 2018. Dynamic Neural
Program Embeddings for Program Repair. In International Conference
on Learning Representations.

Xinran Wang, Yoon-Chan Jhi, Sencun Zhu, and Peng Liu. 2009. Behav-
ior Based Software Theft Detection. In Proceedings of the 16th ACM
Conference on Computer and Communications Security (CCS °09). ACM,
New York, NY, USA, 280-290. https://doi.org/10.1145/1653662.1653696
Xinran Wang, Yoon-Chan Jhi, Sencun Zhu, and Peng Liu. 2009. Detect-
ing Software Theft via System Call Based Birthmarks. In Proceedings
of the 2009 Annual Computer Security Applications Conference (AC-
SAC °09). IEEE Computer Society, Washington, DC, USA, 149-158.
https://doi.org/10.1109/ACSAC.2009.24

Wei Wei and Bart Selman. 2005. A New Approach to Model Counting.
In International Conference on Theory and Applications of Satisfiability
Testing. Springer, 324-339.

Songwen Xu and Yam San Chee. 2003. Transformation-based Diag-
nosis of Student Programs for Programming Tutoring Systems. IEEE
Transactions on Software Engineering 29, 4 (2003), 360-384.

Wuu Yang. 1991. Identifying Syntactic Differences Between Two
Programs. Software: Practice and Experience 21, 7 (1991), 739-755.


https://doi.org/10.1007/978-3-540-93900-9_24
https://doi.org/10.1007/978-3-540-93900-9_24
https://doi.org/10.1007/s40593-015-0070-z
https://doi.org/10.1145/872757.872770
https://doi.org/10.1145/872757.872770
http://dl.acm.org/citation.cfm?id=979968.980011
https://doi.org/10.1145/3192366.3192384
https://doi.org/10.1145/1653662.1653696
https://doi.org/10.1109/ACSAC.2009.24

	Abstract
	1 Introduction
	2 Motivating example
	3 Preliminaries
	4 Quantitative Semantic Features
	4.1 Control Flow Features
	4.2 Data Flow Features
	4.3 Program Feature Vector

	5 Implementation
	6 Evaluation
	6.1 Number of Clusters
	6.2 Run-time
	6.3 Precision of Clusters: Solution Strategy
	6.4 Precision of Clusters: Program Repair
	6.5 Comparison With DPE

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

