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Abstract. Direct manipulation is a programming paradigm in which
the programmer conveys the intended program behavior by modifying
program values at runtime. The programming environment then finds a
modification of the original program that yields the manipulated values.
In this paper, we propose the first framework for direct manipulation
of imperative programs. First, we introduce direct state manipulation,
which allows programmers to visualize the trace of a buggy program on
an input, and modify variable values at a location. Second, we propose a
synthesis technique based on program sketching and quantitative objec-
tives to efficiently find the “closest” program to the original one that is
consistent with the manipulated values. We formalize the problem and
build a tool JDial based on the Sketch synthesizer. We investigate
the effectiveness of direct manipulation by using JDial to fix bench-
marks from introductory programming assignments. In our evaluation,
we observe that direct state manipulations are an effective specification
mechanism: even when provided with a single state manipulation, JDial
can produce desired program modifications for 66% of our benchmarks
while techniques based only on test cases always fail.

1 Introduction

Direct manipulation [1–4] is a programming paradigm in which the programmer
conveys the intended program behavior by modifying program values at runtime.
The programming environment then finds a modification of the original program
that yields the manipulated values. This paradigm has been successfully applied
to drawing editors [5,6] to provide programming capabilities that allow users to
interact directly with the displayed graphics.

In this paper, we propose the first framework for direct manipulation of
imperative programs. We start by introducing direct state manipulation, a spec-
ification mechanism in which users can describe the intended program behavior
by directly manipulating intermediate variable values in buggy program traces.
We propose a workflow in which the user traverses the step-by-step visualization
of the execution of the buggy program on a certain input to identify a loca-
tion where the values of the program variables do not correspond to the ones
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she expects. At this point, we allow the user to manipulate the variable values
at the identified location and modify them. We then treat this manipulation
as a specification and use it to synthesize a program that, on the same input,
can reach the location identified by the user with the new variable values she
provided.

We formalize our synthesis problem and present a constraint-based synthesis
technique for computing programs consistent with direct state manipulations.
Solving this problem requires addressing two key challenges. First, the execu-
tion step manipulated by the user in the buggy trace might appear at a different
point in the trace of the synthesized program—e.g., when the modified program
uses more/fewer loop iterations than the original one. Second, since a single pro-
gram execution under-specifies the overall program behavior, there can be many
possible programs that agree with the manipulated trace. To address the first
challenge, given a manipulated location �, we design an encoding that “guesses”
in what occurrence of the location � in the trace of the synthesized program the
desired variable values are produced. To address the second challenge, we aug-
ment our synthesis problem with quantitative objectives [7] to prefer programs
that produce execution traces similar to those of the original program—i.e., the
goal is to compute a modified program that on the input provided by the user
produces an execution trace similar to the one in the original program.

We implemented our synthesis technique in a tool called JDial, which is built
on top of the Sketch [8] synthesizer. JDial supports several program trans-
formation models—i.e., descriptions of how the program can be modified—and
program distances, and can handle Java programs containing loops, arrays, and
recursion. To handle programs containing library functions such as Math.pow,
JDial introduces a synthesis algorithm that uses concrete program executions
to “discover” partial interpretations of external functions and uses such interpre-
tations to synthesize modifications to the whole program. For the common case
in which producing a new program only requires modification of a single state-
ment, JDial uses a data flow analysis based on program slicing to summarize
and reduce parts of the program for which the corresponding traces will not be
affected by the code modification.

We evaluate JDial on a set of representative program repair benchmarks. We
observe that direct state manipulations are an effective specification mechanism:
even when provided with a single manipulation, JDial can produce desired
program modifications for 66% of our benchmarks while techniques based only
on test cases always fail and produce undesirable programs.

Contributions. We make the following key contributions.

– We introduce the specification mechanism of direct state manipulation and
a corresponding synthesis problem in which the goal is to find a program
that produces the variable values specified by the user at a certain point in
the program execution trace and that has minimal distance from the original
program according to some metric (Sect. 3).

– We propose a framework based on program sketching for synthesizing pro-
grams using direct state manipulations (Sect. 4).
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– We instantiate our framework in JDial, a tool that supports direct state
manipulations for simple Java programs (Sect. 5).

– We evaluate JDial on 17 representative benchmarks and show JDial com-
putes good program modifications in cases where specifications based on test
cases produce undesirable ones (Sect. 6).

Fig. 1. Examples of synthesis using direct manipulation in JDial.

2 Illustrative Example

In this section, we illustrate our direct manipulation framework using an exam-
ple student attempt to an introductory programming exercise. In this domain,
automatic program repair—i.e., finding program transformations that fix the
program—has been used to provide personalized feedback to students [9–11].
We show how direct state manipulations can be used an alternative to test-cases
for program repair in this domain.

Consider the example in Fig. 1(a) where a student is trying to write a program
largestGap for finding the largest gap in a non-empty array of integers—i.e.,
the difference between the maximum and minimum values in the array. In the
following, we assume that the student has discovered that the program behavior
on test [9,5,4] is incorrect and is trying to get a suggestion from the tool on
how she could fix the program.

Specification via Test Cases. Several tools support test cases as a way to express
the correct behaviour of the program. In this case, the student can specify that
on the input [9,5,4], the correct output should be 5. However, even the tool
Qlose [7], which can often find correct program modifications using a small
number of test cases, will return the following wrong modification to line 11:

int res = max - min; −→ int res = max - min + 4;
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For this example, Qlose requires two additional carefully selected test cases to
find the correct program transformation.

Specification via Direct State Manipulation. Direct state manipulations allow
programmers to convey more information about the behavior of a test case, rather
than only its final output. Our proposal to use direct state manipulations in this
domain is inspired by Guo’s observation [12] that students find it beneficial to
visualize concrete program executions and observe discrepancies between the
variable values they observe and those they expect. For example, while debug-
ging the largestGap program, the student notices that in the first iteration of
the loop, right before executing line 8, variable max has value 5 instead of the
expected value 9. While visualizing the trace, the student can directly modify
the value of max as shown in the figure and JDial will synthesize the program
largestGapFix consistent with the manipulation (Fig. 1(b))—i.e., when running
largestGapFix with input [9,5,4], there is a point in the execution where the
variable max contains value 9 right before executing line 8. Why does this new
specification mechanism lead to the desired program? First, by modifying the
program’s trace and its value at line 8, the student implicitly states that certain
lines do not need modification—e.g., lines 11 and 12. Second, the modification
provides information about an intermediate state of the program that a tool
cannot access through just an input/output example. Besides the variable max,
the student can modify the value of i from 1 to 0 or the values of both i and
max at the same position and JDial will produce the same program.

Remarkably, direct state manipulation can also help debug partial implemen-
tations. Consider, for example, an incomplete version of the program largestGap
in which lines 8–9 are missing because the student has not implemented the logic
for min yet. The test case in Fig. 1(a) is essentially useless. On the other hand,
the same direct manipulation shown in Fig. 1(a) will yield a good program.

3 Problem Definition

In this section, we define the class of programs we consider, the notion of direct
state manipulation, and our synthesis problem.

3.1 Programs and Traces

We consider a simple imperative language in which a program P consists of
a function definition f(i1, . . . , iq) : o with input variables I = {i1, . . . , iq} and
output variable o (NULL for void functions), a set of program variables V such
that V ∩ I = ∅, and a sequence of labeled statements σ = s1 . . . sn. A statement
is one of the following: return, assignment, conditional or loop statement. Each
statement in σ is labeled with a unique location identifier from the set L =
{�0, �1, . . . , �p, exit}. We assume a universe U of values. We also assume variables
are associated with types and assignments are consistent with these types.

Without loss of generality, we assume that executing a return statement
assigns a value to the output variable and transfers control to a designated
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location exit. A program configuration η is a pair (�, ν) where � ∈ L is a location
and ν : I ∪ {o} ∪ V �→ U ∪ {⊥} is a valuation function that assigns values to all
variables. The element ⊥ indicates that a variable has not been assigned a value
yet or is out of scope. We write (�, ν) → (�′, ν′) if executing the statement at
location � under variable valuation ν transfers control to location �′ with variable
valuation ν′. The execution trace πP (ν0) of the program P on an initial valuation
ν0 is a sequence of configurations η0, η1, . . . , where η0 = (�0, ν0) and for each h,
we have ηh → ηh+1. An execution terminates once the location exit is reached
and we only consider programs that terminate on all inputs. We use πP (ν0)l = ηl
to denote the configuration at index l and πP (ν0)[l,h] to denote the subsequence
of configurations between index l and h—e.g., πP (ν0)[3,5] = η3η4η5.

Consider the program largestGap in Fig. 1. The input variable set I is {x}
and the output variable is res. The set of program variables is {i,max,min}.
Let ν0 be the initial valuation such that ν0(x) = [9, 5, 4] and ν0(w) = ⊥ for every
other variable w. The execution of largestGap on ν0 is shown in Fig. 2.

Fig. 2. Execution of largestGap on ν0. We omit valuations of the input variable x as
νh(x) = ν0(x) for all h.

3.2 Synthesis for Direct State Manipulation

We define the notion of direct state manipulation, which allows users to express
their intent by modifying variable values in intermediate configurations. We
assume a fixed program P . A direct state manipulation M is a tuple (ν0, k, ν′)
where ν0 is an initial valuation, k is an index s.t. k ≤ |πP (ν0)|, and ν′ : V ∪{o} �→
U ∪{?} is a new partial variable valuation. Intuitively, the manipulation replaces
the configuration πP (ν0)k = (�, ν) at location � with the new partial configura-
tion (�, ν′). Notice that a partial configuration cannot change the values of the
variables in I and it can assign a special value ? to certain variables. This value
is used to denote that the manipulation “does not care” about the specific values
of certain variables. We say that a valuation ν satisfies a partial valuation ν′,
denoted ν 
 ν′, iff for every variable x ∈ V ∪ {o}, if ν(x) �= ? then ν(x) = ν′(x).

Example 1. The direct state manipulation in Fig. 1(a) is formally defined as the
pair (ν0, 6, ν′) where ν0 is the same as at the end of Sect. 3.1, ν′(max) = 9 and
ν′(i) = ν′(min) = ν′(o) = ?. This manipulation, which modifies η6, only sets
the value of max to 9 at location 8 and leaves all other variables unconstrained.
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Given a program P , a direct state manipulation M = (ν0, k, ν′) such that
πP (ν0)k = (�, ν), we say that a program P ′ satisfies the manipulation M, if
there exists an index j such that πP ′(ν0)j = (�, νj) and νj 
 ν′—i.e., a program
P ′ satisfies a direct state manipulation if there exists some configuration in the
execution trace of P ′ satisfying the manipulated valuation ν′ at location �.

The synthesis problem is to find a program that satisfies a given manipula-
tion. In what follows, we fix a transformation model, which is a function RM
that assigns to a program a corresponding synthesis space P. The synthesis space
represents a set of programs from which we can draw candidate programs.

Definition 1 (Synthesis for Direct State Manipulation). Given a pro-
gram P and a direct state manipulation M = (ν0, k, ν′), the synthesis for direct
state manipulation problem is to find a program P ′ ∈ RM(P ) that satisfies the
manipulation M.

Informally, a direct state manipulation (ν0, k, ν′) at location � is a reachability
specification requiring that a configuration (�, ν′) is eventually reached along an
execution from the initial valuation ν0. This specification mechanism is orthogo-
nal to assertions, which require a property ϕ at location � to be an invariant—i.e.,
each time an execution reaches location �, the property ϕ holds. For instance,
in Fig. 1(a), placing the assertion max = 9 at location 8 would specify that the
value of max should be 9 at location 8 across all loop iterations in an execution.
The astute reader may suggest that for some suitably chosen predicate condition
over the loop counter, an assertion of the form condition ⇒ (max = 9) at loca-
tion 8 could encode the direct state manipulation in Fig. 1. However, a direct
state manipulation does not explicitly indicate what such a predicate condition
should be. In particular, a direct state manipulation does not specify what the
manipulation-satisfying index j should be.

Handling Test Cases. Definition 1 can be generalized to the problem of synthe-
sising a program P given a direct state manipulation and a set of tests. A test t
is a pair (νI , νO) where νI and νO are valuations over the input variables I and
the output variable o, respectively. Let νI

0 denote an initial valuation such that
νI
0 (w) = νI(w) if w ∈ I and ⊥ otherwise. Program P satisfies a test t if the value

of the output variable o at the end of an execution πP (νI
0 ) of P on valuation νI

0

is νO—i.e., if j = |πP (νI
0 )| − 1, ηj = (�, ν) and ν(o) = νO. Program P satisfies a

set of tests T if it satisfies all the tests t ∈ T . The synthesis problem is then to
find a program that satisfies both the direct state manipulation and the tests.

Cost-aware Synthesis. Among the many programs that satisfy a given state
manipulation we would like to pick the “best” one. To define what it means
for a program to be better than another one, we use the notions of program dis-
tances proposed in [7]. We define two types of distances: syntactic and semantic
distances. Given a program P , a syntactic distance is a function fP

syn : P → N

that maps each program in the synthesis space to a quantity capturing its syn-
tactic similarity to the original program P . We define semantic distances using
distance functions over execution traces. Let dist(π, π′) denote a distance func-
tion mapping a pair of traces to a non-negative integer. Intuitively, dist captures
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the similarity between execution traces of P and P ′ on the same initial valu-
ation ν0. Given a program P and a direct state manipulation M = (ν0, k, ν′),
a semantic distance function fP,M

sem : P → N maps a synthesized program P ′

to dist(πP (ν0)[0,k], πP ′(ν0)[0,j]) capturing the similarity between the manipu-
lated trace πP (ν0)[0,k] of P and the corresponding manipulation-satisfying trace
πP ′(ν0)[0,j] of P ′ with manipulation-satisfying index j. An aggregation function
Aggr : N × N → N is used to combine the two distance functions.

Example 2. An example of syntactic distance between two programs P and P ′

is the number of node edits needed to transform the abstract syntax tree P
into the one P ′. According to this distance, the change from i=1 to i=0 showed
in Fig. 1 has syntactic distance 1. An example semantic distance is the sum of
the differences in variable valuations in program configurations of the execution
traces πP (ν0)[0,k] and πP ′(ν0)[0,j] (with j as defined above).

For a program P and direct state manipulation M, we can define the cost of a
synthesized program P ′ as cost(P ′) = Aggr(fP

syn(P
′), fP,M

sem (P ′)). The following
definition can be generalized to incorporate a set of tests.

Definition 2 (Cost-aware Synthesis for Direct State Manipulation).
Given a program P and a direct state manipulation M, the Cost-aware synthesis
for direct state manipulation problem is to find a program P ′ ∈ RM(P ) that
satisfies the manipulation M and such that, for every P ′′ ∈ RM(P ) that satisfies
the manipulation M, we have cost(P ′) ≤ cost(P ′′).

4 JDial’s Architecture

In this section, we describe the architecture of JDial and the sketching-based
approach JDial employs to synthesize programs (Fig. 3).

JDial takes as input a buggy program, a direct state manipulation on an
input trace, and (optionally) a set of test cases (left of Fig. 3). As described in
Sect. 3, the synthesis problem is defined using four components: a transforma-
tion model, a syntactic distance function, a semantic distance function, and a
cost-aggregation function. In JDial, these components are modular and defined
independently from the underlying synthesis engine (grey boxes at the top of
Fig. 3). The transformation model is given as a program GetSynthesisSpace that,
given a program, returns a sketched version of it—i.e., a program with unknown
holes of the form ??. In Fig. 3, this program simply replaces each constant with
a hole. By instantiating the holes in the sketched program with concrete values
we obtain a program in the synthesis space. The syntactic distance is given as a
program that computes a non-negative integer based on the values of the holes in
the sketched program—e.g., how many constants were changed or by how much
they were changed. The semantic distance is given as a program that computes
a non-negative integer based on the value of two traces—e.g., the Hamming
distance.
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4.1 Synthesis via Sketching

To solve the synthesis problem, JDial computes a sketched program together
with a set of assertions (blue box in Fig. 3). The solution to this sketched
program—i.e., values for the holes that satisfy the assertions and minimize the
given objective function—is the solution to our synthesis problem.

Test cases
Trace + 
Manipulation

JDial Backend

input: 9
--
--
--
 --
 --
 --
-->

Specification

TraceDistance(t1, t2){
   // computes semantic    
   // distance between
   // traces t1 and t2
   return Hamming(t1, t2)
}

SyntacticDistance( ){
   // computes syntactic 
   // distance from original 
   // program based on holes
   if (??1 != 1) dist += ??1;
   …
}

input
   2
   4
  ...

output
   12
   42
    ...

Sketch

Buggy Program

Aggregate(d1, d2){
   // combines the 
   // two distances
   return d1+ d2;
}

Synthesized Program

line 16
x: 0 -> 3
y: 2 -> ? 

// Instrumentation variables
counter, line[], valx[], valy[], ret_val

// Instrumented program
SkProg(input) {
// Adds holes to encode synthesis 

  // space and to compute traces
  ...  
  counter++;
  y = ??1 x + ??2 y + ??3;
  line[counter] = 20;
  valx[counter] = x;
  …
}

// Functional assertions + distance computations

// Direct manipulation
SkProg(9);
assert(line[...]=16);
assert(valx[...]=3);
semDist += TraceDistance(..., ...)
// Test Cases
assert(SkProg(2)=12);
semDist += TraceDistance(..., ...)
assert(SkProg(4)=42);
semDist += TraceDistance(..., ...)
...
synDist = SyntacticDistance()
minimize(Aggregate(synDist, semDist));

1. Prog(input) {
            …
            …
16.   x = 5y+2;
            …
20.   y = y+2
            …
    }

1. Prog(input) {
              …
              …
16.     x = 5y+2;

    …
20.     y = x-1;
              …
          }

GetSynthesisSpace(){
   // returns a sketched version 
   // of Prog that encodes
   // the synthesis space
   e.g., replace constants with ??
}

Fig. 3. Architecture of JDial. Grey components can be modified without having to
modify the synthesis algorithm. (Color figure online)

Background on Sketching. Program sketching is a technique for specifying a
parametric set of programs. This is done by allowing programs to contain holes
(denoted by ??). When one provides a specification—e.g., test cases, assertions,
minimization objectives—the sketching problem is to find (typically integer)
values of the holes that satisfy the given specification. State-of-the-art sketching
tools support complex program constructs, such as arrays, strings, and recursive
functions, as well as complex specification mechanisms, such as Boolean asser-
tions and quantitative optimization constraints over the values of the holes [8].

Computing Distances and Guessing Trace Lengths. The GetSynthesisSpace com-
ponent, given the buggy program, adds holes to generate a sketched program
encoding the synthesis space—e.g., y = ??_1 * x + ??_2 * y + ??_3 in Fig. 3
(blue-box). JDial then generates a function that uses the values placed in the
holes to compute the syntactic distance (Fig. 3(top)).

To compute the semantic distance JDial symbolically extracts traces by
instrumenting the sketched program with a counter to measure the length of the
trace, an array to record the values of each variable in the original program, and
an array for the line numbers.1 After each instruction, the arrays are updated to

1 We assume that the length of the trace in the synthesized program is at most twice
the length of the original trace and we use this assumption to initialize the length
of the arrays. This constant is parametric and can be modified.
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reflect the current variable values (Fig. 3(blue-box)). JDial then computes the
semantic distance using the traces extracted from such arrays.

The key difficulty in encoding our synthesis problem is that there can be
many ways to “align” the location manipulated by the user with a location in
the sketched program—e.g., the execution of one synthesized program might
reach the desired manipulated value the second time the manipulated location
is visited, while another candidate program might reach the desired value the
tenth time the manipulated location is visited. JDial must be able to consider
all these possibilities.

Example 3. Consider the manipulation described in Fig. 1(a). The execution of
the synthesized program largestGapFix presented in Fig. 1(b) on input [9, 5, 4]
hits the manipulated location with max=9 the first time line 8 is traversed. How-
ever, another correct program which changes the loop in line 5 to i=N-2; i>=0;
i--, hits the manipulated location with max=9 the second time line 8 is traversed.

Fig. 4. Instrumentation to
guess visiting times.

Our key idea is to introduce an existential
variable—i.e., a hole—in our sketched program to
guess at what visit time the manipulated line is
reached with the variable values provided by the
user. Concretely, we define a global variable int
visit_time=?? to guess the number of visits of the
manipulated line and modify the sketched program
right before the sketched version of the manipu-
lated line to interrupt the trace at the correct time
(see Fig. 4). Thus, every time the manipulated line
is reached, visit_time is decremented and, when
the counter hits zero, the execution has reached the
guessed number of visit times.

Finally, JDial adds assertions to guarantee the sketch solution satisfies the
manipulation and a minimization objective to ensure the returned solution is
optimal with respect to the given distances (see right of blue box in Fig. 3).

4.2 Correctness of the Synthesis Procedure

We now state the correctness of our encoding. Given a program P and a direct
state manipulation M, we call sket(P,M) the sketched program computed by
JDial. Recall the definition of cost-aware synthesis for direct state manipulation
in Definition 2. Theorem 1 states that JDial correctly encodes the problem of
cost-aware synthesis for direct state manipulation. We say an algorithm for this
problem is sound if it only produces solutions in RM(P ) that have minimal
cost and satisfy M, and complete if it produces a solution whenever one exists.
Moreover, a program sketching solver is sound and complete if it can correctly
solve all program sketches.

Theorem 1. JDial is sound and complete for the problem of cost-aware syn-
thesis for direct state manipulation iff the program sketching solver it uses is
sound and complete.
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5 Implementation and Optimizations

JDial is composed of a frontend, which allows to visualize program traces and
manipulate intermediate states, and a backend, which synthesizes the trans-
formed programs. JDial can handle Java programs over integers, characters,
Booleans, and arrays over these basic types. In its default mode, JDial only tries
to modify statements in the function in which the manipulated line appears. In
this section, we describe the concrete transformation model and distance func-
tions JDial uses as well as several optimizations employed by JDial.

Fig. 5. JDial’s transformation model.

5.1 Transformation Model and Syntactic Distance

JDial supports complex transformation models—e.g., it can allow statements to
be added to the program. However, overly expressive transformation models will
often lead to undesired programs that overfit to the given manipulation. In fact,
existing tools for automatically fixing introductory programming assignments
typically employ several transformation models, each tailored to a particular
programming assignment [9,13].

Transformation Model. Since in our application domain we do not know a priori
what program the programmer is trying to write, JDial’s default transformation
model only allows to rewrite constants in linear arithmetic expressions. Figure 5
illustrates JDial’s default transformation model and Fig. 6 illustrates an exam-
ple of how the transformation model generates a Sketch from a program.

First, any variable in any expression is multiplied by a hole ??b that only
takes values from the set {−1, 0, 1}. These holes can be used to remove variables
and negate their coefficients. Second, the term

∑
v∈V ??bv+??, where V is the

set of variables, is added to each expression appearing in an assignment or in
a Boolean comparison. These terms can be used to add new variables, further
increase/decrease the coefficients of variables appearing in the expression, or
add new constants—e.g., turn x<0 into x>y. This transformation model permits
modifications of multiple expressions and it subsumes the default error model
of the AutoGrader tool, which, despite its simplicity, was shown to be able
to automatically fix 30%–60% of edX student submissions depending on the
problem type [9].

Syntactic Distance. JDial’s syntactic distance computes the difference between
the synthesized hole values and the original ones. For example, in the expression
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??bx < 0 +
∑

v∈V ??bv+?? (corresponding to original expression x<0), the orig-
inal value of the first hole ??b is 1, while the original value of all the other holes
is 0. The syntactic distance is the sum of the absolute difference between each
hole’s synthesized value and the original one. Intuitively, this distance penal-
izes modifications that introduce new variables and modify constants by large
amounts.

5.2 Semantic Distance over Traces

When computing the distance from the original program traces, JDial ignores
the variables that have been manipulated because they are likely to contain
“incorrect” values that are not necessary to preserve. JDial first computes the
restricted traces where the values of the manipulated variables are omitted and
then uses a modified version of the Hamming distance to compute their distance.
In the following definitions, we assume Boolean tests return 1 when true and 0
when false. Given two configurations η = (l, ν) and η′ = (l′, ν′) over a set of
variables V , the distance between the two configurations is defined as H(η, η′) =
(l �= l′)+

∑
w∈V ν(w) �= ν′(w). Finally, JDial computes the distance between two

traces π = η1 · · · ηs and π′ = η′
1 · · · η′

t, where m = min(s, t) and M = max(s, t)
as the quantity H(η1, η′

1) + · · · + H(ηm, η′
m) + M − m.

Fig. 6. A sketched program obtained from applying the transformation model to a
program. Holes of the form ?? can be instantiated with arbitrary integers. Holes of the
form

∑
v∈V ??bv+?? can only be instantiated with values in {−1, 0, 1}.

Example 4. Consider again the example described in Fig. 1. The restricted trace
of the synthesized program up to the manipulation-satisfying index has distance
3 from the original trace since it only changes the value of the variable i in the
last three steps and it has the same length as the original program trace.

JDial contains other implementations of trace distances—e.g., longest com-
mon subsequences. Since the distance presented above yields good results and
performance in practice, we use it as default and in our experiments. JDial
aggregates the syntactic and semantic distances by taking their sum.

5.3 Handling External Functions

JDial employs a new Counterexample-Guided Inductive Synthesis (CeGIS)
scheme to handle programs that contain external functions for which semantics
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might be unknown or expensive to encode directly in Sketch. Given the input
program with an external function ext and the manipulated trace, JDial creates
a sketched program that assigns a partial interpretation to the external function
using the set of concrete values obtained from the input trace execution—i.e.,
for every call of the function observed in the input trace. JDial then computes
a solution for the sketched program using this partial definition of ext. If syn-
thesizing the program requires knowing the interpretation of ext on inputs that
have not been observed yet, JDial lets Sketch “guess” an interpretation for the
function ext on such inputs. JDial can then execute the function ext and check
whether the guesses were correct. If they are not correct, JDial modifies the
new sketched program to incorporate the partial interpretation to the external
function ext on the newly discovered inputs. The process continues until JDial
finds a program that respects the semantics of ext.

Fig. 7. Given an example with an incorrect for-condition and an input test (a), JDial
uses the execution of sumPow on the test to learn an initial partial interpretation of
the function Math.pow (b). JDial then produces a proposed program and guesses
the interpretation of Math.pow to be such that Math.pow(2,3)=14 (c). After executes
Math.pow in Java, JDial discovers that Math.pow(2,3)=8, and refines the interpreta-
tion of Math.pow for the next round of synthesis (d).

Example 5. Consider the program sumPow in Fig. 7(a), which should compute
the sum of powers of 2 up to x, but instead it only computes the sum up to x-1.
By running the program on the given input 3, JDial can obtain the output of the
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Math.pow function on input values 1 and 2, and constructs a Sketch function
that describes a partial interpretation of Math.pow as shown in Fig. 7(b). To
synthesize the program, JDial needs to change the condition of the for loop,
but this transformation requires knowing the output of the function Math.pow
on arguments (2,3) and our partial interpretation of Math.pow does not contain
this information. JDial synthesizes a transformation for the function sumPow
and, while doing so, it assigns an interpretation to the inputs for which the
behaviour of the function Math.pow is unknown (Fig. 7(c)). JDial then uses the
concrete execution of the function Math.pow to check whether the synthesized
interpretation is incorrect, and in this case it modifies the partial interpretation
of Math.pow in the sketched program.

Fig. 8. Program subLargestGap and its sliced version when the manipulation happens
at line 11 and only line 9 can be modified.

5.4 Additional Features and Optimizations

Specified Transformation Range. Since the programmer might want to prevent
JDial from modifying certain program statements, JDial’s frontend allows the
programmer to specify what statements the tool is allowed to modify.

Single Statement Transformations. Since most synthesized programs only require
transforming a single statement, JDial supports this restricted transformation
model and it uses an optimized solver that, for each line of code, builds a separate
sketched program that is only allowed to modify that line. The separate sketched
programs are solved in parallel and JDial outputs the program of least cost.
For each sketch that can only modify a certain line of code, JDial uses program
slicing [14] to summarize parts of the program that will not be affected by the
line modification. Concretely, let �M be the location at which the manipulation
is performed and �R be the location JDial is allowed to modify. By computing
a backward slice of the manipulated location �M, we obtain the statements that
can affect the values of the manipulated variables. Similarly, only statements
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that are reachable from location �R in the control-flow graph of the program are
affected by modifications to line �R. Finally, the intersection of the two sets gives
us the statements where variable values may vary as a result of a transformation.
All other statements are irrelevant and can be removed or summarized.

Example 6. Consider the program subLargestGap in Fig. 8 that returns a new
array obtained by subtracting the largest gap of the input array from all its
elements. This program contains a mistake in the second for loop. Assume a
student is trying to fix it by manipulating the variable a[0] at location 11
on input [3,2,7] and that the transformation model only allows modification
to location 9. The backward slice of location 11 contains all the statements in
the program except the return statement and the lines 9 to 12 are the only
lines reachable from location 9. Using this information, JDial summarizes all
other statements’ values. For example, the whole computation of the variable
largestGap is replaced by the constant assignment largestGap=5.

Table 1. Effectiveness and performance of JDial. ✗ denotes out of memory.

Problem LOC Vars |Trace| Time [sec] Time single line [sec]
JDial1 JDialo1

Qlose [7] largestGap-1.1 7 4 11 3.8 1.6 1.0
largestGap-1.2 7 4 10 2.2 0.8 0.6
largestGap-2 7 4 15 4.2 1.1 0.5
largestGap-3.1 7 4 10 1.8 1.1 0.5
largestGap-3.2 7 4 10 2.8 1.0 0.6
tcas 10 4 7 0.8 0.4 0.4
max3 5 3 3 0.5 0.3 0.3
iterPower-1 5 3 14 0.4 0.6 0.4
iterPower-2 5 3 14 0.7 0.4 0.3
ePoly-1 6 4 12 4.6 3.7 1.3
ePoly-2 6 4 12 2.5 1.7 0.9
multIA 4 4 9 1.3 0.8 1.1

New ePoly-3 7 4 13 2.9 2.8 2.5
max4 7 4 4 0.3 0.2 0.3
bubbleSort 7 5 12 3.1 1.3 0.6
subLargestGap 13 6 35 ✗ ✗ 0.7
maxMin 13 6 37 ✗ ✗ 0.9
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6 Evaluation

We evaluate the effectiveness of JDial through the following questions.

Q1 Can JDial yield desirable programs more often than test-based techniques?
Q2 Is the optimized version of JDial presented in Sect. 5.4 effective?
Q3 How sensitive is JDial w.r.t. the location of the manipulation?
Q4 Can JDial handle programs that contain external functions?

We perform our evaluation on 17 Java programs: 12 from Qlose [7] and 5
new programs. All benchmarks and the corresponding Sketch files are available
at this url: https://tinyurl.com/yd6bp3dx. The five variants of the largestGap
problem presented in Sect. 2 are taken from the CodeHunt platform [15], The
tcas-semfix program is a toy traffic collision avoidance system from [16]. The
max, iterPower, ePoly, and multIA problems are taken from the Introduction
to Python Programming course taught on edX [17]. Two of the new programs
we consider are variations of Qlose benchmarks. The other three bubbleSort,
subLargestGap, and maxMin are larger programs that contain multiple loops,
which are more complex than the benchmarks considered in [7].

Table 1 shows detailed metrics for each benchmark and the average run-
time of JDial when performing synthesis on five randomly generated failing
inputs. All experiments were performed on an Intel Core i7 4.00GHz CPU with
32GB/RAM.

6.1 Comparison to Test-Based Tools

We compare JDial against the tool Qlose to see if synthesis via direct manipu-
lation can find meaningful programs more often than synthesis via test cases. We
compare against Qlose because it is the only test-based tool that uses semantic
distances and it produces “good” programs when using a small number of test
cases more often than tools that only use syntactic distances [7].

For each benchmark, we randomly generate 5 input tests that result in incor-
rect outputs. For each failing test, we run Qlose using the test as a specification

Fig. 9. Correct transformations out of 5 randomly generated tests for JDial vs Qlose.
Additional test provided in JDial+ and Qlose+.

https://tinyurl.com/yd6bp3dx
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and run JDial by manually constructing a manipulation: we identify the first
location in the execution trace where a variable has the wrong value and modify
it to the correct one. Figure 9 illustrates the results of this comparison (JDial
and Qlose bars). JDial generates the desired transformations in 66% (56/85)
of the cases while Qlose never produces a correct program. When given only
one test case, Qlose always modifies the return statement of the program.

We perform another study where, for each previous experiment, we provide
JDial and Qlose with an additional (failing or passing) test—i.e., we pro-
vide Qlose with two tests and JDial with one test and one manipulation.
Figure 9 illustrates the results of this comparison (cf. JDial+ and Qlose+
bars). JDial generates the intended transformations for 75% (64/85) of the
cases while Qlose produces the intended transformations on 58% (49/85) of
the cases. While Qlose performs better than when given a single test, for every
input on which Qlose produces the correct transformation, JDial also does so.
Remarkably, when given a single manipulation and nothing more, JDial pro-
duces correct transformations more often than Qlose, even when the latter is
provided with 2 tests. To answer Q1, JDial produces meaningful programs
more often than techniques that only use tests.

Before concluding, we explain why both tools performed poorly on some
benchmarks. For the tcas program, the desired fix modifies an expression by
adding a large constant that can only be synthesized from a very specific
test case. Additionally, subLargestGap and maxMin benchmarks are too large.
For the instances for which JDial produces the incorrect program, we eval-
uate whether JDial produces correct transformations if it is allowed further
“attempts”. Whenever an undesired transformation is generated at a location �,
we disallow JDial to transform location � again or reject the proposed trans-
formation and ask for a different one. This approach correctly synthesizes an
additional 6 failing benchmarks with an average of 2.2 user interactions.

6.2 Optimizations for Single-Line Transformations

We repeat the previous experiment using the single-line transformation model
described in Sect. 5.4. We refer to the version of JDial with this restricted
transformation model as JDial1 and its optimized version as JDialo1. All our
benchmarks can be fixed using a single-line transformation so both JDial1 and
JDialo1 find the same transformation. The last two columns of Table 1 show
the running times. JDial1 is generally faster than the version of JDial that
uses the more complex transformation model. However, the optimized version
JDialo1 is on average 1.37x faster than JDial1. Moreover, for subLargestGap
and maxMin, JDialo1 finds transformations in < 1 second while JDial1 times
out. The improvement is due to the slicing-based data-flow analysis, which, can
reduce the number of lines in the sketched program from 25 to 8.

To answer Q2, the optimization from Sect. 5.4 is beneficial for single-
line transformations. This transformation model is very practical and our results
hint that our slicing technique can make JDial scale to larger programs.
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6.3 Sensitivity of Manipulated Location

Fig. 10. Correct transformation if
manipulating k steps after first point
of error.

One of the key aspects of JDial is that
the user has to find a “good” location
to perform the desired transformation. In
this experiment, we evaluate how sensi-
tive JDial is with respect to the loca-
tion choice. We consider the experiment
we performed against test-based tools
and for each test case on which JDial
and JDial+ successfully found a correct
transformation, we then perform the fol-
lowing analysis: if the manipulation was
performed at step i in the program trace,
we measure after how many steps the generated transformation is “lost”—i.e.,
we compute the smallest k for which performing the manipulation at position
i + k would yield a wrong transformation.

Figure 10 shows the results. In 80% of the cases, if JDial is provided only
with a manipulation and the manipulation is performed one step later, JDial
returns an incorrect transformation. However, when provided with one addi-
tional test case JDial returns the correct transformation in 80% of the cases,
even when the manipulation is performed 5 steps after the ideal location. Even
in these extreme conditions, JDial returns correct transformations more often
than Qlose does when provided with two test cases. To answer Q3, JDial is
sensitive with respect to the manipulation location only if no addi-
tional tests are provided, but it is still more precise than Qlose.

6.4 Ability to Handle External Functions

We evaluate if JDial can handle programs with external functions. ePoly-1
and ePoly-2, contain the function Math.pow and JDial is able to produce a
transformation for them using between 2 and 5 iterations (average 4.2), of the
CeGIS algorithm presented in Sect. 5.3.

To better evaluate the algorithm, we design two more families of benchmarks.
The first family of programs tries to compute

∑n
i=0 Math.pow(2, i) for values of

n between 2 and 8. The bug in this benchmark is the one shown in Fig. 7. For
inputs 2 and 3, JDial can find the correct transformation that is compliant
with the external function after 2 CeGIS iterations, while for inputs 4 through
8, JDial requires 3 iterations. The second family of programs computes the
maximum value in an array using the Math.max function for different incorrect
initializations of the variable max. In this case, the size of the initial constant
affects the number of required CeGIS iterations. While incorrectly initializing
max to 2 only requires a couple of iterations to produce the correct transfor-
mation, if we incorrectly initialize max to 100, computing the transformation
requires guessing many new interpretations of the function Math.max that did
not appear in the original trace, resulting in more than 90 iterations.
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To answer Q4, JDial can handle programs that contain external
functions, but in certain pathological cases it requires many CeGIS iterations.

7 Related Work

Direct Manipulation. Direct manipulation has been used in drawing editors
[1–4]. The most relevant work in this space is Sketch-n-Sketch [5,6], which
uses program synthesis to apply direct manipulation to scalable vector graphics
(SVG)—i.e., constants in the program can be modified conforming to the direct
manipulations. Sketch-n-Sketch and JDial tackle different domains. Unlike
JDial, Sketch-n-Sketch can only rename constants defined at the top of the
program and cannot handle complex updates involving changes in the program
structure—e.g., replacing x = y with x = y−z. Finally, Sketch-n-Sketch uses
heuristics to select the “right” fix, while JDial does so using program distances.

In Wolverine [18], the user can modify a graphical abstract representation of
a data structure such as a linked list and the tool will attempt to find a program
modification consistent with the modification. Similar to Sketch-n-Sketch,
Wolverine’s technique is specific to certain families of data structure transfor-
mations and relies on the graphical abstraction used for the manipulation.

CodeHint [19] synthesizes simple Java expressions—e.g., library calls—at
user-set breakpoints using partial specifications—e.g., variable types. It uses
information from the execution to construct expressions of a user-provided type.
CodeHint is different from JDial in two main aspects: (i) CodeHint helps
programmers auto-complete function calls given some expected type at a given
location, whereas JDial transforms the original program using a global analysis.
(ii) CodeHint performs brute-force search while JDial uses constraint-based
search with optimization objectives.

Personalized Education. There are many tools for teaching programming that
help with grading (see [20] for a survey), personalized feedback [7,9,13,21,22],
and visualization [12]. Several works have dealt with transforming synthesis tools
into feedback generators [11]. Here, we discuss tools relevant to our work.

AutoGrader [9] and Qlose [7] repair incorrect student solutions to intro-
ductory programming assignments. These systems require a reference implemen-
tation or a comprehensive set of test cases while JDial also allows students to
discover potential transformations using direct manipulations. JDial extends
Qlose’s technique to compute minimal program transformations. In particular,
JDial encodes the problem of finding good stop points for aligning partial pro-
gram traces, which is a new problem arising from our specification mechanism.

Program Repair. Program repair is the problem of automatically fixing bugs in
large pieces of code. This topic has been studied extensively and researchers have
proposed techniques based on constraint-solving [16,23], abstractions [24], and
genetic algorithms [25]. These tools are mostly interested in fixing particular
types of bugs—e.g., null-pointer exceptions. JDial uses constraint solving, but
it would be interesting to investigate if other techniques work in our domain.
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There are program repair approaches that find repaired programs that are syn-
tactically close [23,26] or semantically close [27] to the original program. It was
demonstrated in [7] that transformations generated using a combination of syn-
tactic and semantic program distances are, in general, more desirable although
more expensive to compute. Hence, JDial chooses this last approach and only
compares against Qlose [7] since other tools rely on high-quality test suites.

Existing tools use test cases [7,16,28], logic specifications [29], or reference
programs [9]. Direct manipulation “augments” a test case by allowing the user to
specify intermediate information about the run of the program on a certain input.
Moreover, direct manipulations can be used to debug incomplete implementa-
tions. Finally, it is important to note that direct manipulation is not directly
expressible using assertions or test cases: while an assertion at a certain location
is valid if every time the location is traversed the predicate in the assertion is
true, a direct manipulation at a certain location only requires that at some point
in the trace the variables evaluate to the manipulated values at that location.

Several tools use fault localization to find likely locations to modify
[30–32]. The work on angelic debugging [33] is particularly relevant, where pos-
sible faulty expressions in a program are inferred by replacing them with an
alternate concrete value (oracle) that makes all the tests pass. However, the
burden on repairing the program with the correct expression still lies with the
programmer.

The CeGIS refinement of external functions in Sect. 5.3 is related to the
notion of Sketch models [34], which allow one to specify certain properties
(such as associativity, idempotence, etc.) to provide richer interpretations to
uninterpreted functions. In contrast, JDial iteratively builds a model of the
auxiliary function directly in the synthesis process.
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