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ABSTRACT

This paper proposes a new fine-grained dynamic pruning technique
for CNN inference, named channel gating, and presents an acceler-
ator architecture that can effectively exploit the dynamic sparsity.
Intuitively, channel gating identifies the regions in the feature map
of each CNN layer that contribute less to the classification result
and turns off a subset of channels for computing the activations in
these less important regions. Unlike static network pruning, which
removes redundant weights or neurons prior to inference, chan-
nel gating exploits dynamic sparsity specific to each input at run
time and in a structured manner. To maximize compute savings
while minimizing accuracy loss, channel gating learns the gating
thresholds together with weights automatically through training.
Experimental results show that the proposed approach can signifi-
cantly speed up state-of-the-art networks with a marginal accuracy
loss, and enable a trade-off between performance and accuracy.
This paper also shows that channel gating can be supported with
a small set of extensions to a CNN accelerator, and implements a
prototype for quantized ResNet-18 models. The accelerator shows
an average speedup of 2.3× for ImageNet when the theoretical
FLOP reduction is 2.8×, indicating that the hardware can effectively
exploit the dynamic sparsity exposed by channel gating.
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1 INTRODUCTION

Convolutional neural networks (CNNs) have demonstrated human-
level accuracy in many vision-related tasks and are being increas-
ingly adopted for many applications, including real-time tasks such
as autonomous driving and robotic manipulation. Unfortunately,
state-of-the-art CNNs are highly compute-intensive, as they typi-
cally demand about 109 floating point operations (FLOPs) per in-
ference [1]. In order to deploy CNNs in a much broader range of
applications, especially in embedded and mobile settings [2], we
need to reduce the high computational cost without noticeably
sacrificing inference accuracy. In this paper, we propose a new dy-
namic pruning technique, named channel gating, which removes
ineffectual computations specific to each input at run time, and
present a hardware accelerator architecture to effectively exploit
the dynamic sparsity introduced by channel gating.

Figure 1 illustrates the intuition behind channel gating by show-
ing the heat maps of the normalized computational cost for two
sample images. The łcoolž colors on the decision maps indicate that
computation for the region can substantially be pruned by channel
gating. For these regions, only a small subset of input channels need
to be used to produce output activations. Intuitively, these regions
correspond to less important input features such as backgrounds.
While several prior studies have proposed statically pruning inef-
fectual features and weights (i.e. those with small magnitude) [3ś6],
these static approaches prune networks for all inputs and cannot
exploit dynamic input-specific characteristics. The static sparsity in-
troduced by these existing pruning approaches reduces a constant
amount of computation regardless of the input. While dynamic
pruning approaches have been recently proposed [7ś9], the previ-
ous approaches only focus on limited form of dynamic sparsity, in
particular zeros from the ReLU activation. Channel gating aims to
achieve more computation reduction and less accuracy loss by ex-
ploiting more general forms of dynamic sparsity and co-designing a
pruning algorithm, a training method, and hardware architectures.

The key idea in channel gating is to identify ineffective receptive
fields in input features and reduce the computation on these fields
by gating a portion of the input channels. More specifically, to com-
pute an output activation in a convolutional (or fully-connected)
layer, we first perform a partial computation on a subset of input
channels (i.e., Wp ∗ xp in Figure 2). We found that these partial
sums are strongly correlated with the final sums, and can serve
as good indicators on which spatial locations are more important.
The partial sum is then compared to a learnable threshold using a
gate function, which generates a binary decision for each output
activation. If the decision is 1, we continue computing the convo-
lution on the rest of the channels (i.e., xr). Otherwise, we simply
skip the remaining computation and feed the partial sum to the
normalization and activation function. As CNN inference is mostly
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Table 2: Design parameters for the CGNet accelerator.

Parameter Explanation

M Number of multipliers per PE.
P Number of PEs per PE row.
R Number of PE rows in the accelerator.

Non-differentiable gate function.As the Heaviside step func-
tion is not differentiable, the gradients toward batch normalized
partial sum (BN(Wp ∗ xp)) and the threshold (∆) cannot be com-
puted directly. We propose to approximate the gate with a smooth
function which is differentiable with respect to x and ∆ during the
backward propagation. Here, we propose to use

s(x,∆) =
1

1 + eϵ ·(x−∆)
(3)

to approximate the gate only for the backward propagation when
the ReLU activation is used. ϵ is a hyperparameter which can be
tuned to adjust the difference between the approximated function
and the gate. We implement a custom operator in MxNet [13] which
takes the batch normalized partial sum as the input and generate
the gate decisions.

Sparsity-inducing mechanism. The batch normalized input
to the gate follows the standard normal distribution, and therefore
the fraction of the FLOPs pruned increases monotonically with ∆.
As a result, reducing computation cost is equivalent to having a
larger ∆. To motivate reducing computational cost during training,
we set a target ∆ value, denoted as T ; for the entire network, we
add the squared difference between channel-specific ∆l and T (i.e.,
λ
∑
l (T − ∆l )

2) into the loss function, where λ is a scaling factor.
T can be tuned to achieve different degrees of FLOP reduction.
Since the gate function is differentiable, per-channel thresholds are
optimized by SGD to minimize accuracy loss for a givenT . In other
words, the actual gating threshold values are automatically learned
for each channel in each layer.

Channel selection.We do not manually select channels for the
base path; instead, we simply use the first χ fraction of channels as
xp. In our experiments, we observed that the fixed channel selection
scheme works well as the network weights are learned through
training, consideringwhich channels are in the base path. To further
improve the accuracy of CGNets, channel grouping and shuffling
can be used to łequalizež the importance of each channel [14]. The
channel grouping and shuffling improve the accuracy by 1% over
the fixed channel selection scheme for ImageNet.

3 CGNET ACCELERATOR ARCHITECTURE

In this section, we propose a unified architecture which can ac-
celerate both ordinary CNNs and channel gating networks. Our
proposed architecture extends a weight-stationary architecture to
handle both base and conditional paths without significant changes
to the baseline architecture that executes regular CNNs. Hereafter,
we refer to the computation in the base path as dense convolution,
and the conditional path as sampled feature convolution.

3.1 Architecture Overview

The overall system architecture is shown in Figure 5(a). The acceler-
ator communicates with the CPU through an SoC bus and off-chip

DRAM through two DDR channels. The host CPU issues commands
containing layer descriptions to the accelerator. The weights of a
channel gating network model are stored in the off-chip DRAM.
During execution, the weights of a layer are prefetched to on-chip
global weight buffers. Weights are moved to local weight buffers
near the PE array to maximize data locality and reuse. When pos-
sible, the output feature maps of intermediate layers are buffered
on-chip to minimize off-chip data transfers. The on-chip weights
and feature maps are split and stored in the dense and sparse buffers.
Double buffering of weights is applied to overlap computation and
off-chip transfers. A batch normalization layer, an activation func-
tion, and a pooling layer, if present, are combined with the previous
convolutional or fully-connected layer.

Figure 5(b) depicts the proposed dense-sparse accelerator archi-
tecture. We adopt the widely-used weight stationary architecture
to process the base path. As the base path can be considered as an
unpruned CNN, this architecture for dense convolution represents
the baseline. In that sense, the proposed dense-sparse architecture
is capable of accelerating both regular CNNs and CGNets on a
single hardware platform. The baseline accelerator exploits the
parallelism in output channel (cl ), input channel (cl−1), and spatial
(kl × kl window) dimensions. There are three main components in
the baseline architecture Ð convolution engines, a data fetching
unit, and a feature map store unit, which are colored in blue. Table 2
lists the key parameters of the dense-sparse architecture. The con-
volution engine consists of R × P processing elements (PEs). Each
PE containsM multipliers. For networks with only convolutional
filters of size k , we should pick P = k2 to maximize PE utilization.
If the network contains convolutional filters of different sizes, tech-
niques similar to [15] can be used to choose an optimal value of P .
Each PE computes a 1-by-1 convolution of M input channels per
clock cycle. Assuming P = k2, a k-by-k convolution of M input
channels is mapped to a row of PEs in the baseline architecture,
and the whole PE array computes R output activations on the same
spatial location in R output channels. The value ofM should divide
the minimum number of input channels in all layers of the network.

The feature maps are stored in on-chip feature buffers to mini-
mize the number of off-chip memory accesses. As a result, the only
off-chip memory accesses come from fetching weights. In order to
maximize the energy efficiency of the accelerator, weight-stationary
architecture is adopted where the weight kernels are read exactly
once from the off-chip memory. To leverage the parallelism in the
output channel dimension, the PE rows apply different weight ker-
nels on the same input feature to generate R output channels in
parallel. Thus, the data fetching unit broadcasts the same input
to all window buffers attached to each PE row to exploit feature
reuse. Similar to several other CNN accelerators [16ś18], we add a
specialized line buffer between the window buffers and the global
feature buffer to further exploit the data locality and reuse of the
feature maps.

An adder tree accumulates the partial sums from each PE into a
per-PE-row PSUM buffer. Once the entire feature map of an output
channel is obtained, the feature map store unit writes the output
channel back to the global feature buffer. The baseline architecture
can fully utilize all PEs across different layers and achieve near-
optimal throughput with respect to the number of PEs.
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Table 5: The test error of quantizedCGNets onCIFAR-10 and

ImageNet Ð CGNet-A models on CIFAR-10 and ImageNet refer to
the CGNet-A in Table 3 and 4(b).

Dataset Model Weight Activation Test Error

CIFAR-10 CGNet-A
float-32 float-32 5.44%
fixed-8 fixed-8 5.69%
fixed-4 fixed-8 5.73%

ImageNet CGNet-A
float-32 float-32 31.7%
fixed-8 fixed-8 31.9%

4.1.3 Quantization. To further improve the energy efficiency and
performance of our accelerator, We follow the widely used quantiza-
tion configurationwhich quantizes both the weights and activations
to 8 bits to avoid significant accuracy drop.

For activations, we adopt the PACT quantization scheme which
introduces a layer-wise trainable clipping threshold (α ) [28]. PACT
first clips the activations to be in the range of [0,α] and then perform
a linear quantization within that range. The quantized activation
(xq ) can be expressed as

xq = ⌊
|x | − |x − α | + α

2
·
2N − 1

α
⌉ ·

α

2N − 1
(7)

where ⌊⌉ means rounding to the nearest integer function and N

is the number of quantiztion bits. PACT also adds an L2 regular-
ization on α which minimizes the range of the quantization and
therefore improving the resolution. For weights, as L2 regular-
ization on weights are adopted to prevent the model from over-
fitting, we directly apply a linear quantization between the range
of [−max |x |,max |x |]. 8-bit quantized channel gating networks for
CIFAR-11 and ImageNet have 0.3% and 0.2% accuracy degradation
compared to their floating-point counterparts, respectively.

4.2 Hardware Evaluation

To evaluate the performance improvement, energy saving, and
hardware overhead of applying channel gating, we implemented a
hardware prototype targeting a TSMC 28nm (0.9V, 25°C, Standard
Threshold Voltage Transistors) standard cell library. The SRAMs
in the design are generated using the ARM SRAM compiler. We
apply channel gating to two ResNet-18 models for CIFAR-10 and
ImageNet. The ResNet models with channel gating achieve 5.5×
and 2.8× FLOP reduction on average over a batch of 64 images
compared to the baseline ResNetmodels on CIFAR-10 and ImageNet,
respectively. In the rest of this section, we refer to the dense-sparse
architecture proposed in Section 3.3 as CGNet-xcel, and compare it
with the baseline architecture described in Section 3.1.

4.2.1 Methodology. Figure 9 shows the flow that we use to im-
plement both the baseline and CGNet accelerators. With the RTL
generated by HLS, we first run through an FPGA synthesis flow
to obtain resource utilization after place and route, which is useful
for identifying key resource overheads. After generating the RTL
simulation trace, the RTL source files are sent to Synopsys Design
Compiler (DC) together with the standard cell library, SRAM in-
formation, and the statistics of signal switching activities6. We can
obtain area and timing estimations, as well as the gate-level netlist

6In the Switching Activity Interchange format (SAIF) format.
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CGNet.v, ResNet_tb.v, …

Figure 9: The RTL design and simulation flow.
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Figure 10: Timing diagram of a residual block Ð Compute and
weight loading form a coarse-grained pipeline.

from Synopsys DC. The gate-level netlist and the RTL signal trace
are used by Synopsys PrimeTime (PT) for power analysis.

For performance estimates, we use a combination of RTL sim-
ulations for the accelerator and DRAMSim2 [29] for off-chip ac-
cesses. In this performance model, we first extract the memory
trace and the compute time of an accelerator from a cycle-accurate
RTL simulation, use DRAMSim2 [29] for DRAM latency estimates
for memory accesses, and combine the results to obtain the overall
execution time. We simulate two 64-bit DDR3 channels at 666MHz,
where each channel contains one rank of eight banks. The total
capacity of the simulated DRAM is 8GB. The DRAM parameters
are verified against Verilog timing models from Micron [29].

Figure 10 shows a timing diagram of computing one residual
block in ResNet, which applies to both the baseline and CGNet-xcel.
The accelerator is called twice for each residual block. In order
to save on-chip storage, the accelerator only loads the weights
of Nw output channels in each step as shown in the figure. As
the input channels to a conditional path may still be used for a
subset of output activations, the accelerator reads the same amount
of weights from off-chip memory as the baseline. CGNet can be
extended to reduce memory accesses by pruning entire output
channels. We apply double buffering to both baseline and CGNet-
xcel so that computation and loading weights can be performed in
parallel, as commonly done in CNN accelerators [15]. Note that the
3x3 and 1x1 convolutional layers in the same residual block of the
ResNet-18 model are also computed in parallel.

4.2.2 Performance. Figure 11 compares the performance of the
baseline, CGNet-xcel, and the theoretical execution time on CIFAR-
10 and ImageNet. We use Nw = 64 for both the baseline and CGNet-
xcel. The baseline and CGNet-xcel results are averaged over a batch
of 64 images. To obtain the theoretical execution time of CGNet
(CGNet-theoretical), we calculate the number of multiplications
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CGNet-NM. The ASIC results of CGNet-NM are shown in Table 9.
Compared to the results for the łnormalž CGNet-xcel, the CGNet-
NM accelerator has smaller area and lower power consumption.
Figure 14 shows the performance of CGNet-NMonCIFAR-10, where
the execution time breakdown is shown in Figure 14(a) and the
breakdown of compute and memory time is shown in Figure 14(b).
With a higher memory bandwidth, lower frequency, and fewer
compute resources, only the last two residual blocks are slightly
memory-bound, and the performance of CGNet-NM is close to the
theoretical optimal. The results show that CGNet can be designed
to meet varying area/power constraints and applied to speed up
CNNs in multiple types of platforms.

4.2.6 Performance-Accuracy Trade-off. Our experiments also show
that CGNet can be scaled to a range of performance-accuracy trade-
off points, especially with high memory bandwidth. The FLOP
reduction ratio of channel gating can be tuned during training. For
more FLOP reduction, channel gating prunes away more computa-
tion at the cost of accuracy. Figure 15 shows how the performance
of the normal CGNet-xcel and CGNet-NM scales with the FLOP
reduction ratio for CIFAR-10. With high memory bandwidth, the
performance of CGNet-NM scales almost linearly as more computa-
tion is pruned. On the other hand, the performance improvements
for CGNet-xcel saturate earlier due to the memory bandwidth limit.
We note that the CGNet-xcel performance scales much better for
more compute-bound networks such as ResNet-18 on ImageNet,
and CGNet-xcel can significantly improve CNN performance on
traditional platforms as well.

5 RELATED WORK

Many recent proposals suggest to statically prune unimportant
filters/features [4ś6]. These static pruning techniques identify inef-
fective channels in filters/features by examining the magnitude of
the weights/activation in each channel, and prune the ineffective
subset of the channels from the model. The pruned model is then re-
trained to mitigate the accuracy loss from pruning. By pruning and
retraining iteratively, these methods can compress the model size
and reduce the computation cost. However, they reduce the same
amount of computation for all inputs as they cannot exploit dy-
namic input-specific sparsity. In contrast, channel gating achieves a
better performance-accuracy trade-off by identifying unimportant
regions for a particular input and reducing computation for those
regions at run time. We also believe that channel gating is comple-
mentary to static pruning approaches as it exploits input-dependent
sparsity in the features.

SACT [33] introduces the spatially adaptive computation time
technique on Residual Network [34], which can adjust the number
of residual units for different regions of the input features. Lin et al.
propose to use reinforcement learning to train a recurrent neural
network making run-time decisions to prune output channels [35].
Both approaches require additional weights and extra computation
to make the run-time decisions. In comparison, channel gating
generates more fine-grained pruning decisions without incurring
overhead in weights or computation.

Cnvlutin and Minerva [7, 8] propose to dynamically prune zero-
valued pixels from the ReLU activation or pixels with small magni-
tude in the input features during inference.While such zero-pruning

methods require no training effort, they strictly rely on the sparsity
in the output features of each layer and only apply to ReLU-based
activations. SnaPEA [9] extends the idea and propose to predict the
ReLU zeros using the partial sum from a subset of input channels.
While the use of the partial sum in a pruning decision is similar to
our approach, channel gating enables a more general and aggres-
sive pruning scheme by identifying unimportant regions in input
features rather than only targeting zeros from one specific (ReLU)
activation function. More importantly, channel gating introduces a
training method to learn the gating policy (thresholds and weights),
which turns out to be critical for achieving a small accuracy degra-
dation. Similar to other inference-time approaches, SnaPEA often
results in significant accuracy losses when targeting more than 2×
FLOP reduction.

Predictive-based execution proposed in [36, 37] predicts zeros by
first executing the significant bits. However, less information is pre-
sented in significant bits if batch normalization is used. Moreover,
the performance gain of these methods is limited by the sparsity
of zeros in the baseline networks. In contrast, channel gating can
exploit various degrees of sparsity by choosing different target
thresholds. Bit Fusion [38] proposes to reduce the computational
cost by choosing different bit widths dynamically which is also ap-
plicable to CGNet. CirCNN and PermDNN [39, 40] use structured
weight matrices with Fourier transform or permutation to achieve
hardware-friendly structured sparsity. This line of research also
focuses on static sparsity, although they are potentially comple-
mentary to our approach for reducing the size of the weights in
CGNet.

6 CONCLUSION

This paper introduces a new fine-grained dynamic pruning tech-
nique for CNN, named channel gating, which reduce computational
costs for CNN inference, along with a hardware accelerator archi-
tecture that can efficiently realize the dynamic pruning. The ex-
perimental results show that the channel gating can significantly
reduce FLOPs with minimal accuracy loss: 5.5× FLOP reduction
without accuracy loss for CIFAR-10, and 2× FLOP reduction with
1.0% accuracy degradation for ImageNet using ResNet-18. The paper
also proposes a unified dense-sparse accelerator where both dense
and sparse computations can be mapped onto the same processing
elements, and shows that the proposed architecture can achieve
close-to-optimal performance improvements for channel gating.
Overall, by co-optimizing CNN algorithms and hardware architec-
ture, the CGNet architecture provides higher performance gains
with lower accuracy degradation compared to the state-of-the-art
pruning techniques.
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