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ABSTRACT

We present a computational method, termed Wasserstein-induced flux (WIF), to robustly quantify the accuracy
of individual localizations within a single-molecule localization microscopy (SMLM) dataset without ground-
truth knowledge of the sample. WIF relies on the observation that accurate localizations are stable with respect
to an arbitrary computational perturbation. Inspired by optimal transport theory, we measure the stability
of individual localizations and develop an efficient optimization algorithm to compute WIF. We demonstrate
the advantage of WIF in accurately quantifying imaging artifacts in high-density reconstruction of a tubulin
network. WIF represents an advance in quantifying systematic errors with unknown and complex distributions,
which could improve a variety of downstream quantitative analyses that rely upon accurate and precise imaging.
Furthermore, thanks to its formulation as layers of simple analytical operations, WIF can be used as a loss
function for optimizing various computational imaging models and algorithms even without training data.

Keywords: localization accuracy, statistical confidence, localization software, model mismatch, Wasserstein
distance, image quality, optimal transport

1. INTRODUCTION

Single-molecule localization microscopy (SMLM) relies on localizing individual molecules to reconstruct high-
resolution images of cellular structures. These images, represented by points in a multi-dimensional space,
contain nanoscale, quantitative information regarding the organization, interaction, and dynamics of molecular
entities that need to be estimated robustly in the presence of noise. Existing metrics for assessing SMLM
image quality can be categorized broadly into two classes: those that require knowledge of the ground-truth
positions of fluorophores,1 and those that operate directly on SMLM reconstructions alone, possibly incorporating
information from other measurements (e.g., diffraction-limited imaging).2,3 One popular approach is the Jaccard
index (JAC),1,4 which measures localization accuracy, but has limited applicability for SMLM experiments as it
requires exact knowledge of ground-truth molecule positions. Methods that quantify performance by analyzing
SMLM reconstructions exploit some aspect of prior knowledge of the target structure or SMLM data. While
these methods are able to provide summary or aggregate measures of performance, none of them directly measure
the accuracy of individual localizations. Such knowledge is critical for harnessing fully the power of SMLM for
scientific discovery. In addition, these methods cannot be used to optimize computational imaging models and
algorithms in an end-to-end fashion.

Here, we report our broadly-applicable method, termed Wasserstein-induced flux (WIF), to quantify the
accuracy of individual localizations given a certain mathematical imaging model. Unlike methods that require
ground-truth knowledge, such the exact position of each single molecule (SM), WIF only assumes a basic model
of the imaging system such as its point-spread function (PSF). Using WIF, we accurately detect and quantify
imaging artifacts arising from overlapping images of SMs in a high-density SMLM dataset of a tubulin network,
which otherwise are not revealed by previous methods.
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2. PROPOSED METHOD

2.1 Mathematical modeling

We model estimated single molecules as collection of point sources located at specific positions, each having a
positive brightness:

M̂ =
N̂∑

i=1

ŝiδ(r − r̂i), (1)

where ŝi > 0 and r̂i ∈ R2 denote the ith molecules’ expected brightness (in photons) and position, respectively.
Further, all valid M̂ are denoted by a set M. The expected number of photons detected at jth camera pixel can
be written as

µj =
N̂∑

i=1

{ŝiqj(r̂i)}+ bj , (2)

where qj(r̂i) represents the integral of the PSF (for the ith molecule) over the 2D area occupied by the jth pixel
and bj denotes the expected number of background photons at the jth pixel. Given a set of m pixel measurements
as g ∈ Rm, the Poisson negative log likelihood L is then given by (neglecting constant terms)

L(M̂; g, b) =
m∑

j=1

{µj − gj log(µj)}. (3)

Central to our method is the idea of transportation plan between two sets of localizations M1 ∈ M and
M2 ∈ M. Informally, a transportation plan π is a mapping that specifies how M1 ∈ M is mapped to M2 ∈ M.
We define the Wasserstein distance W2 between two sets of localizationsM1 ∈ M andM2 ∈ M, as the minimum
cost of transporting one to the other among all valid transportation plans5 Π:

W2(M1,M2) =

√√√√√min
π∈Π




N̂1∑

i=1

N̂2∑

j=1

‖r̂i − r̂j‖22 π(r̂i, r̂j)


, (4)

where π(r̂i, r̂j) is the portion of photons from the molecule at position r̂i in M1 that is transported to position
r̂j in M2.

Although molecules lie on a continuous domain, we seek to represent them using a finite number of parameters
while closely approximating their continuous positions. To this end, we consider a set of N Cartesian grid points
represented by G = {rGi}i=1:N for which the distance between any two adjacent grid points is given by 2ρ
(Fig. 1a). In this way, a set of localizations can be uniquely represented via a discrete grid G:

M̂ =
N̂∑

i=1

ŝ[i]δ(r − r̂[i]), (5)

where [i] represents a grid point index in {1, . . . ,N}, r̂[i] = r̂G[i] + ∆r̂[i], r̂G[i] is the position of the closest grid

point to the ith molecule, and ∆r̂[i] denotes a position offset relative to the position r̂G[i] of the closest grid point
(Fig. 1a). Since this choice of model generally guarantees there exists more grid points than actual molecules
within a single SMLM image, we denote the support of M̂, that is, all grid points that are associated with one
molecule by Supp(M̂) = {i ∈ {1, . . . ,N} : ŝi > 0}.

Finally, we introduce our notion of source perturbation. Concretely, for each grid point r̂G[i] associated

with a SM in M̂, we consider its 8 closest grid points denoted by r̂G[i,j] , j ∈ {1, . . . , 8}. We consider isotropic

perturbations of M̂ as follows:

M0 =
N̂∑

i=1

8∑

j=1

ŝ[i,j]δ(r − r̂G[i,j]), (6)
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Figure 1. Computing Wasserstein-induced flux (WIF). (a) An input localization (orange circle) located at r̂[1] is mapped to
its closest grid point r̂G[1]

and a position offset vector ∆r̂[1], i.e., r̂[1] = r̂G[1]
+ ∆r̂[1]. Note that 2ρ indicates the distance

between any two adjacent points on the grid. (b) A perturbation redistributes a molecule’s photons to its 8 closest
grid points {r̂G[1,1]

, . . . , r̂G[1,8]
}. (c) Solving Eq. (14) amounts to finding a set of transport trajectories or displacements

denoted by {∆r̃[1,1], . . . ,∆r̃[1,8]}. The transport angle ζ[1,j] is defined as the angle between the displacement ∆r̃[1,j] and
(r̂[1] − r̂G[1,j]

), the vector connecting the perturbed grid point to the estimated localization. Note that we can represent
this step by K layers of operations as shown in Algorithm 1. (d) WIF is computed according to the recipe described
in Eq. (9). Note that since the estimated localization (orange circle) is close to the true position (red triangle) in this
example, we expect WIF to be close to 1, thereby indicating a high degree of confidence.

where
∑8
j=1 ŝ[i,j] = ŝ[i] and ŝ[i,j] is proportional to the distance between r̂[i] and r̂G[i,j] (Fig. 1b).

2.2 Wasserstein-induced Flux

We denote M0 as a local perturbation of M̂ (see Eq. (6)). Intuitively, if the PSF model q and the localization
algorithm used to recover M̂ are optimal, one expects that the localizations M1 obtained via

M1 = arg min
W2(M,M0)≤ε

L(M; g, b) (7)

to be very “close” to M̂. Informally, this qualitative behavior follows from the convexity of the landscape of L
in the vicinity of an optimal solution. Note that the constraint set {M : W2(M,M0) ≤ ε} ensures that M1

remains within a small neighbourhood of M̂. Next, we quantify the “closeness” between M1 and M̂.
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Let us represent M1 via its grid representation as

M1 =
N̂∑

i=1

8∑

j=1

ŝ[i,j]δ(r − r̃[i,j]). (8)

We notice that M1 reveals transport trajectories ∆r̃[i,j] , r̃[i,j] − r̂G[i,j] (from M0 to M1) for each source

molecule in M̂, i.e., r̂G[i,j] are the set of perturbed molecule positions inM0 and r̃[i,j] are the molecule positions

inM1 (Fig. 1c). IfM1 is close to M̂, we expect that all trajectories ∆r̃[i,j] converge to corresponding molecules

in M̂ (Fig. 1c). Alternatively, we can interpret this behavior as the stability of M̂ upon a well-chosen local
perturbation to M0.

Therefore, we define our confidence in the estimate of a source molecule, termed Wasserstein-induced Flux
(WIF), as the portion of photon flux that returns toward said localization upon a local perturbation:

WIF ,

∑8
j=1 ŝ[i,j]∆r̃[i,j] ·∆û[i,j]∑8

j=1 ŝ[i,j]

∥∥∆r̃[i,j]

∥∥ , (9)

where WIF takes values in [−1, 1] (1 represents a source molecule with the highest confidence). Note that ∆û[i,j]

is a unit vector pointing from the perturbed source position r̂G[i,j] to the original source position r̂[i].

2.3 Computing WIF

2.3.1 Relaxations and approximations

In this section, we discuss a strategy to compute WIF in Eq. (9). To begin, we need to solve Eq. (7), which
is a nontrivial nonlinear optimization. One classic strategy to solve Eq. (7) is to reformulate it via Lagrange
relaxation as

M1 = arg min
M∈M

{
W2

2(M,M0) + ε′L(M; g, b)
}
, (10)

where ε′ is related to ε in Eq. (7). While Eq. (10) is a convex optimization, computing the Wasserstein distance
itself requires solving an optimization problem. In this paper, we propose to regularize the transportation plans
in Eq. (10), allowing us to minimize an upper bound of the objective function in Eq. (10), which can be solved
efficiently via proximal algorithms.

One way to regularize the transportation in Eq. (10) is to consider a local constraint on M. Informally, we
enforce that the perturbed source molecules be transported along certain trajectories. To this end, we impose
the following local constraint on M in Eq. (10):

C , {M : ‖∆ri‖2 ≤ ρ ∀ i ∈ Supp(M0)}. (11)

The constraint set C in Eq. (11) describes all transportation plans that move each perturbed source along a
unique trajectory in the vicinity of the unperturbed source. Therefore, the regularized version of Eq. (10) can
be written as

M1 = arg min
M∈M∩C

{
W2

2(M,M0) + ε′L(M; g, b)
}
. (12)

Next, we bound W2 for all valid localizations in the constraint set M ∩ C. It turns out that ∀M ∈ M ∩ C we
can bound W2

2(M,M0) from above with the group sparsity norm:

R(M) ,
N∑

i=1

√
s2
i + s2

i ‖∆ri‖
2
2, (13)

so long as
∥∥∆r[i,j]

∥∥2

2
≤
√

1 +
∥∥∆r[i,j]

∥∥2

2
(see Appendix A.1). We note that this assumption can be easily satisfied

by appropriately scaling 2ρ, the separation between grid points, in the object model. Note that R defines a group-
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sparsity norm for which it is assumed that si = 0 for grid indices i that do not contain perturbed sources, i.e.,
{si = 0 | i /∈ Supp(M0)}.

We are now ready to state the main (convex) optimization problem that we use for computing WIF. By
plugging in the upper bound of W2 derived in Eq. (22) we have

M1 = arg min
M∈M∩C

{νR(M) + L(M; g, b)} , (14)

where ν > 0 represents the regularizer strength.

2.3.2 Implementation

The non-smooth nature of the group-sparsity norm and the large size of signal, that is N , makes the minimization
in Eq. (14) challenging. Here, we present an accelerated proximal gradient algorithm6 to solve Eq. (14) efficiently.
The inputs to the algorithm include the recorded image g ∈ Rm; a list of localizations L consisting of the
estimated position and (expected) brightness of each SM; the estimated (expected) background b ∈ Rm; a PSF
model q ∈ Rm and its spatial gradients along x, y given by qx, qy ∈ Rm, respectively; and the regularizer strength

ν > 0. We further representM using its grid representation as
∑N
i=1 siδ(r−rGi −∆ri) and its equivalent vector

representation

γ = [s1, . . . , sN , s1∆x1, . . . , sN∆xN , s1∆y1, . . . , sN∆yN ]T (15)

= [sT , sT �∆xT , sT �∆yT ]T = [sT ,pTx ,p
T
y ]T ∈ R3N , (16)

where � represents element-wise multiplication and T denotes the transpose operator. We note that such a
representation in γ allows us to compute q(M), that is the image of an arbitrary collection of SMs, using a first-
order Taylor approximation of PSF q expanded around each grid point. Moreover, we can express the constraint
set C in terms of γ as

C , {γ :
∥∥p2

x,i + p2
y,i

∥∥
2
≤ ρsi ∀ i ∈ Supp(γ)}. (17)

A summary of variables and notations used in the algorithm is shown in Table 1.

At a high level, our accelerated proximal algorithm consists of K layers, each representing one iteration
(Fig. 1c). At layer or iteration k = 0, perturbed sources as well as some initial parameters (such as step size)
are computed. In the following layers (k ≥ 1), the algorithm adaptively updates its hyper-parameters such as
step size β (line 4 in Alg. 1); it locally “transports” perturbed SMs in γ (line 5 in Alg. 1); and it combines
information from previous iterations to accelerate the convergence (line 6 in Alg. 1).

Algorithm 1 Regularized transport: an accelerated proximal gradient algorithm

1: Input: {g, L, b, ν, q, qx, qy}
2: Step 0. Compute γ0 = P(L), β0, and take v1 = γ0, t1 = 1. . P perturbs γ according to Eq. (6).

3: Step k. (1 ≤ k ≤ K)

4: βk = U(βk−1) . U(·) outputs an appropriate step size (see Appendix A.2)

5: γk = PC


vk − βk[∇L(vk) +∇w(vk)]︸ ︷︷ ︸

transportation of vk,T (vk)


 . PC(·) denotes projection onto the set C, regularizing

the transportation (see Appendix A.4)

6: tk+1 =
1+
√

1+4t2k
2 , vk+1 = γk + tk−1

tk+1
(γk − γk−1)

In the last module of our implementation, we use γK as an estimate of M1 to compute WIF according to
Eq. (9).
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Figure 2. WIF confidence map reveals artifacts in recovering a tubulin network from high-density SMLM data. (a)
Recovered structure (red) using FALCON overlaid with the ground truth (green). (b) Error map recovered by SQUIRREL
(brighter colors correspond to larger errors). (c) WIF confidence map (brighter colors indicate higher confidence) obtained
by averaging localization confidences in each pixel. Colorbars: (a) number of localizations, (b) error, and (c) confidence
per 20× 20 nm2. Scalebars: (c) 1 µm, insets: 200 nm.

3. RESULTS

A key difficulty encountered in high-density (HD) localization, when images of molecules overlap on the camera, is
image artifacts that distort SMLM reconstructions in a structured, or vectorial, manner. Constructing an SMLM
error map using a reference image has been proposed to certify the reliability of an SMLM reconstruction, but
such a map does not quantify the reliability of each individual localization within the image. Here, we illustrate
the power of measuring SM confidence in quantifying and revealing artifacts in a challenging HD localization
experiment.

We use FALCON,7 an HD localization algorithm, to reconstruct a simulated benchmark SMLM dataset4

consisting of 360 HD frames of a tubulin network (Fig. 2a). In regions where the tubules coalesce, corresponding
to higher blinking densities, we see numerous inaccurate localizations (Fig. 2a, insets). In particular, we see
fused and broadened tubules instead of thin and separate structures. A reliable error map should assign low
confidence or high error to such regions while discriminating fine but accurate details of the structure.

Interestingly, we notice significant differences between an error map (Fig. 2b, obtained via SQUIRREL3)
and the proposed confidence map (Fig. 2c). First, the error map appears to overestimate errors in regions with
accurate localizations, while our confidence map exhibits low confidence for inaccurate localizations and assigns
high confidence to neighboring, well-resolved parallel tubules (Fig. 2b,c, top insets). Second, the error map
underestimates the error in the regions where tubules are apparently fused, whereas the confidence map assigns
an overall low confidence to this region, suggesting potential artifacts (Fig. 2b,c, bottom insets). Overall, our
WIF confidence map enables scientists to discriminate specific SM localizations that are trustworthy, while also
assigning low confidence values to those that are not, thereby maximizing the utility of SMLM datasets without
throwing away useful localizations.

4. CONCLUSION

In the present paper, we presented a computational imaging method, WIF, to quantify the reliability of indi-
vidual localizations within an arbitrary SMLM dataset given a certain computational model. WIF capitalizes
on the observation that accurate localizations exhibit a high degree of stability upon an arbitrary perturbation.
We formulated a constrained optimization problem exploiting optimal transport theory to allow various pertur-
bations. As an application of WIF, we showed that its confidence map enables detection and quantification of
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imaging artifacts in recovering a tubulin network from a high-density SMLM dataset. From the computational
prospective, WIF is the result of a cascade of simple, analytical operations, which makes it an attractive end-to-
end loss function for training and evaluating computational models such as PSFs and algorithms such as deep
neural networks directly on experimental data.
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APPENDIX A. MATHEMATICAL DETAILS

A.1 Bounding Wasserstein distance from above

First, using our grid representation in Eq. (5), any measure M∈ M ∩ C can be represented as

M =
N̂∑

i=1

( 8∑

j=1

s[i,j]δ
(
r − (rG[i,j] + ∆r[i,j])

) )
(18)

such that
∑N̂
i=1

∑8
j=1 s[i,j] = ŝ, that is, detected photons are preserved. Notice that the constraint set C allows

us to unambiguously represent the position of molecules in M as rG[i,j] + ∆r[i,j],
∥∥∆r[i,j]

∥∥
2
≤ ρ. Therefore,

W2
2(M,M0) ≤

N̂∑

i=1

8∑

j=1

s[i,j]

∥∥∆r[i,j]

∥∥2

2
(19)

≤
N̂∑

i=1

8∑

j=1

s[i,j]

√
1 +

∥∥∆r[i,j]

∥∥2

2
(20)

=
N̂∑

i=1

8∑

j=1

√
s2

[i,j] + s2
[i,j]

∥∥∆r[i,j]

∥∥2

2
, (21)

where the first inequality in Eq. (19) follows from the definition of Wasserstein distance and the second inequality
in Eq. (20) is the consequence of our assumption. Notice that Eq. (21) may be recast as a group-sparsity norm:

N̂∑

i=1

8∑

j=1

√
s2

[i,j] + s2
[i,j]

∥∥∆r[i,j]

∥∥2

2
=
N∑

i=1

√
s2
i + s2

i ‖∆ri‖
2
2 , R(M), (22)

where it is assumed that si = 0 for grid index i that do not contain perturbed sources, i.e., {si = 0 | i /∈
Supp(M0)}.

A.2 A simple backtracking algorithm

Here, we present a simple backtracking method for choosing an appropriate β, i.e., step size, which guarantees
convergence and describes U in Alg. 1. Let η > 0 be a fixed number and consider βk−1 as previous step size.
Then, the following algorithm, collectively denoted by U , outputs βk.
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Algorithm 2 A simple backtracking algorithm

1: Input: {βk−1,vk, g, b, ν, q, qx, qy}
2: Find smallest integer ik such that with β = ηikβk−1:

3: vk,β = PC
(
vk − β[∇L(vk) +∇wν(vk)]

)

4: L(vk,β) ≤ L(vk) + [∇L(vk) +∇wν(vk)]T (vk,β − vk) + 1/β
∥∥∥vk,β − vk

∥∥∥
2

2
5: Return βk = ηikβk−1

A.3 Moreau envelope

The Moreau envelope of νR, parameterized by a smoothing value µ > 0, is a smooth, differentiable approximation
to non-differentiable function νR(γ). In particular, its gradient w.r.t. γ is given by

∇wγ(v) =
1

µ
(v − proxνR(v)), (23)

where proxνR(v) is defined as

proxνR(v) , arg min
γ

(
νR(γ) + 1/2 ‖γ − v‖22

)
. (24)

A.4 Projection onto C
Recall the constraint set C defined in terms of γ as

C , {γ :
∥∥p2

x,i + p2
y,i

∥∥
2
≤ ρsi ∀i ∈ Supp(γ)}. (25)

It can be shown that the element-wise projection of γ onto C is given by (∀i ∈ {1, . . . ,N})

PC(γi) =





0, if
√

(si∆xi)2 + (si∆yi)2 ≤ −si/ρ
(si, si∆xi, si∆yi), if

√
(si∆xi)2 + (si∆yi)2 ≤ siρ

ρ(si+ρ
√

(si∆xi)2+(si∆yi)2)

(1+ρ2)
√

(si∆xi)2+(si∆yi)2

(√
(si∆xi)2+(si∆yi)2

ρ , si∆xi, si∆yi

)
, if

√
(si∆xi)2 + (si∆yi)2 > siρ

(26)

A.5 Table of mathematical notations

Proc. of SPIE Vol. 11246  1124611-8
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 17 Feb 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Table 1. Mathematical notations

Notation Definition

N > 0 number of grid points
m > 0 number of camera pixels in the area of interest
ρ > 0 half distance between two adjacent grid points
ζ ∈ N upsampling factor between image space and object space
g ∈ Rm measured image on the camera (a square area)
b ∈ Rm estimated background
s ∈ RN brightnesses at grid points
∆x ∈ RN position offsets along x at grid points
∆y ∈ RN position offsets along y at grid points
γ all parameters at grid points (Eq. (16))
γinit an initial estimate
R(γ) group-sparsity norm of γ (Eq. (22))
L(γ) the negative log likelihood evaluated at γ
∇Lγ(v) the derivative of the negative log likelihood w.r.t. γ evaluated at v
Supp(γ) the set of grid points in γ that contain one molecule
PC(γ) projection of γ onto C
ν > 0 regularizer strength
µ > 0 smoothing parameter in approximating R with its Moreau envelope
w(γ) Moreau envelope of νR(γ) (see Appendix A.3)
U backtracking algorithm for finding an appropriate step size
β > 0 step size
K ∈ N number of layers or iterations
k iteration number
η > 1 backtracking parameter
T transpose operator
� element-wise product
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