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Computational cardiac models have been extensively used to study different cardiac biomechanics;
specifically, finite-element analysis has been one of the tools used to study the internal stresses and
strains in the cardiac wall during the cardiac cycle. Cubic-Hermite finite element meshes have been used
for simulating cardiac biomechanics due to their convergence characteristics and their ability to capture
smooth geometries compactly-fewer elements are needed to build the cardiac geometry-compared to
linear tetrahedral meshes. Such meshes have previously been used only with simple ventricular geome-
tries with non-physiological boundary conditions due to challenges associated with creating cubic-
Hermite meshes of the complex heart geometry. However, it is critical to accurately capture the different
geometric characteristics of the heart and apply physiologically equivalent boundary conditions to repli-
cate the in vivo heart motion. In this work, we created a four-chamber cardiac model utilizing cubic-
Hermite elements and simulated a full cardiac cycle by coupling the 3D finite element model with a
lumped circulation model. The myocardial fiber-orientations were interpolated within the mesh using
the Log-Euclidean method to overcome the singularity associated with interpolation of orthogonal matri-
ces. Physiologically equivalent rigid body constraints were applied to the nodes along the valve plane and
the accuracy of the resulting simulations were validated using open source clinical data. We then
simulated a complete cardiac cycle of a healthy heart and a heart with acute myocardial infarction.
We compared the pumping functionality of the heart for both cases by calculating the ventricular work.
We observed a 20% reduction in acute work done by the heart immediately after myocardial infarction.
The myocardial wall displacements obtained from the four-chamber model are comparable to actual
patient data, without requiring complicated non-physiological boundary conditions usually required in
truncated ventricular heart models.

Four-chamber human heart model
Finite element analysis
Cubic-hermite hexahedral elements
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1. Introduction: explicitly modeling the atria. The complex and irregular geometry
of the left and right atria of the heart have restricted most model-

ing and simulation to ventricular models. Excluding parts of the

Computational models of cardiac biomechanics can improve the
fundamental understanding of the cardiovascular system by pro-
viding access to different quantities of interest that cannot be
directly measured or require invasive procedures. Computational
models have been used to study normal cardiac physiology
(Kerckhoffs et al., 2007) and pathological conditions such as heart
failure (Kerckhoffs et al., 2010; Niederer et al., 2011), myocardial
infarction (Wang et al., 2011), etc. Most existing computational
biomechanics cardiac models focus only on specific regions of
the heart such as the left ventricle or both ventricles without
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heart geometry necessitates the use of non-physiological boundary
conditions that require extensive and tedious tuning to match the
simulated cardiac motion with patient data. Advances in non-
invasive imaging technology have made it feasible to generate
patient-specific ventricular models (Aguado-Sierra et al., 2011;
Krishnamurthy et al., 2013a), but it remains difficult to create
high-quality meshes that include anatomic features such as valve
annuli or atria automatically. A four-chamber cardiac model will
enable the use of a wide variety of physiologically equivalent
boundary conditions for each specific patient that can optimally
match the cardiac motion with patient data.

Cubic-Hermite finite element interpolation schemes have been
popular in cardiac modeling because of their convergence proper-
ties in finite element simulations of ventricular biomechanics
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(b) Longitudinal cut-section view of the cardiac model at end-systole and

end-diastole states

Fig. 1. Topologically complex four-chamber model and a four-chamber model with valve annuli at the end-diastolic and end-systolic states of the cardiac cycle. The left

ventricle is shown on the right side due to better informative cut-section view.

(Costa et al., 1996). However, construction of cubic-Hermite geo-
metric meshes has been limited to ventricular geometries below
the valve plane due to difficulties in handling complex topologies
of the atria and great veins (Fig. 1). Recently, Land and Niederer
(2018) extended their biventricular geometry which was built ini-
tially using cubic-Hermite elements to a four-chamber model
using the tetrahedral finite elements to overcome the more com-
plex topology associated with atria and studied the effects of atrial
contraction on whole organ function. By applying different types of
boundary conditions they showed that ventricular pressure-
volume curves do not change significantly. Krishnamurthy et al.
(2016) made use of cubic-Hermite meshes with extraordinary
nodes to model the complex geometry of the heart with valve
annuli and perform biomechanics simulations. Here we extend
the same extraordinary node concept to construct a four-
chamber cubic-Hermite finite element model and perform full-
beat simulations.

Modeling the local fiber architecture of the heart muscles is a
challenge, since it can be computationally expensive or inaccurate
depending on the interpolation method used. In addition, the fiber
architecture of the atria is not that extensively studied as the ven-
tricles (Gonzales et al., 2013). Detailed histological studies and dif-
fusion tensor imaging of the ventricles show that the heart muscle
fibers rotate 120° from the epicardial to the endocardial surface
(Wong and Kuhl, 2014) and this rotation can be reasonably consid-
ered similar for a large group of individuals (Lombaert et al., 2011).
On the other hand, there seems to be not much variation in the
fiber direction through the atrial wall due to its thin structure.
Among all the fiber mapping methods, using a coordinate-frame
interpolation scheme with the log-Euclidean transformation guar-
antees smooth interpolation accounting for the shape and the size
of the cardiac geometry (Krishnamurthy et al., 2013a). In this work,
we make use of the cubic-Hermite mesh topology to orient the
fibers in the atria and use the log-Euclidean transformation to
interpolate the fibers in the ventricles.

Simulating a complete cardiac cycle requires the correct cham-
ber pressures to be applied to the four chambers. To perform this,
the 3D finite element model needs to be coupled with a circulatory
model that includes both pulmonary and systemic circulations
(Kerckhoffs et al., 2006). Traditionally, the circulatory system is
modeled using a set of lumped-parameter Windkessel models.
We make use of the CircAdapt circulation model (Arts et al.,
2005) to model the circulation and couple it with the ventricles
of our finite element model.

Myocardial infarction is a leading cause of heart failure that
occurs due to blood blockage to some regions of the heart, causing

damage to the heart muscles. Cardiac motion can be used as a diag-
nostic tool to identify the effects of myocardial infarction. Cardiac
simulation can help understand the acute effect of myocardial
infarction on the cardiac motion. However, correctly replicating
the motion of the heart after myocardial infarction requires corre-
sponding changes to the active muscle properties in the infarcted
region and modeling the effect of atrial structures of the heart on
the deformations. In this work, we show that using a four-
chamber model can help in assessing the acute impact of the
myocardial infarction on the cardiac motion.

2. Methods
2.1. Geometric modeling of the four-chamber heart

We built the 3D atlas mesh for the current work based on a pre-
viously constructed 3D biventricular mesh model (Zhang et al,,
2012) and a biatrial model (Gonzales et al., 2013), both of which
are publicly available. The atria were attached to biventricular
model manually by connecting the nodes along the valve annuli.
This atlas mesh was then modified using the data from the litera-
ture for healthy humans. The atlas mesh was imported as a 3D obj
format in Blender. Using the imported mesh in Blender the ventric-
ular and atrial walls were adjusted by moving cubic-Hermite mesh
nodes. However, we had to manually subdivide some elements,
since creating a perfectly matched cubic-Hermite mesh including
all four chambers leads to skewed elements around the valve
annuli. Skewed elements might cause divergence during the finite
element analysis, therefore, we manually inserted newer elements
without deviating too much from the actual geometry. The data
from literature including the average unloaded volume of the
human left and right ventricles (Hudsmith et al. (2005)) were used
to adjust the cardiac size after the geometry building process. The
unloaded volumes are 47 ml and 49 ml for the RV and LV, respec-
tively. The number of nodes, elements, and the degrees of freedom
are tabulated in Table 1.

The model includes both the left and the right ventricles, ori-
fices and valve annuli, and both the left and the right atria in a reg-
ular human heart. The model dimensions including the volume of
both ventricles, the volume of both atria, and wall (myocardium)
thickness were taken from the available literature. As stated ear-
lier, The finite element mesh of the cardiac model was generated
with an open-source 3D computer graphics software, "Blender”,
similar to the methods described by Krishnamurthy et al. (2015).
Utilizing these user-defined tools makes geometry editing more
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Table 1
Comparison between the present work and Augustin et al. (2016) of a four-chamber cardiac finite element model.
Element type # nodes # elements # DOF
Present work Cubic-Hermite 968 480 30720
Augustin et al. (2016) Tetrahedral - 184.6 x 10° 95.9 x 10°

efficient as complex repeated functions is automated and per-
formed simultaneously. Compared to past methods of defining
geometry from patient data, which relied heavily on manually
and meticulously placing individual nodes on cross-sectional car-
diac images, this new method and tool-set has drastically cut down
on model build time.

After generating the geometric mesh of the heart, we have to
determine an unloaded reference state (the state at which the ven-
tricle cavity pressure in a passive state is zero) to accurately com-
pute the stresses. Dimensional data obtained from clinical images
in vivo are not in the unloaded state due to continuous heart
motion (Alastrue et al., 2008). Many researchers have tried to con-
sider the end-systolic (Walker et al., 2005) or mid-diastolic
(Sermesant and Razavi, 2010) geometry as the unloaded state,
but it was shown later that the unloaded state deviates from both
these states (Klotz et al., 2006). The method developed by
Rajagopal et al. (2006) can be used to estimate the reference state
for a wide variety of problems by using inverse methods. We had
previously applied this method to compute the unloaded state
for biventricular models (Krishnamurthy et al., 2013a) from the
measured end-diastolic geometry, pressure, and passive material
properties through an iterative method. However, in our case, we
do not have a patient-specific geometry at the end-diastolic state
to apply this method. Hence, we make use of the empirical formula
provided by Klotz et al. (2006), which correlates the unloaded left-
ventricular volume to the end-diastolic volume and pressure, to
rescale the ventricular geometry to the correct volume. We also
keep the ventricular wall volume constant to account for the
incompressibility in the simulations.

2.2. Modeling fiber orientation

Modeling the fiber architecture of both the ventricles and the
atria is important for accurately capturing the cardiac deforma-
tions. Krishnamurthy et al. (2013a) used the diffusion tensor D,
which is a 3 x 3 symmetric, positive-definite, covariance matrix
representing the local voxel-averaged distribution of the diffusion
of water molecules to define the local fiber coordinate system. By
applying a coordinate-frame interpolation, they were able to guar-
antee a smooth interpolation of the fiber direction especially
around extraordinary vertices (Krishnamurthy et al., 2016). How-
ever, it has been shown that the fiber orientation in the ventricles
vary from —60° to +60° with respect to the circumferential direc-
tion. In addition, a recent statistical analysis (Lombaert et al.,
2012) of fiber architecture variation in a population of human
hearts has revealed that fiber orientations are well preserved
between individuals. Unlike ventricles, the thin structure of the
atrial wall makes it difficult to measure its fiber angles. Therefore,
a fixed fiber angle for the whole atria was used in previous works,
which is based qualitatively on published diagrams of atrial fiber
tracts (Krueger et al., 2011; Gonzales et al., 2013). The significant
changes in the ventricles’ fiber angles in the transmural direction
necessitate an interpolation method to model the fiber orientations
accurately and smoothly.

In this work, we make use of a coordinate-frame interpolation
scheme that uses the log-Euclidean transformation (see Appendix
C for details). This method provides a simple way to specify the
cardiac fiber orientations in complex cardiac models. We calculate

the orthogonal matrix F.4, by calculating the circumferential,
radial, and transverse direction and rotating it by +60° with respect
to the circumferential direction and assigned to the endocardial
nodes. Similarly the F; is calculated and assigned to the epicardial
nodes. The circumferential, radial, and transverse directions are
explicitly calculated from the mesh, since the cubic Hermite ele-
ments are oriented along these directions in our model. The log-
Euclidean interpolation is then used to calculate the fiber orienta-
tions at any position inside the cardiac wall. As can be seen in Fig. 2
(a), the fiber orientations gradually rotates from +60° at the endo-
cardium with respect to the circumferential direction to —60° at
the epicardium. On the other hand, we make use of the cubic-
Hermite mesh topology to define the fibers in the atria (Fig. 2(b))
which are transmurally constant.

2.3. Simulation of full cardiac cycle

A complete cardiac cycle was simulated by coupling the finite
element mesh of a two-chamber human cardiac model with a
lumped-parameter closed-loop circulation model using the meth-
ods described in Kerckhoffs et al. (2007). The pulmonary and sys-
temic circulations are each modeled as two lumped Windkessel
compartments in series. The model couples both the 3D ventricular
finite element model and the lumped-parameter model with the
assumption of constant blood volume inside the cardiovascular
system. Convergence is achieved if the difference between the cal-
culated ventricular volumes obtained from both models at each
time step lies within a tolerance range (107%).

We make use of the model developed by Holzapfel and Ogden
(2009) to model the passive material properties of the cardiac tis-
sue. The strain energy in this model is given by

¥ = Zﬂbeb(hﬁ) + 2a_l£f <ebf(’4f’1)2 _ 1)‘ (1)
In Eq. (1), I; corresponds to the first invariant of the right Cauchy-
Green strain tensor, I4 corresponds to the components of the right
Cauchy-Green strain tensor in the fiber direction. The parameter
values used for the simulations in this paper are listed in Table 2.

Javani et al. (2016) studied the passive mechanical properties of
a healthy ovine heart using a planar biaxial stretching system. They
showed that the stress-strain response of all four different cham-
bers’ specimens is nonlinear both in fiber and cross-fiber direc-
tions. Considering the Fung strain energy function to fit the
material coefficients, they obtained stiffer behavior for atria com-
pared to the ventricles (up to 1.5x). In the present work, we
assumed that both the left and the right atria behave stiffer than
ventricles (two times stiffer) by increasing the coefficients of the
corresponding strain energy function (a; and by) in Eq. (1).

The active contraction model developed by Lumens et al. (2009)
is used to model muscle contraction. This active contraction is
defined as a function of sarcomere length (L;) and mechanical acti-
vation (C) by

LS - LSC

Lse,iso

Gf.act = O-actC(Lsc - LscO) . (2)
The details of the active contraction stress can be found in Lumens
et al. (2009) and it is defined as a 1-D model. Assuming no shear
stresses during contraction, this mid-wall tension is converted to
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(a) Full cardiac model

(b) Atria top view

Fig. 2. Fiber orientation from +60° (at endocardium) with respect to the circumferential direction to —60° (at epicardium) at ventricular region; the Atrial fiber angle is kept at

zero everywhere, following the cubic-Hermite mesh topology.

Table 2
Passive parameters of the Ogden-Holzapfel models.
a (kPa) b ar (kPa) by
Present work 0.684 (LV, RV) 9.726 0.51 (LV, RV) 15.779
1.368 (LA, RA) 1.02 (LA, RA)
Krishnamurthy et al. (2013b) 0.684 9.726 0.51 15.779
Holzapfel and Ogden (2009) 2.28 9.726 1.685 15.779

a 3 dimensional transversely isotropic active stress with the trans-
verse component being 30% of the fiber direction active stress
(Guccione et al., 1991) as follows

Jf,act 0 0
Tactive = 0 O~3O-f,act 0 . (3)
0 0 030/

The T.uive components in Eq. (3) is added to the passive stress
matrix calculated from the strain energy. The combined stress
equation is then used to solve for the deformed geometry that will
be in equilibrium with the externally applied pressure boundary
conditions on the cardiac walls.

In this work, we consider the time-dependent variation of the
atrial pressures, deformation, and contraction. The electrical signal
generated in the sinoatrial node travels through the atria causing
the atrial muscles contract first while the ventricles contract
120 ms later in a normal human heart. In the present work, we
applied the timing difference in atrial and ventricular contraction
by modifying the corresponding active tension’s starting time
(Eq. (2)). This modification in active tension for ventricular and
atrial chambers let the atria contract 120 ms in advance of ventric-
ular contraction. All regions of the ventricles were contracted
simultaneously.

The circulation model is coupled to the two chambers of the
four-chamber model, since this coupling has to conserve the vol-
ume of the ventricles due to the presence of valves. We ran the
simulation for seven full beat cycles, which was enough to achieve
a steady state for the cardiac simulations. The circulation model
outputs the atrial pressure as well as the ventricular pressure val-
ues, which are used as pressure boundary conditions to achieve the
deformation of the four-chamber cardiac model for the full beat
cycle. Owing to the complex geometry of a four-chamber cardiac
model, the necessary and proper boundary conditions need to be
carefully applied to replicate the deformation of the heart. In our
model, both Mitral and Tricuspid valves (displayed in orange color
in Fig. 3(a)) were fixed along the x-axis (vertical direction) while

they can move freely in other directions (y-axis and z-axis). More-
over, the first and second-cross derivatives with respect to y and z
directions were set to zero to prevent any non-planar deformation
near the valves. The Pulmonary artery and Aorta (displayed in blue
color in Fig. 3(a)) are only fixed in y and z directions while they can
move freely along the x-axis (vertical direction). The first and sec-
ond derivatives with respect to y and z directions are set to zero to
avoid any non-planar deformations. The venae cavae and pul-
monary veins are fixed in three directions without applying any
first or second order derivatives (green colored nodes). The Neu-
mann pressure boundary conditions were applied on the inner sur-
faces of all the four chambers as shown in Fig. 3(b). These boundary
conditions prevent any rigid body motion of the heart while not
constraining any other specific region, making them equivalent
to the in vivo rigid body constraints.

2.4. Simulation with myocardial infarction

We studied a heart with an infarcted region (Fig. 5(a)) to inves-
tigate the acute effects of MI on the ventricular efficiency and the
corresponding acute P-V loop. The volumetric ratio of the infarcted
region compared to the left ventricular wall volume is about 15%.
MI leads to the stiffening (chronic effects) of the myocardium in
the infarcted region along with a reduction in its contractility
(acute effects). We modeled the acute tissue damage by keeping
the muscle stiffness the same as the healthy heart, while reducing
the contractility o, in Eq. (2) down to ten times less than a
healthy heart (Genet et al., 2015).

3. Results
3.1. Validation of cardiac motion
The validity of the proposed rigid body constraints to replicate

the correct normal cardiac motion can be examined by comparing
the normalized apex-base and apex-atrium distances (with respect
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(a) Boundary nodes

(b) Boundary surfaces

Fig. 3. Boundary conditions.

to their corresponding maximum values) obtained from our simu-
lation with open-source MRI data provided by Kaggle Second
Annual Data Science Bowl (2015). The comparison between the
model and the clinical data over the complete cardiac cycle
(Fig. 4(c)) shows that simulation results closely match the clinical
data (Error RMSgpex—pase = 1.5%, RMSatrium—apex = 1.7%).

Moreover, Kou et al. (2014) performed a comprehensive
echocardiographic examination of 734 healthy volunteers to pro-
vide normal reference ranges for cardiac chambers size during a
full-beat cycle. The comparison between the ratio of the right ven-
tricle basal linear dimension (RV,) at the end-diastole and end-
systole obtained from the present work (1.62) is within the range
of values reported by Kou et al. (2014) (1.45+0.13) (Table E.4
and Fig. E.9).

3.2. Comparison of PV-loops and cardiac motion
The comparison between the PV-loop of a healthy heart and the

heart with MI shows that there is a significant reduction in the
acute left ventricular peak pressure (~13%, Fig. 6(a) and (e)) while

(a) End-Diastole

(b) End-Systole

there is not that much change in the right ventricular peak pres-
sure (< 2%). This is because the MI is confined to the left ventric-
ular walls. Both the left and the right ventricular volumes are
larger at end-systole for a heart with MI compared to the healthy
heart, since an acute myocardial infarction reduces local contractil-
ity (in this case, the left ventricle) (Fig. 6(b)). However, even though
the myocardial infarction is localized to the left ventricular wall,
the right ventricular PV-loop would still be affected due to the con-
stant blood volume in the circulation system. In addition, as Fig. 6
(c) shows, the right atrial pressure history of the heart with MI is
slightly lower than the one corresponding to the healthy heart.
The decrease in pumping ability due to MI is calculated by the
area enclosed inside the PV-loop (Fig. 6(e)) for both ventricular
chambers. As stated earlier, the acute MI causes the loss of contrac-
tility for the left ventricle (local effects). Since we modeled only the
acute effects, we did not assume any material stiffness change for
the infarcted region. The right ventricle fills up to less volume at
end-diastole for MI compared to the healthy heart. This can be
explained by the fact that the constant blood volume inside the cir-
culatory system necessities this loss in filling for the right ventricle.

1.4
Atrium to APEX-FEA model
Atrium to APEX-MRI

—— BASE top to APEX-FEA model

1.2 — = BASE top to APEX-MRI

0.6

Nodal distance deformation (normalized)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (s)

(¢) Deformation

Fig. 4. Cut-section view of the cardiac model and open-source clinical data (Kaggle Second Annual Data Science Bowl, 2015) at end-diastole and end-systole states.
Comparison between the normalized apex-base and atrium-apex with clinical data in a cardiac cycle, RMSapex_pase = 1.5%, RMSasrium—apex = 1.7%.
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Fig. 5. Heart with myocardial infarction.

Due to the less active cardiac cells in the heart with MI, its pump-
ing ability is reduced by 20% compared to the healthy heart (16%
reduction from the left ventricle and 4% from the right ventricle,
see Table 3).

The changes in the left and the right ventricles’ deformation in
the heart with MI and the healthy heart at different states of the
cardiac cycle is shown in Fig. 7. The left column shows the cross-
sectional views of a healthy heart while the right column shows
the heart with MI. The nodal distance between the septum and
the left and the right ventricular free wall, denoted by div_septum
and dgy_seprum, can be used to determine the effects of MI on the
local ventricular deformation. As can be seen, the LV in a heart with
MI fills as much as a healthy heart (Fig. 7 (a) and (b)) at end-
diastole, while at peak pressure and the end-systolic state, it shows
less contraction (Fig. 7 (¢) and (d)) due to the weaker contractility
of the heart with MI. At lower pressure (Fig. 7 (g) and (h)), this dif-
ference is negligible compared to the other cardiac state. On the
other hand, the RV in a heart with MI expands less than the healthy
heart at end-diastolic states. In addition, as a consequence, the RV
also loses some of its contractility due to the Frank-Starling
mechanism.

Fig. 5(b) shows the history of dy_seprum and dgy_seprum in the car-
diac cycle. As can be seen the differences in dy_sepum between a
heart with MI and a healthy heart is more significant when the
heart is contracting while the right ventricle shows greater devia-
tion from the healthy heart during isovolumic contraction after the
end-diastolic state. This shows that losing the contractility is more
critical for the LV at end-systolic state while the effects are more
prominent on the RV after the end-diastolic state.

4. Discussion

The heart’s complex geometry requires the implementation of
very fine meshes on regions of high curvature, which makes simu-
lations numerically expensive with linear elements. For instance,
Augustin et al. (2016) presented an accurate high-resolution model
of the human heart electromechanics by using up to 184.6 million
tetrahedral elements to solve the nonlinear governing equations.
However, the use of cubic-Hermite elements in our study helps
us to use fewer number of elements to capture the complex geom-
etry. In addition, the mesh element sizes that we have employed
for our four-chamber model are refined enough to obtain con-
verged mesh displacements and chamber volumes (see Appendix
F for mesh size comparison and convergence of cubic-Hermite

elements for biomechanics). We had previously reported that
cubic-Hermite meshes require fewer Newton-Raphson iterations
to converge even in the presence of extraordinary nodes
(Krishnamurthy et al., 2015). Recent comprehensive work done
by Vincent et al. (2015) compares the convergence behavior of dif-
ferent interpolation methods for finite element simulations on a
cardiac monodomain equations for electrophysiology. These con-
vergence analysis results show that cubic-Hermite meshes can
accurately capture the biomechanics of a cardiac geometry with
fewer elements.

Fritz et al. (2014) built a four-chamber cardiac model from MRI
data of a healthy middle age volunteer to study the interaction
between the ventricles, the atria, and the pericardium in a full-
beat cycle. By developing a contact handling algorithm, they were
able to solve the contact between the epicardium and the peri-
cardium. The apeX, the openings of the pulmonary vein, and both
the inferior and the superior venae cavae, were fixed in their model
as well as the outer surface of the mesh of the surrounding tissue.
They found out that, after including the pericardium, the contour of
the outer surface of the heart of varied only minimally, although
the ventricles, as well as the atria, were significantly deformed.
In this study, we have not included the effect of pericardium
directly. One possible way this can be included in our model is to
apply direct pressure to the outer faces of the elements that can
simulate the effect of the pericardium. However, even without this
effect included, we found that the apex-base displacement in our
model matches commonly observed values reported in the litera-
ture. In addition, we post processed our deformation results to
fix the apex instead of the valve plane (please see included full beat
video, Online supplement Appendix D) The resulting deformations
match observed cardiac deformations in the chest cavity.

There have been several related work on computational cardiac
modeling. Please see the online supplement for a detailed discus-
sion of these addditional related works (Arsigny et al., 2005;
Bernus et al., 2002; Bourdin et al., 2007; Bradley et al., 1997;
Catmull and Clark, 1978; Culver, 1966; DeRose, 1990; Doo and
Sabin, 1978; Du and Schmitt, 1990; Farin, 1982; Farin, 1986;
Fillard et al., 2006; Freeman et al, 1985; Gasser and Forsell,
2011; Holmes et al., 2000; Hughes et al., 2005; Land et al., 2017;
Li et al., 2005; Liu and Hoschek, 1989; McLeod, 1977; Nielsen
et al., 1991; Pathmanathan et al., 2012; Pennec et al., 2006; Perk
et al., 2012; Petitjean and Dacher, 2011; Pfaller et al., 2019;
Remme et al., 2004; Rijcken et al., 1999; Ringenberg et al., 2014;
Robb and Robb, 1942; Rogers and McCulloch, 1994; Saez and
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Fig. 6. Pressure and volume time-course output from the full beat simulation of the four-chamber heart model. (e) shows the simulated pressure-volume loops for the left

and the right ventricles of a healthy heart and a heart with ML

Table 3
Characteristics of the healthy heart and the heart with MI.

LV Work

RV Work

Healthy Heart
Heart with MI

557 (kPa ml)
414 (kPa ml)

345 (kPa ml)
309 (kPa ml)

Peak Pressure Lowest Pressure
11.04 (kPa) 5.58 (kPa)
9.59 (kPa) 5.47 (kPa)

Kuhl, 2016; Shioura et al., 2007; Smith et al., 2008; Sommer et al.,
2015; Taber, 1995; Toussaint et al., 2013; Vetter and McCulloch,
1998; Zhukov and Barr, 2003)).

We have presented a four-chamber cardiac model utilizing
cubic-Hermite elements and simulated a full cardiac cycle by cou-
pling the 3D finite element model with a lumped-parameter circu-

lation model. The G' continuity of the finite-element fields in the
neighborhood of extraordinary nodes was maintained using an
ensemble coordinate system with a linear global-to-local transfor-
mation. The myocardial fiber orientations were interpolated within
the mesh using the Log-Euclidean transformation to overcome the
singularity associated with interpolation of orthogonal matrices.
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Fig. 7. Cross-section views of the infarcted region at different cardiac cycle for healthy heart and the heart with MI.

Physiologically equivalent rigid body constraints were applied to
the nodes along the valve plane. We simulated a complete cardiac
cycle of a healthy heart using this four-chamber model. Accurately
modeling the geometric structures of the heart allows the applica-

tion of practical and physiologically equivalent rigid body con-
straints. These, in turn, allows the model to replicate the
deformations of the different regions of the heart. The resulting
deformations were validated using open-source cardiac motion
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data from the literature. Our four-chamber model has the capabil-
ity to match patient-specific cardiac deformations, thereby
improving the state-of-the-art of patient specific cardiac modeling.

Declaration of Competing Interest

The authors confirm that there are no known conflicts of interest
associated with this publication and there has been no significant
financial interests for this work that could have influenced its
outcome.

Acknowledgments

We would like to thank Drs. Andrew McCulloch and W. Paul
Segars for their suggestions on physiologically appropriate bound-
ary conditions. This work has been funded in part by the NSF grant
1750865 and the NIH grant 1 RO1 HL131753.

Supplementary material

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.jbiomech.2019.05.
019.

References

Aguado-Sierra, J., Krishnamurthy, A., Villongco, C., Chuang, J., Howard, E., Gonzales,
M.J., Omens, J., Krummen, D.E., Narayan, S., Kerckhoffs, R.C., McCulloch, A.D.,
2011. Patient-specific modeling of dyssynchronous heart failure: a case study.
Prog. Biophys. Mol. Biol. 107, 147-155.

Alastrue, V., Martinez, M., Doblare, M., 2008. Modelling adaptative volumetric finite
growth in patient-specific residually stressed arteries. ]J. Biomechanics 41,
1773-1781.

Arsigny, V., Fillard, P., Pennec, X., Ayache, N., 2005. Fast and simple calculus on
tensors in the log-Euclidean framework. In: Medical Image Computing and
Computer-Assisted Intervention-MICCAI 2005, pp. 115-122..

Arts, T., Delhaas, T., Bovendeerd, P., Verbeek, X., Prinzen, F., 2005. Adaptation to
mechanical load determines shape and properties of heart and circulation: the
CircAdapt model. Am. ]. Physiol.-Heart Circulat. Physiol. 288, H1943.

Augustin, C.M., Neic, A., Liebmann, M., Prassl, A]J., Niederer, S.A., Haase, G., Plank, G.,
2016. Anatomically accurate high resolution modeling of human whole heart
electromechanics: a strongly scalable algebraic multigrid solver method for
nonlinear deformation. ]. Comput. Phys. 305, 622-646.

Bernus, O., Verschelde, H., Panfilov, A.V., 2002. Modified ionic models of cardiac
tissue for efficient large scale computations. Phys. Med. Biol. 47, 1947.

Bourdin, X., Trosseille, X., Petit, P., Beillas, P., 2007. Comparison of tetrahedral and
hexahedral meshes for organ finite element modelling: An application to kidney
impact. In: 20th International Technical Conference on the Enhanced Safety of
Vehicles (ESV) National Highway Traffic Safety Administration 07-0424..

Bradley, C., Pullan, A., Hunter, P., 1997. Geometric modeling of the human torso
using cubic Hermite elements. Ann. Biomed. Eng. 25, 96-111.

Catmull, E., Clark, J., 1978. Recursively generated b-spline surface on arbitrary
topological meshes. Comput. Aided Des. 10, 350-355.

Costa, K., Hunter, P., Wayne, J., Waldman, L., Guccione, J., McCulloch, A., 1996. A
three-dimensional finite element method for large elastic deformations of
ventricular myocardium: Il-prolate spheroidal coordinates. J. Biomech. Eng.
118, 464-472.

Culver, W], 1966. On the existence and uniqueness of the real logarithm of a
matrix. Proc. Am. Math. Soc. 17, 1146-1151.

DeRose, T.D., 1990. Necessary and sufficient conditions for tangent plane continuity
of Bézier surfaces. Comput.-Aided Geometric Des. 7, 165-179.

Doo, D., Sabin, M., 1978. Behaviour of recursive division surfaces near extraordinary
points. Comput. Aided Des. 10, 356-360.

Du, W.-H., Schmitt, FJ., 1990. On the G' continuity of piecewise Bézier surfaces: a
review with new results. Comput. Aided Des. 22, 556-573.

Farin, G., 1982. A construction for visual c1 continuity of polynomial surface
patches. Comput. Graphics Image Process. 20, 272-282.

Farin, G., 1986. Triangular bernstein-bézier patches. Comput. Aided Geometric Des.
3,83-127.

Fillard, P., Arsigny, V., Pennec, X., Ayache, N., 2006. Joint estimation and smoothing
of clinical DT-MRI with a log-Euclidean metric. Res. Rep., RR-5584

Freeman, G.L., LeWinter, M.M., Engler, R.L., Covell, ].W., 1985. Relationship between
myocardial fiber direction and segment shortening in the midwall of the canine
left ventricle. Circul. Res. 56, 31-39.

Fritz, T., Wieners, C., Seemann, G., Steen, H., Dossel, O., 2014. Simulation of the
contraction of the ventricles in a human heart model including atria and
pericardium. Biomech. Model. Mechanobiol. 13, 627-641.

Gasser, T.C., Forsell, C., 2011. The numerical implementation of invariant-based
viscoelastic formulations at finite strains. an anisotropic model for the passive
myocardium. Comput. Methods Appl. Mech. Eng. 200, 3637-3645.

Genet, M., Lee, L.C,, Ge, L., Acevedo-Bolton, G., Jeung, N., Martin, A., Cambronero, N.,
Boyle, A., Yeghiazarians, Y., Kozerke, S., et al., 2015. A novel method for
quantifying smooth regional variations in myocardial contractility within an
infarcted human left ventricle based on delay-enhanced magnetic resonance
imaging. J. Biomech. Eng. 137, 081009.

Gonzales, M.J., Sturgeon, G., Krishnamurthy, A., Hake, ]., Jonas, R., Stark, P., Rappel,
W.J., Narayan, S.M., Zhang, Y., Segars, W.P., McCulloch, A.D., 2013. A three-
dimensional finite element model of human atrial anatomy: new methods for
cubic Hermite meshes with extraordinary vertices. Med. Image Anal. 17, 525-
537.

Guccione, J., McCulloch, A., Waldman, L., 1991. Passive material properties of intact
ventricular myocardium determined from a cylindrical model. J. Biomech. Eng.
113, 42.

Holmes, A., Scollan, D., Winslow, R., 2000. Direct histological validation of diffusion
tensor MRI in formaldehyde-fixed myocardium. Magn. Reson. Med. 44, 157-
161.

Holzapfel, G., Ogden, R., 2009. Constitutive modelling of passive myocardium: a
structurally based framework for material characterization. Philos. Trans. Roy.
Soc. A 367, 3445.

Hudsmith, L.E., Petersen, S.E., Francis, ].M., Robson, M.D., Neubauer, S., 2005. Normal
human left and right ventricular and left atrial dimensions using steady state
free precession magnetic resonance imaging. J. Cardiovas. Magn. Resonance 7,
775-782.

Hughes, TJ., Cottrell, J.A., Bazilevs, Y., 2005. Isogeometric analysis: CAD, finite
elements, NURBS, exact geometry and mesh refinement. Comput. Methods
Appl. Mech. Eng. 194, 4135-4195.

Javani, S., Gordon, M., Azadani, A.N. 2016. Biomechanical properties and
microstructure of heart chambers: a paired comparison study in an ovine
model. Ann. Biomed. Eng. 44, 3266-3283.

Kaggle Second Annual Data Science Bowl, 2015. The National Heart, Lung, and Blood
Institute. <https://www.kaggle.com/c/second-annual-data-science-bowl>
(accessed 29 November 2018)..

Kerckhoffs, R., Neal, M., Gu, Q., Bassingthwaighte, ., Omens, ., McCulloch, A., 2007.
Coupling of a 3D finite element model of cardiac ventricular mechanics to
lumped systems models of the systemic and pulmonic circulation. Ann. Biomed.
Eng. 35, 1-18.

Kerckhoffs, R., Omens, J., McCulloch, A., Mulligan, L., 2010. Ventricular dilation and
electrical dyssynchrony synergistically increase regional mechanical
nonuniformity but not mechanical dyssynchrony. Circul. Heart Failure 3, 528-
536.

Kerckhoffs, R.C., Healy, S.N., Usyk, T.P., McCULLOCH, A.D., 2006. Computational
methods for cardiac electromechanics. Proc. IEEE 94, 769-783.

Klotz, S., Hay, L., Dickstein, M.L., Yi, G.-H., Wang, ]., Maurer, M.S., Kass, D.A., Burkhoff,
D., 2006. Single-beat estimation of end-diastolic pressure-volume relationship:
a novel method with potential for noninvasive application. Am. J. Physiol.-Heart
Circul. Physiol. 291, H403-H412.

Kou, S., Caballero, L., Dulgheru, R., Voilliot, D., De Sousa, C., Kacharava, G.,
Athanassopoulos, G.D., Barone, D., Baroni, M., Cardim, N., Gomez De Diego, ].J.,
Hagendorff, A., Henri, C., Hristova, K., Lopez, T., Magne, ]., De La Morena, G.,
Popescu, B.A., Penicka, M., Ozyigit, T., Rodrigo Carbonero, J.D., Salustri, A., Van
De Veire, N., Von Bardeleben, R.S., Vinereanu, D., Voigt, ].-U., Zamorano, J.L.,
Donal, E., Lang, RM., Badano, L.P., Lancellotti, P., 2014. Echocardiographic
reference ranges for normal cardiac chamber size: results from the norre study.
Eur. Heart J. - Cardiovasc. Imaging 15, 680-690.

Krishnamurthy, A., Gonzales, M.]., Sturgeon, G., Segars, W.P., McCulloch, A.D., 2016.
Biomechanics simulations using cubic hermite meshes with extraordinary
nodes for isogeometric cardiac modeling. Comput. Aided Geometric Des. 43,
27-38. Geometric Modeling and Processing 2016.

Krishnamurthy, A., Villongco, C., Beck, A., Omens, ]., McCulloch, A., 2015. Left
ventricular diastolic and systolic material property estimation from image data.
In: Statistical Atlases and Computational Models of the Heart-Imaging and
Modelling Challenges. Springer, pp. 63-73.

Krishnamurthy, A., Villongco, C.T., Chuang, J., Frank, L.R., Nigam, V., Belezzuoli, E.,
Stark, P., Krummen, D.E., Narayan, S., Omens, ].H., et al., 2013a. Patient-specific
models of cardiac biomechanics. ]J. Comput. Phys., 244, 4-21. Multi-scale
Modeling and Simulation of Biological Systems..

Krishnamurthy, A., Villongco, C.T., Chuang, ]., Frank, L.R., Nigam, V., Belezzuoli, E.,
Stark, P., Krummen, D.E., Narayan, S., Omens, J.H., et al., 2013b. Patient-specific
models of cardiac biomechanics. ]. Comput. Phys. 244, 4-21.

Krueger, M., Schmidt, V., Tobén, C., Weber, F., Lorenz, C., Keller, D., Barschdorf, H.,
Burdumy, M., Neher, P., Plank, G., 2011. Modeling atrial fiber orientation in
patient-specific geometries: a semi-automatic rule-based approach. In:
Functional Imaging and Modeling of the Heart, pp. 223-232..

Land, S., Niederer, S.A., 2018. Influence of atrial contraction dynamics on cardiac
function. Int. J. Numer. Methods Biomed. Eng. 34, e2931.

Land, S., Park-Holohan, S.-]., Smith, N.P., dos Remedios, C.G., Kentish, ]J.C., Niederer,
S.A., 2017. A model of cardiac contraction based on novel measurements of
tension development in human cardiomyocytes. ]. Mol. Cell. Cardiol. 106, 68—
83.

Li, G., Ma, W., Bao, H., 2005. A new interpolatory subdivision for quadrilateral
meshes. Comput. Graphics Forum 24, 3-16.

Liu, D., Hoschek, J., 1989. GC1 continuity conditions between adjacent rectangular
and triangular Bezier surface patches. Comput. Aided Des. 21, 194-200.


https://doi.org/10.1016/j.jbiomech.2019.05.019
https://doi.org/10.1016/j.jbiomech.2019.05.019
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0005
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0005
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0005
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0005
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0010
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0010
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0010
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0020
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0020
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0020
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0025
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0025
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0025
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0025
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0030
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0030
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0040
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0040
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0045
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0045
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0050
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0050
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0050
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0050
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0055
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0055
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0060
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0060
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0065
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0065
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0070
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0070
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0070
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0075
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0075
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0080
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0080
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0085
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0085
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0090
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0090
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0090
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0095
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0095
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0095
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0100
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0100
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0100
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0105
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0105
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0105
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0105
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0105
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0110
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0110
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0110
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0110
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0110
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0115
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0115
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0115
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0120
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0120
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0120
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0125
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0125
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0125
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0130
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0130
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0130
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0130
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0135
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0135
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0135
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0140
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0140
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0140
https://www.kaggle.com/c/second-annual-data-science-bowl
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0150
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0150
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0150
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0150
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0155
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0155
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0155
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0155
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0160
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0160
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0165
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0165
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0165
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0165
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0170
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0170
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0170
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0170
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0170
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0170
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0170
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0170
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0180
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0180
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0180
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0180
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0190
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0190
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0190
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0200
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0200
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0205
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0205
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0205
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0205
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0210
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0210
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0215
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0215

A. Jafari et al./Journal of Biomechanics 91 (2019) 92-101 101

Lombaert, H., Peyrat, J., Croisille, P., Rapacchi, S., Fanton, L., Clarysse, P., Delingette,
H., Ayache, N., 2011. Statistical analysis of the human cardiac fiber architecture
from DT-MRIL. In: Functional Imaging and Modeling of the Heart, pp. 171-179..

Lombaert, H., Peyrat, ].-M., Fanton, L., Cheriet, F., Delingette, H., Ayache, N., Clarysse,
P., Magnin, I, Croisille, P.,, 2012. Statistical atlas of human cardiac fibers:
comparison with abnormal hearts. In: Proceedings of the Second international
conference on Statistical Atlases and Computational Models of the Heart:
Imaging and Modelling Challenges. Springer-Verlag, pp. 207-213.

Lumens, J., Delhaas, T., Kirn, B., Arts, T., 2009. Three-wall segment (TriSeg) model
describing mechanics and hemodynamics of ventricular interaction. Ann.
Biomed. Eng. 37, 2234-2255.

McLeod, R., 1977. Hermite interpolation over curved finite elements. J. Approx.
Theory 19, 101-117.

Niederer, S., Plank, G., Chinchapatnam, P., Ginks, M., Lamata, P., Rhode, K., Rinaldi, C.,
Razavi, R., Smith, N., 2011. Length-dependent tension in the failing heart and
the efficacy of cardiac resynchronization therapy. Cardiovasc. Res. 89, 336-343.

Nielsen, P., LeGrice, L., Smaill, B., Hunter, P., 1991. Mathematical model of geometry
and fibrous structure of the heart. Am. J. Physiol.- Heart Circul. Physiol. 260,
H1365.

Pathmanathan, P., Bernabeu, M., Niederer, S., Gavaghan, D., Kay, D., 2012.
Computational modelling of cardiac electrophysiology: explanation of the
variability of results from different numerical solvers. Int. J. Numer. Methods
Biomed. Eng. 28, 890-903.

Pennec, X., Fillard, P., Ayache, N., 2006. A Riemannian framework for tensor
computing. Int. J. Comput. Vision 66, 41-66.

Perk, J., De Backer, G., Gohlke, H., Graham, 1., Reiner, Z., Verschuren, W.M., Albus, C.,
Benlian, P., Boysen, G., Cifkova, R., et al., 2012. European guidelines on
cardiovascular disease prevention in clinical practice (version 2012). Int. J.
Behav. Med. 19, 403-488.

Petitjean, C., Dacher, J.-N., 2011. A review of segmentation methods in short axis
cardiac mr images. Med. Image Anal. 15, 169-184.

Pfaller, M.R., Hérmann, J.M., Weigl, M., Nagler, A., Chabiniok, R., Bertoglio, C., Wall,
W.A., 2019. The importance of the pericardium for cardiac biomechanics: From
physiology to computational modeling. Biomech. Model. Mechanobiol. 18, 503-
529.

Rajagopal, V., Chung, ]., Nielsen, P., Nash, M., 2006. Finite element modelling of
breast biomechanics: directly calculating the reference state. In: IEEE
Engineering in Medicine and Biology Society. IEEE, pp. 420-423..

Remme, EW., Hunter, P.J.,, Smiseth, O., Stevens, C., Rabben, S.I, Skulstad, H.,
Angelsen, B., 2004. Development of an in vivo method for determining material
properties of passive myocardium. J. Biomech. 37, 669-678.

Rijcken, J., Bovendeerd, P., Schoofs, A., Van Campen, D., Arts, T., 1999. Optimization
of cardiac fiber orientation for homogeneous fiber strain during ejection. Ann.
Biomed. Eng. 27, 289-297.

Ringenberg, J., Deo, M., Devabhaktuni, V., Berenfeld, O., Snyder, B., Boyers, P., Gold, J.,
2014. Accurate reconstruction of 3d cardiac geometry from coarsely-sliced MRI.
Comput. Methods Programs Biomed. 113, 483-493.

Robb, |.S., Robb, R.C., 1942. The normal heart. Am. Heart J. 23, 455-467.

Rogers, ].M., McCulloch, A.D., 1994. A collocation-galerkin finite element model of
cardiac action potential propagation. IEEE Trans. Biomed. Eng. 41, 743-757.
Saez, P., Kuhl, E., 2016. Computational modeling of acute myocardial infarction.

Comput. Methods Biomech. Biomed. Eng. 19, 1107-1115.

Sermesant, M., Razavi, R., 2010. Personalized computational models of the heart for
cardiac resynchronization therapy. In: Patient-specific modeling of the
cardiovascular system. Springer, pp. 167-182.

Shioura, K.M., Geenen, D.L., Goldspink, P.H., 2007. Assessment of cardiac function
with the pressure-volume conductance system following myocardial infarction
in mice. Am. ]. Physiol. - Heart Circul. Physiol. 293, H2870-H2877.

Smith, R.M., Matiukas, A., Zemlin, CW., Pertsov, A.M., 2008. Nondestructive optical
determination of fiber organization in intact myocardial wall. Microscopy Res.
Tech. 71, 510-516.

Sommer, G., Schriefl, AJ., Andrd, M., Sacherer, M., Viertler, C., Wolinski, H.,
Holzapfel, G.A., 2015. Biomechanical properties and microstructure of human
ventricular myocardium. Acta Biomater. 24, 172-192.

Taber, L.A., 1995. Biomechanics of growth, remodeling, and morphogenesis. Appl.
Mech. Rev. 48, 487-545.

Toussaint, N., Stoeck, C.T., Schaeffter, T., Kozerke, S., Sermesant, M., Batchelor, P.G.,
2013. In vivo human cardiac fibre architecture estimation using shape-based
diffusion tensor processing. Med. Image Anal. 17, 1243-1255.

Vetter, F., McCulloch, A., 1998. Three-dimensional analysis of regional cardiac
function: a model of rabbit ventricular anatomy. Prog. Biophys. Mol. Biol. 69,
157-183.

Vincent, K.P., Gonzales, M.J., Gillette, A.K., Villongco, C.T., Pezzuto, S., Omens, J.H.,
Holst, M.J., & McCulloch, A.D., 2015. High-order finite element methods for
cardiac monodomain simulations. Front. Physiol. 6..

Walker, J.C., Ratcliffe, M.B., Zhang, P., Wallace, A.W., Fata, B., Hsu, E.\W,, Saloner, D.,
Guccione, J.M., 2005. Mri-based finite-element analysis of left ventricular
aneurysm. Am. J. Physiol.-Heart Circul. Physiol. 289, H692-H700.

Wang, L., Wong, K.C., Zhang, H., Liu, H., Shi, P., 2011. Noninvasive computational
imaging of cardiac electrophysiology for 3-d infarct. IEEE Trans. Biomed. Eng.
58, 1033-1043.

Wong, |, Kuhl, E., 2014. Generating fibre orientation maps in human heart models
using poisson interpolation. Comput. Methods Biomech. Biomed. Eng. 17,
1217-1226.

Zhang, Y., Liang, X., Ma, ., Jing, Y., Gonzales, M.J., Villongco, C., Krishnamurthy, A.,
Frank, L.R., Nigam, V., Stark, P., Narayan, S.M., McCulloch, A.D., 2012. An atlas-
based geometry pipeline for cardiac Hermite model construction and diffusion
tensor reorientation. Med. Image Anal. 16, 1130-1141.

Zhukov, L., Barr, AH. (2003). Heart-muscle fiber reconstruction from diffusion
tensor mri. In: Proceedings of the 14th IEEE Visualization 2003 (VIS'03). IEEE
Computer Society, p. 79.


http://refhub.elsevier.com/S0021-9290(19)30351-3/h0225
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0225
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0225
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0225
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0225
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0230
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0230
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0230
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0235
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0235
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0240
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0240
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0240
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0245
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0245
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0245
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0250
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0250
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0250
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0250
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0255
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0255
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0260
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0260
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0260
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0260
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0265
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0265
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0270
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0270
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0270
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0270
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0280
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0280
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0280
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0285
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0285
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0285
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0290
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0290
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0290
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0295
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0300
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0300
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0305
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0305
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0310
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0310
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0310
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0315
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0315
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0315
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0320
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0320
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0320
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0325
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0325
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0325
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0330
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0330
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0335
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0335
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0335
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0340
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0340
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0340
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0350
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0350
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0350
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0355
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0355
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0355
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0360
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0360
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0360
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0365
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0365
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0365
http://refhub.elsevier.com/S0021-9290(19)30351-3/h0365

Appendix A. Additional Discussion

In this paper, we make use of a cubic-Hermite mesh with extraordinary nodes to construct a four-chamber cardiac
model. We then demonstrate the versatility of the model to perform biomechanics simulations by simulating a full
beat cycle of a "healthy” and an ”infarcted” heart. The main contributions of the paper include:

e Constructing a four-chamber cardiac model using higher order cubic-Hermite meshes with extraordinary nodes.
e Accurately modeling the fiber architecture in a four-chamber cardiac model, including the atria.

e Performing full beat biomechanics simulations of four-chamber cardiac models using physiologically equivalent
rigid body constraints.

o Investigating the effects of acute myocardial infarction on the local deformation in a four-chamber cardiac
model and the ventricular pumping ability.

We compared the deformation of a four-chamber heart with acute myocardial infarction with an healthy heart. The
tissue damage due to myocardial infarction is modeled using a reduced contractility in the infarcted region (no chronic
effects of MI). We compared the acute pumping function of the heart for both cases by calculating the work done by
the ventricles (area enclosed inside the left and the right ventricular Pressure-Volume (P-V) loop). We observed a
20% reduction in work done by the heart immediately after myocardial infarction. The comparison between the
displacement of the infarcted region and the corresponding region in a healthy heart shows that the heart with MI
loses its ability to contract depending on the location and strength of the infarcted region.

There are several improvements that can be made to our model to make it more accurate. We are planning to
improve our model by incorporating the following model details.

e Improving the current muscle contraction by applying a biophysically accurate human contraction model (for
example, Land et al. (2017)) and incorporating the spatial delay in contraction from apex to base of the ventri-
cles.

e Improving the accuracy of the results by considering the pericardium pressure as an additional boundary con-
dition (Pfaller et al., 2019).

Incorporating these elements will enable our four-chamber model to match patient-specific deformations.

(a) Original mesh (b) Mesh after one level of subdivision (c) Mesh after two levels of subdivision

Figure A.8: Four-chamber cardiac model cubic-Hermite meshes build in Blender from the original mesh to the two-level subdivided mesh.



Appendix B. Blender 3D model

The necessary derivatives for presenting a smooth geometry were also obtained using a Blender plug-in. This
plug-in has an array of functions, one of which is able to perform subdivision of the domain and calculate the nodal
derivatives. Blender is an open-source software which users can add their own written plug-in as a Python script,
which improves functionality for work with complex geometries.

Due to the complex curvature and geometry of the human heart, extraordinary nodes are introduced in the finite
element mesh in order to maintain smoothness and to capture specific details. At ordinary vertices, arc-length and
G' continuity is enforced as described by Gonzales et al. (2013). At extraordinary nodes, however, continuity is
maintained via new coordinate frames called ensemble coordinates, coupled with a local-to-global map transforming
global ensemble derivatives into local element derivatives using a method also described by Gonzales et al. (2013).
Estimation of the local element derivatives are obtained from nodes after subdividing the mesh twice to enforce C°
continuity.

Figure A.8 shows the original model followed by two level subdivision to calculate the first, second, and cross
derivatives at each vertex. As can be seen, after the second level of subdivision a smooth geometry can be obtained
while guaranteeing the G' continuity on every node including ordinary and extraordinary nodes.

Appendix C. Fiber Interpolation

In this section, we briefly describe a coordinate-frame interpolation scheme that uses the log-Euclidean transfor-
mation ensuring the preservation of the shape and size of the geometry.

The fiber coordinate frame corresponds to the fiber and cross-fiber orientations at each node is represented using a
3 x 3 orthogonal matrix, F whose columns represent the vectors along the three orthogonal coordinate directions. The
first step is converting matrix F to log-Euclidean space by taking the matrix logarithm. However, a real matrix has a
real logarithm if and only if it is invertible and each Jordan block belonging to a negative eigenvalue occurs an even
number of times, otherwise it has only non-real logarithms (Culver, 1966). The necessary conditions can be satisfied
by constructing a synthetic symmetric matrix, T whose eigenvalues are synthetic but unique and positive, as shown
below,

di 0 0
T=F|0 d»n O0|F (C.1)
0 0 ds

In Equation C.1, the values of d;1, dy;, and d33 are chosen to be unique, positive, and in sorted order (dy; < dy < d33,
(5,10,20), for instance). The matrix T is then transformed to L by the matrix logarithm: L=log(T) while the symmetry
and positive-definiteness of L is preserved. The calculated matrix logarithm is then used to interpolate the coordinate
frame within an element. It is worth mentioning that the matrix logarithm of a positive definite matrix is symmetric
with only six independent components. The same basis functions are also used to estimate the matrix L’s components
interpolation, similar to scalar quantities in Euclidean space. We also take advantage of the local-to-global mapping
to interpolate the six independent components of logarithm matrix in the presence of extraordinary nodes. At any
arbitrary point within the element, the coordinate frame can then be obtained by calculating the matrix exponential of
the interpolated L.,

T, = ¢ (C.2)

and then computing the eigenvectors, v; (i=1,2,3) of the resulting matrix and sorting them according to the eigenvalues
of T,. Sorting is necessary to keep the order of vectors in the coordinate frame unchanged. Since the eigenvalues are
only used for sorting the eigenvectors, there are no stability issues during interpolation as long as they are positive and
unique.



Appendix D. Supplemental Videos

We have included a movie which shows the deformation of the four-chamber cardiac model in a full-beat cycle
after transferring the fixed boundary conditions to the apex instead of the base. The deformations shown here closely
matches the in vivo heart deformations. This shows that the boundary conditions that we applied are physiologically
equivalent to the in vivo rigid body constraints.

We have also included another movie which shows the deformation of the four-chamber cardiac model in a full-
beat cycle for both the healthy heart and the heart with myocardial infarction. As can be seen, the heart with myocar-
dial infarction shows less contractility compared to the healthy heart.

Appendix E. Validation of Cardiac Motion

This section shows some additional validation of the cardiac motion. Figure E.9 shows the comparison in the RV
dimension in the same orientation as Figure 4 from Kou et al. (2014).

Figure E.9: Right ventricle’s basal linear dimension. The orientation of the model corresponds to Figure 3 in Kou et al. (2014).

Table E.4: The comparison between the ratio of the right ventricle basal linear dimension (RV},) at the end-diastole and end-systole obtained from
the present work and Kou et al. (2014).

Present Work | Kou et al. (2014)

RVy,(end—diastole)
RV (end=systole) 1.62 1.45 +0.13

Appendix F. Convergence Study

We performed a mesh refinement convergence study of the cubic-Hermite models with extraordiary nodes. For this
purpose, we created five different geometries of a single left ventricular model and inflated them to the end-diastolic
pressure and compared the ventricular volumes and the apex-base distances at different pressure steps. Figure F.11
shows the ventricular geometry with increasing refinement from left to right in either the radial, circumferential, or
both directions.

As can be seen in Figures 12(a)-12(b), there is not a significant change in the nodal deformations or the volume
history with the increase in number of elements. We achieve an acceptable tolerance (for example, 0.016 mm for
nodal displacement, comparable to 0.5 mm spatial resolution of the CT images with fewer mesh elements with cubic-
Hermite elements. Moreover, Figure 12(c) shows that the LV end-diastolic volume obtained using different mesh
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Figure F.10: Wireframe renderings of the unloaded left ventricular models with increasing refinement.

(a) 28 elements (b) 56 elements (c) 122 elements (d) 224 elements (e) 448 elements

Figure F.11: Unloaded left ventricular models with increasing refinement.

Table E.5: Mesh size metrics of the different cardiac models.

LV Model | LV Model | LV Model | LV Model | LV Model | Four-Chamber Model
(28 elms) | (56 elms) | (122 elms) | (244 elms) | (488 elms) (480 elms)
Mingjy, vor (ml) 0.61 0.23 0.09 0.048 0.021 0.017
Maxeim vor (ml) 1.94 1.23 0.65 0.30 0.165 3.96
totyo (ml) 33.47 33.45 3345 32.12 32.12 187.59
Mingjm vol/totyol 0.02 7x 1073 3%x1073 9% 1073 6x10™* 9x 107
MaxXeim vol/tOtyol 0.06 0.037 0.019 0.01 0.005 0.021

densities lie within 1% (orange rectangle) of the value obtained using the finest mesh, while the end-diastolic apex-
base distance shows even smaller deviation (< 0.5%). Table F.5 contains some properties that corresspond to the
size of each mesh, including the minimum and the maximum element size (volume, in ml), plus their corresponding
ratios with respect to the model’s total volume. As can be seen, Maxeim vo1/f0tyo Value for the current four-chamber
model is approximately similar to the LV model with 122 elements. As we showed in Figure F.12, mesh-independent
results can be achieved by the LV model with even fewer cubic-Hermite elements. Therefore, we can conclude that
the current four-chamber model mesh resolution is adequate to obtain displacement and volume results that are within
reasonable tolerance values (< 1%).
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Figure F.12: Mesh independence study of a single LV model. Both the chamber volume and the apex to base distance are within 1% of the values
computed using the finest mesh.

Appendix G. Additional Related Work

In this section, we provide additional references for related work on cardiac modeling and simulations.

Most previous cardiac models using high-order meshes have been restricted to geometries described by a single
set of parametric coordinates that are topologically equivalent to a cylinder (Vetter & McCulloch, 1998). However,
such meshes require special boundary conditions at the cardiac apex to enable multiple overlapping nodes or sector el-
ements (Bradley et al., 1997) to close the mesh. The restriction of using a single set of parametric coordinates enables
enforcing continuity across element edges easier, but introduces element distortions. In the present work, we make
use of cubic-Hermite functions using hexahedral elements to simulate the full beat cycle of a four-chamber healthy
heart and a heart with myocardial infarction. Structured grids with hex or quad meshes (either regular or curvilin-
ear) can be implemented using compact meshes and usually execute faster than algorithms that support unstructured
grids (Bourdin et al., 2007). Our method requires fewer elements and results in a smaller stiffness matrix, leading to
faster solution while preserving a reasonable level of accuracy.

The popularity of cubic-Hermite meshes in isogeometric finite element analysis and computer graphics have grown
up significantly in recent years due to its compactness and convergence advantages. They have shown to have better
convergence properties compared to linear hexahedral and tetrahedral elements in cardiac electrophysiology simula-
tions (Vincent et al., 2015). Although cubic-Bezier curves are widely used to create smooth curves, cubic-Hermite
representation makes it possible to store all degrees of freedoms (DOF) at the element corners without any additional
information stored in the element edges or body nodes. The complex geometries associated with biomechanics mod-
eling of the heart necessitate the construction of cubic-Hermite surfaces which share at least a common tangent plane
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(G' continuity) along their boundaries (Farin, 1982, 1986). A number of researchers have worked to propose the
necessary and sufficient conditions for G' continuity of rational surfaces. Liu & Hoschek (1989) were among the
first who studied and proposed the necessary and sufficient conditions of G' continuity condition for all four possible
combinations of rectangular and triangular Bezier patches. Later DeRose (1990) improved their work and derived the
necessary and sufficient conditions for G' continuity for cubic-Bezier patches which did not possess a large number of
indeterminate parameters (Liu & Hoschek, 1989). Finally, Du & Schmitt (1990) extended the geometric continuities
between adjacent patches and presented new alternative approaches for modeling free-form G' continuous surfaces
including extraordinary nodes.

As a recently developed computational method, isogeometric analysis was first introduced and developed by
Hughes et al. (2005) and uses the basic functions from NURBS to analyze a wide variety of mathematical problems
including finite element analysis. Nielsen et al. (1991) developed a mathematical model of a canine cardiac architec-
ture using the cubic-Hermite basis functions on a prolate spheroidal coordinate system. Since their model considered
only the left and the right ventricles with myocardial fiber orientations, extraordinary nodes were not required. This
work extends their cubic-Hermite finite element analysis to model the full geometry of a human heart by considering
the atria in addition to the ventricles. The complexity of the geometry necessitates the use of extraordinary nodes
(nodes which are shared between three or more than four elements in two dimensions), which must be treated sep-
arately to maintain continuity between the different patches of NURBS surfaces. Gonzales et al. (2013) developed
a general framework to construct the bicubic and tricubic Hermite basis function to model the human atria with ex-
traordinary nodes. This work is the extension of their model by simulating the inflation and full beat cycle of the
human heart which was first introduced by Krishnamurthy et al. (2016) for isogeometric cardiac modeling. Moreover,
they investigated the numerical error in their simulation in the presence of extraordinary nodes and found that a faster
convergence can still be achieved.

Unlike Lagrange basis functions which only maintain the C° continuity at adjacent elements, cubic-Hermite func-
tions can also preserve the C' continuity for regular nodes (non-extraordinary nodes). Moreover, better convergence
properties of cubic-Hermite elements compared to other types of elements such as linear hexahedral or tetrahedral
elements, make it more appropriate and compatible for biomechanics simulations (Bradley et al., 1997; McLeod,
1977). Several researchers have studied the convergence of numerical electrophysiology solutions (Rogers & McCul-
loch, 1994; Bernus et al., 2002; Pathmanathan et al., 2012). Recent comprehensive work done by Vincent et al. (2015)
compares the convergence behavior of different interpolation methods for finite element simulations on a cardiac mon-
odomain equations for electrophysiology. They investigated linear Lagrange, cubic Hermite, and cubic Hermite-style
serendipity meshes in their study and found that high-order methods with fewer degrees of freedom and longer ele-
ment edge lengths converge better than conventional linear elements. They also introduced a dimensionless number
to determine the solution convergence not only dependent on element size, but on the ratio of the discretization length
to the characteristic length of the monodomain equation.

Subdivision is a powerful technique in computer graphics and surface modeling and can create reasonably smooth
surfaces from relatively simple meshes. Two main subdivision categories can be classified as interpolating and ap-
proximating depending on if they are required to interpolate the position of the vertices in the original mesh or not.
Catmull & Clark (1978) and Doo & Sabin (1978) were among the well-known researchers who first developed and
derived the approximating subdivision methods by generalizing bi-cubic and bi-quadratic B-spline to generate sur-
faces with C? continuity except at extraordinary vertices where they are C' continuous. As stated earlier, a full model
of the human heart including both atria and ventricles necessitates the use of extraordinary vertices. Therefore we use
the subdivision scheme used by Gonzales et al. (2013), the Li-Kobbetl subdivision scheme (Li et al., 2005) to approx-
imate the derivatives in the presence of extraordinary nodes. In order to have a natural adaptive mesh refinement, this
method only adds ordinary vertices to the refined mesh while the number of extraordinary vertices remain unaltered.

Non-invasive clinical imaging techniques have become the standard means for diagnosing cardiac function, via-
bility, and heart failure (Petitjean & Dacher, 2011; Ringenberg et al., 2014). These techniques can be classified into
three common categories: cardiac ultrasound (echocardiography), computed tomography (CT), and magnetic reso-
nance imaging (MRI). Echocardiography, being less expensive and radiation free, makes it an acceptable modality for
patient-specific cardiac modeling over CT or MRI. In addition, the lower resolution of ultrasound images results in a
geometric model with fewer degrees of freedom (DOFs) (Aguado-Sierra et al., 2011).

There have been many researches to model the distribution of fiber orientation within the cardiac wall (Zhukov
& Barr, 2003; Rijcken et al., 1999; Gasser & Forsell, 2011; Robb & Robb, 1942; Freeman et al., 1985). Since the
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availability of the in vivo human hearts except for transplantation surgeries is limited, Lombaert et al. (2011) studied
more than ten ex vivo human hearts from DT-MRI. Their studies showed that the fiber orientation can be considered
reasonably the same for a large group of humans, however the apex shows a higher deviation. Postmortem radiography
and histological techniques show that fibers rotate around 120° from the epicardial (outside) surface to the endocardial
(inside) surface with the fiber angle increasing linearly from -60° to 60° with respect to the circumferential direction.
Other values were also reported for the fiber rotation such as 105.7+14.9° by Smith et al. (2008) in which they use
nondestructive optical determination to overcome the limitation of histological sectioning (which might damage the
tissue) and diffusive tensor imaging (which is comparatively expensive). Numerous methods have been proposed
(Toussaint et al., 2013; Wong & Kuhl, 2014; Gonzales et al., 2013) to overcome the complexity of creating the fiber
orientation map for computational analyses, especially the interpolation of fiber angles in meshes with extraordinary
vertices. Interpolation of tensor fields in normal Euclidean space may result in null or non-positive-definite interpo-
lated tensors (Fillard et al., 2006). On the other hand, affine invariant Reimannian framework is an alternative method
that can alleviate these problems but is not computationally efficient (Pennec et al., 2006). In the present work we
make use of Log-Euclidean (LE) framework (Arsigny et al., 2005), which is simpler to implement and preserves the
orthogonality of the interpolated coordinate frame (Arsigny et al., 2005; Krishnamurthy et al., 2016).

Identifying the myocardial material properties is still an active ongoing research topic (Remme et al., 2004; Som-
mer et al., 2015). Although the myocardial tissue appears to be viscoelastic (Taber, 1995), the short cardiac cycle
time scale compared to the tissue relaxation time makes it less significant to be simulated as a viscoelastic mate-
rial. Holzapfel & Ogden (2009) did a comprehensive study on morphology and structure of the myocardium and
introduced a new constitutive model for passive myocardium. Unlike previous models which were based on linear
isotropic elasticity, the model developed by Holzapfel & Ogden (2009) is a transversely-isotropic form of the conven-
tional Fung-type constitutive models (Holmes et al., 2000). In this model, the anisotropy in the fiber and cross-fiber
directions of the myocardium is modeled using a separate exponential term with different exponents.

Myocardial infarction (MI), also known as heart attack is a leading cause of heart failure which increases with
age, lower physical activity, and socioeconomic status (Perk et al., 2012). MI occurs due to the blood blockage caused
by buildup of plaque in coronary arteries leading in the lack of oxygen and nutrients supplies to left ventricle (Saez
& Kuhl, 2016). MI is critical and can damage the heart muscles if it is not treated immediately. Angioplasty and
clot-busting medicine are among the most common treatments to minimize or prevent the damage caused by MI. The
infarcted regions lose their contractility and become stiffer, therefore, unable to keep their contribution in conducting
the electrical signal and the pumping ability. P-V loop analysis has been shown to be an appropriate method to
quantitatively evaluate the underlying degradation in cardiac function after MI (Shioura et al., 2007).
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