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Animals must balance their rates of energetic intake and expenditure while foraging. Several mathematical
models have been put forward as energetically optimal foraging strategies when the food environment is sparse
(i.e., the distance between food patches in the environment is much larger than the distance from which the
forager can perceive food). In particular, Lévy walks with a power law exponent approaching 1 are considered
optimal for destructive foragers. However, these models have yet to explore the role of sensory perception in
foraging success as the distance between food patches approaches the distance from which the forager can
perceive food. Here, we used an agent-based modeling approach to address this question. Our results concur that
lower values of the power law exponent (i.e. values approaching 1) result in the most food found, but in contrast
to previous studies, we note that, in many cases, lower exponents are not optimal when we consider food found
per unit distance traveled. For example, higher values of the exponent resulted in comparable or higher foraging
success relative to lower values when the forager's range of sensory perception was restricted to an angle + 30°
from its current heading. In addition, we find that sensory perception has a larger effect on foraging success than
the power law exponent. These results suggest that a deeper examination of how animals perceive food sources
from a distance may affect longstanding assumptions regarding the optimality of Lévy walk foraging patterns,
and lend support to the developing theoretical shift towards models that place increasing emphasis on how
organisms interact with their environments.

1. Introduction

All animals must find food in an energetically-feasible manner in
order to survive. Optimal Foraging Theory (OFT) holds that animals
seek to maximize their net rate of energy intake — the difference be-
tween their energetic benefit (in terms of calories, nutrients, etc.) and
their energetic expenditure over time — while searching for, handling,
consuming, and digesting food (MacArthur & Pianka, 1966). OFT
transformed the field of foraging ecology, stimulating both empirical
and theoretical work on diet, patch selection, and residence time (Pyke,
1984). However, the issue of how animals should optimally move be-
tween food patches was initially underrepresented in the literature
(Pyke, 1978, 1984, 2015; but see Cody, 1971; Root & Kareiva, 1984;
Siniff & Jesson, 1969; Smith, 1973). Researchers observed that animals
across taxa performed Area Restricted Search (ARS): they responded to
encounters with food patches by transitioning from a rapid, directed
movement regime to one that was slow and tortuous (e.g. Banks, 1957;

Benhamou & Bovet, 1989; Bond, 1980; Fielden et al., 1990; Hassell &
May, 1973; Mueller et al, 2011; Pyke, 1978; Thomas, 1974;
Weimerskirch et al., 2002; White et al., 1984). But a true synthesis of
optimal movement between food patches remained incomplete.

Initial efforts to provide a theoretical basis for the observed ARS
patterns drew from simple random walk (SRW) models (Cody, 1971;
Kareiva and Shigesada, 1983; Pyke, 1978; Siniff and Jesson, 1969;
Smith, 1973; Turchin, 1998; Viswanathan et al., 2011), in which an
animal’s trajectory is discretized into a series of linear steps. The step
lengths are drawn from an exponential distribution, and the step di-
rections are chosen at random, resulting in a forager whose mean
squared displacement grows linearly with time and whose changes in
direction are uncorrelated (Dray et al., 2010; Pyke, 2015; Viswanathan
et al., 2011). Correlated random walk (CRW) models elaborated on
SRWs (Benhamou, 2007; Codling et al., 2008) by incorporating some
degree of correlation between the directions of successive steps. This
adjustment helped simulate the directional persistence that is
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characteristic of the movements of most organisms (Pyke, 2015). Most
recently, Lévy walks (also called Lévy flights) have been proposed as an
alternative optimal search strategy (Viswanathan et al., 1999, 2000).
One way in which Lévy walks differ from SRWs and CRWs is that the
length of each step is chosen from a probability distribution given by
the power law distribution

P(x) = Cx™%, (@]

where C is a normalizing constant, x is the step length and a > 1
(Viswanathan et al., 2000, 1999). As a increases beyond 3, the Lévy
walk converges on Brownian motion; when a < 3, a Lévy walker has
higher probabilities of taking very long steps than does a simple or
correlated random walker.

In 1999, Viswanathan et al. proposed the Lévy Flight Foraging
Hypothesis (LFFH), which suggests that Lévy walks with particular values
of a should maximize the quantity of food found per distance traveled over
time for foragers in environments with sparse, randomly distributed food
patches (Viswanathan et al., 1999, 2000). In the case of nondestructive
foraging, where food patches returned instantaneously to their ungrazed
state after an encounter with a forager, @ = 2 was optimal. In the case of
destructive foraging, where food patches were completely depleted after
an encounter with a forager, an a value approaching 1 was optimal.

Numerous subsequent studies found that a power law with an exponent
of 2 best modeled in situ foraging behavior in a wide variety of taxa, ap-
parently in support of the LFFH (e.g. Bartumeus et al., 2010; de Jager et al.,
2011; Franks et al., 2010; Raichlen et al., 2013; Reynolds et al., 2014;
Seuront & Stanley, 2014; Sims et al., 2008). However, other researchers
reported contrasting results (Reynolds, 2015) and raised concerns re-
garding the statistical procedures required to accurately identify power law
distributions in empirical data (Clauset et al., 2009; Edwards, 2008;
Edwards et al., 2007). When more accurate procedures were used, the
outcomes of many studies in support of the LFFH were overturned (Clauset
et al,, 2009; Edwards, 2008; Edwards et al., 2007). For example, the
foraging times of unfenced deer (Dama dama) were initially found to
conform to a power law with @ = 2 (Edwards et al., 2007). However, re-
analysis of the dataset using maximum likelihood and Akaike weights
found that deer foraging times were better modeled by an exponential
(rather than a power law) distribution. The same research team determined
that bumblebee (Bombus terricola) flight distances could be reasonably fit to
a power law distribution; however, they recalculated a to be 3.68 (rather
than the original value of 3.5) in high food areas and 2.2 (rather than the
original value of 2.0) in low food areas (Edwards et al., 2007).

While it is critical that ecologists employ accurate statistical tech-
niques to analyze their data, it remains unclear to what extent changes
in calculated a values actually reflect significant changes in the energy
budgets of foraging animals. For example, in a biological system, ani-
mals whose movements are best modeled by values of a that differ only
slightly may experience negligible changes in foraging success with
respect to long-term fitness. In addition, a values do little to reveal the
underlying mechanisms animals use when searching for food. It is
reasonable, then, to question how substantial changes to calculated a
values must be to reflect changes in underlying mechanisms that result
in the evolution of optimal foraging behavior. In evaluating these me-
chanisms, one must consider the assumptions of the LFFH, and the fact
that they commonly have not been met by the species and systems used
to test the hypothesis in empirical studies (Pyke, 2015; Reynolds,
2015). Viswanathan et al. (1999, 2000) assumed that the directions of
successive animal movements were uncorrelated; however, even very
simple organisms tend to exhibit directional persistence (Pyke, 2015).
Additionally, researchers have debated whether destructive or non-
destructive foraging is the more realistic assumption (Pyke, 2015), and
some have explored the effects of nondestructive foraging when food
resources fully renew after some time lag (Raposo et al., 2003; Santos
et al., 2004). Third, the LFFH specifically applies to organisms whose
radius of sensory perception (r, in Viswanathan et al., 1999, 2000) is
much less than the average distance traveled between food patches in
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their environment (A in Viswanathan et al., 1999, 2000). While a
movement strategy modeled by a power law with a = 2 might be op-
timal when A » r,, it is unclear how that optimal strategy shifts as A
approaches r,. Although numerous authors have stated that the influ-
ence of a on foraging efficiency should decrease as r,/A approaches 1
(e.g. Bartumeus et al., 2008a; James et al., 2011; Viswanathan et al.,
1999, 2000), this has not been explicitly investigated. Finally, an op-
timal movement strategy may be influenced by other factors not con-
sidered by Viswanathan et al. (1999, 2000) and other, similar studies.
For example, many animals do not perceive food patches equally well in
all directions; rather, they tend to perceive food patches that are in
front of them, where the majority of their sensory organs are located
(Olden et al., 2004; Pelseneer, 1906; Zollner & Lima, 1999).

In many studies of foraging behavior (see, for example: Cody, 1971;
Siniff & Jesson, 1969; Turchin, 1998; Viswanathan et al., 1999), agent-
based models (ABMs) have provided valuable supplements to purely
analytical and empirical investigations. ABMs are flexible modeling
frameworks that examine the properties that emerge from the actions of
individual agents (Railsback and Grimm, 2011; Tang and Bennett,
2010). In the context of foraging behavior, agents search for food on a
simulated landscape using a set of rules that may depend on the agent’s
internal psychological or physiological state, nearby landscape features,
interactions with other agents, and a set of navigational strategies
(Nathan et al., 2008; Tang and Bennett, 2010). In this study, we used an
agent-based modeling framework to simulate destructive foraging
during single foraging bouts. We sought to address three questions:

1) Which factor — sensory perception or foraging movement pattern as
summarized by the power law exponent a — has the most influence
on destructive foraging success across a range of food distributions?

2) How does the influence of a on destructive foraging success change
as the forager's range of sensory perception approaches and exceeds
the distance between food patches?

3) Taking both foraging movement pattern and sensory perception into
account, can our model produce testable hypotheses regarding ex-
pected foraging behaviors in a model organism?

Due in part to its prominence in the literature, we expected that
animal movement patterns would have the most influence on destruc-
tive foraging success, with smaller a values resulting in greater success
than larger ones. However, we also expected that food availability and
sensory perception would interact with animal movements, with larger
values of both factors resulting in more foraging success than smaller
values. We anticipated that a would have the largest effect on foraging
success when the forager's range of sensory perception was much less
than the distance between food patches in its landscape, and that this
effect would become negligible as the forager's range of sensory per-
ception approached and exceeded this distance. Finally, we expected
that our model would allow us to generate testable hypotheses about
foraging behavior in a model organism, the intertidal limpet Patella
vulgata (Linnaeus).

2. Materials and methods
2.1. Model Description

To simulate single foraging bouts, we used an agent-based modeling
framework, varying the a value of the power law distribution used to
model animal foraging movements (hereafter referred to as 'foraging
strategy'), the sensory abilities of the forager, and the food distribution
of the landscape.

2.1.1. Landscape Generation

We generated landscapes with food distributions that ranged from
relatively sparse (1% food cover) to relatively plentiful (15% food
cover). These values are within the range determined to be realistic and
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Model parameters. We summarize the landscape parameters and parameters associated with the forager’s movement. The parameters p, k; and k. were held constant

for all simulations.

Name Description Units Values

Landscape Parameters

PC Percent food cover of landscape - 1,3,5,7,9,11, 13,15
u Food patch side length grid units 1,2,5,10

Forager parameters

a Power law parameter - 1.1,1.3,15,2,25,3
R Radius of perception grid units 0,1, 2,5,10, 20

0 Field of view degrees 60, 360

Constant parameters

p Probability the forager continues forward - 0.8

ky Concentration parameter for von Mises distribution centered on current heading - 0.9

ko Concentration parameter for von Mises distribution centered on current heading minus 180° - 2.3

relevant by previous studies (e.g. With & King, 1999). To do this, we
created 32, 2-dimensional, bounded landscapes, and initialized each
with an empty 500 x 500 grid of squares. We then randomly added
non-overlapping food patches, with side lengths y of 1, 2, 5 or 10 grid
units, until the desired percent food cover was achieved. The average
minimum nearest neighbor distance between food patches on the re-
sulting landscapes ranged from 0.60 to 50.82 grid units (see Table S.1
for details).

2.1.2. Forager Characteristics

Each agent, or forager, was initialized with three inherent proper-
ties that governed its movements:, R, and 6 (Table 1). Each forager
drew its step lengths from a power law distribution (eq. (1)). In this
distribution, the exponent a controls the size of the tail. As a increases,
the size of the tail decreases, as does the probability of the forager
taking very long steps (Fig. S.1).

Two parameters, R and 6, governed the ability of the forager to
perceive food patches in its environment. R is the forager’s radius of
sensory perception. The direction of perception (6, analogous to 'per-
ceptual horizon' in Olden et al. 2004) was limited to the forager’s
current heading plus or minus 6/2; 6 = 60° produced an anterior bias in
perception, while 6 = 360° produced no bias. These values represented
minimum and maximum cases. The parameter values used in our si-
mulations are summarized in Table 1.

2.1.3. Simulating movement and food consumption

Our simulations were implemented in Python 2.7.9. At the begin-
ning of each simulation, a single forager was randomly placed on a
food-free square in a landscape. Initial exploratory simulations de-
termined that T = 1000 time steps were sufficient to produce consistent
results. For each time step (Fig. 1):

1) The forager’s maximum traveling distance x was drawn from a
power law distribution with parameter a.

2) The forager searched for food within the constraints of its range, R,
and angle, 6, of sensory perception. During the first time step, the
forager’s angle of sensory perception was defined relative to an in-
itial heading that was drawn randomly from a uniform distribution.
If the forager could perceive a food square, then it selected that square
as its desired destination and moved toward it. If the distance to this
square was less than x, the forager moved directly to the square and
consumed the food. Otherwise, the forager moved a distance x along
the line connecting its current position and the desired position. If the
forager could perceive more than one food square, it moved toward the
nearest one. In all of the above situations, the forager’s heading was
redefined as the angle connecting the forager and the food square.

4) If the forager could not perceive a food square, it randomly chose a
heading from one of two opposite-facing von Mises distributions
(Fig. 1). This strategy reflected the fact that animals tend to continue
moving forward along their current path (Pyke, 2015), but also
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occasionally reverse direction. The von Mises distribution closely
approximates a normal distribution on a circle; the probability of the
forager drawing a heading of angle ¢ was defined as

P(gl h, x) = C(x)eexcose=h)

where h is the angle the distribution is centered on, x is the con-
centration parameter describing how much of the distribution is
aggregated around h, and C(x) is a normalizing constant. With
probability p, the forager’s heading was drawn from a von Mises
distribution centered on its current heading with concentration
parameter k;, and with probability 1 - p, the forager’s heading was
drawn from a von Mises distribution centered on the heading di-
rectly opposite from its current one, with concentration parameter
ks (Table 1). The forager then moved incrementally along the
chosen heading until a distance x was reached. If the forager per-
ceived a food square along its path of travel, it stopped at the in-
termediate location. Food squares did not regenerate after con-
sumption (i.e. foraging was destructive).

We ran the above simulation 10 times on each of the 32 landscapes for
every possible combination of the parameters a, R, and 6 listed in Table 1.

2.1.4. Simulation output

After each simulation, the track of the forager was recorded and two
response variables were measured: the total amount of food found (F) and
the benefit-cost ratio (BCR). F is the number of times a forager landed on
and consumed a food patch. BCR is a measure of foraging efficiency
(Houston and McNamara, 2014) that in our case increases monotonically
with the forager’s net rate of energetic intake (Appendix B), and is defined
as the food gained by the forager per unit distance traveled over time, or:

BCR =

’

F
D

SISTEIES

(2)

where D is the total distance traveled along the forager’s path during the
simulation, and T = 1000 time steps. We used benefit-cost ratio rather
than cost-benefit ratio because some simulations resulted in F = 0.

2.2. Effect size of model factors

To determine how the parameters in our simulations (landscape, a,
R, and 6) affected our two response metrics (F and BCR), we performed
a five-factor analysis of variance (ANOVA) and a multiple linear re-
gression with all interactions considered. We designed our landscapes
with two free variables: percent cover (PC) and patch side length (u)
(Table 1). We performed ANOVAs for each response metric over these
two landscape parameters as well as the movement parameters a, R,
and 6. PC, u, a, and R were represented as continuous, fixed factors,
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Fig. 1. Schematic of simulation steps. In sce-
nario (A), a forager (blue triangle) draws a step

Step 4: Move length (black arrow, x = 1) from a power law

>

v '
(W

\ Food found

Probability density

Step length (x)

distribution with a = 3, looks for food within
its radius and angle of sensory perception (light
blue circle), finds a food square, selects a
heading directed toward it (angle of black
arrow), and moves. In scenario (B), a forager
draws a step length (x = 5) from a power law
distribution with a = 1.5 and looks for food
within its radius and angle of sensory percep-

tion (light blue sector), but cannot find any. It

B)a=1.5,0=60
Step 1: Draw step length

Step 2: Look for food Step 3: Draw random heading

draws a heading from either a forward (orange
curve with p = 0° and k; = 0.9) or backward
(blue curve with p = 180° and k, = 2.3) von

Step 4: Move Mises distribution and moves.

>

No food found

Probability density

Step length (x)

T

while 6 was represented as a categorical, fixed factor. All factors were
centered by subtracting their mean value.

In modeling studies like ours, it is possible to perform enough si-
mulations to achieve any level of statistical significance (White et al.,
2014). Therefore, instead of reporting ANOVA F-statistics and regres-
sion p-values, we reported the proportion of variation in each response
metric explained by each factor and provided the estimated regression
coefficients for each factor as a measure of effect size.

To explore how the influence of a on foraging success changed as
the ratio of range of sensory perception to distance between food pat-
ches shifted from O to greater than 1, we first calculated the average
minimum nearest neighbor distance (NND) between patches for each of
our 32 landscapes (Table S.1). We chose to use the average minimum
nearest neighbor distance rather than the mean free path because we
believed the former value would be more relevant to a forager moving
from patch to patch. We then calculated R/NND for each of our simu-
lations, a value analogous to r,/A in (Viswanathan et al., 1999, 2000).
Next, for ease of visualization, we divided this continuous variable into
five categories. The first four of these were determined by the quartiles
of the ratio R/NND: 0 < R/NND < 0.18, 0.18 < R/NND < 0.73, 0.73
< R/NND < 2.42, and R/NND > 2.42. The fifth category contained all
simulations in which R = 0, and thus R/NND = 0. These and sub-
sequent analyses were performed in R 3.3.0.

2.3. Model fitting to simulated data

To better understand the relationships between our five parameters
and two response variables, we chose to summarize the response vari-
ables as functions of the parameters. The goal of this analysis was not to
claim that these functional forms represent underlying mechanisms, but
rather to condense the behavior of the response variables into simple
yet comprehensive representations. To do this, we investigated how the
relationship between the amount of food found by a forager (F) and the
percent cover of food in a landscape (PC) varied with simulated
movement parameters, a, R and 6, and patch size, u. In general, the
relationship between F and PC followed a linear-logarithmic functional
form (Appendix C). We then used linear regression to explore how
changes in simulated movement parameters influenced the shape of the
linear-logarithmic fit.

2.3.1. Food found
We demonstrate in Appendix C that for both a forager with no sensory
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perception in any landscape and a forager with poor sensory perception in
a sparse landscape, we would expect F to be linear with respect to PC.
However, for a forager with strong sensory perception in a dense land-
scape, we would expect F to exhibit sublinear behavior with respect to PC,
because increasing food availability in this scenario will only marginally
increase the probability of finding food. Based on these expectations, we
chose to compare linear, logarithmic, and piecewise linear-logarithmic
functions of F with respect to PC and found that the piecewise function
was best as determined by the coefficient of determination (R? see

Appendix C). The piecewise ‘lin-log’ function was defined as:
a(PC) forPC <c

F(PC) =

(PC) blog(%) +ac forPC>c

C)

where a and b are coefficients to be fit and ¢ is the point of transition
between linear behavior and logarithmic behavior. We fit a and b for fixed
values of ¢ over the entire range of PC values in steps of 0.01%, choosing
the value of ¢ that minimized the root mean squared error of the fit
(Fig. 2A). Variance on the estimate of ¢ was approximated by boot-
strapping (n = 200). To explore the relative roles of a, R, , and 6 in
determininga, b and c, we performed multiple linear regressions with a, R,
and p as fixed, continuous factors and 6 as a fixed, categorical factor;
purely additive models were used.

2.3.2. Benefit-cost ratio

Eq. 4 summarizes the behavior of F with respect to PC, y, a, R, and.
We show in Appendix A that BCR can be approximated as a function of
F and a, and so the behavior of BCR with respect to PC, y, R, and 6 can
be deduced directly from the behavior of F.

2.4. Hypothesis generation

Our final aim was to use pre-existing data from a well-studied model
organism to generate testable hypotheses about that organism’s fora-
ging behavior. To be a good fit to our model, we required an animal
with limited memory that forages for sessile food items in a 2-dimen-
sional environment. We chose to use the intertidal common limpet,
Patella vulgata.

P. vulgata lives on temperate, rocky shores on the west coast of
northern Europe and can reach 25 mm in shell length (Hill, 2008). It
clings to the rock on which it lives with a large, muscular foot and,
much like a terrestrial snail, locomotes by undulating over a layer of
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secreted pedal mucus (Cook, 1969). It forages for both microscopic and
macroscopic algae during high tide (Cook, 1969) and travels an average
path distance of 0.4m during foraging (Hartnoll and Wright, 1977).
Because of its relatively simple neurological structure (3 major paired
ganglia located throughout the body) (Pelseneer, 1906), it is generally
assumed that P. vulgata’s foraging patterns are not determined by
memory. In addition, a recent study examined the step length dis-
tributions of 15 individual P. vulgata during 9 nocturnal low tides, and
fit their step lengths to exponential, power law, and three- and four-tier
Weierstrassian Lévy Walk (WLW) models (Reynolds et al., 2017). Of the
distributions that we consider here, the authors found that a power law
with an exponent near 1 was the best model. This suggests that P.
vulgata is a good fit to our agent-based model, and provides us with
some background information with which to form further hypotheses:
For example, P. vulgata’s range of sensory perception, and the food
distribution in its habitat, remain uncharacterized.

There is sufficient energetic data available in the existing literature
to convert the BCR values from our simulations into values specific to P.
vulgata. According to Burrows et al. (Burrows et al., 2000), the standing
crop of microalgae available to P. vulgata individuals has an energetic
content between 0.1 and 0.5J/mm? If we set the scale of our land-
scapes to 0.5mx0.5m, then each square in the grid is 1 mmx 1 mm,
and this energetic content yields 0.1 — 0.5J per square of food con-
sumed. Additionally, Davies et al. (Davies et al., 1990) calculated that
23% of consumed energy is employed in mucus production, the primary
cost of limpet locomotion. They also found the energetic content of
mucus to be 8.984 kJ/g. Finally, Davies & Williams (Davies & Williams,
1995) found that a closely-related intertidal limpet, Cellana grata,
produces between 2.1 and 15.2 pug of mucus per millimeter traveled. If
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we assume that food was high-quality and travel required little mucus,
then our rescaled BCR value is:

F(0.5)(0.23)

BCR =
Povilgata = 5 5 1)(8.984)

(¥
If we assume that food was low-quality and travel required little
mucus, then our rescaled BCR value is:

F(0.1)(0.23)

BCR = 0.2 020)
P-vdgate = Thy 5 1)(8.984)

)

After converting BCR to values relevant to P. vulgata, we examined
the foraging parameters (PC, yu, a, R, and 6) that resulted in en-
ergetically viable behavior (BCRp, yuigata = 1). There were no viable BCR

values for scenarios in which travel required large quantities of mucus
(15.2 pg/mm).

3. Results
3.1. Effects of model parameters

In general, food found (F) increased with increasing food avail-
ability (PC and p). Within this framework, we expected that foraging
strategy, a, would have the largest effect on foraging success, followed
by radius (R) and angle (6) of sensory perception. Instead, R was the
largest contributor to variation in F (Fig. 3). As expected, larger R va-
lues resulted in larger quantities of food found (Fig. 4). The power law
exponent, @, was the next-largest contributor, with smaller a values
generally resulting in more food found. Finally, 6 contributed the least
amount of variation; increasing 6 from 60° to 360° increased the
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Fig. 3. ANOVA and linear regression results for F and BCR. The top row shows the percent variation explained by each factor and the interactions between factors for
F (A) and BCR (B). The bottom row shows the regression coefficients for each factor and the interactions between factors for F and BCR. The coefficients represent
change in the response variable per unit change in the relevant factor. Error bars are + SE.

quantity of food found. The main effects of PC, y1, @, R, and 6 explained
63.66% of the variance in F; interaction terms explained only an ad-
ditional 2.22%.

BCR also increased with increasing percent cover (PC) (Fig. 3). As
was the case with food found, radius of sensory perception (R) con-
tributed most to variation in BCR, and BCR increased with increasing R.
Angle of sensory perception, 6, was the second-largest contributor to
variation, but increasing 6 from 60° to 360° only increased BCR when u
or R were large and a was small (Fig. 4). Finally, a contributed the least
amount of variation to BCR. When R > 0, smaller a values resulted in
larger BCR. However, contrary to expectations, larger values of a were
best when R = 0. The main effects of PC, u, a, R, and 6 explained
66.95% of the variance in BCR; interaction terms explained an addi-
tional 8.01%.

We expected that lower values of a would result in larger benefit-
cost ratios when R/NND was near 0, but that this trend would disappear
as R/NND approached and exceeded 1. To evaluate this hypothesis, we
plotted BCR as a linear function of a for each value of 1 and 6, and each
category of R/NND (Fig. 5). We found that a = 1.1 did indeed maximize
BCR when 0.018 < R/NND < 0.12, and that the slope of the relation-
ship between BCR and a became more negative as p and 6 increased
from 60° to 360°(Table S.2). We also expected that the slope of the
relationship between BCR and a would approach 0 as R/NND ap-
proached and exceeded 1. In general, when 6 = 360°, the data con-
formed to this hypothesis. However, slopes did not increase mono-
tonically with R/NND. Instead, slopes of intermediate values of R/NND
(0.12 < R/NND = 0.73, 0.73 < R/NND = 2.42) tended to be more
negative than those at the lowest values. When 6 = 60° and p < 5, the
slopes of the relationships between BCR and a were statistically indis-
tinguishable from O (Table S.2). When u = 5, slopes were largest when
R/NND exceeded 1, and were positive (i.e., @ =3 outperformed
a=1.1).
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3.2. Functional form analysis

3.2.1. Food found

Our analysis of food found (F) using eq. 4 allowed us to address how
PC, i, a, R, and 6 affected the shape of the relationship between F and
PC. The transition point between linear and logarithmic behavior, c, of
each fit to our model data increased as « increased and decreased as R
increased; 6 and p had no significant effect (Fig. 2B). Our linear re-
gression of c on R, a, 1, and 6 yielded coefficients of -0.26 (p < 0.001),
2.00 (p < 0.001), -0.001 (p = 0.981) and -0.04 (p = 0.919) respec-
tively. The slope of each lin-log fit, decreased with increasing «, and
increased with increasing R, y, and 6 (Fig. 2C). Our linear regression of
a on R, a, i, and 6 yielded coefficients of 17.03 (p < 0.001), -211.49
(p < 0.001), 12.02 (p < 0.001) and 92.91 (p < 0.001), respec-
tively. Finally, the log coefficient b increased with higher values of a; R,
u, and 6 had no significant effect. Our linear regression of b on R, a, p,
and 6 yielded coefficients of 0.15 (p = 0.81), 49.66 (p < 0.001), -1.74
(p = 0.14), and 2.87 (p=0.73) respectively.

3.2.2. Benefit-cost ratio

As BCR can be approximated as a function of F and a, in which BCR
increases monotonically with F for a given a value (Appendix A), we did
not conduct an additional analysis of BCR as a function of PC.

3.3. Hypotheses regarding P. vulgata foraging

When we assumed low food quality and low cost of travel, after
averaging across replicate simulations, we obtained 27 combinations of
PC, u, a, R, and 6 that resulted in energetically viable foraging
(BCRp. yuigata = 1). In this scenario, foragers required 6 = 360°, and re-
latively high PC (9% or greater), u (5 or greater), and R (10 or greater)
to be viable. However, all a values were indistinguishably effective.
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Fig. 4. F and BCR as functions of PC demonstrate the effects of y, @, R and 6, and their interactions, on foraging success. Panel (A) shows F plotted against PC for
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row. Panel (B) shows the same information, but for BCR instead of F. In both panels, simulations where 8 = 60° are in shades of blue; simulations where 6 = 360° are

in shades of orange.

When we assumed high food quality and low cost of travel, after
averaging across replicate simulations, we obtained 1,339 combinations
of parameters that resulted in energetic viability. Of these simulations,
none included R = 0 (Fig. 6). However, for foragers with R > 0, viable
simulations existed for all PC values. Foragers with 6 = 360° were able to
forage more effectively at lower PC, especially if a was also low and the
landscape had large food patches. However, for foragers with 8 = 60°, all
a values were indistinguishably effective, especially if R was large
(greater than 5) and the landscape had smaller food patches.

4. Discussion
Our results suggest that a forager's movement strategy, as defined by

the power law exponent a, is the least important contributor to foraging
success when the energetic costs of movement are taken into account
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(BCR). Instead, food availability (PC) and the forager's range of sensory
perception (R) are the most important quantities to consider. In addition,
the degree to which a affects BCR depends on the size of food patches (1),
the forager's angle of sensory perception (6), and the ratio of the forager's
range of sensory perception to the distance between food patches (R/
NND). In general, a matters most when food patches are large, the for-
ager's angle of sensory perception is unbiased, and R/NND is approxi-
mately between 0 and 2. Finally, when appropriately parameterized, our
model generates testable hypotheses on how animals may optimally in-
teract with their environments while foraging, taking into account food
distribution, range of sensory perception, and energetic expenditures.

4.1. Effect of model parameters on foraging success

Our linear regression and analysis of variance results indicate that the
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power law exponent a should be given reduced emphasis in future studies
characterizing the optimal foraging of animals. Quantifying a as a measure
of optimality in foraging behavior is a simple and general approach that is
understandably compelling, because it is relatively easy to measure from
animal track data, which is becoming increasingly available (Wilmers
et al.,, 2015). In addition, other methods to infer underlying behaviors
from these data are still very much in development (Dodge et al., 2013;
Fleming et al., 2016; Jonsen et al., 2005; Warwick-Evans et al., 2015).
Measuring the exponent a provides a simple starting point and a general
theoretical framework from which to form further hypotheses. However,
we believe it may be misleading to evaluate the optimality of an animal’s
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foraging strategy purely based on its exponent’s value. Our data suggest
that it would be more informative to characterize an animal's foraging
environment and its ability to perceive food sources from a distance, in
addition to its movement patterns.

Our model is distinct from Viswanathan et al.'s original simulation
(Viswanathan et al., 1999, 2000) in several ways: we incorporated
correlated turn angles and variation in food availability, food patch
size, and range and angle of sensory perception. A prior study found
that broader turn angle distributions and turn angles that were more
correlated through time resulted in increased foraging efficiency
(Bartumeus et al., 2008a). Based on this, our use of a narrower turn

15

0 5 10 15 20
Range of sensory perception (R)

Percent cover at which BCR becomes viable

Fig. 6. Minimal viable percent cover values for P. vulgata. The lowest PC at which BCRp. yuigara > 1 is plotted against R for a = 1.1 (light shade), a = 2.0 (medium
shade), and a = 3.0 (dark shade). Values from simulations with 6 = 360° are in orange, and are connected by dashed lines. In (A), p = 1; in (B), u = 10.
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angle distribution and turn angles that were correlated across succes-
sive time steps should have decreased and increased foraging efficiency
respectively. However, since these changes were applied across all of
our simulations, the effects of turn angle distribution and correlation
should be systematic, and our results that consider the relative effects of
PC, i, a, R, and 6 should remain comparable with prior work. With
respect to variation in food availability, Bartumeus et al. (2008b) de-
termined that increasing food availability decreased the degree to
which an a value near 1 outperformed a = 3. They also found that the
degree to which a near 1 outperformed a = 3 was decreased when food
patches were smaller relative to the forager’s range of sensory percep-
tion. Our results corroborate both of these findings.

Variation in angle of sensory perception has not previously been ex-
plored in the literature; it has generally been assumed that all animals
perceive food equally well in all directions (e.g. Bartumeus et al., 2008a;
Pyke, 2015; Viswanathan et al., 1999, 2000). However, recent work has
called for the incorporation of anisotropic and even context-dependent
perceptual ranges in foraging models (Olden et al., 2004). We found that
narrowing a forager's angle of sensory perception from 360° to 60° re-
sulted in an overall decrease in BCR, especially when patch sizes were
larger and a values were smaller. It is important to note that we did not
test the effects of intermediate values of 6, and therefore cannot fully
define the relationship between it and BCR. However, this result remains
worthy of consideration because many animals do not sense their en-
vironments equally well in all directions, but rather have most of their
sensory structures located anteriorly (Pelseneer, 1906). Given the impact
of a reduced angle of sensory perception on foraging success, it may be an
informative addition to future simulations.

It has long been acknowledged that the ratio of radius of sensory
perception to the distance foragers must travel between food patches
(R/NND in our case) is an important indicator of foraging success (e.g.
Benhamou, 2007; Raposo et al., 2003; Santos et al., 2004; Viswanathan
et al.,, 1999, 2000, 2011 and others). Essentially, when this ratio is
greater than or equal to 1, the forager should be able to perceive its next
food patch from its current location. However, prior studies have only
reported results from a limited range of ratios (from approximately 1/
10* to 1/10) (Bartumeus et al., 2008a, 2008b; Viswanathan et al., 1999,
2000). From this earlier work, researchers concluded that a has the
largest effect on foraging success at small ratios, and that this effect
becomes negligible as a approaches 1 (Bartumeus et al., 2008a, 2008b;
Santos et al., 2004; Viswanathan et al., 1999, 2000). In this study, we
chose to explore this relationship explicitly, testing R/NND values be-
tween approximately 0.02 and 34. Our results generally confirmed
prior work; the slope of a linear regression of BCR against a becomes
less negative and approaches 0 as R/NND increases. However, this in-
crease in slope was nonlinear, and in some cases, a = 3 outperformed
a = 1.1. In particular, this occurred when R/NND was large, and angle
of sensory perception was anteriorly biased. These results suggest that
there are intermediate R/NND ratios where a values are more or less
important to foraging success, and that the assumption that all a values
are always equally effective when R/NND > 1 is inaccurate.

4.2. Hypothesis generation

Our model was designed to explore the relative contributions of fora-
ging strategy (power law exponent) and range of sensory perception (R, 6)
to foraging success in a range of simulated environments, but it can also be
used as a hypothesis-generation mechanism for particular organisms and
environments. To illustrate this, we used existing data on the energetics of
the intertidal limpet, Patella vulgata, to parameterize our model. We were
able to hypothesize, given a range of food qualities and energetic move-
ment costs, under which food distributions and foraging strategies P. vul-
gata might be energetically viable (BCRp, yuigaia = 1). Because the foraging
strategies of P. vulgata have recently been characterized (Reynolds et al.,
2017), we can compare our results with empirical data.

Reynolds et. al (2017) examined the step length distributions of 15
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individual P. vulgata during 9 nocturnal low tides, and fit them to ex-
ponential, power law, and three- and four-tier Weierstrassian Lévy
Walk (WLW) models. Of these distributions, the three-tier WLW model
was the best fit to the data. WLW models are outside the scope of this
study, however, of the models we consider here, Reynolds et al. (2017)
determined that a power law with @ = 1 was best. For this a value and a
small patch size (u = 1), our model suggests that P. vulgata foraging
would be energetically viable at R = 2 and PC = 15%, or at R = 10 and
PC = 3%, regardless of angle of sensory perception. Increasing patch
size would generally lower the PC at which foraging becomes viable,
and when patches are large (u = 10), 8 = 360° would allow for viable
foraging at lower PC, even when R is small.

Note that scenarios in which 6 = 60° are likely better models of P.
vulgata foraging success. Limpets, like many other animals, possess an
anterior concentration of sensory structures, and may not be able to
perceive food equally well in all directions. However, our data show
that 6 = 360° would generally allow P. vulgata to be energetically viable
with less food in its environment. It is possible that these observations
represent a trade-off between the benefit of finding more food when
6 = 360°, and the cost of supporting, for instance, sensory structures
that are more equally distributed across the body.

We observed no scenarios in which a high energetic cost of limpet
movement (15.2 ug mucus/mm) was energetically viable, however, our
results represent the worst-case scenario in terms of the energetics of
limpet movement. Many species, including P. vulgata, have been observed
following mucus trails previously laid down by themselves, by con-
specifics, and even by members of other limpet species (Chelazzi et al.,
1988; Cook et al., 1969; Cook, 1969; Davies & Hawkins, 1998; Denny,
1989; Funke, 1968; Ng et al., 2013). These mucus trails may substantially
reduce the energetics of limpet movement. Davies & Blackwell (Davies &
Blackwell, 2007), for example, found that energy expended on mucus
decreased by 70% in the littorine snail Littorina littorea when they were
following a freshly-laid trail. In addition, Connor (Connor, 1986) esti-
mated that mucus trails generated by Lottia gigantea, L. scabra, and L.
digitalis persevere in the rocky, wave-swept intertidal environment for at
least 7 days. As such, our results should be taken as a worst-case scenario;
15.2 ug mucus/mm may very well be reduced to an energetically viable
value when the prevalence of trail-following, the density of limpets, and
the persistence of mucus trails are taken into account.

4.3. Functional form analysis

4.3.1. Food found

A lin-log model for food found as a function of percent cover suggested
that foragers exhibited two movement modes: one where food found (F)
was linear with respect to percent cover (PC) and PC was low, and one
where F was sublinear (approximately logarithmic) with respect to PC and
PC was high. The first movement mode’s linear accumulation of food was
likely a signature of correlated random walk behavior (see Appendix C).
When PC was low (e.g. 1%), and patch size was large (e.g. 10 units per
side), the average distance from a patch to its nearest neighbor was about 45
grid units. This distance was farther than the distance from which any of our
foragers could perceive food (R/NND < 1), meaning that at least one
random step was likely to occur between food patches. The smaller the
values of R and 6, the more random steps had to be taken between food
patches; a controlled the size of these random steps, and therefore also
played a significant role. The second movement mode’s logarithmic accu-
mulation of food may indicate diminishing returns. In this mode, PC was
relatively high, and foragers with R > 0 were likely to perceive the next
food patch from the current one. Because of this, adding more food squares
to the landscape had a lower chance of increasing F than if the forager were
performing a simple random walk. Visualizing tracks from foragers on high
and low PC landscapes provided some evidence for this two-mode me-
chanistic explanation of our results (Fig. 7). However, it is possible that F
may not retain this lin-log behavior at PC values greater than those explored
in this study.
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Fig. 7. Example simulated tracks. (A) A track from a forager with @ = 2.0, R = 1, and 8 = 360° on a landscape with 11% food cover and u = 5. This track displays
predominantly mode 1 behavior, with many random steps between food patches. (B) A track from a forager with a = 2.0, R = 20, and 6 = 360° on the same
landscape as in (A). This track displays predominantly mode 2 behavior, with relatively few, directed steps between food patches.

4.3.2. Benefit-cost ratio

We show in Appendix A that BCR can be approximated as a function
of F and q, and so the behavior of BCR with respect to PC, y, R, and 6
can be deduced directly from the behavior of F. Increasing R and y, or
decreasing a, therefore, will increase BCR at low PC; increasing R or
decreasing a will increase the transition point between the two func-
tions; and increasing a will increase BCR at high PC. However, BCR also
depends on the average step-length used by the forager (K(a) in
equation A.1). This term counteracts the effect of a, increasing BCR for
smaller average step lengths and decreasing it for larger average step
lengths. The opposing effects of a and average step length result in a
decreased influence of a on BCR relative to its influence on F.

5. Conclusions

Our agent-based model allowed us to explore the relative roles of
the power law exponent and sensory perception in efficient foraging,
but it did so by making a variety of assumptions about foragers and
environmental features that may or may not apply to specific systems.
In particular, our model is well-suited for animals that lack spatial
memory and forage in environments that can be approximated as 2-
dimensional. The assumption of memorylessness is common, especially
in invertebrate systems, and many terrestrial and benthic marine and
freshwater habitats can be considered 2-dimensional. However, these
assumptions and others implicit in our model can be easily altered to
suit a variety of research agendas. This is the ultimate power of ex-
ploratory agent-based models (ABMs): they are flexible, can be tailored
to specific systems, and allow for the cycles of hypothesis generation
and testing required to move from observations of animal movement to
mechanistic explanations. This repetitive testing is crucial in a field of
study where it is increasingly clear that one simple model will not fit all
cases (Nathan et al., 2008; Pyke, 2015).

In this study, we conclude that lower values of the power law ex-
ponent maximize food found, but that the effect of the exponent on
benefit-cost ratio depends strongly on food availability, food patch size,
the forager’s range of sensory perception, and whether that range is
anteriorly-biased. We also suggest that sensory abilities may play a
more prominent role in determining foraging success than has pre-
viously been acknowledged in the literature. These conclusions lend
support to a developing paradigm shift in movement ecology.
Researchers are increasingly moving away from simple, probabilistic
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movement models and exploring agent-based and inferential methods
that place more emphasis on how organisms interact with their en-
vironments (Benhamou, 2007; Cody, 1971; Nathan et al., 2008; Plank &
James, 2008; Pyke, 2015; Reynolds, 2009; Reynolds, 2015; Reynolds,
2018; Siniff & Jesson, 1969). In these models, the “internal state” of the
forager is constantly updated with information gleaned from biotic and
abiotic features in the environment, and movement patterns — including
those that appear to be Lévy or Lévy-like — are emergent properties of
this information. As this new paradigm develops, simple models like the
one presented here will serve as versatile testing grounds in an iterative,
hypothesis-driven experimental process to help determine the key fea-
tures of organismal movement.
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Appendix A
A.1 Benefit-cost ratio in terms of food found

Benefit-cost ratio (BCR), as defined by eq. 2, can be written as a function of food found (F). Each of our simulations contained T = 1000 time
steps, and during each time step, a forager could move between food squares (i.e. “feeding steps”), between food-free squares (i.e. “foraging steps”),
or between food and food-free squares. The total distance traveled by the forager is the sum of the distance traveled while feeding and the distance
traveled while foraging. If we ignore steps that occur between food and food-free squares, the number of feeding steps will be approximately equal to
F, the number of times a food square was encountered. Except for the rare case in which a forager moves between two food patches in a single step,
the distance traveled per feeding step is approximately 1, and the distance traveled while feeding is approximately equal to F. The distance traveled
while foraging is equal to the average step length drawn from the step length distribution (truncated by the detection of food patches) multiplied by
the number of foraging steps (1000 — F). The average step length is a function only of a, and does not theoretically exist for the smallest values of @
(1.1, 1.3, and 1.5). However, the finite landscape boundary and number of steps drawn from each theoretical distribution result in a defined mean, K
(a). Thus, BCR can be written as

1
14+ (@ - l)K(ot) (AD)

Both K(@) and F decrease with increasing a. Additionally, eq. 2 indicates that BCR increases with increasing F but decreases with increasing K(a).
The effect of a itself on BCR cannot be determined by this method. Because BCR increases with increasing F, the effects of percent cover (PC), patch
size (u), radius of sensory perception (R), and angle of sensory perception (6) on BCR should be the same as on F.

BCR =

Appendix B
B.1 Net rate of energy gain in terms of BCR

In OFT, the net rate of energy gain (NREG) is defined as

energy gained  energy lost

NREG =
time time (s6)

If we assume our foragers travel at a constant speed s, then our simulation requires one unit of time for each food square found (F) plus the
amount of time it takes to travel path length D at speed s. Energy gained in our simulation is proportional to F, and energy lost is proportional to D.
Thus, the net rate of energy gain in our simulation is:

F D
REG= — — = = s(BCR — 1
NREG = 15~ pjs ~ SBR=D (s7)

This function monotonically increases with BCR. Note that if one unit of distance travelled costs r units of food found, then the net rate of energy
gain is:

NREG:E—SIS(@—I)
Dr r

which still increases monotonically with BCR.

(s8)

Appendix C
C.1 Rationale for a linear F(PC)

Consider a forager with no sensory perception (R = 0) that takes large steps with no directional bias (6 = 360°) on a large landscape such that its
behavior is approximately nondestructive. The probability that this forager will find food during its next step is approximately independent of
whether or not it found food during the previous step. The probability that food is found during the next time step is approximately equal to the food
density of the landscape. Thus, the amount of food found by a forager in t foraging steps is the total number of landscape sites visited (T = 1000)
multiplied by the probability that each landscape site has food (PC/100). Thus, in this situation, food found (F) increases linearly with percent cover
(PC), with a slope of "10.

We plotted F as a function of PC for all simulations in which the forager had no sensory perception (R = 0) and observed the predicted linear
behavior (Fig A1). We found that our predicted slope of 10 best matched simulations of foragers with smaller values of a. This makes sense, because
smaller values of a result in higher probabilities of drawing larger step lengths, which more closely matches our assumptions for linearity and makes
it less likely for a forager to revisit a consumed food patch.

C.2 Rationale for a logarithmic F(PC)

For foragers with sensory perception (R > 0), we expected to see diminishing returns for increasing values of PC. These foragers do not need to
explore large areas of the landscape, and instead tend to fully consume a small area, such that adding more food to the landscape does not improve
their foraging efficiency as much as it would a forager lacking sensory perception (R = 0). Thus, we would expect to find a sublinear relationship
between food found (F) and PC.

We plotted F as a function of PC for all simulations in which the forager had sensory perception (R > 0), and observed the predicted logarithmic
behavior (see, for example, Fig A1 B).

We found that the logarithmic form best fit the data from foragers with strong sensory perception (R = 10, 20). This makes sense, because we
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Fig. Al. Linear, logarithmic, and lin-log fits to F as a function of PC. (A) Linear fit for foragers with no sensory perception (R = 0). The dashed line indicates our
theoretical prediction of a line with slope 10. (B) Logarithmic fit for a forager with R = 20, 6 = 360° and a = 1.3. (C) Goodness-of-fit (R?) results for linear,
logarithmic, and piecewise linear-logarithmic models for F(PC).
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would expect a stronger deviation for a linear pattern to be associated with a stronger deviation from the conditions that should yield that pattern

(that is, deviation from R = 0).

C.3 Lin-log curve fitting and model selection

Based on the above analytical analyses and our observations of the data, we decided that a linear-logarithmic piecewise function (or ‘lin-log’)
would be a good alternative to purely linear and purely logarithmic models. We fit linear, logarithmic, and lin-log functions to F(PC) for each
combination of PC, a, R, i, and 6 we considered. Then, we compared the goodness-of-fit between all three models (Fig A1C). We selected the
coefficient of determination, R? as our goodness-of-fit measure. We did not penalize for model flexibility (e.g. by using the Akaike Information
Criterion) because our goal was purely to summarize our data, and therefore there was no reason to prefer a less flexible model.

See

Appendix D. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.ecolmodel.2019.02.015.
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