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Accelerating shifts in global climate have focused the attention of ecologists
and physiologists on extreme environmental events. However, the dynamic
process of physiological acclimatization complicates study of these events’
consequences. Depending on the range of plasticity and the amplitude
and speed of environmental variation, physiology can be either in tune
with the surroundings or dangerously out of synch. We implement a modi-
fied quantitative approach to identifying extreme events in environmental
records, proposing that organisms are stressed by deviations of the
environment from the current level of acclimatization, rather than by the
environment’s absolute state. This approach facilitates an unambiguous
null model for the consequences of environmental variation, identifying a
unique subset of events as ‘extremes’. Specifically, it allows one to examine
how both the temporal extent (the acclimatization window) and type of
an environmental signal affect the magnitude and timing of extreme
environmental events. For example, if physiology responds to the moving
average of past conditions, a longer acclimatization window generally
results in greater imposed stress. If instead physiology responds to historical
maxima, longer acclimatization windows reduce imposed stress, albeit per-
haps at greater constitutive cost. This approach should be further informed
and tested with empirical experiments addressing the history-dependent
nature of acclimatization.

1. Introduction

In the light of ongoing dramatic shifts in global climate, extreme environmental
events have become a focus for ecologists and environmental physiologists [1-9].
However, the study of the biological consequences of these events is hampered
by complexities inherent in the dynamic interaction between organism and
environment. These complexities include physiological acclimatization, the
process by which organisms adjust their physiology to maintain function
under prevailing environmental conditions. This acclimatization takes time
(e.g. [10)—in a temporally variable world, physiology is often chasing the
environment. Depending on the range of an organism’s physiological plasticity
(which can be small or large), the environmental signal(s) to which an organism
responds (which could incorporate many aspects of temporal variation), and
the amplitude and speed of environmental fluctuations (which vary drastically
among habitats), an organism’s physiology can be well adjusted to potential
stressors or dangerously out of synch. Thus, our ability to predict extreme
events and their consequences hinges not only on our ability to predict changes
in the physical environment but also on our understanding of the complex
temporal mechanics of acclimatization [6,8].

At present, this understanding is woefully incomplete. For example,
experimental studies of acclimation (the laboratory analogue of acclimatization)

© 2020 The Author(s) Published by the Royal Society. All rights reserved.


http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2019.2333&domain=pdf&date_stamp=
mailto:wes.dowd@wsu.edu
https://doi.org/10.6084/m9.figshare.c.4784559
https://doi.org/10.6084/m9.figshare.c.4784559
http://orcid.org/
http://orcid.org/0000-0002-8153-1983
http://orcid.org/0000-0003-0277-9022

typically measure an organism’s physiological response to
a step change to a new constant environment, such as
the change in thermal tolerance caused by moving from a
constant low temperature to a constant higher temperature
[11,12]. Although such experiments provide useful demon-
strations of the degree of physiological plasticity, it is
difficult to translate their results to nature, where environ-
ments vary continuously. A next step towards disentangling
the interactions between environment and physiology might
be to obtain paired time series of a pertinent environmental
factor and simultaneous physiological capacity (e.g. a year-
long record of water temperature and the co-occurring
thermal limits of an aquatic organism). From these paired
records, time-series analysis [13] could identify pertinent
aspects of thermal history that affect the acclimatization of
thermal tolerance. For instance, an organism’s current level
of acclimatization might be correlated with the average
daily maximum temperature encountered in the preceding
3 days. One could then predict how a shift in environmental
variability would affect the likelihood of the organism exceed-
ing its thermal limits. Furthermore, this knowledge would
allow one to more efficiently address the physiological
mechanisms underlying acclimatization (e.g. production of
heat-shock proteins, shifts in membrane fluidity) [14] by
focusing the design of future experiments. However, to our
knowledge, there are few, if any, available time series pairing
high-frequency measurements of physiological limits with
environmental records. Existing physiological time series are
typically restricted to either short durations or infrequent
(approximately monthly) sampling [15,16]. The reasons for
this are largely logistical. For instance, measuring a species’s
thermal limits requires killing many organisms; a lengthy
time series of such measurements in any single population
would be impractical, if not unethical.

The current paucity of physiological time series does not
preclude theoretical exploration of how acclimatization could
affect the magnitude and likelihood of stressful events. To
that end, in this exploration we:

1. Identify several potential environmental signals to which
physiology might acclimatize.

2. Use environmental time-series from representative habitats
to analyse how the temporal extent of each environmental
signal affects the magnitude and frequency of stressful
events.

3. Discuss physiological studies that are needed to further
clarify the relationship between environmental variation
and physiological acclimatization.

We couch our discussion in the context of elevated body
temperature and its relationship with organismal physiology,
a choice driven by three considerations. (1) Concerns over
global change give issues of temperature variation unusual
and immediate importance. (2) Unlike other environmental
factors (e.g. salinity, pH, oxygen concentration), the biological
effects of temperature change are nearly universal [17]; thus,
any conclusions likely apply across taxa. (3) Long-term
temperature records are readily available.

We make a simplifying assumption regarding the
physiological consequences of environmental variation: that
the stress placed on an organism scales, perhaps nonlinearly,
with the difference between the current state of acclimatiz-
ation (that is, what the organism’s physiology ‘expects’)

and what the environment imposes. This deviation-based
index of environmental stress is both easily quantified and
intuitive. For example, if, based on recent experience or
endogenous rhythms, an organism has acclimatized to a
winter temperature of 10°C, sudden imposition of 25°C
(a 15°C deviation) could be stressful. For the same organism
acclimatized in summer to 20°C, imposition of 25°C (a mere
5°C deviation) would probably be benign.

We acknowledge that this simple, deviation-based
characterization of stress does not consider all potential
aspects of the complex physiology involved in organism/
environment interactions. For example, instead of (or in
addition to) the magnitude of deviation, the acute rate of
environmental change during a stressful event might be
important [18,19]. It is also possible that the same magnitude
of deviation might have different consequences in different
seasons. These aspects could be integrated in the future, but
here we concentrate solely on the magnitude of deviation.

This idea of extremes as local ‘anomalies’ or ‘pulses’
against a background that is itself dynamic has recently
received attention [3,20,21]. However, this approach is far
from universal, and studies often do not account for
acclimatization. For example, even recent studies of extreme
temperatures address only the highest values within one
season (e.g. [9]). We suggest that the deviation-based
method represents an improved, unambiguous null model
for the degree of physiological stress experienced by
organisms inhabiting realistically dynamic environments.

(a) Environmental signals for acclimatization

Our first task is to identify aspects of the environment
(signals) to which physiology might respond to maintain
organismal performance. Here, we evaluate four of many
possible indices that plausibly could serve as environmental
signals in the context of thermal physiology:

1. The average temperature, the moving, weighted average
of all temperatures encountered over some recent time
interval: the acclimatization window.

2. The average daily maximum (or minimum) temperature,
the moving, weighted average of daily maxima (or
minima) over the window.

3. The absolute maximum (or minimum) temperature, the single
highest (or lowest) value encountered over the window.

4. The historical periodic temperature, the temperature ‘expected’
by an organism’s physiology for predictable, periodic
fluctuations based on information from previous experience
or inherited from prior generations. For example, if
endogenous rhythms tell an organism that air temperature
fluctuates sinusoidally with a 365-day period, it can
prepare its physiology accordingly. (Note that this mechan-
ism provides a means to remove the lag between
environmental change and acclimatization intrinsic to the
first three indices.)

It is possible that different traits respond to different
environmental signals [22], or that other indices (and combi-
nations of indices) could inform physiology, but these four
provide a broad set of heuristic examples.

Here, we model the adjustment of physiology to prevailing
environmental conditions via acclimatization as a continuous
process; we assume that physiology is constantly updated
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Figure 1. A modified approach to delineating stressful events in environ-
mental records. Here, a hypothetical organism experiences a series of body
temperatures (grey line; 1 week is depicted). Expected values at each time
were generated using a retrospective LOWESS smoothing function on
hourly data (average-temperature index in the text) with an acclimatization
window of 7 days (dashed black line). Extremes can be defined as the largest
deviations between the ‘observed” and ‘expected’ conditions. Using this
approach, the absolute warmest temperatures are not always extreme. For
example, compare the length of the arrow to the upper left (small deviation
at high temperature) to that of the arrow to the right (large deviation at low
temperature). (Online version in colour.)

based on the most recent index value. For example, if the
signal is the average temperature in a 7-day acclimatization
window, we assume that, at any given time, the organism
is as adjusted as its physiology allows to the previous
7 days. Note that this assumption does not imply that
physiology is necessarily adjusted to the current temperature.
For instance, during a period of continuous temperature
increase, physiology will be acclimatized to a temperature
cooler than that the organism currently experiences.

To calculate the average-temperature index, we use a
moving, locally weighted smoothing algorithm (a modified
LOWESS regression) [23] (figure 1). Given a time-series of
environmental temperature data (e.g. hourly air tempera-
ture), a weighted linear regression is fitted to the data
within an acclimatization window of 1 temperatures preced-
ing and including the current time point. (By contrast, the
standard LOWESS approach uses a window extending in
both directions from the current point.) The weight given to
each temperature in the window declines for temperatures
farther in the past, thus implementing an implicit assumption
that physiology is most influenced by the most recent con-
ditions (we return to this assumption in the Discussion).
The value of the weighted regression at the current time is
then taken as the expected (acclimatized) temperature. This
retrospective calculation can be repeated for all points in
the time-series except for the initial 7 — 1 points.

Indices 2 and 3 are then estimated for the same
acclimatization window. To calculate the average daily maxi-
mum temperature index, we reapply the locally weighted
algorithm using only the daily maxima in the acclimatization
window preceding, but not including, the present day
(today’s maximum is not yet known). For the absolute-
maximum temperature index, we simply record the highest
temperature in the acclimatization window preceding, but
not including, the present.

To estimate the historical periodic temperature index, we
average temperatures at each given time in a year across all
years of the environmental time series. For example, for a
20-year time series, we average all 20 measurements of the
temperature at 8.40 on 23 March to generate the index for
that date and time in any year. This procedure captures
both circadian and annual temperature fluctuations, but it
smooths over tidal fluctuations, whose lunar period aligns
with neither the solar calendar nor the 24 h clock.

The acclimatization window—which incorporates both
the interval over which the environment is monitored
and the time allowed for physiological adjustment—could
vary from extremely short cycles (e.g. tidal cycles [24,25]) to
diel oscillations [26] to annual cycles or perhaps even
longer periods [27]. Our analyses address this potential diver-
sity by repeating the calculations above using acclimatization
windows from 4h to 1 year. To calculate temperature
deviations for a given signal index and acclimatization
window, we subtract the time series of expected /acclimatized
temperatures from the corresponding time series of measured
values. These results allow us to dissect the effect of
acclimatization-window duration on the resulting distri-
bution of temperature deviations, and thereby on the
proposed degree of physiological stress. The acclimatization
window acts as a low-pass filter; the longer the window,
the less sensitive a signal is to high-frequency thermal vari-
ation and the rate of temperature change. As a result, the
magnitude of deviations depends on both acclimatization-
window length (the strength of the low-pass filter) and
frequency-dependent variation in the thermal environment.

(b) Definitions: ‘extreme’ versus ‘threshold-exceeding’
Given a time series of thermal deviations, our next task is
to identify the subset of deviations that are potentially of
physiological, ecological and evolutionary interest. However,
we must first deal with a semantic issue. Typically, these
events are referred to as ‘extreme’, and we have used this
term informally above. However, dictionary definitions of
‘extreme’ encapsulate two distinct ideas:

1. An event is extreme if it is both rare and far from the average.
This statistical definition refers to the low-probability
events in a distribution’s tails. For example, one might
reasonably propose that, to be extreme, a high-temperature
event must fall within the highest x% of all measurements,
where x is small (e.g. [9]).

2. Alternatively, an event is extreme if it exceeds prescribed bounds.
In a biological context, this refers to events that exceed
some functional threshold (e.g. the critical thermal maxi-
mum) and, therefore, have deleterious consequences. For
example, Gutschick & BassiriRad [4] defined extremes as
events that exceed an organism’s acclimatory capacity.

The same concepts apply to values in the lower tail of a
distribution or values that fall below some lower critical
threshold (e.g. temperatures below the freezing point).
Biologists have struggled to reconcile these two components—
statistical rarity and biological consequences—into utilitarian
definitions of an extreme event [1,4,28-30].

To avoid confusion, henceforth we refer to events that
satisfy definition 1 as extreme, and those that exceed a
functional threshold—and, therefore, satisfy definition 2—as
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threshold-exceeding. The distinction is useful because a given
event need not satisfy both definitions: events that are
rare may not have functional consequences, while events
that exceed a given threshold might not be rare. For
example, limited plasticity of upper thermal-tolerance
thresholds, observed in many ectotherms [12], implies
absolute constraints on physiological limits. Consequently,
the warmest temperatures in a particularly warm spell of a
warm year could exceed thermal tolerance thresholds with-
out falling in the uppermost percentiles of deviations from
expected. The distinct terms threshold-exceeding and extreme
allow clear discussion of such circumstances.

In the analyses below, we focus on the delineation of
extreme and threshold-exceeding events from environmental
datasets. Using definition 1, we (arbitrarily) define extreme
events as those lying in the top 5% of a distribution, whether
that distribution is the raw distribution of temperatures
(raw extremes) or the distribution of deviations (deviation
extremes); the electronic supplementary material includes
results for other percentiles. In some scenarios, physiologists
have identified seasonal or otherwise appropriate absolute-
temperature thresholds (e.g. [10,31]), but we are unaware of
comparable deviation-based biological threshold estimates.
To identify threshold-exceeding deviations from acclimatized
temperature using definition 2, we explore the consequences
of setting a range of threshold values. We systematically
examine patterns of extreme and threshold-exceeding
events when the percentile/threshold, the environmental
signal and the length of the acclimatization window change.

(c) Temperature datasets

To illustrate the resulting patterns, we employ three represen-
tative time series, with a focus on environments for which
it is reasonable to assume that operative body temperatures
of ectothermic organisms follow recorded environmental pat-
terns (for details of each record, see electronic supplementary
material, table S1):

1. A 29-year record of air temperature at an arctic field site,
recorded hourly [32].

2. An 18-year record of mid-latitude desert soil temperature,
recorded hourly at a depth of 20 cm [33].

3. A 7-year record of nearshore tropical-ocean temperature,
recorded every half-hour [34].

With few exceptions (e.g. some corals [35]), aquatic
ectotherms’ body temperatures reliably mirror the temperature
of the surrounding liquid medium [36]. Similarly, body
temperatures of small, soil-dwelling organisms probably equal
their habitat is temperature. By contrast, above-ground terres-
trial ectotherms’” body temperatures can be heavily influenced
by other biophysical factors (e.g. solar irradiance, evaporation),
physiological processes (e.g. heat generation), body size [37],
and/or behavioural thermoregulation [12,38], leading to large
differences between body and air temperatures [36]. Therefore,
our record of arctic air temperature approximates that of a
hypothetical small ectotherm in a shaded habitat.

The distributions of raw habitat temperatures vary in
shape across these datasets (figure 2, insets); none is normally
distributed as is often modelled [39]. The tropical sea distri-
bution is left-skewed, the arctic air distribution is relatively
flat topped, and the desert soil distribution is bimodal.

2. Results

(a) Expectations matter: The magnitude of extremes
and frequency of threshold-exceeding events
depend on the environmental signal and length
of the acclimatization window

The average magnitude of extreme deviations is sensitive to
acclimatization-window length, but the pattern of sensitivity
differs dramatically depending on the acclimatization signal.
For the average temperature and average daily maximum
temperature signals, longer acclimatization windows generate
smoother, less variable time-series of physiological expec-
tations. Consequently, the magnitude of deviations tends to
increase as the window lengthens, particularly in the desert-
soil and arctic-air datasets (figure 3a for top 5% of deviations;
electronic supplementary material, figure S1A,BEG for a
range of percentiles). In other words, if organisms in these
habitats adjust in response to a moving average, longer
acclimatization windows result in greater imposed stress.
Physiological lags, most likely acting in concert with excessive
energetic costs, prohibit near-instantaneous acclimatization
[40]. Nonetheless, if organisms in these habitats respond to
some moving average of environmental conditions, they
should minimize the length of the acclimatization window;
otherwise, they risk being physiologically under-prepared
for the next extreme elevated temperature. This pattern is,
however, not universal. In the tropical seawater dataset, the
mean magnitude of extreme deviations is maximal at an inter-
mediate acclimatization window and is much less sensitive
overall to changes in the acclimatization window (figure 3a;
electronic supplementary material, figure S1 K,L).

In contrast to moving-average signals, if the organism
adjusts its physiology in response to the absolute-maximum
temperature signal, longer acclimatization windows result
in extremes with decreasing mean deviations for all three
datasets (figure 3b for top 5% of deviations; electronic
supplementary material, figure SID,IN for a range of percen-
tiles). The longer the acclimatization window, the greater the
likelihood that one of the few highest values in the overall
distribution will be encountered. Consequently, for long
acclimatization windows nearly all experienced temperatures
are lower than the temperature to which the organism
is acclimatized, and the average of extreme deviations
becomes increasingly negative (figure 3b). Thus, organisms
that acclimatize to long-term absolute-maximum tempera-
tures are physiologically adjusted to higher temperatures
than they are likely to soon encounter. This conservative strat-
egy might backfire if costs of thermal defences are high [41],
and over-preparation could influence life-history trade-offs
or related biological phenomena [42]. However, it is not
uncommon to find organisms with median thermal toler-
ances above mean annual maximum temperatures (e.g.
[41,43]), perhaps suggesting that costs of thermal defences
are not always substantial.

Endogenous programming of responses to periodic
temperature changes does not necessarily decrease the
magnitude of extreme deviations. For short acclimatization
windows (less than approx. 25-30 days), in the desert-soil
and artic-air datasets mean extreme deviations from the
historical periodic signal (dashed lines in figure 3a) are
larger than those from the average-temperature signal.
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Figure 2. The distribution of extreme deviations from expected/acclimatized temperature varies across habitat types, and deviations identified as extreme represent a
surprisingly broad range of absolute temperatures. (a) Temperature extremes for the arctic air dataset, recorded at 1 h intervals (thin grey line). Expected values for
each time were generated using the average-temperature index (dashed black line) with an acclimatization window of 7 d. Black circles, deviation extremes (largest
5% of deviations from expected); open circles, raw extremes (largest 5% of raw values); red circles (in online version), extreme according to both criteria. The small,
black scale bar in the upper left indicates 1 day. The inset shows 1 year of data from this location. (b) Histograms illustrating the overall shape of the air temperature
distribution (light grey background and inset) as well as the distributions of different varieties of extremes. White bars indicate raw extremes. Superimposed black
bars indicate deviation extremes. Panels (¢d) same as (a,b) but for mid-latitude desert soil at 1 h intervals. Panels (e,f) same as (a,b) but for 0.5 h intervals in the

tropical seawater dataset. (Online version in colour.)

However, this pattern reverses at longer acclimatization
windows. historical knowledge would
reduce the intensity of extremes encountered in these two

In other words,

habitats only if the only other option were to respond to a
relatively long-term moving average. Over time scales of a
few weeks, historical knowledge of periodicity is—somewhat
counterintuitively—not beneficial. The picture is again different
for tropical ocean temperatures, for which deviations from
moving average signals are always less than those from the
historical periodic signal. This is likely due to variation in
this dataset being driven more by episodic upwelling of
cold water and by tidal rhythms than by diel or annual oscil-
lations (electronic supplementary material, figure S2). In sum,
the utility of knowledge of environmental periodicity
depends on the predictability with which the environment
fluctuates.

In order to integrate temporal acclimatization with
definition 2 for threshold-exceeding events, we selected
a range of deviation magnitudes that might serve as a

biological threshold in each dataset. For a given threshold
deviation and window length, acclimatizing to the average
daily maximum temperature always results in fewer
threshold-exceeding events than acclimatizing to the average
temperature index (figure 4a; electronic supplementary
material, figure S3A,BEEIL]). While the frequency of
threshold-exceeding events rises monotonically in the arctic
air and desert soil datasets for these two indices, as before
the tropical seawater dataset is unique. It exhibits local
maxima in the frequency of threshold-exceeding events at
an intermediate window length (electronic supplementary
material, figure S31,]). Using the absolute-maximum tempera-
ture index, the longer the acclimatization window the fewer
events cross a given threshold deviation (figure 4b; electronic
supplementary material, figures S3C,GK and S4C,GK).
Knowledge of historical periodic temperature reduces the
number of threshold-exceeding events per year relative to
the moving average indices for the arctic air and desert soil
datasets, but only for long acclimatization windows
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(figure 4a; electronic supplementary material, figure S3); such magnitude of deviation extremes, the historical periodic
historical knowledge is never advantageous relative to any temperature acclimatization strategy is advantageous in
length window for tropical-sea temperatures (electronic some habitats only if organisms are otherwise restricted to

supplementary material, figure S3L). As above for the lengthy acclimatization windows.
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(b) The temperatures of threshold-exceeding events
and extremes need not fall in the tails of

a raw distribution

Many temperatures that would be considered mundane
in the distribution of raw values nonetheless represent
substantial deviations from what an organism expects
based on its thermal history (figure 2b,df). For example,
only temperatures above 14.3°C fall in the top 5% of the
raw temperature distribution for the arctic-air dataset,
whereas a temperature as low as —33.3°C (only the 6th
percentile of the raw data) qualifies as a warm deviation
extreme with a 7d acclimatization window. This context-
dependency of an extreme represents perhaps the greatest
advantage of defining such events based on deviations
from the expected, while also presenting a formidable chal-
lenge in identifying the appropriate length of acclimatization
window for any given organism (see below).

There is negligible overlap between measurements
identified as deviation extremes and those that would be
considered raw extremes (see red points in online version of
figure 2). This degree of overlap increases as the acclimatiz-
ation window increases in length, but it rarely exceeds 50%
even with windows of up to 1 year (electronic supplementary
material, figure S5). At the limit, with exceedingly long
windows, deviation extremes will converge on raw extremes.
However, such long acclimatization windows are likely to be
rare in nature; many organisms live less than a year, and a
litany of studies across many taxa have documented short-
term plasticity of thermal physiology (reviewed elsewhere,
e.g. [12,39]).

3. Discussion
(a) Challenges for the context-dependent approach

One advantage of this context-dependent, quantitative
approach is that it makes concrete, testable predictions.
Some of these are counterintuitive. For example, it will now
be incumbent upon physiologists who study overwintering
to ascertain whether sudden deviation to a warmer tempera-
ture, still well below the freezing point, can induce the same
sorts of cellular perturbations (e.g. of membrane or enzyme
structure) that accompany ‘canonical’ heat stress [14].

There are at least three challenges that must be overcome
to take full advantage of this context-dependent approach
to extreme and threshold-exceeding events. First, further
empirical work is needed to delineate the signals organisms
use to set environmental expectations. Progress in this respect
has been hampered by physiologists” experimental designs,
which only rarely have included realistic temporal patterns
of environmental variation (e.g. [44,45]). The optimal signal
likely varies considerably among habitats (in our analyses
tropical seawater consistently exhibits unique patterns) and
among organisms, depending at least in part on the relative
contributions of physiology (acclimatization capacity) and
behavior (ability to modulate environmental exposure) [12].
Although beyond the scope of this contribution, a synthetic
analysis of the time scales of acclimatization in organisms
from a variety of habitats exhibiting different spectral
qualities of temperature variation would be very informative.
In such an analysis, the suite of possible signals identified
here could function as null models, yielding testable

predictions regarding the magnitude and frequency of [ 7 |

stressful events under alternative acclimatization strategies.

A second potential challenge involves the length and
sampling frequency of the environmental time series itself.
If stressful events occur randomly in time, as they often do
[7], the longer the time over which the distribution of
events is measured, the more extreme are the raw values
encountered (a fundamental conclusion of extreme value
theory [46]). Thus, even in the absence of climate warming,
the highest temperatures encountered in a year typically are
lower than the highest temperatures encountered in a
decade. This issue poses a potential problem to the statistical
delineation of extremes—the distribution of raw extreme
values varies with the length of the environmental time
series. However, preliminary assessment of artificially
shortened versions of the datasets analysed here indicates
that the mean and standard deviation of the magnitude of
deviation extremes are relatively insensitive to the length of
the time series (electronic supplementary material, figure S6).
This observation warrants further attention to examine its gen-
erality. In addition, sampling frequency must be sufficiently
high [47] to capture the rate of acute change during individual
extreme events requires at least hourly sampling.

A third challenge involves the under-explored role of
carryover effects between repeated events that are separated
by intervals of varying lengths. While much discussion in
the biological literature on climate change focuses on changes
in the frequency and intensity of extreme events in a warmer
and more variable world (e.g. [2]), these events are often trea-
ted as discrete, isolated incidents. However, as noted by
Gutschik & BassiriRad [4], when environmental conditions
exceed biological thresholds they impart a ‘legacy’ to an
organism, modifying (at least temporarily) the manner in
which it interacts with its environment. The duration of this
legacy varies, and the underlying mechanisms might vary
with duration [48]. At one end of the spectrum, hardening
has effects that appear to dissipate after one or a few days
(e.g. [49,50]). Developmental plasticity, in which early experi-
ence irreversibly alters adult traits [51,52], often takes
considerably longer. Furthermore, while we may be tempted
to conclude that what matters most for an organism is its
experience during its lifetime, evolutionary processes, transge-
nerational effects of environmental experience, and possibly
other mechanisms link organisms and environments across
considerably longer time spans [14,53,54]. The simple
approach we have taken here does not incorporate these
carryover effects. For example, we implicitly—but unrealisti-
cally—assume that the physiological effect of a given
magnitude of thermal deviation is the same before and after
another threshold-exceeding or extreme event. Furthermore,
for some organisms, the rate of acclimatization as temperatures
rise is different from that as temperatures fall [11,55]. These
complexities demand greater empirical attention.

Given the likelihood of carryover effects [8], studies of
threshold-exceeding and extreme environmental conditions
must consider their temporal relationship to each other.
In this regard, it is imperative not only to quantify (or fore-
cast) the magnitude of extreme or threshold-exceeding
events, but also to quantify distributions of the intensity of
extremes (duration x magnitude) and inter-event intervals.
These metrics are perhaps the most relevant to forecasting
the biological consequences of climate change [2,56]. For
example, warm extreme and threshold-exceeding events

~
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tend to occur in clusters (heat waves). Heat waves already
show signs of increasing frequency, which may have
profound biological effects [21,57-59].

Along with a focus on the temporal distribution of extreme
events must come experimental designs that mimic patterns
that currently—or soon will—occur in nature and repeated
measurements of the state of biological systems experiencing
those patterns [6,60]. We believe that physiologists must redou-
ble their efforts to understand the contingent nature of
thresholds [61], including their relationship with developmen-
tal or life-history transitions. In each of these experimental
scenarios, physiologists will need to quantify shifts in critical
thresholds, metabolic or developmental rates, and other
indicators of functional impairment. A greater emphasis on
sublethal thresholds should also provide valuable insight
(e.g. [62]). Finally, nonlinearities in physiological (or ecological)
rate functions could have profound impacts on the likelihood
of exceeding functional thresholds [63], particularly in the
likely event that those thresholds vary through time and/or
among individuals. Much difficult work remains to be done
in reconciling the concepts of extreme and threshold-exceeding
in the context of thermal biology in nature.

4. Conclusion

When discussing the biological consequences of environ-
mental fluctuations, and particularly when expounding on

likely impacts of global change, biologists often assume that
the intensity and frequency of extreme events will increase
in the future. A modified approach to delineating extreme
and/or threshold-exceeding events from environmental
records reveals that incorporating the dynamic process of
acclimatization can fundamentally change the subset
of environmental conditions that should be the focus of
environmental physiologists and ecologists. This approach
recognizes and attempts to incorporate the potentially
complex, context-dependent interactions between organisms
and their variable environments. It also offers unambiguous,
testable predictions of the magnitude and frequency of stress-
ful events from long-term environmental records. We hope
and expect that, ultimately, a more comprehensive, mechanis-
tic synthesis will emerge from empirical study of biological
systems facing these extraordinary circumstances.
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