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Effect of inhomogeneous surface disorder on the superheating field of superconducting RF cavities
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Recent advances in the surface treatments of niobium superconducting radio-frequency (SRF) cavities have
led to substantially increased Q factors and a maximum surface field. This poses theoretical challenges to
identify the mechanisms responsible for such performance enhancements. We report theoretical results for
the effects of inhomogeneous surface disorder on the superheating field—the surface magnetic field above
which the Meissner state is globally unstable. We find that inhomogeneous disorder, such as that introduced
by the infusion of nitrogen into the surface layers of niobium SRF cavities, can increase the superheating
field above the maximum for superconductors in the clean limit or with homogeneously distributed disorder.
Homogeneous disorder increases the penetration of the screening current, but also suppresses the maximum
supercurrent. Inhomogeneous disorder in the form of an impurity diffusion layer biases this trade-off by
increasing the penetration of the screening currents into cleaner regions with larger critical currents, thus limiting
the suppression of the screening current to a thin dirty region close to the surface. Our results suggest that the
impurity diffusion layers play a role in enhancing the maximum accelerating gradient of nitrogen-treated niobium
SRF cavities.

DOI: 10.1103/PhysRevResearch.1.012015

Introduction. Niobium superconducting radio-frequency
(SRF) cavities are the most energy-efficient engineered oscil-
lators [1], with quality factors exceeding 2×1011. SRF cavities
operate at microwave frequencies and are the technology
of choice for converting electromagnetic energy into high-
energy particle beams, as well as intense photon sources,
with applications ranging from fundamental particle physics
experiments, atomic and molecular structure studies of con-
densed matter, to structural studies of biological materials
for applications in biology and medicine [2]. The excep-
tional coherence properties of SRF cavities make them strong
candidates for quantum memories [3–5]. The physical limits
to the performance of these cavity oscillators are therefore
of both fundamental and practical importance. To address
the limits of the performance of SRF cavity oscillators, we
must understand how superconductors fail in the presence
of intense electromagnetic (EM) fields. In this Rapid Com-
munication we address the effects of impurities infused into
the current-carrying superconducting layer of an SRF cavity.
Our results for the maximum sustainable surface field are
relevant to recent, and possible future, experimental advances
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in the maximum field gradient of SRF cavities [6,7], which
determines the transfer of electromagnetic field energy to
charged particle beams.

Type-II superconductors admit two thermodynamic phases
in the presence of an external magnetic field H . The Meissner
state is the equilibrium state for fields below a lower critical
field H < Hc1 , while the Abrikosov state, characterized by the
penetration of quantized flux into the bulk of the supercon-
ductor, is thermodynamically stable for fields Hc1 < H < Hc2 ,
where Hc2 is the critical field above which the superconductor
becomes normal for any temperature T � Tc. Superconduc-
tors in the Meissner state exhibit perfect diamagnetism by
generating an internal field, that exactly screens the external
field. The source of the screening field is a dissipationless
supercurrent, “screening current,” confined to the vacuum-
superconductor interface. The screening current penetrates
into the superconductor over a mesoscopic length scale, the
London penetration depth λL, which is sensitive to disorder.
The magnitude of the screening current increases linearly with
the applied field until the cost in kinetic energy of maintaining
perfect diamagnetism is outweighed by the reduction in Gibbs
energy via flux penetration into the bulk. For type-II supercon-
ductors flux is quantized in units of �0 = hc/2e and confined
in tubes of radius of order λL, and the lower critical field for
flux penetration is Hc1 = �0/2πλ2

L, which for SRF-grade Nb
is typically of order Hc1 ≈ 170 mT, or an accelerating field of
Eac ≈ 25 MV/m.

Above Hc1 the Abrikosov state, with an array of quantized
flux lines, is the thermodynamically stable phase. The motion
of quantized flux generates Joule losses and is detrimental
to the performance of SRF cavities for particle acceleration.
Understanding, and thus engineering, materials properties and
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physical processes governing the breakdown of the Meissner
state is crucial for developing strategies to improve the perfor-
mance of SRF cavities.

One key feature is that the Meissner state can be main-
tained for fields higher than Hc1 as a metastable phase, made
possible by a surface energy barrier to flux penetration [8].
At sufficiently high field, the so-called superheating field
Hsh > Hc1 , the surface barrier vanishes, and flux lines prolif-
erate, leading to dissipation under RF excitation.

The superheating field depends on the geometry of the
vacuum-superconductor interface as well as the spatial distri-
bution of disorder within the region of the screening currents.
For a planar half-space geometry the effects of homogeneous
disorder and engineered multilayer superconductor-insulator
structures have been studied [9–15]. The main results are that
homogeneous disorder increases the penetration depth, but
reduces the critical current, leading to a modest enhancement
of the superheating field at low temperatures [9]. For a bilayer
material consisting of a dirty layer on top of a clean supercon-
ductor, it was shown in Ref. [15] that the superheating field
can exceed that of either material. The results are based on a
phenomenological theory whose range of validity is far from
the operating conditions of SRF cavities. The superheating
field may also be increased by introducing insulating layers
to retard flux line penetration [10,11,13,15]. Here, we report
the results of a theoretical investigation of the effects of an im-
purity diffusion layer, i.e., a smoothly varying, coarse-grained
impurity density within the region of the screening currents,
on SRF cavities such as nitrogen infused into niobium [7].

In general, it is technically challenging to obtain quan-
titative predictions for the superheating field as one must
consider the stability of the Meissner state to inhomogeneous
fluctuations of the order parameter and charge currents, as
well as nucleation of vortices around impurities, inclusions,
or sharp structures at the vacuum-superconductor interface.
Here, we consider the upper limit for the superheating field,
which is the lowest surface field at which the supercurrent
density reaches the local critical current density at some point
within the screening region. This condition provides an upper
bound to the superheating field since any increase in the
local condensate momentum—equivalently the local vector
potential—cannot increase the supercurrent density. At the
superheating field the Meissner state is unstable to arbitrarily
small perturbations of the order parameter and EM field. For
extreme type-II superconductors, this approach is equivalent
to the stability condition with respect to inhomogeneous
fluctuations of the order parameter and the associated EM
response [16].

Type-II superconductors are characterized by the
Ginzburg-Landau parameter κ = λL/ξ � 1/

√
2, where λL

denotes the London penetration depth and ξ is the
superconducting coherence length. Pure Nb is weakly
type II with κ ≈ 1. However, disorder leads to increased field
penetration with κ � 1 in the “dirty limit,” h̄/τ � �, where
τ is the mean quasiparticle-impurity collision time. In this
strong type-II limit quasiparticles and Cooper pairs respond
locally to a nearly uniform EM field.

Here, we consider superconductors in the strong type-II
limit occupying the half space x > 0 in the presence of an
external magnetic field, Ha = Haẑ, applied parallel to the
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FIG. 1. The supercurrent density js as a function of condensate
momentum ps and impurity scattering rate γ at T = 0. For fixed γ ,
the critical current jc and condensate momentum pc correspond to
the values at which js is maximum (red solid circles). The critical
current jc decreases with increasing γ (blue line), whereas the critical
condensate momentum pc increases with increasing γ (red line). For
ps > pc, the Meissner current is unstable.

vacuum-superconductor interface. We include the effects of
an impurity diffusion layer on the current response into the
quasiparticle-impurity scattering rate and pairing self-energy.
Based on Eilenberger’s quasiclassical transport theory [17],
we compute the superfluid momentum ps = ps(x)ŷ, screening
supercurrent js = js(x)ŷ, and local magnetic induction B =
B(x)ẑ self-consistently. The superheating field Hsh is the value
of the surface field B(0) at which the supercurrent density
reaches the local critical value anywhere in the screening
region of the superconductor, i.e., minx[ jc(x) − | js(x)|] = 0.
Note that the critical current density jc(x) is a function of
position due to the inhomogeneous impurity diffusion layer
(Fig. 1).

Methods. For a superconductor in the strong type-II limit,
with an impurity diffusion layer that also varies on a length
scale much longer than ξ , we develop the Eilenberger trans-
port equation as a perturbation expansion in the small ratios,
ε ∈ {ξ/λL, ξ/ζ }, where ζ is the characteristic penetration
length of the impurity diffusion layer [18]. To leading order
in ε the current response is determined by the retarded quasi-
classical propagator obtained from the homogeneous solution
of the quasiclassical transport equation, but evaluated with
the Doppler-shifted excitation spectrum determined by the
local condensate momentum ps(x) and the local impurity
self-energies [18],

Ĝ(p̂, ε, x) = −π
[ε̃(ε, x) − v f · ps(x)]̂τ3 − �̃(ε, x)(iσyτ̂1)√

|�̃(ε, x)|2 − [ε̃(ε, x) − v f · ps(x)]2

≡ −π [G(p̂, ε, x )̂τ3 − F(p̂, ε, x)(iσyτ̂1)], (1)

where τ̂i and σi denote the Pauli matrices in particle-hole
and spin space, respectively, p̂ is the direction defined by a
point on the Fermi surface, p = p f p̂, and v f = v f p̂ is the
corresponding Fermi velocity. In the absence of vortices the
superfluid momentum can be related to the vector potential
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via ps = (−e/c)A, where we have fixed the gauge by ab-
sorbing the gradient of the phase of the condensate into A.
The diagonal and off-diagonal propagators G and F encode
the information about the local equilibrium quasiparticle and
Cooper pair spectral functions.

The impurity renormalized quasiparticle excitation energy
and off-diagonal pairing energy can then be expressed as

ε̃(ε, x) = ε + γ (x)〈G(p̂, ε, x)〉p̂,

�̃(ε, x) = �(x) + γ (x)〈F(p̂, ε, x)〉p̂, (2)

where 〈· · · 〉p̂ denotes an angular average over the Fermi
surface and γ (x) is the local impurity scattering rate. The
order parameter �(x) satisfies the mean-field BCS gap equa-
tion �(x) = g

2 − ∫
dε tanh ε

2T Im〈F(p̂, ε, x)〉p̂, where g is the
pairing interaction, and the integration extends over the low-
energy bandwidth set by the Debye energy.

The solution for the field penetration into the inhomoge-
neous Meissner region of the superconductor is obtained from
the local current response, which is in general a nonlinear
function of the condensate momentum ps(x) combined with
Ampère’s equation. The latter equation can be expressed as

∂2
x ps(x) − 4πe

c2
js[ps(x), γ (x)] = 0, (3)

where the supercurrent is obtained from the local solution for
the quasiclassical propagator (see Fig. 1),

js(x) = −eNf

∫
dε tanh

ε

2T
〈v f A(p̂, ε, x)〉p̂, (4)

where Nf = p2
f /2π2h̄3v f is the normal-state density of states,

per spin, at the Fermi level. The Meissner current sums the
charge current contributions from the states comprising both
the negative energy condensate, as well as thermally excited
Bogoliubov quasiparticles, governed by the angle-resolved
spectral function A(p̂, ε; x) ≡ −1

π
Im G(p̂, ε; x) and the ther-

mal distribution function �(ε) = tanh(ε/2T ).
To determine the magnetic field distribution in the super-

conductor, we find the self-consistent condensate momen-
tum distribution ps(x) that determines the supercurrent js(x)
[Eq. (4)] and is also the solution of Ampère’s law [Eq. (3)].
Ampère’s law is also supplemented by boundary conditions at
the surface and the asymptotic condition far from the vacuum-
superconductor interface,

∇×ps(x)|x=0 = (−e/c)Ha, and lim
x→∞ ps(x) = 0. (5)

The asymptotic condition reflects the fact that the Meiss-
ner state exhibits perfect diamagnetism. Equations (1)–(5)
constitute a closed set of equations which are solved self-
consistently. The local magnetic induction can then be com-
puted directly from B(x) = (−c/e)∂x ps(x)ẑ.

In order to determine the superheating field we first solve
Eqs. (1)–(5) self-consistently for fixed temperature T , external
field Ha, and impurity distribution γ (x), which yields the
self-consistently determined spatial profiles for the conden-
sate momentum ps(x) and Meissner screening current js(x).
The spatial profile of the magnetic field is obtained from
the condensate momentum B(x) = (−c/e)∂x ps(x). The super-
heating field is the surface field, B(0) = Hsh, at which the
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FIG. 2. The magnetic field and current density profiles B(x)
and js(x) at the superheating field for temperature T = 0, various
impurity diffusion lengths ζ , and surface scattering rate γ0 shown
in the legend. (a) B(x) in units of the zero-temperature, clean-limit
critical field, H0 = √

4πNf �
2
00 at γ0/�00 = 2, where �00 = 1.78Tc

is the zero-temperature BCS gap in the clean limit. The superheating
field Hsh = B(0) increases with decreasing diffusion length ζ , and
exceeds the superheating field for the case of homogeneous disorder
with scattering rate γ0 (dashed line). (b) js(x) in units of the zero-
temperature, clean-limit critical current j0 = en�00/pf for ζ and γ0

shown in (a). The current density builds up away from the surface as
ζ decreases, leading to larger total screening currents (the area under
the curves) and thus higher superheating fields. (c) and (d) Same as
(a) and (b), but for a fixed impurity diffusion length of ζ/λL0 = 1
as a function of surface scattering rate γ0, shown in the legend. The
superheating field Hsh = B(0) exceeds the theoretical maximum for
the case of homogeneous disorder [9] (dashed line), over the whole
range of γ0.

supercurrent and the superfluid momentum reach local critical
values anywhere in the screening region.

For concreteness we model the impurity diffusion layer
as exponential decay from the vacuum-superconducting inter-
face, nimp(x) = n0 exp (−x/ζ ), or equivalently a local scatter-
ing rate of the form

γ (x) = γ0e−x/ζ , (6)

where γ0 denotes the impurity scattering rate at x = 0 and ζ

is the impurity diffusion length. Similar results are obtained
based on a Gaussian diffusion layer. This model qualitatively
captures the impurity distribution in nitrogen-treated SRF
cavities, i.e., high-impurity concentration near the surface and
very low-impurity concentration in the bulk [7]. We confine
our analysis to diffusion lengths that are large compared to
the coherence length, ζ � ξ , so that we can evaluate the
propagator with the locally homogeneous solution in Eq. (1).
In this model the condensate momentum first reaches the
critical value at the surface, i.e., the superheating condition is
given by ps(0) = pc(0), where pc(0) is the critical condensate
momentum determined by the maximum scattering rate γ0.

Results. Figures 2(a) and 2(b) show the magnetic field
and current density profiles at the superheating field for a
scattering rate at the surface, γ0/�00 = 2, where �00 is the
excitation gap at T = 0 in the clean limit. We present results
for impurity diffusion lengths ranging from the homogeneous
limit, ζ → ∞, to ζ/λL0 = 0.5, scaled in units of the clean-
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FIG. 3. The superheating field Hsh and effective penetration
depth λeff in superconductors with an impurity diffusion layer
[Eq. (6)] as functions of the surface scattering rate γ0 for various
impurity diffusion lengths ζ shown in the legend. We compare our
results for the superheating field with previous calculations in the
clean limit [16,19] (black open circle) and for homogeneous disorder
[9] (red circles).

limit, T = 0, zero-field London penetration depth, λL0 =
1/(8πe2v2

f Nf /3c2)
1
2 , but restricted to ζ � ξ0. Figure 2(a)

shows that the superheating field, given by the field at x = 0,
increases with decreasing impurity diffusion length, and
exceeds the superheating field for the case of homogeneous
disorder with scattering rate γ /�00 = 2 (dashed line).

To understand how an inhomogeneous impurity distribu-
tion leads to an increase in the superheating field, consider
the current density profiles shown in Fig. 2(b). At the su-
perheating field the current density at x = 0 is equal to the
local critical current density, which is determined by γ0 in
each case. However, away from the surface a shorter im-
purity diffusion length results in a reduced impurity density
and therefore larger current density for a given value of the
local condensate momentum. Indeed, for sufficiently short
impurity diffusion lengths the current density peaks at a finite
distance from the vacuum-superconductor interface, resulting
in a larger integrated screening current, J = ∫ ∞

0 dx j(x), and
thus a higher superheating field.

Figures 2(c) and 2(d) show the magnetic field and current
density profiles at the superheating field for a fixed impu-
rity diffusion length ζ/λL0 = 1, for a range of maximum
impurity scattering rates γ0. In Fig. 2(c) the magnetic field
penetrates deeper into the superconductor with increasing
impurity scattering at the surface, and the superheating field
increases above the absolute maximum superheating field
for homogeneous disorder [9] (dashed line). The screening
current penetrates deeper further into the superconductor, but
is suppressed for x � λL0 [Fig. 2(d)]. However, the local
suppression of the current near the surface is overcompensated
by the increase in the screening current for x � λL0 over a
longer effective penetration depth, leading to an increase in
the superheating field.

Figure 3 summarizes our results for the superheating
field in impurity diffusion layers at T = 0. Disorder af-
fects the superheating field via two competing mechanisms.
First, the effective penetration depth, defined as λeff ≡
B(0)−1

∫ ∞
0 dx B(x), increases with disorder [Fig. 3(b)]. As a

result, the screening current penetrates deeper into the su-
perconductor, increasing the total screening current, and as a
result the superheating field. Second, impurity scattering sup-
presses the critical current and superheating field (cf. Fig. 1).

For homogeneous disorder the increase in the effective pen-
etration depth is dominant at low scattering rates, while the
suppression of supercurrent dominates at higher scattering
rates. As a result, the superheating field develops a peak at
a relatively modest level of disorder, γ0/�00 ≈ 0.3 [Fig. 3(a)]
for ζ/λL0 = ∞, with Hsh ≈ 0.87H0. However, in impurity dif-
fusion layers the suppression of supercurrent is confined to the
region near the surface x � ζ , while due to a longer effective
penetration depth [cf. Fig. 2(d)], the screening current shifts
to the relatively clean region with x � ζ . This results in a
superheating field that increases with the surface scattering
rate, as shown in Fig. 3(a) for diffusion lengths ζ/λL0 � 3.0
[20].

Our analysis for the superheating field based on the local
critical depairing current is equivalent to the stability analysis
of the Meissner state presented in Refs. [9,16,19]. Indeed,
our results agree with the previous calculations based on
analyses of the thermodynamic potential. In particular, we
obtain Hsh/H0 ≈ 0.84 for clean type-II superconductors as
reported in Refs. [9,16,19] [black open circle in Fig. 3(a)].
Our results also agree with those of Ref. [9] for the limit of
homogeneous disorder [red data points in Fig. 3(a)].

So far we have considered the extreme type-II limit with
κ−1 = ξ/λL → 0. Niobium, the material of choice for SRF
applications, is marginally type II in the clean limit with κ ≈ 1
[21–23]. Cavity-grade niobium has surface disorder, and is
treated with nitrogen impurities to increase performance, both
of which increase the Ginzburg-Landau parameter, thus sup-
pressing the corrections to our theory which are of order κ−2

[18]. Thus, we believe this work provides new insight into the
role of inhomogeneous disorder on the superheating field in
nitrogen-infused niobium SRF cavities. Moreover, our results
have implications for the other superconducting materials
considered for SRF applications, such as Nb3Sn and MgB2,
both of which are strongly type II with κ � 20 [24,25].

Summary and outlook. We report a theoretical investigation
based on a microscopic theory of inhomogeneous supercon-
ductors of the effects of impurity diffusion layers on the
superheating field of SRF cavities, the limiting magnetic field
beyond which the Meissner state is unstable. A key result is
that the introduction of impurity diffusion layers, for example,
by nitrogen infusion into niobium, can increase the superheat-
ing field of SRF cavities above the maximum value predicted
for the homogeneous disorder model [9]. The underlying
mechanism is the increase in screening current resulting from
an increased field penetration depth which overcompensates
suppression of the Meissner current in the relatively thin
dirty region near the surface. Our results strongly suggest
that impurity diffusion layers play a role in enhancing the
maximum accelerating gradient of treated SRF cavities. Al-
though the increase in the superheating field appears to be
generic, the magnitude of the increase depends on specific
impurity profiles, suggesting that it might be possible to
further increase the superheating field by engineering disorder
profiles.

While inhomogeneous impurity layers can enhance the
performance of SRF cavities in accelerator applications, their
effects in the low-field limit on photon coherence time, an
important figure of merit in quantum information applica-
tions, are less clear. Impurity doping and infusion can result
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in a higher-quality factor [1,7] which tends to increase the
coherence time, however, such surface preparations could
also lead to a higher abundance of two-level systems which
limits the quality factor, and thus coherence time, in low-field
limits [3]. The effects of impurity diffusion layers on the low-
field performance of SRF cavities is an important research
direction for the future.
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