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Body temperature affects plants’ and animals’ performance, but these effects are complicated by thermal variation through
time within an individual and variation through space among individuals in a population. This review and synthesis describes
how the effects of thermal variation—in both time and space—can be estimated by applying a simple, nonlinear averaging
scheme. The method is first applied to the temporal variation experienced by an individual, providing an estimate of the
individual’s average performance. The method is then applied to the scale-dependent thermal variation among individuals,
which is modelled as a 1/f-noise phenomenon. For an individual, thermal variation reduces average performance, lowers
the temperature of maximum performance (T,,;) and contracts the range of viable temperatures. Thermal variation among
individuals similarly reduces performance and lowers Topt, but increases the viable range of average temperatures. These
results must be viewed with caution, however, because they do not take into account the time-dependent interaction between
body temperature and physiological plasticity. Quantifying these interactions is perhaps the largest challenge for ecological
and conservation physiologists as they attempt to predict the effects of climate change.
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Introduction
sation and the solubility of important gases (Denny, 1993).

Temperature affects all aspects of life. The speed of chemical
reactions increases with increasing temperature, affecting the
rates of photosynthesis, metabolism, growth and locomotion
(Somero et al., 2017). The mechanical properties of biological
structural materials change with changes in temperature
(Gosline, 2018), as do the rates of evaporation and conden-

The ability to obtain food, escape predation or compete for
critical resources often varies with temperature, and, if this
variation differs among species, changes in temperature can
thereby affect community composition (for a synthesis, see
Harley, 2013). Compounding our interest in these effects,
globally averaged temperature is rising due to the increasing
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concentration of carbon dioxide and other greenhouse gases
in the atmosphere (IPCC, 2013).

The current emphasis on latitudinal- and global-scale
changes in average temperature can, however, overshadow the
importance of temperature measured at the scale of individual
organisms. Populations may move in response to latitudinal
shifts in average temperature, and species may evolve in
response to thermally influenced shifts in selection pressure,
but these changes manifest because temperature affects the
individuals that form those populations and species. In this
review and synthesis, I explore how temporal variation in
temperature affects the performance of individual organisms,
and how spatial variation in temperature among individuals
determines average population performance; both are issues
of importance to conservation biology.

Most organisms experience some change in temperature
during their lifetime. In terrestrial environments, direct expo-
sure to sunlight sets the stage for rapid warming during
the day, and the infrared transparency of air allows organ-
isms to cool rapidly at night (Gates, 1980; Denny, 2016).
Consequently, many terrestrial organisms experience daily
changes in body temperature of 20-30°C and even greater
fluctuation across seasons. Furthermore, the low thermal
conductivity and heat capacity of air and the possibility of
evaporative cooling mean that for many terrestrial organ-
isms body temperature (what ecophysiologists refer to as
operational temperature) can differ substantially from air
temperature (Gates, 1980). For instance, the flight muscles of
bees (Heinrichs, 1979) and the reproductive structures of the
voodoo lily (Meeuse, 1966) can be 35-45°C above ambient
air temperature, and evaporative cooling can chill seaweeds
and desert herbs 5-8°C below air temperature (Bell 1995,
Potter et al., 2009).

Because water has an unusually large heat capacity and
a high thermal conductivity, temperature fluctuations in
aquatic environments tend to be less dramatic in both space
and time than those in terrestrial environments. With the
exception of a few animals (such as tunas, marine mammals),
the body temperature of pelagic organisms is the same as
that of the water in which they are immersed. Consequently,
deep-sea organisms are likely to experience changes of less
than 1°C in their lifetimes. However, even in the thermally
conservative aquatic environment, some organisms encounter
substantial variation in temperature. For example, a wide
variety of ectothermic marine animals migrate hundreds of
vertical meters daily, moving from the cold water below
the thermocline (where they spend the day), up to the
warm surface waters at night, often encountering a swing of
10°C or more along the way (Denny, 2008). When exposed
to bright sunlight, shallow-water corals can be heated to
1.5°C above ambient water temperature (Fabricius, 2006;
Jimenez et al., 2008), and the arrival of internal waves can
impose fluctuations of 8-10°C in the course of a few hours
(Leichter et al., 2006). In rivers downstream from dams,
the episodic release of water from a reservoir can abruptly
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Figure 1: A representative nominal thermal performance function:
P(T), metabolic rate as a function of body temperature T. The
organism’s thermal breadth is bracketed by its minimum viable
temperature (CTpyin) and it maximum viable temperature (CTpax)-
Peak performance occurs at Topt. Note that the curve is concave
downward except for temperatures neat CTpn.

lower the temperature by 8-12°C (Olden and Naiman,
2010).

Given that temperature governs virtually all aspects of life,
how do these thermal fluctuations affect the performance of
organisms and populations?

The pattern in which an organism’s performance varies as
a function of body temperature is traditionally documented
as a thermal performance curve or, equivalently, a thermal
performance function (Fig. 1; Huey and Stevenson, 1979).
Performance in this context can take on many guises: e.g.
heart rate, metabolic rate, speed of locomotion, growth rate or
reproductive output. There is a minimum critical temperature
(CTin) below which performance is unacceptably low. For
temperatures above CT,,,;,, performance increases, reaching a
maximum at Ty, and then decreases to a maximum critical
temperature (CT),,y) above which performance again sinks
below the acceptable level. For biochemical and physiological
rate data (e.g. metabolic rate), the performance curve is
skewed to the left: performance gradually accelerates as tem-
perature increases above CT,,;;, (according to the Boltzmann—
Arrhenius relationship), decelerates to a maximum value at
Topt and then rapidly declines to CTjuay (Angilletta, 2009).
For more integrative processes (e.g. reproductive rate), the
curve is more symmetrical about T, (Knies and Kingsolver,
2010). The range of temperatures over which an organ-
ism’s performance is viable—the thermal breadth (CTj,ux
— CT,in)—varies among species. Organisms with a large
thermal breadth are thermal generalists (eurytherms); those
with narrow breadth are thermal specialists (stenotherms).
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Figure 2: Introducing Jensen'’s inequality. (A) The nominal thermal performance function (red line) is fit to empirical measurements of
performance at a series of constant temperatures (open dots). If temperature alternates between 21°C and 31°C, average performance (the red
dot) is less than performance at the average temperature (26°C, shown by the dashed line). (B) Greater variation in temperature (16°C to 36°C)
results in lower average performance. (C) Average performance in a continuously varying thermal environment can be estimated by averaging
the performance at n temperatures grouped around the average temperature.

Thermal performance functions have been measured for
a wide variety of species for a broad range of performance
metrics (Angiletta, 2009). In this review, I use metabolic rate
as a heuristic example, a choice that is convenient for two
reasons. First, metabolic rate is a key factor in many other
aspects of performance: growth rate, reproductive rate and
speed of locomotion, for instance, are all likely to increase as
metabolic rate increases. Second, unlike some other metrics of
performance, metabolic rate provides easily defined criteria
for CT,yiy, and CTpgx. With few exceptions, an organism can
survive only if its metabolic rate is greater than zero. Thus, for
values less than CT,,;,, or greater than CT,y, I assume that
the organism dies and performance is unambiguously zero.

Typically, a species’ thermal performance curve is mea-
sured through a series of experiments (Fig. 2A). A group of the
specified plant or animal is placed at a constant temperature
T and the average per capita performance (in this example,
metabolic rate) is quantified. A second group is then held
at a different temperature, its performance measured and so
forth (the open dots in Fig. 2A). After a sufficient number of
points have been obtained, a function, P(T), is fitted to the
data, and this continuous function is the organism’s nominal
thermal performance function. A variety of functions have
been used (Angilletta, 2009; Knies and Kingsolver, 2010);
here, I use a modified beta function (Dowd et al., 2015).
With this function in hand, one can then specify the organ-
ism’s performance at any temperature. Ecologists often use
performance at the environment’s average temperature as a
measure of an organism’s performance in that environment.
For instance, in the hypothetical example of Fig. 2A, if an
animal’s body temperature is constant at the environmental
average of 26°C, its metabolic rate is 4.8 W/kg.

There is a basic problem with this approach, however. As
I have noted, for most organisms temperature—and thus

performance—fluctuates through time, and this fluctuation
affects our assessment of the performance we expect of the
organism. To see how this works, consider again the thermal
performance curve shown in Fig. 2A. Let us assume (unrealis-
tically, but heuristically) that the organism’s body temperature
alternates between 21°C at night and 31°C during the day,
with 12 h spent in each state. The organism’s average body
temperature is thus 26°C (the same as the environment’s
average temperature). Performance is low at night and higher
during the day, but the organism’s average performance can
be calculated graphically by drawing a line between the night-
time and daytime performance values and noting the perfor-
mance at its midpoint. (If unequal times were spent at night-
time and daytime temperatures, the resulting average would
be calculated by sliding the measurement point proportionally
along the line connecting the two temperatures.) Because
the thermal performance function is convex downward, the
average of nighttime and daytime performances, P;,(26°),
is lower than the performance at the average temperature
P(26°). The fact that average performance when temperature
varies differs from performance at average temperature is
an example of a general conclusion regarding averages of
nonlinear functions known informally as the fallacy of the
average and technically as Jensen’s inequality (named for
Johan Jensen, a Danish mathematician who explained the
phenomenon in Jensen, 1906; Ruel and Ayres, 1999; Denny,
2017). In mathematical terms, if function g(x) is nonlinear, the
average of the function, g(x), is not equal to the function of

the average, g(x):
g #g@. (1)

This relationship holds for nonlinear functions of any vari-
able, and Jensen’s inequality is responsible for a wide variety
of natural phenomena. For example, in the context of variable
atomic dipole strength Jensen’s inequality accounts for the
van der Waals forces that stabilize enzymes (De Podesta,
2002). In the context of variable gamete concentration, it
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explains the ability of sea urchins to reproduce effectively by
shedding their gametes into turbulent flow (Crimaldi et al.,
2008; Denny, 2017). In the context of performance P in the
presence of variation in temperature T (the focus of this
review):

PCT) # P(T). @)

In the example of Fig 2A, P(T) is less than P(T ) because
(in the vicinity of 26°C) the performance function is convex
downward. If we were to pick two points bracketing an
average temperature near CT,,,, we would find that the
average of the function is larger than the function of the
average because there the curve is convex upward.

We now extend this basic analysis. We have noted that
alternation in temperature by £5°C around an average tem-
perature of 26°C results in a decrease in average perfor-
mance (Fig. 2A). If we increase the variation in temperature to
+10°C, average performance is even lower (Fig. 2B). General-
izing from this theme, the greater the variation in temperature,
the greater the effect on average performance. This conclusion
can be quantified mathematically. To a first approximation
(Chesson et al., 2005; Denny, 2016):

P(T) = P(T) +%P”02. (3)

Here, P” is the second derivative of P (the nominal thermal
performance function) with respect to temperature T, taken
at the average temperature T,

d*P(T)

pr=_"\J
dr? ’

(4)
and o2 is the temporal variance of body temperature expe-
rienced by the organism. Although it is strictly true only for
values of T where the first derivative of P =0, one can think
of the second derivative as the curvature of the performance
function. When curvature is negative, the function is concave

downward, and accordingly, Equation 3 tells us that P(T) <
P(T).If P is positive, P(T) > P(T).

The approximation represented by Equation 3 is useful in
that it provides a mathematical method for intuiting the effect
of variation on average performance. However, the precision
of this approximation depends on the range over which
temperatures vary about the mean temperature. If this range
is small relative to thermal breadth, Equation 3 is reasonably
accurate. If the range is large relative to thermal breadth,
Equation 3 can be substantially in error. Fortunately, there is
an alternative method for calculating P(T) that builds on the
simple approach of Fig 2A and B (Fig. 2C; Benedetti-Cecchi,
20035). Recall that in Fig 2A and B, we calculated mean per-
formance by averaging nighttime and daytime temperatures.
However, we are not limited to picking just two temperatures.
Instead, we can choose at random a large number of val-
ues from the temperature distribution experienced by a real
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organism. This distribution can have a wide variety of shapes:
skewed to high temperatures, skewed to low temperatures,
even bimodal. For simplicity, however, I model thermal varia-
tion using a Gaussian distribution with its mean set to that of
the organism (T) and a standard deviation of oy (the subscript
t denotes variation through time). Values of T (T;, where i=1
to #n) are picked at random from this distribution and are
therefore clustered around T (64 % of our choices lie within
+1standard deviation of T, an effect shown graphically by the
vertical lines in Fig. 2C). Average performance at temperature
T is then estimated as:

»ﬂ
:\H

ZP(T) (5)

Although somewhat more computationally intensive than
Equation 3, this approach has the distinct advantage that as
long as 72 is large (>30 or so) the method is accurate regardless
of the range of temperatures encountered by the organism or
the shape of the temperature distribution.

Equation 5 allows us to calculate average performance at
any given average body temperature T. By repeatedly apply-
ing this equation to temperatures across an organism’s entire
thermal range, we can specify a new thermal performance
function, Py (T), that quantifies performance, not under the
constant conditions used to specify the nominal performance
curve P(T), but rather performance in the presence of thermal
variation (Fig. 3A).

Several conclusions can be drawn from our calculation
of Pgyg. Performance is lower in the presence of thermal
variation than it is under constant conditions, a consequence
of Jensen’s inequality. Furthermore, the temperature at which
performance peaks in Pgy, is less than that for the nomi-
nal curve P. Lastly, the breadth of the performance curve
is reduced. (This is a consequence of our assumption that
animals die if at any time their body temperature is less than
CT,pin, or greater than CTy,uy.) In short, given the shape of
the typical nominal performance curve, plants or animals
perform less well in the presence of thermal variation than
when temperature is held constant.

The magnitude of these effects depends on the extent of
variation in temperature (Fig. 3B). The larger the range of
temperatures to which an organism is subjected, the larger
the standard deviation of its body temperature, the lower
its performance and the lower the temperature at which
performance peaks.

At this point, it is necessary to inject a note of caution. The
conclusions we have reached by applying Jensen’s inequality
to the nominal performance curve assume that physiolog-
ical plasticity and the temporal pattern of thermal varia-
tion play no role in an organism’s performance. However,
organisms commonly adjust their physiology (acclimatize)
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Figure 3: (A) Performance at average body temperature in a variable environment (Payg, blue line) is lower than nominal performance (red line)
and peaks at a lower temperature. (B) The greater the standard deviation of temperature experienced by an individual, the lower its

performance and the lower its Top;.

in response to temporal fluctuations in temperature, and
these adjustments take time (for a review, see Angilletta,
2009). As a result, performance lags behind any shift in
temperature by an interval that can vary from hours to days
(e.g. Senius, 1975; Williams and Somero 1996; Hoffmann
et al., 2003; Sinclair and Roberts, 2005; Healy and Schulte
2012). The resulting hysteresis can jeopardize our calcula-
tion of Pge. For example, our calculations (Equation 5)
assume that if an animal’s body temperature abruptly jumps
down from 31°C to 26°C, its performance at 26°C is the
same as it would be if its temperature instead had abruptly
jumped up from 21°C to 26°C. However, because it takes
time for an organism’s physiology to adjust to a shift in
temperature, it is likely that an organism moving down to
26°C will, for a period of time, retain some of its adjust-
ments to its previous high temperature, while an organ-
ism moving up to 26°C will retain some of its adjustments
to its previous low temperature. As a result, the two per-
formances at 26°C will initially be different, violating our
assumption. We will return to this and other complicating
factor in the Caveats and Challenges section below. For
the time being, I ignore these complications and accept the
general conclusion that thermal variation reduces perfor-
mance.

This conclusion has been used to predict the effects of
climate change for animals at different latitudes. For example,
early efforts noted that average terrestrial temperatures are
rising more rapidly in temperate and arctic regions than in
the tropics, suggesting that temperate and arctic plants and
animals should suffer the greater risk from climate change.
However, for tropical terrestrial species the thermal perfor-
mance function is narrow (and therefore tightly curved), while
for temperate and arctic species it is broad (and therefore

gently curved). Because increased curvature (P”) accentuates
the effects of Jensen’s inequality (Equation 3), effects of
temperature fluctuations are greatest for tropical species and
in fact are sufficiently large to place them at greater risk
than organisms in temperate and arctic regions (Dillon et
al., 2010). Indeed, Paaijmans et al. (2013) and Vasseur et
al. (2014) predict that the effects of increased temperature
variability associated with climate change will outweigh the
effects of increased average temperature. It is worth noting,
however, that these efforts to predict the consequences of cli-
mate change rely on the simplifying assumption that operative
body temperature is equal to air temperature. As we have seen,
this need not be the case. For this and many other reasons,
the large-scale, long-term consequences of thermal variation
in individual organisms continue to be an area of active debate
and research (e.g. Martin and Huey, 2008; Kingsolver et al.,
2015; Dowd et al., 2015; Buckley and Huey, 2016; Kingsolver
and Woods, 2016; Koussoroplis et al. 2017).

Rather than delve into the intricacies of the debate regarding
the effects of thermal variation on individual performance,
I instead turn to the effects of thermal variation on a pop-
ulation of individuals. Just as body temperature can vary
through time within an individual, T can vary in space among
individuals, and the amount of this spatial variation often
depends on the scale at which it is measured. This fact
applies to all populations, but it is convenient to envision
it for a particular population that has considerable heuristic
value.

The intertidal zone of rocky shores is an exceptionally
rigorous environment that has long served as a model system
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for experimental ecology. On many wave-swept rocky shores,
mussels of the genus Mytilus live in tightly packed beds,
forming what at low tide looks like a carpet across the middle
of the shore. As the dominant competitor for space, mussels
act as ecosystem engineers and thus play an important role in
intertidal community ecology. Because they are sessile, mus-
sels cannot move to escape the thermal stresses imposed by
solar heating at low tide, and this lack of behavioural thermal
regulation substantially simplifies the task of predicting the
effects of spatial variation in temperature.

In light of our earlier discussion of temperature variation
in air, one can predict that body temperature varies among
mussels in a bed when they are emersed at low tide. A large
mussel extending above the bed will intercept more sunshine
while shading its smaller neighbours, resulting in a higher
temperature in the larger individual. Topographic variation
in the rock (which tends to be complex) ensures that different
areas of bed are presented to the sun at different angles, again
causing spatial variation in T, and mussels higher on the shore
are exposed to terrestrial conditions for longer than their
lower bedmates as the tides ebb and flow, allowing them to
both heat and cool for longer periods.

The variation in T resulting from these factors depends on
the spatial scale at which it is measured. Mussels adjacent
to each other are likely to have temperatures that are more
similar than mussels a few meters apart, which, because
the bed conforms to the complex topography, might have
a different orientation relative to the sun. Temperatures are
likely to vary even more between mussels separated by tens
of meters on different sides of a promontory (Denny et al.,
2004).

The scale-dependence of this sort of spatial variation has
received considerable attention from ecologists, and a general
picture has emerged (e.g. Halley, 1996; Inchausti and Halley,
2002; Vasseur and Yodsis, 2004; Denny, 2016). Traditionally,
the pattern in which a variable (e.g. body temperature) varies
through space is described by the power spectral density func-
tion (the power spectrum), S, which quantifies the manner
in which the overall variance (052 in this case) is distributed
among spatial frequencies, f; (the subscript s denotes variation
through space). (Spatial frequency is an analogue of temporal
frequency. For example, the pressure in a sound wave of a
given frequency f repeats itself every # seconds such that
f= 1/t. Analogously, spatial frequency is the inverse of the
distance ¢ over which a spatial pattern repeats itself: f; = 1/¢.)
When S (which has units of variance per frequency) is plotted
as a function of fs, the overall variance is the area under the
curve (Diggle, 1990; Denny, 2016):

- 00
%._/gsggdﬂ. (6)
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For a given range of frequencies (say from a to b), the
variance associated with that range is

b
ﬁ:/s@ﬂ@ 7)

Often, S decreases exponentially with an increase in spatial
frequency (Halley, 1996; Denny, 2016):

k
S(fs) = 7 (B =0). (8)

An example of this iconic spectrum is shown in Fig. 4A.
B controls how variance scales with spatial frequency, and k
is a coefficient that determines the overall magnitude of vari-
ance. B and k can be estimated from empirical measurements
of the variable in question using standard methods of spectral
analysis (e.g. Diggle, 1990). In our heuristic example, one
would measure the body temperature of mussels at equally
spaced intervals along a transect across the bed. If the spec-
trum calculated from these data conforms to Equation 8,
values of log(S) are linearly related to the log (fs) (Fig. 4B),
and B and k can be estimated from the slope and intercept of
that line, respectively (Clauset et al., 2009).

Because of the form of Equation 8, this pattern of variation
is known as 1/f noise (‘one over f noise’), where ‘noise’ is
an informal expression for ‘variance’. Various values for f
are given names in an analogy to visible light. If 8 = 0,
variance is the same for all spatial frequencies, analogous
to white light, which is composed of equal intensities of all
frequencies of electromagnetic radiation (i.e. colors). Thus,
a pattern in which B = 0 is known as white noise. If
B > 0, low spatial frequencies have more variance than high
frequencies, analogous to light that is skewed to the red end
of the spectrum, so this common spatial pattern is known as
red noise.

Many naturally occurring patterns exhibit reddened
1/f noise. For instance, in an exhaustive literature survey,
Inchausti and Halley (2002) found that 97% of documented
time series of species abundance were characterized by red
noise. The elevations of points on a fractal surface are red
noise (Hastings and Sugihara, 1993), as are the nucleotide
sequences in DNA (Halley, 1996). Most pertinent to the
present discussion, on at least one representative shore the
spatial pattern of variation in mussel body temperature can
be described as reddened 1/f noise (Denny et al., 2004).

The utility of 1/f noise is most easily grasped if we switch
our focus from spatial frequency (the traditional factor used
to describe 1/f noise) to spatial scale (a more intuitive metric).
Recall that f; = 1/¢, where £ is the spatial scale at which a pat-
tern repeats itself. Using this relationship, one can manipulate
Equation 8 to quantify the overall variance in temperature
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Figure 4: The 1/f spectrum. (A) Spectral density S decreases exponentially with an increase in spatial frequency f;. The area under the curve
between frequencies a and b is the variance in temperature in this frequency range. (B) The curve from (A) re-plotted on log-log axes with the
individual data points shown (open circles). The slope of the line is equal to —8, and the value of spectral density at log f; =0 is log k.

associated with a given range of ¢ (Denny, 2016). For 8 # 1 :

k _ _
2 -1 B—1
Os = 1-8 (gmin _emax)

o= \/ (- ) o

l
02 = kin ( max)
gmin

oo = [kin (6’”) (10)

min

=

For g =1:

In these equations, ¢, (the grain of the population) is the
smallest scale at which we can measure temperature variation,
and £, (the extent) is the largest scale of interest. Figure 5
illustrates the manner in which the magnitude of B affects
thermal variance. For 0 < B < 1, variance increases with
increasing range of spatial scale, but asymptotes to a finite
value at large scale. For 8 = 1, variance increases linearly
without limit, and for B > 1, variance likewise increases
without limit, but at an accelerating pace. In Fig. 5B, these
relationships are expressed as the standard deviation of
temperature associated with that extent (os) rather than the

variance (052) .

We are now poised to incorporate spatial variation of
body temperature among individuals into an estimate of
population-level performance. The process is conveniently
illustrated using our mussel-bed example. We desire to
estimate the average metabolic rate of a population of

mussels on a particular shore. We begin by measuring T for
individuals at equally spaced intervals along a short transect
(20 m, say) and from the spatial pattern of these individual
temperatures we estimate k and . For the moment, let us
assume that the size of an individual mussel (0.05 m) is the
smallest spatial scale at which we can measure variation in
body temperature; this sets £,,,. Let us further suppose that
the population extends for 1 km along the shore, setting £y,
the extent. With k, B8, ;i and £,,,4 in hand, we can then use
Equations 9 or 10 to calculate oy, the standard deviation of
temperature among individuals along the shore.

We now return to Py, our prediction of average individual
performance as a function of thermal variance (Equation 3,
Fig. 3A). Recall that this curve quantifies the effect on an
individual of temporal variation in temperature. Our task
now is to use this curve of average individual performance
to estimate the effect of spatial variation in temperature
among individuals. We do so by again applying the concept
of Jensen’s inequality.

The procedure is the same as before. For a given average
temperature among individuals in a population, Ty, we
randomly choose 7 temperatures (T;, where i=1 to #) from a
Gaussian distribution with a mean of Ty, and the standard
deviation o specified by Equations 9 or 10. For each of these
sample temperatures we note the value of P, and then
average these values:

[ 1 n
Pavg(Tpop) = ~ D Pavg (Ti) - (11)
=1

The procedure can then be repeated for different values
of Tpop. The result is shown in Fig. 6A. As expected from
Jensen’s inequality and the variation in temperature among
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individuals, average performance of the population is lower
than that of individuals, and the temperature of peak popu-
lation performance is lower than that of individual perfor-
mance. However, it may surprise you to see that the thermal
breadth of the population is substantially larger than that of
the individual. The explanation for this phenomenon is rela-
tively straightforward. Consider a population-scale average
temperature at the individual-scale CT,;,4y. If all individuals
in the population experienced this temperature, the popu-
lation’s performance would be zero. However, temperature
varies among individuals in the population. Those that expe-
rience temperatures > CT,, die (their performance is 0),
but those that experience temperatures < CTjpyy live (with
a performance > 0). Thus, even at an average temperature
equal to the CTux of Payg, the surviving population has
an average performance greater than zero. An analogous
argument applies to population average temperatures near
CT,in- These effects are described in detail by Denny et al.
(2011).

The variance-induced decrease in population average peak
performance and increase in population average thermal
breadth depends on the scale (= extent, ;) at which
the population is measured. Because we have assumed that
thermal variation in mussel beds is 1/f noise, the larger the
scale at which we view the population, the larger the overall
thermal variance and the more profound the decreases in
peak performance and increase in breadth.

The effect of spatial scale on population performance
is in turn sensitive to B, the exponent in the 1/f-noise
equation (Equation 8). B has been measured for thermal
variation in both marine and terrestrial systems. Steele
(1985) suggested that because the high heat capacity and
thermal conductivity of water discourage small-scale (i.e. high
spatial frequency) variation in temperature in marine systems,
they should appear more ‘red’ (a higher ) than terrestrial

systems. This suggestion is borne out in a survey of available
data by Vasseur and Yodsis (2004), who found that the Bs
of terrestrial systems varied from 0.1 to 0.75 while those of
marine systems varied from 0.75 to 1.5. Much work remains,
however, before we have a definitive picture of the patterns
of spatial variability in temperature. In Fig. 6B, 1 have used
B = 0.73, the value measured for a particular mussel bed
by Denny et al. (2004). Because this value is less than 1, o
changes little at large £,,4x, and the performance becomes
essentially scale independent for €, > 100 m. In Fig. 6B, 1
set B to 1.27 (a value as much above 1 as 0.73 is below). In this
hypothetical (but realistic) case, increasing scale continues to
have an effect on performance even at large extents.

The two-step application of Jensen’s inequality outlined here,
coupled with the suggestion that spatial variation in individ-
ual body temperature scales as 1/f noise, provides a heuris-
tic recipe for scaling up from small-scale measurements of
temperature to large-scale estimates of population perfor-
mance, estimates that can be of value to conservation biolo-
gists. However, there are several assumptions involved in this
method that require closer inspection.

First, when I accounted for the thermal variation encoun-
tered by an individual, I assumed that that variation could
be accurately modelled by a Gaussian distribution and that
the standard deviation of that distribution was the same for
all average body temperatures. Neither assumption is likely
to be accurate in the real world. Given sufficient empirical
data, it would be best to use the distributions of measured
body temperature rather than an assumed Gaussian model.
At present, such measurements are in short supply, however,
so it is uncertain how the use of more realistic temperature
distributions will affect average population performance.
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An analogous caveat applies to my assumption that inter-
individual body temperatures scale as 1/f noise. Again,
empirical data could come to the rescue. Given sufficient
measurements of temperature along an extensive transect,
the actual spectrum of thermal variance as a function of
spatial frequency could be specified, and these empirical
values could be used to more accurately calculate population
performance. There is a downside to this approach, however.
The assumption of 1/f noise allows one to extrapolate
from small-scale measurements to much larger scale effects.
Without this (or some other) model, extrapolation is
not possible, and time- and energy-consuming, large-scale
measurements will be required.

These limitations and concerns are particularly acute for
mobile organisms whose behaviour can have a strong influ-
ence on their body temperature. If, for example, desert lizards
hide during the day to avoid overheating, and all choose
refuges that allow them to maintain the same temperature,
there is little reason to assume a priori that the variation
among individuals would scale as 1/f noise.

And then there is the issue of genetic differences among
individuals. In calculating the effect of temperature variation
among individuals, I have assumed that every individual
in the population conforms to the same nominal thermal
performance function. However, genetic variation is likely to
manifest as intrinsic differences among individuals in their
response to temperature fluctuations. For example, Kuo
and Sanford (2009) found substantial variation in thermal
tolerance in intertidal snails raised for two generations under
identical laboratory conditions. Tolerance varied among
individuals collected at a single site, and on average among
individuals from latitudinally different sites, effects they
attribute to genetics differences. Similar effects have been
found in fruit flies (Hoffmann et al., 2003). If the distribution
of intrinsic differences among individuals can be measured for
organisms, this variation can be modelled in a fashion similar
to that of spatial variation. Rather than calculating a single

curve of Pgye per Equation 5 and Fig. 3A, a different curve
would be calculated for each randomly chosen individual
based on the experimentally determined distribution of
nominal performance curves in the population. Individual
curves could then be sampled randomly to calculate average
population performance.

Perhaps the largest caveat regarding the method proposed
here concerns the complications introduced by physiology. As
noted earlier, an organism’s physiology is constantly adjust-
ing to its environment, but these adjustments take time.
As a consequence, the ability to perform at a current tem-
perature can depend on the history of temperatures lead-
ing up to the present, and this dependence can be compli-
cated. For example, the CT,,, of killifish increases over
the course of several days in response to an increase in
temperature, but reduction in CT},,,x in response to a decrease
in temperature takes much longer (Healy and Schulte, 2012).
Similar physiological hysteresis occurs for the temperature-
induced shifts in membrane fluidity in goldfish (Cossins
et al., 1977). Repeated stresses can either increase thermal
tolerance (‘stress hardening’) or decrease it depending on
the organism and the precise timing and intensity of stress
(reviewed by Angilletta, 2009). Investigating the complicated
effects that history can have on physiology is a major chal-
lenge (and a major opportunity) for conservation physiolo-
gists as they attempt to predict the consequences of climate
change.

Lastly, it is important to note that the ideas developed here
in the context of metabolic rate can be applied to other metrics
of organismal performance: e.g. growth rate, reproductive
output, competitive dominance and predatory capability. And
temperature, although important, is just one of many factors
that can influence performance. As long as one can measure
performance as a function of some specified variable, the
method proposed here can be used to estimate first the effect
of variation on an individual and then the effect of inter-
individual variation on a population.
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