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Abstract A large portion of the cost of any software lies in the time spent by
developers in understanding a program’s source code before any changes can be
undertaken. Measuring program comprehension is not a trivial task. In fact, differ-
ent studies use self-reported and various psycho-physiological measures as proxies.

In this research, we propose a methodology using functional Near Infrared
Spectroscopy (fNIRS) and eye tracking devices as an objective measure of pro-
gram comprehension that allows to conduct studies in environments close to real
world settings at identifier level of granularity. We validate our methodology and
apply it to study the impact of lexical, structural, and readability issues on devel-
opers’ cognitive load during bug localization tasks. Our study involves 25 under-
graduate and graduate students and 21 metrics. Results show that the existence
of lexical inconsistencies in the source code significantly increases the cognitive
load experienced by participants not only on identifiers involved in the inconsis-
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tencies but also throughout the entire code snippet. We did not find statistical
evidence that structural inconsistencies increase the average cognitive load that
participants experience, however, both types of inconsistencies result in lower per-
formance in terms of time and success rate. Finally, we observe that self-reported
task difficulty, cognitive load, and fixation duration do not correlate and appear
to be measuring different aspects of task difficulty.

Keywords Program Comprehension · Cognitive Load · fNIRS · Biometrics ·
Linguistic Antipatterns · Readability

1 Introduction

One of the most cognitively intensive, yet fundamental activities in the software
development life cycle is the act of program comprehension. Before developers can
make any changes to a piece of source code, they spend a considerable amount of
time reading through existing source code, using a variety of different comprehen-
sion strategies. Therefore, program comprehension plays a key role in the pursuit
of improving the overall costs and processes involved for the creation of any soft-
ware system. Which is why over the past few decades program comprehension
has been studied extensively by researchers trying to understand more about how
developers comprehend source code, the different source code aspects that effect
comprehension, and ways to improve this process.

The resulting research has shown that an important contributor to software
comprehension has to do with the quality of the lexicon, i.e., the identifiers and
comments that are used by developers to embed domain concepts and to commu-
nicate with their teammates. Although recent work by Scanniello and Risi [2013]
suggests that identifier length has no significant effect on identifying and fixing
faults in the source code, many other studies show evidence of a correlation be-
tween the quality of identifiers (measured using various metrics) and the quality
of a software project [Abebe et al., 2012; Buse and Weimer , 2010; Marcus et al.,
2008; Poshyvanyk et al., 2006]. Additionally, the readability and the structural
complexity of the code can have a significant impact on program comprehension.

Before improving program comprehension, we first need reliable methods to
measure it. However, this is a non trivial task because program comprehension
involves a multitude of complex cognitive processes. The most commonly used
metrics of program comprehension are conventional research methods based on
self-reported verification. These conventional methods are mostly indirect mea-
sures of comprehension, where subjects report on their own comprehension levels
or summarize part of an artifact so that researchers can instead deduce the level
of comprehension. Some of these methods include think aloud protocols, surveys,
and comprehension summaries. For example, Binkley et al. [2009a] studied the
impact of identifier style on code readability. Lawrie et al. [2006] use source code
summaries and self reported confidence levels to assess comprehension levels of
participants reading source code snippets containing single letter, abbreviated,
and full length identifiers. However, there are several potential issues that can
result from using these indirect measures because they are prone to participant
biases [Hochstein et al., 2005]. For example, participants may report they under-
stood a piece of source code, but their perceived understanding does not necessarily
mean they correctly understood the source code.
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This is why in recent years researchers have begun exploring how to use physio-
logical data to supplement our perspective on comprehension with direct, empirical
measures that can provide a more objective understanding of the cognitive process
behind program comprehension. For example, Lee et al. [2017] use a combination
of EEG and eye tracking metrics to predict task difficulty and programmer exper-
tise. Fritz et al. [2014] combined EEG, eye tracking, and electro dermal activity
(EDA) to investigate task difficulty during code comprehension. Recent efforts to
investigate how the human brain processes program comprehension tasks involve
the use of functional magnetic resonance imaging (fMRI). For example, fMRI is
used to study program comprehension in the brain [Siegmund et al., 2014], differ-
ent comprehension strategies [Siegmund et al., 2017] and areas of brain activation
between source code and natural language tasks [Floyd et al., 2017]. Most recently,
Peitek et al. [2018] explore the early stages of using both fMRI and eye tracking
together for program comprehension tasks. Despite the success of fMRI studies in
the domain, fMRI machines remain a costly and restrictive approach, with which
it is hard to reproduce the real life working conditions of software developers.

We aim to expand the knowledge on human cognition by introducing func-
tional near infrared spectroscopy (fNIRS) as a more practical tool to empirically
investigate the effects of source code on brain activity through the hemodynamic
response within physical structures of the brain. FNIRS is a brain imaging tech-
nique comparable to fMRI [Fishburn et al., 2014] as both rely on blood-oxygen-
level dependent (BOLD) response and show highly correlated results for cognitive
tasks. The low cost and minimally restrictive nature of fNIRS makes it particularly
well suited to the task of uncovering a deeper understanding of how developers
comprehend source code. Existing research involving the use of fNIRS by Nak-
agawa et al. [2014] investigates the hemodynamic response during mental code
execution tasks of varying difficulty. The only other fNIRS study in the domain by
Ikutani and Uwano, uses fNIRS to investigate the effects of variables and control
flow statements on blood oxygenation changes in the prefrontal cortex [Ikutani
and Uwano, 2014].

However, the effect of lexicon and readability of source code on developers’
cognitive load during software comprehension tasks remains unexplored. The low
cost and minimally invasive nature of fNIRS makes it particularly well suited for
this task. FNIRS data can be related to specific aspects of source code in real
time through the use of modern eye tracking devices. This would allow researchers
to pinpoint problematic elements within the source code at a very fine level of
granularity.

In this research, we propose a methodology using functional Near Infrared
Spectroscopy (fNIRS) and eye tracking devices as an objective measure of pro-
gram comprehension that allows to conduct studies in environments close to real
world settings at identifier level of granularity. We validate our methodology and
apply it to study the impact of 21 distinct lexical, structural, and readability met-
rics on developers’ cognitive load during bug localization tasks. This work is an
extension of our previous work [Fakhoury et al., 2018]. We follow the same exper-
iment methodology in this paper, expanding our participant pool from 15 to 25,
and answering additional research questions, specifically RQ5–RQ8, as outlined in
our contributions.
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The contributions of this work are as follows:

1. A methodology to accurately measure developers’ cognitive load at a low level
of granularity.

2. A study with 25 undergraduate and graduate students investigating the impact
of lexical and structural inconsistencies on cognitive load.

3. Confirming previous results showing that lexical inconsistencies significantly
increase developers’ cognitive load and that both lexical and structural in-
consistencies decrease developers’ performance during bug localization tasks
(RQ1–RQ4).

4. Evidence that cognitive load significantly increases over identifiers containing
linguistic antipatterns (RQ5).

5. A comparison of self-reported measures with cognitive load and eye tracking
data showing that the three types of measures capture different aspects of task
difficulty (RQ8).

6. A replication package [Fakhoury , 2018], which includes the source code snippets
used for our experiment, to allow reproducibility of our results.

Paper organization. The rest of the paper is organized as follows. Section 2
discusses the background, in particular metrics and technologies used throughout
the study. Section 3 defines our research questions and presents the experimental
set up and methodology used to answer those research questions. Section 4 presents
the results and analysis of our findings and Section 5 discusses the implications
of these results. Section 6 discusses the threats to validity of this work. Section 7
discusses related work and Section 8 concludes the study.

2 Background

In this section, we provide a background on Linguistic Antipatterns (Section 2.1),
structural and readability metrics (Section 2.2), Functional Near Infrared Spec-
troscopy (Sections 2.3), and Eye tracking (Section 2.4).

2.1 Linguistic Antipatterns (LAs)

Several studies have investigated identifier naming patterns [Blackwell , 2006] and
the effects of identifier naming on developer cognition [Liblit et al., 2006] [Binkley
et al., 2009b] [Takang et al., 1996]. There also exists literature aiming to provide
guidelines for proper identifier naming [Deissenboeck and Pizka, 2006]. Here, we
focus on a specific class of linguistic smells that can hinder program comprehen-
sion. Linguistic Antipatterns (LAs), are recurring poor practices in the naming,
documentation, and choice of identifiers in the implementation of program enti-
ties [Arnaoudova et al., 2013]. LAs are perceived negatively by developers as they
could impact program understanding [Arnaoudova et al., 2016]. In this section, we
briefly summarize a subset of the catalog of Linguistic Antipatterns used in our
study.

A.1 “Get” - more than an accessor : A getter that performs actions other than
returning the corresponding attribute without documenting it.
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A.3 “Set” method returns: A set method having a return type different than void

and not documenting the return type/values with an appropriate comment.
B.1 Not implemented condition: The method’ comments suggest a conditional be-

havior that is not implemented in the code. When the implementation is default
this should be documented.

B.6 Expecting but not getting a collection: The method name suggests that a col-
lection should be returned, but a single object or nothing is returned.

B.7 Get method does not return corresponding attribute: A get method does not
return the attribute suggested by its name.

C.2 Method signature and comment are opposite: The documentation of a method
is in contradiction with its declaration.

D.1 Says one but contains many : An attribute name suggests a single instance,
while its type suggests that the attribute stores a collection of objects.

D.2 Name suggests Boolean but type does not : The name of an attribute suggests
that its value is true or false, but its declaring type is not Boolean.

E.1 Says many but contains one: Attribute name suggests multiple objects, but its
type suggests a single one.

F.2 Attribute signature and comment are opposite: Attribute declaration is in con-
tradiction with its documentation.

2.2 Structural and Readability Metrics

There exists a depth of research about how various structural aspects of source code
can affect both the readability of the source code and impede the comprehension
of developers. Buse and Weimer Buse and Weimer [2010] conduct a large scale
study investigating code readability metrics and find that structural metrics such
as the number of branching and control statements, line length, the number of
assignments, and the number of spaces negatively affect readability. They also
show that metrics such as the number of blank lines, the number of comments,
and adherence to proper indentation practices positively impact readability.

Metrics such as McCabe’s Cyclomatic Complexity [McCabe, 1976], nesting
depth, the number of arguments, Halstead’s complexity measures [Halstead , 1977],
and overall number of lines of code have also been shown to impact code readabil-
ity [Posnett et al., 2011].

Table 1 lists method level metrics that have been shown to correlate with read-
ability and comprehensibility [Buse and Weimer , 2010; Halstead , 1977; McCabe,
1976; Posnett et al., 2011; Scalabrino et al., 2016]. A subset of these metrics, which
are bold in the table, are used in our study.

2.3 Functional Near Infrared Spectroscopy (fNIRS)

Functional Near Infrared Spectroscopy is an optical brain imaging technique that
detects changes in oxygenated and deoxygenated hemoglobin in the brain by using
optical fibers to emit near-infrared light and measure blood oxygenation levels.
The device we use is the fNIR100, a stand-alone functional brain imaging system,
in the shape of a headband, produced by BIOPAC [2018a]. It measures blood
oxygenation levels in the prefrontal cortex, which is sufficient as studies have shown
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Table 1: Method level metrics. The ‘+’ symbol indicates that a feature is positively
correlated with high readability and comprehensibility of the code, and the ‘-
’ symbol indicates the opposite. The number of symbols indicate how strongly
correlated each feature is. Three is high, two is medium, and one is low.

Feature Corr. Feature Corr.

Cyclomatic Complexity – – – Halstead vocabulary –

Number of Arguments – – – Halstead length –

Number of operands – – – Number of casts –

Class References – – – Number of loops –

Local Method References – – – Number of expressions –

Lines of Code – – – Number of statements –

Halstead effort – – Variable Declarations –

Halstead bugs – – Number of Comments + +

Max depth of nesting – – Number of Comment Lines + +

External Method References – – Number of Spaces + +

Halstead volume – Number of operators +

Halstead difficulty –

that mentally demanding tasks require resources in the prefrontal cortex [Causse
et al., 2017]. Overall, the device is light weight, portable, and easy to set up.

Light sources are arranged on the headband along with light detectors. The
light sources send two wavelengths of near-infrared light into the forehead, where
it continues through the skin and bone 1 to 3cm deep into the prefrontal cor-
tex. These light sources and detectors form 16 distinct optnodes which allow the
fNIR100 to collect data from 16 distinct points across the prefrontal cortex. Biolog-
ical tissues in the prefrontal cortex are relatively transparent to these wavelengths,
but the oxygenated and deoxygenated hemoglobin are the main absorbers of this
light. After the light scatters in the brain, some reaches the light detector on the
surface. By determining the amount of light sensed by the detector, the amount of
oxygenated and deoxygenated hemoglobin in the area can be calculated using the
modified Beer-Lambert Law [Delpy et al., 1988]. Because these hemodynamic and
metabolic changes are associated with neural activity in the brain, fNIRS measure-
ments can be used to detect changes in a person’s cognitive state while performing
tasks [Treacy Solovey et al., 2015]. For example, fNIRS has been successfully used
to detect task difficulty in real-time on path planning for Unmanned Air Vehicle
tasks [Afergan et al., 2014] and tasks designed to invoke working memory [Fishburn
et al., 2014]. The hemodynamic response has been show to have a delay of around
six seconds, from the time of exposure to a specific stimulus. [Kruggel and von
Cramon, 1999] Therefore, when analyzing fNIRs data, researchers must account
for this delay.

From the measured oxygenated hemoglobin (HbO) and deoxygenated hemoglobin
(HbR) concentration levels we are able to calculate HbT, which is the total hemoglobin
HbO + HbR, as well as Oxy, which is the difference between HbO and HbR and
reflects the total oxygenation concentration changes. In this study, we use Oxy,
which has been shown in a wide variety of studies [Fishburn et al., 2014; Girouard
et al., 2009; Herff et al., 2014] to be a function of task difficulty, as a measure of
cognitive load during the various code reading tasks.

Due to the fact that fNIRS devices are highly sensitive to motion artifacts and
light, users should remain relatively still and not touch the device during recording.
Before any analysis can take place, fNIRS data must be refined and filtered to
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Fig. 1: The fNIRS sensor has 4 light sources and 10 detectors. The 16 optnode
locations are mapped on the device.

remove any motion artifacts and noise, as well as to exclude data collected by
individual optnodes that may not have been fit properly against the forehead.
These optnodes are usually optnodes 1 and 15, which are located on the outer
edge of the device, near the user’s hairline. These optnodes are easily identifiable
as they show patterns of either sharp peaks and dips or remain flat. optnode
configuration can be seen in Figure 1. The exclusion of an optnode does not effect
the data collected by other optnodes. To remove noise, all data is filtered using
a linear phase, low pass filter that attenuates high frequency components of the
signal. We use the filtering provided by Biopac’s fNIRSoft [BIOPAC , 2018b]. If
a user has any unexpected movement, such as sneezing or coughing, we place a
marker in the data and such peaks are excluded during the data analysis process.

Fig. 2: The actual experimental setup. The image shows one of our authors wearing
the fNIRS on her forehead, with the eyetracker placed at the base of the computer
monitor.
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2.4 Eye tracking

There are an ample amount of studies within the eye tracking research domain that
give insight into visual attention patterns and behavior during reading tasks [Sharafi
et al., 2015b] [Sharafi et al., 2015a]. For example, fixations, which are defined as
a relatively steady state between eye movements, and fixation duration, which
is the amount of time spent in one location. Research suggests that processing
of visual information only occurs during a fixation and that fixation duration is
positively correlated with cognitive effort [Rayner , 1998]. Therefore, we will use
fixation duration to determine areas participants spent a substantial amount of
time reading.

We use the EyeTribe eye tracker [EyeTribe, 2018] throughout this experiment.
The EyeTribe offers a sampling rate of 60 Hz and an accuracy of around 0.5–1
degrees of visual angle which translates to an average error of 0.5 to 1 cm on a
screen (19–38 pixels). To mitigate the effects of this error we set the font size of the
source code to 18 pt which translates to an average error of one to three characters.
The 60 Hz sampling rate of the EyeTribe is not suitable for eye tracking studies
that study saccades, however it is appropriate for our purpose of investigating
fixations within the source code [Ooms et al., 2015]. We calibrate the eye tracker
using 16 gaze points (as opposed to 9 or 12 points) to cover the screen with
higher accuracy. To ensure the integrity of the eye tracking data collected, only
calibration quality that is rated as 4 out of 5 stars or higher is accepted for use in
the experiment. Calibration quality at these levels indicate an error of <0.7 and
0.5 degrees (less than 19–30 pixels) respectively.

Participants use the Eclipse IDE [Eclipse, 2018] as their environment during
the experimental tasks. We will be using iTrace [Shaffer et al., 2015], a plugin
for Eclipse that interfaces with the eye tracker to determine what source code
elements the participants are looking at. We extend the iTrace plugin to identify
source code elements at a lower level of granularity, which is terms that compose
identifiers. iTrace has a fixation filter to filter out noisy data that may arise due to
errors from the eye tracker. This filter estimates fixations on source code elements
using the median and joins fixations that are spatially closer together within a
threshold radius of 35 pixels (3 characters).

Figure 2 shows one of the authors with the complete experimental setup, in-
cluding the eyetracker, fNIRS device and computer setup that was used by the
participants during the study.

3 Methodology

The goal of this study is two-fold: First, to determine if fNIRS and eye tracking de-
vices can be used to successfully capture high cognitive load within text or source
code, at a word level of granularity. Second, to determine if structural or lexical
inconsistencies within the source code increase developers’ cognitive load during
software comprehension tasks. The perspective is that of researchers interested in
collecting and evaluating empirical evidence about the effect of poor lexicon and
readability of source code on developers’ cognitive load during software compre-
hension.



Title Suppressed Due to Excessive Length 9

3.1 Research Questions

More precisely, the study aims at answering the following research questions:

1. RQ1: Can developers’ cognitive load be accurately associated with identifiers’
terms using fNIRS and eye tracking devices?
Why? : fNIRS and eye tracking devices have not previously been used to assess
cognitive load at an identifier level of granularity. Therefore, we must first
determine if our methodology is capable of automatically determining areas of
high cognitive load correctly at low level of granularity.
How? : We ask participants to perform a comprehension tasks and then explore
the similarity between fixations on text highlighted by participants as difficult
to comprehend and fixations that are automatically classified as having high
cognitive load.

2. RQ2: Do inconsistencies in the source code lexicon cause a measurable increase
in developers’ cognitive load during program comprehension?
Why? : Linguistic antipatterns are perceived negatively by developers as they
could impact program understanding [Arnaoudova et al., 2016]. We introduce
linguistic antipatterns to source code snippets to determine if they also cause
an increase the cognitive load of developers.
How? : We ask participants to perform bug localization tasks on a snippet
that does not contain lexical inconsistencies and on one that does. We then
explore the average cognitive load experienced on the two snippets as well as
the percentage of fixations that contain high cognitive load in each snippet.

3. RQ3: Do structural inconsistencies related to the readability of the source code
cause a measurable increase in developers’ cognitive load during program com-
prehension?
Why? : Various structural aspects of the source code can affect its readability.
We want determine if these factors also affect the cognitive load of developers.
How? : We ask participants to perform bug localization tasks on a snippet that
contains structural inconsistencies and on one that does not. We then explore
the average cognitive load experienced on the two snippets.

4. RQ4: Do both structural and lexical inconsistencies combined cause a measur-
able increase in developers’ cognitive load during program comprehension?
Why? : We explore a combination of lexical and structural inconsistencies to
determine if, when both factors are combined, they cause an increase in the
cognitive load of developers.
How? : We ask participants to perform bug localization tasks on a snippet that
contains both structural and lexical inconsistencies and on one that does not.
We then explore the average cognitive load experienced on the two snippets.

5. RQ5: Does the presence of inconsistencies in the source code lexicon affect the
cognitive load of developers over an entire source code snippet or only over the
identifiers that are involved in the inconsistencies?
Why? : When answering research questions 2-4 we use the average cognitive
load experienced over an entire snippet to determine if the treatment ef-
fected participants. However, participants could initially struggle to understand
source code due to the various treatments, but eventually get past the incon-
sistencies and figure out an alternative way to solve the problem. Therefore,
we want to use temporal eyetracking and fNIRS data to observe cognitive load
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fluctuations more precisely over the course of the task. This is the primary mo-
tivation behind RQs 5 – 7. For RQ5 in particular, if we observe overall increased
cognitive load for source code snippets that contain linguistic antipatterns, we
want to determine what areas of the source code the increase cognitive load
comes from.
How? : We compare the normalized Oxy distributions over identifiers from con-
trol snippets and those from LA treatment snippets. Identifiers from LA treat-
ments that contain LAs are separated from those that do not contain LAs.
This allows us to determine if cognitive load is spread between these two dis-
tributions, or if it stems only from identifiers that contain LAs. We also rank
identifiers in control snippets and LA snippets by the average normalized Oxy
to determine which identifiers have high cognitive load in both control and LA
treatments.

6. RQ6: Is participant performance, in terms of success rate and task duration,
affected by the presence of lexical and structural inconsistencies?
Why? : Difficult tasks are expected to cause an increase in cognitive load of
developers but also they could have a lower success rate and higher task du-
ration. We want to determine how structural and lexical inconsistencies affect
these performance metrics.
How? : We calculate the task duration of each participant completed task and
assess the answers from the post analysis survey to determine if a bug local-
ization task was successfully completed or not.

7. RQ7: Does fixation duration significantly increase over identifiers containing
lexical inconsistencies?
Why? : Fixation duration has been shown to be positively correlated with cogni-
tive effort [Rayner , 1998] and has been used in software engineering to measure
the visual effort experienced by participants [Binkley et al., 2013; Sharafi et al.,
2012; Sharif et al., 2012]. In this research question we want to determine if fix-
ation duration increases over identifiers that contain linguistic antipatterns.
How? : We calculate the fixation duration over unique identifiers in control and
LA versions of each treatment snippet. We then test for significant between
the duration distributions for each method.

8. RQ8: Are self-reported measures consistent with cognitive load and fixation du-
ration data?
Why? : Different approaches can be used to measure task difficulty. Self-reported
measures are the easiest to collect during experiments but they might not be
always accurate [Hochstein et al., 2005]. Fixation duration has been shown to
be positively correlated with cognitive effort [Rayner , 1998]. In this work, we
measure Oxy as it has been previously shown that it is a function of task dif-
ficulty [Fishburn et al., 2014; Girouard et al., 2009; Herff et al., 2014]. This
research question investigates whether these three ways of measuring task dif-
ficulty are consistent.
How? : We use answers from the post analysis survey to determine the difficulty
rating of each task. We also calculate the average Oxy and fixation duration
per participant task, and perform a pairwise test for correlation between the
three metrics.
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3.2 Source Code Snippets

In an effort to replicate real life development environment as close as possible
we aim at identifying four code snippets from open-source projects to use in our
experiment. Snippets had to meet the following criteria:

– Participants must be able to understand the snippet on its own, without too
many external references.

– The snippets must be around 30-40 lines of code including comments so that
all chosen snippets take similar time to comprehend without interference due
to length.

– The snippets should be able to be altered in such a way that a reasonably
difficult to detect semantic defect can be inserted.

– The snippets should be able to be altered to contain Linguistic Antipatterns.

The snippets were chosen from JFreeChart, JEdit, and Apache Maven projects.
Two snippets were chosen Apache Maven—methods replace and indexOfAny (from
StringUtils.java), one from JEdit—method LoadRuleSets (from SelectedRules.java),
and one from JFree-Chart—method calculatePieDatasetTotal (from DatasetUtili-
ties.java). After conducting a pilot study to assess the suitability of each snippet
we discarded method LoadRuleSets from JEdit as it required a good understand-
ing of surrounding source code and domain knowledge. Thus, the experiment is
performed with the remaining three code snippets.

3.2.1 Altering Snippets

In this section we first describe how original snippets are altered to contain bugs
to become control snippets. Then, we describe how control snippets are altered
to contain either linguistic antipatterns, structural inconsistencies, or both. All
snippets and treatments can be found online in our replication package [Fakhoury ,
2018].

Bugs

Source code snippets are altered to contain a semantic fault. Participants are asked
to locate the fault as a way to trigger program comprehension. Semantic defects
are inserted in the code snippets as opposed to syntactic defects, which can be
found without deep understanding of source code snippets. All bugs inserted are
one line defects, inserted at around the same location in the code snippets to
control for any unwanted location-based effect (i.e., finding a defect earlier if it
located higher up in the code).

Linguistic Antipatterns

Section 2.1 describes a subset of the catalog of LAs defined by Arnaoudova et al.
[2013]. We alter the snippets to contain the listed LAs. Due to the limited number
of code snippets it is impossible to include all seventeen LAs, which is why a subset
is selected. We aimed at including a variety of antipatterns that arise in method
signatures, documentation, and attribute names.
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For example, listings 1 and 2 show the control and LA treatments respectively
of the same snippet. In this example, we modify the method signature to intro-
duce LA A.3 (“Set” method returns). We also add documentation to describe an
if statement that is not implemented in the source code to introduce LA B.1 (Not
implemented condition). We intoduce LA C.2 (Method signature and comment are
opposite) by indicating in the comment that the ’last index’ is found instead of
the ’first’ index. LA D.1 (Says one but contains many) relates to renaming the
array ’searchStrings’ to ’potentialString’ which both suggests a singular instance
instead of plural and reflects a more ambiguous meaning than the original term.

/** <p>Find the first index of any of a set of potential substrings.</p>

* <p/>

* <p><code>null</code> String will return <code>-1</code>.</p>

*

* @param string the String to check

* @param searchStrings the Strings to search for

* @return the first index of any of the searchStrings in string

* @throws NullPointerException if any of searchStrings[i] is

<code>null</code> */

public static int firstIndexOfAny( String string, String [] searchStrings)

{

if ( ( string == null ) || ( searchStrings == null ) )

{

return -1;

}

// String’s can’t have a MAX_VALUEth index. So begin by initilizing

resultIndex to max int value.

int resultIndex = Integer.MAX_VALUE;

int temp;

for ( String searchString : searchStrings )

{

...

}

Listing 1: Part of source code snippet with control treatment.

/**

* <p>Find the last index of any of a set of potential substrings.</p>

* <p/>

* <p><code>null</code> String will return <code>-1</code>.</p>

* if the case of the substring matches that of the case within the string

* return this value first.

*

* @param string the String to check

* @param potentialString the Strings to search for

* @return the first index of any of the potentialString in string

* @throws NullPointerException if any of potentialString[i] is

<code>null</code> */

public static int setFirstIndexOfAny(String string, String [] potentialString)

{

.....

}

Listing 2: Comment and method signature for snippet with LA treatment.
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Structural and Readability Metrics

We alter the code snippets to change the values of a subset of the metrics de-
scribed in Section 2.2 that have been shown to correlate with the readability and
comprehensibility of code snippets. Snippets are formatted in a way that is against
conventional Java formatting standards in order to reduce readability. This implies
opening and closing brackets are not on their own lines and are not indented prop-
erly. Metrics that are described as having negative correlation to readability, such
as number of loops, are increased in the snippet. Metrics that are shown to have
positive correlation to readability, such as number of comments, are decreased in
the snippet.

Recall the example presented in the previous section. Code listing 3 contains a
part of the snippet with the structural treatment that corresponds to the control
snippet shown in code listing 1. Examples of changes here include modifying iden-
tifier terms so that they do not follow camelCase typesetting, reducing the number
of comment lines and spaces, increasing the number of parameters, variable dec-
larations, expressions, if statements, and lines of code. We also format the source
code against typical java conventions, for example, indentation and brackets are
misaligned.

/**

* <p>Find the first index of any of a set of potential substrings.</p>

* <p/>

* <p><code>null</code> String will return <code>-1</code>.</p>

*/

public static int firstindexofany( String string, String [] searchstrings,

int numbOfStrings)

{

int notfound =-1;

if ( searchstrings == null ){ return notfound;

}

if(string ==null) return notfound;

int resultindex

= Integer.MAX_VALUE;

int temp; int i;

for ( i=0; i< numbOfStrings; i++)

{

...

}

Listing 3: Part of source code snippet with structural treatment.

3.3 Participants

The participants were recruited from a pool of undergraduate and graduate Com-
puter Science students at the authors’ institution. A total of 70 participants indi-
cated their interest by filling out an eligibility survey. Participants were asked to
complete an online eligibility survey to ensure that they have some programming
experience, thus we require that they must have taken at least one introductory
course in C++ or Java. This is to make sure the participants will be able to
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Table 2: Participants’ demographic data.

Demographic Variables # Partic. # New

Programming Languages C++ 5 2
Java 1 3
Both 9 5

Degree Pursuing or Completed Bachelor 8 6
Master 2 2
PhD 5 2

Table 3: Study design.

Comprehension Task Bug Localization Task

# Partic. Snippet 1 Snippet 2 Snippet 3

Group 1 7 Prose Control LA Structural
Group 2 5 German Code LA & Structural Control LA
Group 3 8 Prose LA Structural LA & Structural
Group 4 5 German Code Structural LA & Structural Control

navigate the source code for the tasks and provide legitimately informed input.
Participants receive a $15 giftcard as compensation for participation.

Due to constraints with the eye tracker device used, participants who require
the use of bi-focal or tri-focal glasses, or are diagnosed with persistent exotropia
or esotropia, are considered ineligible to participate as the eye tracking data may
be significantly impacted. Twenty five participants satisfied the eligibility criteria
and participated in the experiments. The remaining students who indicated their
interest either did not satisfy the eligibility requirements or did not complete the
experiment scheduling process. Table 2 summarizes the programming language in
which participants describe themselves as more proficient and their educational
background.

3.4 Study Design

Participants are randomly assigned to one of four different groups, following a
balanced design. Each group is shown one comprehension task snippet and three
bug localization code snippets. The order of the type of treatment received is
randomized to ensure the order of which the tasks are completed does not affect
the data. Table 3 summarizes the design of the experiment.

Different groups contain different number of participants to account for data
collection issues that would otherwise cause an imbalance in the number of tasks
included in data analysis. The table contains the number of participants in each
group. Participants have between 1-15 years of programming experience, with an
average of around 3.5 years of experience, first quartile at 2 and the third quartile
at 4 years.
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Fig. 3: Overview of the experimental procedure.

3.5 Procedure

Figure 3 illustrates the steps of experimental procedure1. Each step has an esti-
mated time for completion, determined through a pilot study. Overall, the exper-
iment is planed to take no longer than one hour. Each step is described in the
following sections.

3.5.1 Setup

The researcher explains every step of the experiment to the participants before-
hand to ensure that they understand the experimental procedure and what is
expected of them. Participants are given a consent form to read and sign if they
agree. Next, participants are fit to the fNIRS device and positioned in front of the
eye tracking device, computer screen, and keyboard. After this, the participant is
asked to relax and a baseline for the fNIRS is conducted. Participants are then
asked to calibrate the eye tracker by using their eyes to follow a sequence of dots
on the screen in front of them. Anytime a baseline is conducted throughout the
experiment, participants are shown a video of fish swimming for one minute. This
has been used in similar fNIRS research studies to provide a controlled way to
relax participants.

3.5.2 Comprehension Task

To answer RQ1, participants are shown either a short code snippet or a comment
containing a paragraph of an English prose. The code snippet contains easy to
comprehend identifiers in English as well as difficult to comprehend identifiers in
a language that the participant is not familiar with (i.e., German). The prose task
was taken from an appendix of GRE questions used to test reading comprehension,
and we used one reading comprehension question related to the text to assess com-
prehension. For both prose and code snippets, participants are asked to carefully
go through the task, reading the text carefully. Upon completion, participants are
asked describe the functionality of the code snippet or answer the comprehension
question to ensure that they have properly understood the text and thus engaged
throughout the task.

3.5.3 Bug Localization Task

The bug finding task allows us to answer RQ2– RQ8. During this task participants
are shown a relatively short code snippet on the computer screen. They are told

1 The experiment was approved through a full board review for human subject research from
the Institutional Review Board (IRB) at Washington State University (IRB #16113).
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that the code contains a semantic bug and that they should locate the fault in the
code. Participants are asked to continue the task until they find the bug but they
are also given the option to end the task if no bug could be found.

We create four versions for each code snippet. Thus, a code snippet shown to
a participant will be from one of the following categories:

(1) Code snippet containing a bug and lexical inconsistencies as described in Sec-
tion 2.1.

(2) Code snippet containing a bug and poor structural/readability characteristics
as measured by the metrics described in Section 2.2.

(3) Code snippet containing a bug and both lexical inconsistencies and poor struc-
tural/readability characteristics, (i.e., categories (1) and (2)).

(4) Code snippet containing a bug and no lexical inconsistencies or poor struc-
tural/readability characteristics, (i.e., the control snippet).

3.5.4 Follow-up Questions

In this step participants fill out a questionnaire about the snippet they have read.
They are asked to explain if the code snippet provided in the bug localization task
had any features that impeded their task of finding the bug, and if yes to describe
the feature of interest and highlight it. They are also asked to rate, on a scale of
1 to 5 the effort taken to find the bug (1 being ’little to no effort’ and 5 being
’considerable effort’). These follow-up questions are used to add another level of
validation to our results.

3.5.5 Rest Period

Participant are asked to relax for a minute so that a new fNIRS baseline is recorded
to ensure that the measured cognitive load is not impacted by the strain of the
previous task.

3.5.6 Post Analysis

The features of interest for each code snippet shown to the participant will be
revealed and the participant will be asked questions about comprehension and the
impact of the features.

Eye tracking and fNIRS data is only collected during the comprehension and
bug finding tasks. Steps outlined in blue are repeated three times, sequentially,
per participant before moving onto the post analysis survey.

3.6 Pilot Study

A pilot study is conducted with four participants so that every snippet/treatment
combination can be assessed. During the pilot study we make sure that bugs can
be found within a reasonable amount of time and that they are not too difficult
or too simple. We also determine if the experiment layout can be done within
a reasonable amount of time (1 hour) and does not induce unneeded fatigue for
the participants. Initially, we included four bug localization tasks, and decided to
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Fig. 4: Highlighting Tool Interface, used to tag source code snippets. The figure
shows the tool in as it is displayed to the user in the participant highlight mode.

reduce this to three. One of the snippets that was initially chosen makes references
to external methods; it was discarded after the pilot study.

3.7 Analysis Method

3.7.1 Tagging Source Code Snippets and Gaze Data

Before answering the research questions presented in Section 3.1 we must tag the
source code snippets with specific information needed to carry out the analysis.
For example, which identifier contain Linguistic Antipatterns, which areas of the
code are affected by structural elements, and which areas of code were highlight-
ed/commented on by participants. To facilitate the analysis, we built a tool that
takes source code files and synchronized eye tracking and fNIRS data files and acts
as an interface to highlight and tag source code snippets. We then map these tags
to the corresponding gazes in the eye tracking data. We can then analyze gazes
by looking at their corresponding fNIRS data, in addition to any structural/LA
data and highlights/comments left by participants. Figure 4 shows the UI for
the highlight tool, where participants can highlight specific areas of source code
and add comments to explain highlighted areas. The tool also allows researchers
to highlight identifiers that contain linguistic antipatterns and structural defects.
Figure 5 shows the UI for tool that generates the visualization of Oxy and eye
tracking data. The tool creates a heatmap using color to indicate Oxy levels for
each fixation; we use the tool during post analysis surveys.
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Fig. 5: Visualization Tool Interface, used to generate Oxy heatmaps using fixation
data.

3.7.2 High Cognitive Load

In order to determine fixations that contain high cognitive load, we analyze the
Oxy values over the entire source code snippet. We classify fixations containing
Oxy values in the highest 20% to be indicative of high cognitive load. Additionally,
we calculate fixations that cause a peak, or a sharp increase in cognitive load, as
causing high cognitive load. We refer to both of these high cognitive load points
as ’points of interest’. A sharp increase is defined as a delta between two imme-
diate fixations that is in the highest 10% of delta values. In order to obtain the
most accurate classification of high cognitive load data points, we use participants’
highlighted identifiers as a ground truth to determine the percentage thresholds
of 20% for overall Oxy and 10% for delta values. Therefore, it is important that
participants accurately highlight areas of code and identifiers during the follow
up question portion of the experiment. We choose the thresholds that balance be-
tween classifying the maximum number of highlighted identifiers as high cognitive
load, while still not over classifying fixations that are not highlighted. Thresholds
are optimized using a subset of 7 out of 25 participants.
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3.7.3 Optnodes

FNIRS data is susceptible to noise thus proper placement of the device on a
participant’s forehead is crucial to data acquisition. Sometimes however, certain
optnodes do not record data or are incredibly noisy. For example, if the device
is too large for a participant’s forehead an optnode might not be in contact with
the skin, or could be obstructed by hair. In these cases, the data from the noisy
optnodes must be filtered out. We have made two observations: 1) generally, data
from uncompromised optnodes follows a similar trend and 2) optnodes that are
compromised either significantly diverge from the trend and contain sharp changes
in HBO, or do not have any data at all. The Spearman correlation evaluates a
monotonic relationship between any two continuous variables that change together
but not necessarily at a constant rate. Therefore, in order to determine which
optnodes should be rejected we calculate the Spearman correlation matrix for
each optnode pair using raw HBO data. An average correlation is calculated for
each column in the matrix. We then experiment with rejection thresholds using
data from 5 participants. We choose to retain optnodes with average correlation
coefficient greater than 0.3. We find that this threshold only excludes optnodes
that are clearly noisy while not assuming all optnodes should follow the same
trend too closely.

3.7.4 Feature Scaling

Due to natural biological differentiation between participants and inherent HbO
and HbR concentration differences in the prefrontal cortex, raw Oxy values cannot
be reliably compared across subjects. Within subject comparisons can also be
problematic. For example, if the baseline values for the fNIRS are sampled while
the participant is not properly relaxed for one snippet, and then again while the
participant is relaxed for another snippet, raw Oxy data will be skewed. To mitigate
this, we normalize all raw Oxy data using feature scaling before comparing within
participant. Feature scaling is a method used to standardize a range of independent
variables within the dataset. To normalize Oxy values to a range between 0 and 1
inclusive, we use the following formula:

normalizedOxy =
Oxyraw −Oxymin

Oxymax −Oxymin

(1)

where Oxyraw is the raw Oxy value, Oxymin is the minimum Oxy value recorded
over the snippet and Oxymax is the maximum Oxy value recorded over the snippet.
Similar normalization on fNIRS data was performed by Ikutani and Uwano Ikutani
and Uwano [2014].

3.7.5 fNIRS and Eye Tracking Data

Raw data collected from the fNIR device is first preprocessed using fnirSoft, soft-
ware provided by Biopac, the manufacturers of the device. This preprocessing in-
volves appling the modified Beer-Lamber Law [Baker et al., 2014] and a low pass
FIR filter of order 20. We do not apply any preprocessing to the eyetracker data.
To map fNIRS data to fixation points we use the output from our modified version
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of iTrace using system time as our reference point. Figure 6 outlines the data syn-
chronization process between the fNIRS and eye tracking data. To accommodate
for the natural delay in the hemodynamic response in the brain to an external
stimulus, such as reading source code, the fNIRS fixation data is synchronized to
the eye tracking data with a delay of 6 seconds [Kruggel and von Cramon, 1999].
Fixation data may not always be consistent with the areas of code that partici-
pants highlighted during the post analysis questions. This is due to participants
error of omission during the follow-up questions phase. In such cases, participants
are asked to verify fixation data at the end of their experiment session. We use
our visualization tool to identify areas of high cognitive load and peaks during
the post analysis step of the procedure. These are then shown to the participants
and they are asked about specific areas of code where we identify fixations with
high cognitive load and are not highlighted by the participants. If the participants
agree with the data, they are given the choice to highlight additional sections.

Fig. 6: This figure illustrates how the flow of data from fNIRS and eye tracking
devices is collected and synchronized.

3.7.6 Simple Matching Coefficient (SMC)

To answer RQ1, we use the Simple Matching Coefficient [Sokal , 1958]—a statistic
used to compare similarity between two or more datasets. SMC is similar to the
Jaccard index but counts mutual presence (when an attribute is present in both
sets) and mutual absence (when an attribute is absent in both sets). The Jaccard
index only counts mutual presence. We use SMC to calculate the similarity between
the fixations on identifiers that are highlighted by participants and the set of
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fixations that are flagged as having high cognitive load. This way we count mutual
absence (no high cognitive load, and not highlighted code) as part of the similarity
to assess the algorithm used to determine high cognitive load.

3.7.7 Kruskal Wallis Hypothesis Test

To answer RQ2, RQ3, and RQ4 we need to determine if there is a significant
increase between the average normalized Oxy on treatment snippets compared to
the average normalized Oxy on control snippets. For the above research questions,
we use the Kruskal-Wallis hypothesis test, a non-parametric statistical test used
to compare two or more independent samples, to assess whether the population
medians differ. The Kruskal-Wallis test requires 5 or more observations, which
makes it more suitable as compared to other non-parametric tests, considering
our population sample size. Our null hypothesis is that there is no difference
between the normalized average Oxy values for the control snippets and treatment
snippets. Our alternative hypothesis is that the normalized average Oxy values for
the control snippets are lower than the normalized average Oxy values for the
treatment snippets.

3.7.8 Mann Whitney U Test

To answer RQ5 we consider the normalized Oxy values of all fixations from control
and LA treatment tasks. LA task fixations are further filtered by fixations over
identifiers that contain linguistic antipatterns and those that do not. There are
three distinct distributions of normalized Oxy values that we compare. We use the
Mann Whitney U test, a non-parametric statistical test used to determine if two
independent samples are from the same distribution. Our null hypothesis for RQ5

is that there is no difference between the normalized Oxy values for the control
snippets and fixations that contain LAs and those that do not contain LAs from
the LA snippets. Our alternative hypothesis is that the normalized average Oxy
values for the control snippets are lower than the normalized average Oxy values
for the LA and non-LA fixation groups.

To answer RQ7 we investigate the duration of fixations over identifiers from
LA treatment snippets that contain linguistic antipatterns and identifiers from
control treatment snippets from the three different bug localization source code
snippets. To take into account the frequency of identifier fixations, we aggregate the
duration of fixations over the same identifiers together, within the same participant
and task. Thus, for all identifiers, we calculate the sum of duration times. Our null
hypothesis is that there is no difference between the duration of fixations in control
snippets and fixations in LA treatment snippets. Our alternative hypothesis is that
the duration of fixations in control snippets are lower than those in LA treatment
snippets.

3.7.9 Cliff’s Delta (d) Effect Size

After performing the Kruskal-Wallis test, we measure the strength of the differ-
ence between the average normalized Oxy on treatment snippets and the average
normalized Oxy on control snippets. Cliff’s delta (d) effect size [Grissom and Kim,
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2005] is a non-parametric statistic estimating whether the probability that a ran-
domly chosen value from one group is higher than a randomly chosen value from
another group, minus the reverse probability. Possible values for effect size range
from -1 to 1, with 1 indicating there is no overlap between the two groups and all
values from group 1 are greater than the values from group 2, -1 indicating there
is no overlap between the two groups but all values from group 1 are lower than
the values from group 2, and 0 indicating there is a complete overlap between the
two groups and thus there is no effect size. The guideline for interpreting effect
size between 0 and 1 is as follows: 0 ≤ |d| < 0.147: negligible, 0.147 ≤ |d| < 0.33:
small, 0.33 ≤ |d| < 0.474: medium, 0.474 ≤ |d| ≤ 1: large.

3.7.10 Kendall’s Rank Correlation Coefficient

Kendall’s Rank Correlation Coefficient is a non-parametric test to measure the
strength of dependence between two variables based on ranks of the data. The
correlation coefficient can range between -1 (perfect negative correlation) to +1
(perfect positive correlation). To answer RQ8 we use Kendall’s Rank Correla-
tion Coefficient to determine the relationship between self-reported task difficulty,
cognitive load, and eye tracking data.

3.7.11 Identifier Ranking

For RQ5, to investigate which identifiers contain the highest normalized Oxy we
generate a ranking of identifiers. Fixations over the same identifiers from control
snippets are grouped within file, across participants and the normalized Oxy mean
is generated. Similarly, a mean Oxy value is calculated for each distinct identifier in
LA snippets. We calculate the mean Oxy so that identifiers are ranked by cognitive
load, independent of the number of fixations, and duration over the identifier.

Similarly, for RQ7 we generate a ranking with the identifiers that were looked
at the longest, across all participants.

4 Results

We conducted experiments with 10 new participants, for a total of 25 experiments
including the initial 15 participants from our previous work [Fakhoury et al., 2018].
We collected data for 100 tasks; each participant completes 4 tasks, one compre-
hension task and three bug localization tasks. We discarded 8 out of the 100 tasks.
For 3 of the 8 tasks, the participants appeared to be in a hurry and did not spend
the time to try and understand the source code snippet, in two cases stating that
the structure of the code was off putting. In 2 tasks there was an issue with the
generated eye tracking data files, in 2 other tasks the participant clicked outside
of the IDE, which stops iTrace from collecting gaze data, and in the last task the
fNIRS baseline was improperly conducted.

RQ1: Can developers’ cognitive load be accurately associated with identifiers’
terms using fNIRS and eye tracking devices?

Table 4 contains the SMC values calculated between fixation data containing
identifiers highlighted by participants and fixations that have high cognitive load
values. SMC values in the table are reported for each participant, according the
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the task treatment type they received. Data for the task of one participant was
discarded due to data collection issues. The average SMC for the two comprehen-
sion snippets, German code and English prose, is 0.73 and 0.76 respectively, with a
total average of 0.74. This means that 74% of the fixations are correctly identified
as having high cognitive load and are highlighted by the participant, or do not
have high cognitive load and are not highlighted by the participant.

Achieving 100% similarity is probably too optimistic. For code snippets that
contain German code, for example, participants cannot be expected to reliably
highlight all parts of the code that may have caused confusion or that caused
them difficulties. For instance, some parts of source code may cause an initial
increase in cognitive load, such as a computational statement, and is picked up
by the fNIRS. However, this statement might not be registered as something the
participant deems as confusing or difficult to understand and is therefore not
highlighted.

With respect to our previous work [Fakhoury et al., 2018], we observe an 8%
drop (from 81% to 73%) for the German code and a slight increase for the prose
(from 74% to 76%).

When exploring the nature of the discrepancy over the remaining 27% of the
data points—i.e., analyzing the fixations that are not highlighted by participants—
we find that three participants exhibit high cognitive load for fixations over ”if
statements” containing computations, two participants exhibit cognitive load over
statements that contain return statements, one participant exhibits high cognitive
load on a German comment, and one participant exhibits high cognitive load
initially, at the very beginning of the code snippet. One participant exhibits high
cognitive load over the line of code: if(pos < 0), when asked if this statement
indeed caused any confusion, the participant explained that it is not a confusing
statement, but that it requires some effort to understand and recall the variable
pos.

When analyzing the English prose treatment regarding the fixations recorded
as containing high cognitive load and not highlighted by participants, we see that
three participants exhibit high cognitive load over the comprehension questions
and five participants exhibit high cognitive load on words that are in sentences
that contain other highlighted words. This could be due to cognitive load carried
out from difficult words to other parts of the sentence, or participants might be
more inclined to highlight the most problematic words rather than all words that
posed difficulty.

RQ1 Summary: Using fNIRS and eye tracking devices, developers’ cognitive
load can be accurately associated with identifiers in source code and text, with
a similarity of 74% compared to self-reported high cognitive load.

RQ2: Do inconsistencies in the source code lexicon cause a measurable increase
in developers’ cognitive load during program comprehension?

Figure 7 contains the distribution of normalized Oxy averages calculated per
participant and task, for all treatment types.

There are a total of seventeen participants that completed tasks with the con-
trol treatment and fifteen participants that completed tasks with LA treatment.
Thirteen participants were able to complete bug localization in the control snippets
successfully, ten participants were able to complete bug localization in the lexi-
cal snippets. Performing the Kruskal-Wallis test we obtain a significant p-value
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Table 4: Similarity between fixations with high cognitive load and highlighted
fixations. SMC values are reported for each participant, according to the type of
treatment task they received.

Treatment SMC Treatment SMC

German Code 0.61 Prose 0.81
0.63 0.76
0.84 0.91
0.70 0.93
0.75 0.75
0.72 0.87
0.67 0.56
0.72 0.77
0.58 0.65
0.81 0.60
0.92 0.74
0.82 0.80

Average 0.73 Average 0.76

Total Average 0.74

Fig. 7: Normalized Oxy Averages Calculated Per Snippet for all Treatments.

(p − value = 0.005), with a large effect size (d = −0.992), which indicates that
the presence of linguistic antipatterns in the source code significantly increases the
average Oxy a participant experiences. Results are consistent with results of our
previous work [Fakhoury et al., 2018], which was conducted on a smaller popula-
tion.

From the post analysis survey, we observe that participants made comments
on source code containing linguistic antipatterns in 14 out of 20 tasks. Six partici-
pants highlighted linguistic antipattern B.1 (Not implemented condition), where a
condition in a method comment is not implemented. Two of these two participants
showed high cognitive load when reading the line of comment that was not im-
plemented and all six participants explicitly stated that they spent time searching
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the code for the unimplemented condition but could not find it. Also, five par-
ticipants highlighted linguistic antipattern C.2 (Method signature and comment
are opposite). One such example in the code snippets is that method signature is
getPieDatasetTotals while the comment states sets the calculated total of all the

values in a PieDataset. One participant highlighted that such linguistic antipat-
tern is confusing. This participant as well as two other participants who stated
that they were able to filter out the inconsistency between method names and
comments showed high cognitive load on fixations over the source code containing
the LA. Only three participants commented on identifiers that contained linguis-
tic antipattern E.1 (Says many but contains one), stating that they were poorly
named. One participant only noticed the linguistic antipattern after it was pointed
out to them, after which they immediately realized it had actually confused them
during the task because were ”thinking of the identifier as multiple values”.

RQ2 Summary: The existence of linguistic antipatterns in the source code
significantly increases the cognitive load experienced by participants.

RQ3: Do structural inconsistencies related to the readability of the source code
cause a measurable increase in developers’ cognitive load during program compre-
hension?

In Figure 7 we can observe the distribution of normalized average Oxy for snip-
pets with control and structural treatments. We include data for a total of nineteen
participants that completed a structural treatment. Eleven participants were able
to complete bug localization in the structural snippets. Results from the Kruskal-
Wallis test are not statistically significant (p− value = 0.246), with a small effect
size (d = −0.281), which indicates that there is no evidence that structural incon-
sistencies alone increase the average cognitive load that participants experience
during program comprehension in the context of a bug localization task. These re-
sults are also consistent with results found in our previous work [Fakhoury et al.,
2018] on a smaller population.

From the post analysis survey, we observe that participants made comments on
source code containing poor structure in 18 out of 20 tasks. 16 participants found
that poor structure, including incorrect indentation and breaking one line of code
into multiple lines, creates frustration and slows down their performance in bug
localization tasks. One participant commented that “terrible formatting severely
increases readers burden”. Only two participants commented that the structure
was not confusing since they were able to click on opening brackets to find the
associated closing brackets in the Eclipse IDE. However despite this frustration,
there is no evidence that structural inconsistencies increase the average cognitive
load that participants experience.

RQ3 Summary: Although participants found structural inconsistencies to be
frustrating, there is no statistical evidence that structural inconsistencies in-
crease the average cognitive load that participants experience.

RQ4: Do both structural and lexical inconsistencies combined cause a measur-
able increase in developers’ cognitive load during program comprehension?
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In Figure 7 we can observe the distribution of normalized average Oxy for
snippets with both control and LA & structural treatments. We include data for
17 participants who completed a task containing both structural and lexical incon-
sistencies. Seven of these participants successfully completed the bug localization
task. Performing the Kruskal-Wallis test did not show statistically significant re-
sults (p−value = 0.624), with a small effect size (d = −0.120), meaning that there
is no evidence that structural inconsistencies combined with linguistic antipatterns
significantly increase the cognitive load that participants experience. These results
are also consistent with results found in our previous work [Fakhoury et al., 2018]
on a smaller population.

Interestingly, for four participants, the average Oxy over control snippets is
higher than over snippets containing the LA & structural treatment. Using the
post analysis survey, as well as the snippets questionnaire we observe that all four
participants were mislead by the structural and linguistic elements when they are
part of the same treatment. All four participants failed at locating the bug in the
code, which indicates that the treatment did negatively affect their comprehension
of the code. For the participants that did correctly locate the bug, their average
cognitive load is considerably higher compared to the control snippets (i.e, 0.19
and 0.51 difference between treatments for two of the participants).

From the post analysis survey, two participants highlighted LA F.2 (Attribute
signature and comment are opposite), where the comment states min double value

while the attribute is assigned with value Integer.MAX VALUE. Both participants
found this linguistic antipattern misleading, prolonged their task, and showed high
cognitive load. All participants who identified structural inconsistencies in source
code highlighted that such inconsistencies caused distractions and prolonged the
bug localization task. Only one participant commented that although the inden-
tations was frustrating, it did not hinder bug localization.

RQ4 Summary: There is no evidence that structural inconsistencies combined
with linguistic antipatterns significantly increase the cognitive load that partic-
ipants experience. However, source code containing both lexical and structural
inconsistencies mislead more than 55% of the participants. Participants who
successfully completed the bug localization tasks experienced higher cognitive
load on code containing both inconsistencies compared to the control snippets.

So far, RQ1 – RQ4 have used average cognitive load over an entire snippet
to determine if treatments effected participants. Next, we will use temporal data
from eye tracking and fNIRS devices to observe cognitive load fluctuations more
precisely over the course of the task.

RQ5: Does the presence of inconsistencies in the source code lexicon affect the
cognitive load of developers over an entire source code snippet or only over the
identifiers that are involved in the inconsistencies?

Table 5 contains the p-values from the Mann-Whitney U tests. The amount of
cognitive load over fixations that contain linguistic antipatterns is significantly dif-
ferent compared to the cognitive load of fixations from control snippets, with, large
effect size (d = 1). Higher cognitive load is also experienced by participants over
fixations that do not contain linguistic antipatterns in the LA treatments compared
to fixations that do not contain linguistic antipatterns in the control treatments,
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Table 5: Mann Whitney U test p-values for Normalized average Oxy of fixations
in LA and Control treatments.

Treatment/Fixation Control / non-LA Fixations LA / LA Fixation

LA / LA Fixations 0.00047 -

LA / non-LA Fixations 0.038 0.00011

with large effect size (d = 0.83). These results suggest that the cognitive load
due to the presence of linguistic antipatterns is not experienced in isolation but
instead, the overall understanding of a piece of source code is affected.

However, when testing between fixations that contain LAs and those that do
not contain LAs within the LA treatment snippets, we obtain a p−value of 0.00011
with large effect size (d = 1). Meaning that identifiers that do contain linguistic
antipatterns cause a significantly higher increase in cognitive load as compared to
those that do not contain LAs within the same treatment.

Next, to investigate which identifiers contain the highest normalized Oxy we
generate a ranking of identifiers. In the LA treatment version of the calculatePie-
DatasetTotal snippet, the top ranked identifier is int currentValues which is altered
to contain linguistic antipattern E.1 (Says many but contains one). This identifier
is used multiple times throughout the snippet and is part of the bug. However,
the corresponding identifier in the control treatment value is not among the top
ranking identifiers. The majority of the top ranked identifiers for the LA snippet
are on comments whereas for the control version, the highest ranked identifiers are
mostly on if statements and external method calls. Identifiers relating to the bug
and the iterator class are highly ranked in both treatments.

For the LA treatment version of indexOfAny, the top ranked identifier is from
the comment begin by initializing resultIndex to min double value, which was al-
tered to contain the linguistic antipattern F.2 (Attribute signature and comment
are opposite). However, the corresponding comment in the control version of the
method is ranked as the 4th highest. This comment precedes the initialization
of resultIndex and it is directly involved in the bug for the snippet, which could
explain the relatively high ranking in both treatments.

The top identifier rankings for the LA and control treatments of the method
replace are very different. Similar to the other two snippets, identifiers with linguis-
tic antipatterns are among the top ranked identifiers, however identifiers related
to the bug are also highly ranked in both snippets. Several identifiers that do not
contain linguistic antipatterns or bugs are also highly ranked. This suggests that
Oxy is spread out over the entire source code snippets and is not only concentrated
on specific identifiers.

RQ5 Summary: The presence of LAs significantly increases the cognitive load
of developers both throughout the entire source code snippet as well as over the
specific areas in the source code that contain linguistic antipatterns. However,
identifiers involved in LAs are associated with significantly higher cognitive
load compared to other identifiers in the same code snippet.
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Table 6: Bug localization task results: success rate and time.

Treatment # Participants # Bugs Found (%) Avg. Time (min:sec)

Control 17 13 (76.4%) 3:21
LA 20 13 (65.0%) 5:13
Structural 20 11 (55.8%) 4:03
LA & Structural 18 8 (44.4%) 4:57

RQ6: Is participant performance, in terms of success rate and task duration, af-
fected by the presence of lexical and structural inconsistencies?

Overall, 44 out of 75 bug localization tasks were completed successfully. The
distribution of successfully completed tasks for the four treatment groups is shown
in Table 6. In the control group, 76.4% of the bugs were found with average time of
3.35 minutes. The success rate decreases as linguistic antipatterns and poor struc-
ture characteristics are added (65% and 55.8%, respectively). At the same time,
the average time spent on bug localization increases as linguistic antipatterns and
poor structure characteristics are added (5:13 min/sec and 4:03 min/sec, respec-
tively). When both linguistic antipatterns and poor structure are present in the
code snippets, only 44.4% of the bugs were found successfully with an average time
of 4:57 min/sec. The outcome shows that the presence of structural and lexical
inconsistencies slows down participants and even hinders bug localization.

It is interesting to note that the success rate for snippets with structural treat-
ments are the lowest. This could be due to the fact that at an initial glance, in
structural treatments, participants see that there are obviously problems with the
source code. This could cause participants to be less careful about trying to fully
comprehend the code, and prematurely report a bug, even though they have not
finished understanding the code.

RQ6 Summary: Participants spend more time reading snippets that contain
lexical or structural inconsistencies. We observe the lowest success rate in
treatments that contain both lexical and structural inconsistencies.

RQ7: Does fixation duration significantly increase over identifiers containing
lexical inconsistencies?

Table 7 contains the number of fixations and participants per task, for each
code snippet as well as the results from the Mann Whitney U test for the difference
between the fixation duration in control and LA snippets.

For CalculatePieDatasetTotal and indexOfAny we obtain a p − value of 0.480
(MedianC=592, MedianL=610, U=294151) and 0.102 (MedianC=593, MedianL=610,
U=860865.5), respectively, which indicates that the amount of time spent by par-
ticipants reading identifiers in control and LA snippets is not significantly differ-
ent. For replace, we obtain a p − value of 0.026 (MedianC=562, MedianL=594,
U=1160845.5), which indicates the distributions are significantly different.

In order to further understand on which identifiers participants focus the most,
we rank them by duration in both treatments, for each snippet, from the highest
to the lowest value. In the control treatment version of calculatePieDatasetTotal,
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Table 7: The total number of fixations, the number of participants, and the p-
values when comparing fixation duration between control and LA snippets.

Source code snippet Control Lexical Duration
Treatment Treatment p-value

CalculatePieDatasetTotal
# Fixations 1259 335

0.48
# Participants 6 5

replace
# Fixations 1271 301

0.026
# Participants 4 5

indexOfAny
# Fixations 1685 490

0.102
# Participants 5 5

the top identifier is from the line of code ParamChecks.nullNotPermitted(dataset,

"dataset"); which is an external Java class. In the post analysis survey, participants
that highlighted this line of code explained that they weren’t familiar with the class
thus they either read the javadoc or guessed the functionality of the class based
on the preceding comment. Indeed, the next highest ranked identifier is from the
comment ”if the dataset contains negative or null values they are ignored” which
directly explains the functionality of the ParamChecks class. The next highest ranked
identifier is totalValue which is used multiple times throughout the source code
snippet. The bug localization task for this file involves this identifier directly which
could explain why it is so highly ranked. If we look at the highest ranked identifiers
from the LA treatment version of the calculatePieDatasetTotal snippet we find a
very different ranking. The top identifier for the LA treatment of this snippet is
double currentValues. This identifier corresponds to the identifier double v from the
control snippet, but was altered to contain linguistic antipattern E.1 (Says many
but contains one), where the identifier name (currentValues) suggests a collection,
but the type (double) does not. The next highest ranked identifier is from the
statement iterator.next() which is in a while loop. Participants who highlighted
this line of code in the post analysis survey said that they looked at this identifier
multiple times while mentally executing the while loop. The identifier ParamChecks

from ParamChecks.nullNotPermitted(dataset, "dataset"); is also highly ranked in the
LA snippet.

We perform the same analysis for indexOfAny. The highest ranked identifier for
the control snippet is temp which is used multiple times throughout the method and
is directly related to the bug in the code. The next highest rated identifier is indexOf
from the statement temp = string.indexOf(searchString). Both temp and indexOf are
highly rated in the LA treatment version of the snippet as well, which could
mean that executing the indexOf statement mentally is inherently more complex
as compared to the rest of the code. We find that the top rated identifier for the
LA snippet is from statement resultIndex = Integer.MAX VALUE. resultIndex is also
highly ranked in the control snippet, and is related to the bug. Both identifiers
searchStrings and the equivalent identifier in the LA treatment potentialString,
which was altered to introduce linguistic antipattern D.1 (Says one but contains
many), are similarly ranked in both treatments.

When ranking identifiers for the control and LA treatment versions of snip-
pet replace, we notice very similar ranking between the two. The top two iden-
tifiers in both treatments are from buf.append() and text.indexOf() statements.
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(a) Control treatment

(b) Structural treatment

(c) LA treatment

(d) LA & Structural treatment

Fig. 8: Task difficulty as per self-reported, cognitive load, and fixation duration
data.

StringBuilder, text.length(), replacementCount are all among the top 7 identifiers
with the highest duration in both treatments.

RQ7 Summary: Fixation duration increases significantly over identifiers in-
volved in LAs for only one of the three code snippets.

RQ8: Are self-reported measures consistent with cognitive load and fixation
duration data?

To answer this research question we look at participant rated task difficulty
per treatment type. We asked participants to rate the difficulty of each bug local-
ization task on a scale from 1 to 5, 1 being the lowest and 5 being the highest.
Figure 8 contains the distributions of their answers per treatment type. We also
plot cognitive load and fixation duration data on the same graph, with the values
normalized to the 5 point scale. The median difficulty rating for control snippets
is 2 (see Figure 8a). Two participants that rated two control treatment of snippet
indexOfAny as 4 and 5 were not able to find the bug. LA treatment snippets and
structural treatment snippets have a median difficulty rating of 3 (see Figure 8b
and 8c, respectively), whereas snippets containing both LA and structural incon-
sistencies are rated as 3.5 (see Figure 8d). We calculate Kendall’s Tau correlation
coefficient between self-reported task difficulty, average normalized Oxy, and fix-
ation duration to determine if the three metrics are consistent with each other.
Table 8 contains the correlation coefficients by treatment type. The correlation co-
efficients between self-reported task difficulty and cognitive load are weak across
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all treatments, ranging from 0.060 to -0.007. Similarly, for fixation duration and
cognitive load correlation values range between 0.15 and -0.23. The correlation co-
efficients for self-reported task difficulty and fixation duration are relatively higher,
with a moderate correlation for control and LA & structural treatment but still
with a weak correlation for LA and structural treatments.

Overall, our data shows that there is very little correlation between these three
metrics, which suggests that they are capturing different aspects of difficulty. For
instance, fixation duration captures the visual effort of participants over different
areas of the source code. Oxy captures the cognitive load experienced at different
points in the source code. And self-reported task difficulty is an overall subjective
assessment of how difficult the task was as perceived by participants.

In fact, we find that in 7 out of 9 cases where we observe high Oxy but low self-
reported difficulty, the bug localization tasks were successfully completed. Thus,
while participants are to some extent positively affected by the satisfaction of
successfully completing the task and rate it as relatively easy, Oxy values capture
the cognitive load associated with the entire process of mentally executing the
source code and searching for the bug. Moreover, we notice that when participants
do not have an idea of what the bug could be, they consistently rate the task
as difficult, yet their average Oxy ranges from 0.37 to 0.56 which is relatively
low to medium cognitive load. If participants thought they knew what the bug
was, they were more likely to rate the task as easier, even if it was incorrect.
Participant’s cognitive load data is a measurement of how hard their brain is
working to understand a piece of source code. To successfully complete a bug
localization task, a participant must mentally execute the code in their mind and
have a deep understanding of how the code works. If the participant cannot do
this, their cognitive load will not increase, and thus it will not be captured by the
fNIRS. Tasks that are not fully understood by participants may not increase their
cognitive load, but they are inclined to rate them as more difficult because they
did not have an idea where the bug could be. This could explain the discrepancy
between the distribution of cognitive load data and the self-reported task difficulty.

RQ8 Summary: Self-reported task difficulty, cognitive load, and fixation du-
ration largely do not correlate and appear to be measuring different aspects of
task difficulty. Fixation duration captures the visual effort of participants over
different areas of the source code. Oxy captures the cognitive load experienced
at different points in the source code. Self-reported task difficult appears to
be influenced by participants’ confidence on their performance.

5 Discussion

Previous work used fNIRS to measure cognitive load during program comprehen-
sion tasks [Ikutani and Uwano, 2014; Nakagawa et al., 2014] . In this work, we
confirm the feasibility of using fNIRS as a tool for measuring cognitive load in
the context of bug localization tasks performed by developers. Furthermore, we
establish the feasibility of combining fNIRS and eyetracking data to allow analysis
at a very fine level of granularity within the source code, i.e., program identifiers.
Thus, we establish a methodology and a framework that allows future research to
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Table 8: Kendall Correlation coefficient between Self-Reported (SR), Cognitive
Load (Oxy), and Eye Tracking Fixation Duration (ET)

Treatment SR & Oxy SR & ET Oxy & ET

Control 0.069 0.52 0.15

LA -0.17 0.028 -0.23

Structural -0.007 0.32 0.09

LA & Structural -0.009 0.61 0.1

tackle new research questions in the domain of software engineering that pertain
to program comprehension in a less restrictive environment compared to fMRI.
The implication of this methodology on the software engineering research commu-
nity is not only the availability of empirical and objective evaluations of cognitive
load, but also the opportunity to compare and contrast cognitive load, self re-
ported, and various psycho-physiological metrics that capture different aspects of
program comprehension.

At a high level, our results show that inconsistencies in the source code have
significant effects on the cognitive load, success, and time spent to comprehend
source code. We provide empirical evidence that confirm the importance of clean
code, both in terms of its lexical and structural aspects.

Our results also show that three metrics for comprehension, namely: fixation
duration, cognitive load, and self reported task difficulty, show very little correla-
tion. Future work should identify in which context each of those metrics must be
used and whether a combination of them is needed to fully understand different
aspects of program comprehension.

Future studies need to design experiments with developers with varying expe-
rience levels, as experience might play a significant role in the amount of cognitive
load that developers experience during a program comprehension task. This will
allow us to answer questions about how different inconsistencies or code smells in
the source code effect different groups. For example, developers with more expe-
rience could have certain expectations about how source code should look, which
may cause them to be more confused than novices with no expectations when
such inconsistencies are encountered. On the other hand, we might also be able
to identify which factors are the most detrimental to novice programmers, which
will enable a better understanding about how to effectively educate students.

6 Threats to Validity

This section discusses the threats to validity that can affect our study. A com-
mon classification [Wohlin et al., 2000; Yin, 1994] involves five categories, namely
threats to conclusion, internal, construct, external, and reliability threats.

Threats to conclusion validity relate to issues that could affect the ability to
draw correct conclusions about relations between the treatment and the outcome
of an experiment. There is always heterogeneity in a study group. If the group is
very heterogeneous, there is a risk that the variation due to individual differences
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is larger than the one due to the treatment. Our experiment is conducted with
only undergraduate and graduate students instead of a general population of de-
velopers. This reduces the heterogeneity, however participants have a diverse range
of experience. We plan to investigate this in our future work. Another threat to
conclusion validity may come from the statistical tests used to draw conclusions.
Since the collected data cannot be assumed to be normal, we use non-parametric
statistical tests.

Threats to internal validity concern the relation between the independent and
dependent variables and factors that could have influenced the relation with re-
spect to the causality. One potential confounding factor is the programming ex-
perience of participants. The code snippets used in our study are written in Java
but 18 out of 25 participants consider that they are more proficient in C++ and 5
participants have no previous experience in Java. This might cause an increase in
cognitive load. However, that would impact the results for all treatments equally
and thus does not invalidate our comparison of different treatment groups. Another
threat here might be that as participants perform bug localization tasks, they can
become tired or less motivated as time passes. To mitigate this threat, we asked
feedback from students in the pilot study regarding the length and difficulty of
the snippets to ensure that the experiment is designed with an appropriate length,
which is around 1 hour. To minimize the effect of the order, in which participants
use the treatments, the order is assigned randomly to each participant. Similarly,
the order in which participants complete tasks could affect the results of our study.
Participants could potentially find later tasks easier to complete as they learn from
earlier tasks. To mitigate this threat, we randomly shuffle the order the code snip-
pets and treatment types received by each participant. Another threat could come
from the calibration of thresholds to define high cognitive load. Indeed, different
calibrations could have produced different results, and also indirectly affected the
assessment of the proposed approach. The threshold is experimentally determined,
however, this does not guarantee that the choice is optimal for every single human
subject. Studies have shown that there exist differences in cortical oxygenation
between young individuals (age below 50) as compared to elderly individuals (age
above 50) [Ehlis et al., 2014]. However, by design, all of the participants are stu-
dents, with the majority of them working towards a bachelor’s degree. We did
not collect their age but all of them are definitely below 50. Thus, our study is
not impacted by this threat. If the study was to be replicated with professional
developers, age would be a confounding factor that needs to be considered.

Threats to construct validity concern the relation between theory and obser-
vation. In this study, construct validity threats are mainly due to measurement
errors. As for bug localization tasks, all code snippets within the same treatment
groups are designed to be with the same difficulty level, which can be affected
by subjectivity of the researchers. If we conduct the experiment with a different
set of code snippets, the results might not be the same. To mitigate this threat,
performed a pilot study to ensure that the code snippets are at a similar level of
difficulty.

Threats to external validity concern the generalizability of the findings outside
the experimental settings. A potential threat to external validity in this study
might come from the use of students as participants in the experiment rather than
professional developers, which can raise doubts about how transferable the results
are to the software industry. However, research has shown that given a carefully
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scoped experiment on a development approach that is new to both students and
professionals, similar performances are observed [Salman et al., 2015]. We believe
that students are expected to show similar performance as professionals when
asked to perform bug localization on an open-source application that they are not
familiar with. Another potential threat is the selection of the code snippets, which
may not be representative of the studied population. To mitigate this threat, we
extracted code snippets from 2 different open-source applications from GitHub. We
selected code snippets between 30 and 40 lines of code to ensure that participants
will finish the bug localization tasks within an hour. However, results might be
different on snippets with different length and complexity.

Threats to reliability validity concern the ability to replicate a study with the
same data and to obtain the same results. We provide details on the selected code
snippets and their altered versions in our replication package [Fakhoury , 2018].
Moreover, we are currently working on publishing the extension of iTrace and our
visualization tool online.

7 Related Work

7.1 Proxies of Source Code Comprehensibility

Several research studies investigate the relationship between low quality code,
characterized by code smells and antipatterns, and proxies for code maintainability,
comprehensibility, and readability.

For example, Butler et al. [2009] evaluated the quality of identifier names
in 8 established open source Java application libraries using a set of 12 identifier
naming guidelines. They found statistically significant associations between flawed
identifiers and code quality issues as reported by FindBugs, a static analysis tool.

Khomh et al. [2012] investigated the relationships between classes affected by
antipatterns and their susceptibility to changes, issues, and unhandled exceptions
in 13 releases of the Eclipse project. They found that these classes were negatively
impacted on all three aspects i.e., they were changed more often, and were more
susceptible to both issues and throwing unhandled exceptions. They concluded
that the cost of ownership of systems containing such classes would be higher due
to the time spent repairing issues caused by these classes. Similarly, Jaafar et al.
[2013] analyzed static and temporal relationships between classes containing an-
tipatterns and those that do not, from three open source projects. They found that
in all releases of the projects, classes having static relationships with antipatterns
and those that co-changed with antipatterns were more fault prone than those
that didn’t have these relationships.

More recently, Aghajani et al. [2018] investigated the effects of linguistic an-
tipatterns on a large scale dataset of 1.6k releases of Maven libraries, 14k open
source Java projects using these libraries and 4.4k questions related to the use
of these libraries on StackOverflow. They found that statistically, linguistic an-
tipatterns had some effect on the likelihood of introducing bugs (29% higher) and
of triggering StackOverflow questions, although their qualitative analysis did not
allow them to reveal any explanation for the phenomenon. Their findings call for
additional controlled experiments to allow for a better isolation of the effect of
linguistic antipatterns.
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7.2 Psycho-Physiological Measures in Software Engineering

A broad range of studies have explored the use of psycho-physiological measures
to investigate cognitive processes and states in software engineering. Eye tracking
metrics such as pupil size, saccades, and fixation duration have been used in com-
bination with other biometric measures to investigate cognitive processes during
software engineering tasks. For example, Fritz et al. [2014] combined EEG, eye
tracking, and electrodermal activity (EDA) to investigate task difficulty during
code comprehension. Participants performed mental execution of code and the
authors were able to successfully predict the perceived task difficulty.

Similarly,Müller and Fritz [2016] conducted a study using heart rate variability
and EDA. They associated biometric data to specific areas of code changed by
developers through the use of interaction logs in Eclipse and were able to use
the data to predict code quality concerns within areas of changed source code.
Lee et al. [2017] used a combination of EEG and eye tracking metrics to predict
task difficulty and programmer expertise. They found that both metrics could
accurately predict expertise and task difficulty.

Although various psycho-physiological measures have proven to be successful
measures of cognitive processes within the domain, brain imaging techniques as
measures of cognitive states remain a relatively new trajectory of research in em-
pirical software engineering. The first fNIRS study within the domain of software
engineering was conducted by Nakagawa et al. [2014] in which they investigated
oxygenation changes in the prefrontal cortex as a response to mental code execu-
tion tasks of varying difficulty. They discovered a correlation between increased
blood flow in the prefrontal cortex and difficulty of the task. The experiment was
conducted with 10 subjects and involved showing them code snippets on a sheet
paper.

To the best of our knowledge the only other fNIRS study conducted within
the domain was by Ikutani and Uwano [2014], who used fNIRS to investigate the
effects of variables and control flow statements on blood oxygenation changes in
the prefrontal cortex. They were able to conclude that oxygenation changes in
the prefrontal cortex reflect working-memory intensive tasks. Their experiment
involved 11 participants reading code on a screen that consisted of arithmetic and
control flow statements.

The first fMRI study within the domain was conducted by Siegmund et al.
[2014] where participants were asked to read short source code snippets and find
syntax errors in an effort to measure program comprehension in the brain. They
discovered a network of brain areas activated that are related to natural language
comprehension, problem solving, and working memory. Another fMRI study con-
ducted by Siegmund et al. [2017] was conducted with the aim of isolating specific
cognitive processes related to bottom up and top down comprehension strategies.
11 participants were asked to find syntax and semantic bugs in code that was
altered to either remove semantic cues or obfuscate code through formatting and
indentation changes. They found evidence of semantic chunking during bottom-up
comprehension and lower activation of brain areas during comprehension based on
semantic cues. Most recently, Peitek et al. [2018] have begun exploring the use of
eye tracking and fMRI together, to map brain activation to specific areas in the
source code. Results show that it is feasible to use eye tracking in fMRI machines,
however, there are considerable advancements that still need to be made to im-
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prove the reliability and accuracy of these tools. Floyd et al. [2017] also conducted
an fMRI study, inspired by the work of Siegmund et al., which aimed to compare
areas of brain activation between source code and natural language tasks. They
use activation patterns to successfully predict which tasks were being completed.

FMRI machines are able to capture brain activity deep within the brain and
across all regions of the brain, whereas most fNIRS models only capture activity
in certain lobes, and closer to the surface of the brain. This means that fMRI may
be able to capture brain activation relevant to software engineering tasks that the
fNIRS cannot. Duraes et al. [2016] used fMRI to observe 13 professional developers
as they solved a bug fixing task and confirmed that brain areas associated with
language processing and mathematics were highly active during the code review
process, and were able to identify activity in the anterior insula region positively
correlated to the precision of the bug fixing. Castelhano et al. [2018] studied profes-
sional developers with high expertise and confirmed the importance of the insula
region in source code comprehension, bug detection and decision-making.

However, although fMRI does provides increased spatial resolution over fNIRS
imaging techniques, participants in fMRI studies are asked to read code from a
mirror placed within the fMRI machine. This significantly impacts the type and
length of the code snippets that can be used. Moreover, it is difficult to simulate
real life working conditions that developers are used to with studies using fMRI.
The portability and minimally restrictive nature of the fNIRS device allows a more
realistic simulation of a real working environment. Moreover, to the best of our
knowledge, no previous studies map and analyze biometric data at such fine level
of granularity that is terms that compose identifiers. Instead, conclusions are made
about the entire source code snippets. Finally, our work is the first to empirically
investigate the effect of source code lexicon and readability on developers’ cognitive
load.

8 Conclusion

This work provides a methodology to measure developers’ cognitive load at a
low level of granularity, i.e., terms composing program identifiers. To validate our
methodology we conduct a study with 25 participants to measure the effect of
lexical and structural inconsistencies on their cognitive load while performing bug
localization tasks. Our findings show that 1) the methodology is accurate, 2) the
studied inconsistencies have a negative impact on developers’ cognitive load and
their performance (in terms of time and success rate), and 3) developers’ cognitive
load as measured here using fNIRS and Eye Tracking devices captures a different
aspect of task difficulty compared to self-reported measures and fixation duration.

As part of our future work, we plan to explore how structural and linguistic in-
consistencies effect novice and professional developers during software engineering
tasks. We hope to identify factors that are most detrimental to program com-
prehension for novices, so that we can learn how to effectively educate students.
Moreover, we plan to further investigate the type of information captured by dif-
ferent types of metrics that characterize task difficulty to allow for more accurate
task difficulty prediction.
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