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CrossMark
Abstract
Gravitational wave observatories have always been affected by tele-seismic
earthquakes leading to a decrease in duty cycle and coincident observation
time. In this analysis, we leverage the power of machine learning algorithms
and archival seismic data to predict the ground motion and the state of the
gravitational wave interferometer during the event of an earthquake. We
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demonstrate improvement from a factor of 5 to a factor of 2.5 in scatter of
the error in the predicted ground velocity over a previous model fitting based
approach. The level of accuracy achieved with this scheme makes it possible
to switch control configuration during periods of excessive ground motion
thus preventing the interferometer from losing lock. To further assess the
accuracy and utility of our approach, we use IRIS seismic network data and
obtain similar levels of agreement between the estimates and the measured
amplitudes. The performance indicates that such an archival or prediction
scheme can be extended beyond the realm of gravitational wave detector sites
for hazard-based early warning alerts.

Keywords: GW detectors, seismic Rayleigh waves, earthquake early
warning, machine learning

(Some figures may appear in colour only in the online journal)

1. Introduction

With the advent of gravitational wave (GW) astronomy, it is essential to maximize the duty
cycle of second-generation gravitational-wave detectors such as the Laser Interferometer
Gravitational-wave Observatory (LIGO) [1], Virgo [2], and GEO600 [3] detectors. Any
increase in duty cycle increases the sensitivity of GW searches, including the observations
of binary black hole mergers and binary neutron stars [4—10]. GWs from these induce small
displacements in the detectors, which are designed to be free from environmental disturbances
and limited only by processes of fundamental physics. These detectors are subject to non-
Gaussian noise transients due to either internal behavior of the instrument or interactions
between the detector and its environment [11]. To minimize the effect of the environment,
the LIGO detectors contain 200000 auxiliary channels which are designed to monitor both
the behavior of the instrument and the environmental conditions. A subset of these is physical
environmental monitor sensors, including seismometers, magnetometers, microphones, and
many others. Advanced LIGO [1] and Advanced Virgo [2] have in particular driven the devel-
opment of both seismic [12] and rotation [13] sensors. Seismic sensors in particular are useful
for measuring any source of ground motion that can couple into the interferometers. LIGO
seismic isolation systems by means of passive and active isolation provide noise suppression
above 0.1 Hz [14-16] but are not effective against earthquake-related ground motion [17, 18].
The surface waves so produced hinder the process of keeping the instrument at a linear oper-
ating point and often induces higher frequency noise by up-converting low-frequency optical
motion.

Earthquake early warning (EEW) is a burgeoning field dedicated to the rapid detection
and characterization of earthquakes as well as the dissemination of that information to people
and infrastructure in their path [19-28]. Worldwide, many seismic and geodetic (GPS) sensor
arrays exist that produce rapid earthquake information products, from magnitude and location
estimates to regional centroid moment tensors (CMTs) and advanced slip inversions. With
wide-ranging public warning systems in Mexico and Japan and smaller-scale systems in many
other countries, warnings from seconds to minutes are now available to reduce the impact
of earthquakes on society [28]. The short warning times arise out of the physical processes
that drive the earthquake rupture, where the warning is given by seismometers measuring
P-waves (~8 km s !) and S-waves (=4 km s~!). Reliability of these estimates are one of the
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most important aspects of EEW systems. Their improvements generally rely on increasing the
number of stations involved in the warning decisions as well as increasing alarm thresholds on
ground motion, both seeking to limit the number of false positives [29]. Both of these strate-
gies come at the cost of decreasing the warning time. As these systems minimize the time
required to calculate the source parameters of earthquakes (i.e. their location and magnitude),
it becomes important to predict with high accuracy the ground motion that the earthquakes
will cause as a function of location and distance.

This paper is organized as follows: section 2 talks about the sensitivity of the GW interfer-
ometers to earthquakes and the previous attempts to model them. In section 3 we describe how
the seismic data was obtained at the site as well as the IRIS seismic array [30, 31]. Section 4
describes the deployed regression and clustering techniques and their requirements. Finally,
the relative performance of various prediction algorithms along with the ability to guess the
state of the interferometer are covered in section 5.

2. Impact assessment

Figure 1 depicts the distribution of global seismic events and their respective effect on the state
of the GW interferometers during LIGO’s first and second observation run. The orange circles
(scaled as per the magnitude) represent scenarios where the ground motion was high enough
to cause instabilities leading to a loss of resonance in the cavity (lockloss). Sensitivities to
parameters such as magnitude and surface wave amplitude are shown in figure 2 where the
steepness of the curve indicates higher sensitivity to the respective parameter. As expected,
LLO is seen to be more vulnerable to ground shaking which can be attributed to its local
geology and soil properties [32]. The primary goal of LIGO/Virgo EEW methods would be to
generate reliable relations between earthquake source parameters and ground motion metrics.
Examples in the time domain include peak ground acceleration, peak ground velocity, and
peak ground displacement, while in the frequency domain there are spectral accelerations,
velocities, displacements and predominant periods [33]. Early estimates of magnitudes tend
to underestimate the energy released from the tectonic motion and hence the early estimates
of ground velocity amplitudes often tend to be not as accurate as the later values. The effects
of these errors are particularly pronounced for larger earthquakes, where the estimates of the
fault lengths become more important. Thus, these larger earthquakes tend to have their ampl-
itudes under-predicted. The loss of performance that results from use of the rapid estimates is
acceptable for the purpose of issuing rapid warnings. Direct displacement measurement based
on non-inertial GPS instruments has been shown to generate rapid magnitude estimates within
the first minute of rupture and in many cases even before rupture is complete [34].

In previous work, we used advances in early earthquake warning to develop a low-latency
earthquake early warning client named Seismon [18]. This system uses a real-time event mes-
saging system of the U.S. Geological Survey (USGS) to mitigate the effects of tele-seismic
events on ground-based gravitational-wave detectors. Using information about the earthquake
source characteristics such as magnitude, depth, and distance from the site, ground motion
velocity at the site was predicted. In the initial version of the algorithm, we used an empirical
fit to an equation derived to account for physical effects. This equation succeeded in predicting
peak ground velocity such that 90% of events had a measured ground velocity within a factor
of five of the predicted value. Although the fit was derived with physical effects in mind, it
was predominantly an empirical construction. To make accurate assessments of whether the
gravitational-wave detectors will be affected, we prefer the relative error in the ground veloc-
ity predictions, Rfymp, to be close to a factor of two, which is much smaller than the factor



Class. Quantum Grav. 36 (2019) 085005 N Mukund et a/

18300 ) 7.900
® ®
° l ° l
- las00 E - las00

0 3 Status = L Status
o > X = In Lock S > 3 = In Lock
J o A 4 . = Lockloss /' i 4 * Lockloss
$ g0 - K L g o R O
52 -M\ & 2* 2 . o "eus
0 .
[ 2 3
§ : iy \ g Ch
5000 km 5000 km
5000 mi 5000 mi

Figure 1. Impact of earthquakes happening worldwide on LIGO Interferometers
at Hanford and Livingston. Points marked in orange indicate the instances when
the resulting ground the motion lead to a loss of control over the ability to keep the
interferometer at its operating point resulting in a lockloss.

of five scatter seen. These predictions have two purposes. Firstly, they provide a meaning-
ful metric which on-site-staff at the detectors can use to plan the response to the incoming
earthquake. The response could be in the form of switching seismic isolation loops to steer
the interferometer to a more robust configuration keeping it locked although with a lesser sen-
sitivity [35]. The predictions also serve as inputs to the algorithms that make predictions on
upcoming downtime, which could be utilized to perform opportunistic maintenance to rectify
problems typically scheduled for weekly maintenance periods.

3. Methods: seismic data

The first part of our analysis uses data obtained from the GW sites. For each earthquake event
from the archival database, we take the vertical component of broadband data which is con-
verted to ground velocity (m/s) using a frequency dependent calibration factor appropriate for
each seismometer. Time-series are chosen to encompass the P-wave arrival and surface wave
calculated assuming a (very conservative) seismic velocity of 2 km s~! [36]. As the seismom-
eters located at the end and center stations observe similar values for the relevant frequency
band, we use the center station sensor for rest of our analysis.

We also perform an analysis of seismic time-series that were made available through IRIS
seismometer array, covering the last ten years. These stations covering all the conterminous
US states (see figure 4) have time-series with response between 10 mHz to 10 Hz. A variety
of sources including anthropogenic and atmospheric disturbances contribute to the observed
seismic signal. One source present across the world is the oceanic microseism around 0.3 Hz
that dominate seismic ground spectra everywhere on Earth [37-40]. Systematic processing
of IRIS data from January 2006 to November 2017 lead us to create a database of around
733208 earthquakes. The analysis was restricted to earthquakes with magnitude ranging from
6.0 to 9.1, which covers the range that is likely to significantly effect the gravitational-wave
detectors. In section 5 we report the performance of the prediction scheme in the presence of
variation in local seismic spectra arising from affects such as local geology, topography and
proximity to urban settlements.
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Figure 2. Plot shows the sensitivity of both the LIGO detectors to earthquakes in terms
of distance to the hypocenter from the surface, earthquake magnitude and the Rayleigh
wave amplitude.

4. Methods: MLA description

Machine learning (ML) has recently become an important aspect of EEW and seismology
in general. For example, the MyShake EEW system uses artificial neural networks to dif-
ferentiate earthquake and human motions, with 98% of earthquake records within 10 km of
the epicenter correctly identified, and only 7% of people-induced transients appearing to be
earthquakes to the algorithm [41]. They have been used to differentiate earthquakes from other
seismic transients [42—44], discriminate between deep and shallow micro-earthquakes [45]
and to add to undersampled or missing traces [46]. In addition, they have been used to make
full-wave tomography images [47]. The idea of our analysis is to compare historical ground
velocity measurements to predictions made using different machine learning algorithm tech-
niques. The parameters that enter the predictions are M, the magnitude of the earthquake, £,
the depth, log(r), the distance to the detectors in log scale, 8 and ¢, the latitude and longitude,
and «, the earthquake azimuth relative to the detector. On longer timescales, the earthquake
slip inversion, strike, rake, and dip, and the moment tensor values, M,,, M,, M,,, My;, M, and
M,,, are also available as additional parameters which could be used in the future to improve
the prediction accuracy, albeit not at low latency. The target variables correspond to peak
ground velocities measured using seismometers. This scheme is advantageous over the analyt-
ical equation in a few ways. First of all, by switching to ML, we eliminate the dependence on a
functional form. Second, it trivially includes more parameters, such as latitude, longitude, and
earthquake azimuth relative to the detector above and beyond the initial analytical formalism.

In particular, we compare the efficiency of two different machine learning approaches:
regression and clustering. Within regression, we evaluate the performance of the Tensorflow
implementation of deep neural networks (DNN) [48], stacked ensemble regressors [49] and
Gaussian process regression (GPR) [50], while in clustering we use a Mahalanobis distance
[51] based similarity search to make the predictions. The performance of each algorithm is
accessed using real and simulated datasets. For each dataset, 80% is used for training with the
remaining 20% used for predictions. As for simulated data, new samples are generated from
each of the original datasets by creating a Gaussian jitter distribution centered around the
parameter value followed by a random draw of samples from these distributions. Artificially
adding noise (or jitter) to the predictor and response variables in a controlled fashion helps
to improve the learning and prevent early stopping. The presence of noise enhances the abil-
ity of the ML algorithms to better learn and generalize to the underlying smooth, non-linear
function. Variance of the jitter distribution should be chosen such that the synthetic samples
created are neither completely nonsensical nor very much identical to the original data set
[52]. In most of the cases, USGS do provide us with the level of uncertainty associated with
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the estimated earthquake parameters. We set the variance of the jitter distribution such that the
new samples generated around the original values are well within the measurement uncertain-
ties of each of the variables. For a given input taken from the jittered population, the predicted
output value would be the weighted average of the outputs of the original training samples
with the weights proportional to the densities of the jittered distribution. For a very large
number of such samples, the average predicted value turns out to be the Nadaraya—Watson
kernel regression estimator [53] where the variance in jitter corresponds to the bandwidth of
the estimator [54].

The deep neural network (DNN) that we employ to carry out the nonlinear regression has
a topology inspired from generalized regression neural networks [55], but we back-propagate
the errors and update the weights by training it through several epochs. DNNS, in general,
require larger data sets to learn the underlying function without overfitting the data and tend
to be sensitive to the network architecture and the activation functions. We use a sequen-
tial network with nine dense layers with exponential linear unit activation and the first-order
gradient-based Adam optimizer [56]. In recent times, stacked ensemble regressors have also
gained much prominence and are seen to consistently outperform other competing algorithms
in several datasets hosted at the Kaggle challenge [57]. The first level consists of a set of base
learners that are individually trained and cross-validated. Their predictions form input to a
second level meta-learner regressor which is further trained to generate the final ensemble pre-
diction. Such systems are theoretically guaranteed to be the optimal learners in an asymptotic
sense [58]. Success with DNN and ensemble techniques crucially depends on the amount of
training data and could be sensitive to the hyper-parameters. As for the GPR, we optimize the
respective hyper-parameters using Bayesian optimization and use a squared exponential ker-
nel for covariance estimation. But the method scales as O(r°) thus resulting in high memory
requirements and training time for large data sets.

Mahalanobis distance is the multi-dimensional generalization of z-score which tells you
how many sigmas the data is away from the mean distribution. It is observed to be a very
robust technique as it takes into account the covariances between the variables. Our clustering
technique makes use of this metric to find the closest matching earthquakes that happened in
the past. This scheme naturally lets one identify outlier earthquakes with no similar events
in the archival data. Table 1 compares the performance of the different MLAs. We find the
clustering-based predictor to be the most accurate and select is as the default algorithm for
EEW pipeline shown in figure 3. In addition to having the best prediction accuracy, it has the
following advantages. Firstly, as there is no training involved, the need for hyper-parameter
tuning is eliminated. As we are constantly monitoring the seismic data and appending the
earthquake database, with time we expect a decrease in prediction error along with a reduction
in the number of outliers.

5. Results

Figures 5 and 6 show the prediction results from applying Mahalanobis based clustering on
the simulated and real earthquake data. The events have been ordered by their measured peak
ground velocity (in orange), and the error bar (in grey) corresponds to a factor of 2.5 within
the measured value. As compared to the previously used analytic expression, this machine
learning based scheme leads to a performance improvement from a factor of 5 to 2.5 in scat-
ter of the error in the predicted ground velocity. For both real and simulated cases, accuracy
in predictions (in blue) is observed to be above 90% for LIGO and 85% for Virgo datasets.
We can attribute the improvement to the increased availability of data, the inclusion of more
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Table 1. Rf amplitude prediction performance for different ML algorithms. The top
and bottom panel give the percentage of events correctly predicted within a factor of 2.5
by each of the ML algorithm for simulated and real data.

Deep neural nets Stacked ensemble Clustering

GPR
LIGO Livingston 89 % 93 % 94% 98%
85 % 89 % 87 % 94%
LIGO Hanford 86% 91% 92% 97%
84% 8% 89% 92%

Obtain
low latency EQ
parameters

Pre-process data

Find similar
historic events using
Mahalanobis distance

Outlier detection
& flagging

Weighted Mean of
historic amplitudes

Lockloss Prediction

A 4
e N
~—

A 4

Alert generation

Figure 3. Process flowchart depicting the low latency earthquake warning pipeline.

earthquake parameters and the usage of robust algorithms. This level of accuracy is sufficient
to switch control configuration during periods of excessive ground motion thus preventing
the interferometer from losing lock. As for the outliers, they do not seem to show any spe-
cific dependence concerning the input parameters. One reason could be that their parameter
combination is rather uncommon, so the predicted amplitude is averaged across not-so-sim-
ilar events. The general trend among outliers seems to be that the higher amplitude events
are underestimated, and the lower amplitude events are over-estimated. Such outliers should
decrease as we gather more training data. Bringing down the mismatch, especially at the lower
amplitude side, would require improvements in signal to noise ratio of the ground velocity
measurements carried out at the site along with the need for more detailed initial earthquake
information. Availability of low latency information regarding the centroid moment tensors
associated with the earthquake could be one such solution.
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Figure 4. Locations of IRIS seismometer array used to collect the earthquake data from
January 2006 to November 2017.

We also demonstrate the resourcefulness of the above scheme by making predictions across
the United States using the data recorded by the IRIS network. For ground motion recorded
in each state, we perform the similarity search using archival data and compare the prediction
accuracy as shown in figure 7. For each row representing a state, we show how well we can
make ground velocity predictions based on archival events from itself as well as other states.
For at least 24 states, the accuracy is seen to be above 90% when we use its training data for
predicting the new events. The variation seen in predictability along the diagonal might be
due to the differences in local geology across the US. This observation of unpredictability
could be beneficial for future site selection surveys looking for suitable locations for next-
generation interferometers. High values seen along several of the off-diagonal terms are due
to the nearly identical response to tele-seismic events could mean the corresponding similar-
ity within their geological properties such as shear velocity profiles, elasticity, and local soil
density, etc. In future, state-wise seismic modeling could use this information to augment the
state-wise data with the ones from similar states especially if the original dataset is sparse. The
performance shows that the archival data-based prediction scheme can be extended beyond
the realm of gravitational-wave detector sites for hazard-based early warning alerts. For the
state of Louisiana, the data from previous states do not seem to make predictions with a high
level of accuracy. As expected, comparatively better performance is obtained from the neigh-
boring states of Texas, Arkansas, and Mississippi. Since similar anomalies are not observed
in Florida and Texas data, proximity to the Gulf of Mexico does not seem to a strong reason
for this behavior. Usage of multiple sensors within each state and the adoption of standardized
data analysis procedure which includes the individual sensor calibration and data preprocess-
ing minimizes the likelihood of systematic and instrumental effects to bias the results. Another
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Figure 7. The heat-map on the right shows the ground motion prediction accuracy
within each state making use of archival data from all the conterminous US states.

Table 2. Performance analysis of lockloss prediction models for LHO and LLO. Each
of them respectively has an accuracy of 92% and 93%.

LHO In lock Lockloss
True positives 39 10

False positives 1 3
Precision 0.97 0.77
Sensitivity 0.93 0.91
Specificity 0.91 0.93
LLO In lock Lockloss
True positives 49 16

False positives 3 2
Precision 0.94 0.89
Sensitivity 0.96 0.84
Specificity 0.84 0.96

possibility is from peculiarities in local geology, but further studies would be required to
understand the exact cause of this anomaly.

The main benefit of ground velocity predictions for gravitational-wave detectors is to
inform predictions of whether an earthquake will cause the loss of data for the detector. We
have previously developed techniques for preventing earthquakes from causing the loss of
data taking if advanced notice is given [35]. In this work, we use the previously described

10
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clustering technique to develop a lockloss prediction model as well. We use the same set of
inputs to the algorithm as in the ground velocity prediction case, but also include the ground
velocity predictions themselves as inputs. To generate the target variable, we take times when
the gravitational-wave detectors lost the ability to take data during an earthquake and assign
a value of 1, and a 0 otherwise. Acknowledging that there is a trade-off between false-alarm
probability and efficiency standard, we can make predictions for the inliers with an accuracy
above 92%, keeping the associated false-alarm probability to be less than 10% (See table 2).
Given this scenario of an impending lockloss, it would be more desirable to switch to a config-
uration that provides enough freedom for common mode motion but at the same time enforces
the best possible suppression for the local differential motion.

6. Conclusions

In conclusion, we have used MLAs to predict peak ground velocities from tele-seismic earth-
quakes. The estimated ground velocity is used to forecast the potential effect of earthquakes
on gravitational-wave detectors and issue near real-time alerts at the site. The alert system
based on this scheme has been implemented at the Advanced GW observatories and will be
used shortly to switch seismic filters at very low frequencies. Given the significant interest in
accurate ground velocity predictions for EEW systems in general, we believe the techniques
here are beneficial beyond the gravitational-wave community. While we focus on the predic-
tion of peak ground velocity here, in future we will explore the possibility of using historical
seismometer data along with CMT parameters to predict radiation patterns associated with the
fault rupture. This would provide a way to directly measure transfer functions between ground
motion very near the earthquake source and those in areas of significant seismological hazard,
such as in the Los Angeles basin.

Code availability. The code to reproduce the analysis is open-source and available at https://
github.com/ligovirgo/seismon/ for public download.
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