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Abstract
Gravitational wave observatories have always been affected by tele-seismic 
earthquakes leading to a decrease in duty cycle and coincident observation 
time. In this analysis, we leverage the power of machine learning algorithms 
and archival seismic data to predict the ground motion and the state of the 
gravitational wave interferometer during the event of an earthquake. We 
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demonstrate improvement from a factor of 5 to a factor of 2.5 in scatter of 
the error in the predicted ground velocity over a previous model fitting based 
approach. The level of accuracy achieved with this scheme makes it possible 
to switch control configuration during periods of excessive ground motion 
thus preventing the interferometer from losing lock. To further assess the 
accuracy and utility of our approach, we use IRIS seismic network data and 
obtain similar levels of agreement between the estimates and the measured 
amplitudes. The performance indicates that such an archival or prediction 
scheme can be extended beyond the realm of gravitational wave detector sites 
for hazard-based early warning alerts.

Keywords: GW detectors, seismic Rayleigh waves, earthquake early 
warning, machine learning

(Some figures may appear in colour only in the online journal)

1. Introduction

With the advent of gravitational wave (GW) astronomy, it is essential to maximize the duty 
cycle of second-generation gravitational-wave detectors such as the Laser Interferometer 
Gravitational-wave Observatory (LIGO) [1], Virgo [2], and GEO600 [3] detectors. Any 
increase in duty cycle increases the sensitivity of GW searches, including the observations 
of binary black hole mergers and binary neutron stars [4–10]. GWs from these induce small 
displacements in the detectors, which are designed to be free from environmental disturbances 
and limited only by processes of fundamental physics. These detectors are subject to non-
Gaussian noise transients due to either internal behavior of the instrument or interactions 
between the detector and its environment [11]. To minimize the effect of the environment, 
the LIGO detectors contain 200 000 auxiliary channels which are designed to monitor both 
the behavior of the instrument and the environmental conditions. A subset of these is physical 
environmental monitor sensors, including seismometers, magnetometers, microphones, and 
many others. Advanced LIGO [1] and Advanced Virgo [2] have in particular driven the devel-
opment of both seismic [12] and rotation [13] sensors. Seismic sensors in particular are useful 
for measuring any source of ground motion that can couple into the interferometers. LIGO 
seismic isolation systems by means of passive and active isolation provide noise suppression 
above 0.1 Hz [14–16] but are not effective against earthquake-related ground motion [17, 18]. 
The surface waves so produced hinder the process of keeping the instrument at a linear oper-
ating point and often induces higher frequency noise by up-converting low-frequency optical 
motion.

Earthquake early warning (EEW) is a burgeoning field dedicated to the rapid detection 
and characterization of earthquakes as well as the dissemination of that information to people 
and infrastructure in their path [19–28]. Worldwide, many seismic and geodetic (GPS) sensor 
arrays exist that produce rapid earthquake information products, from magnitude and location 
estimates to regional centroid moment tensors (CMTs) and advanced slip inversions. With 
wide-ranging public warning systems in Mexico and Japan and smaller-scale systems in many 
other countries, warnings from seconds to minutes are now available to reduce the impact 
of earthquakes on society [28]. The short warning times arise out of the physical processes 
that drive the earthquake rupture, where the warning is given by seismometers measuring 
P-waves (≈8 km s−1) and S-waves (≈4 km s−1). Reliability of these estimates are one of the 
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most important aspects of EEW systems. Their improvements generally rely on increasing the 
number of stations involved in the warning decisions as well as increasing alarm thresholds on 
ground motion, both seeking to limit the number of false positives [29]. Both of these strate-
gies come at the cost of decreasing the warning time. As these systems minimize the time 
required to calculate the source parameters of earthquakes (i.e. their location and magnitude), 
it becomes important to predict with high accuracy the ground motion that the earthquakes 
will cause as a function of location and distance.

This paper is organized as follows: section 2 talks about the sensitivity of the GW interfer-
ometers to earthquakes and the previous attempts to model them. In section 3 we describe how 
the seismic data was obtained at the site as well as the IRIS seismic array [30, 31]. Section 4 
describes the deployed regression and clustering techniques and their requirements. Finally, 
the relative performance of various prediction algorithms along with the ability to guess the 
state of the interferometer are covered in section 5.

2. Impact assessment

Figure 1 depicts the distribution of global seismic events and their respective effect on the state 
of the GW interferometers during LIGO’s first and second observation run. The orange circles 
(scaled as per the magnitude) represent scenarios where the ground motion was high enough 
to cause instabilities leading to a loss of resonance in the cavity (lockloss). Sensitivities to 
parameters such as magnitude and surface wave amplitude are shown in figure 2 where the 
steepness of the curve indicates higher sensitivity to the respective parameter. As expected, 
LLO is seen to be more vulnerable to ground shaking which can be attributed to its local 
geology and soil properties [32]. The primary goal of LIGO/Virgo EEW methods would be to 
generate reliable relations between earthquake source parameters and ground motion metrics. 
Examples in the time domain include peak ground acceleration, peak ground velocity, and 
peak ground displacement, while in the frequency domain there are spectral accelerations, 
velocities, displacements and predominant periods [33]. Early estimates of magnitudes tend 
to underestimate the energy released from the tectonic motion and hence the early estimates 
of ground velocity amplitudes often tend to be not as accurate as the later values. The effects 
of these errors are particularly pronounced for larger earthquakes, where the estimates of the 
fault lengths become more important. Thus, these larger earthquakes tend to have their ampl-
itudes under-predicted. The loss of performance that results from use of the rapid estimates is 
acceptable for the purpose of issuing rapid warnings. Direct displacement measurement based 
on non-inertial GPS instruments has been shown to generate rapid magnitude estimates within 
the first minute of rupture and in many cases even before rupture is complete [34].

In previous work, we used advances in early earthquake warning to develop a low-latency 
earthquake early warning client named Seismon [18]. This system uses a real-time event mes-
saging system of the U.S. Geological Survey (USGS) to mitigate the effects of tele-seismic 
events on ground-based gravitational-wave detectors. Using information about the earthquake 
source characteristics such as magnitude, depth, and distance from the site, ground motion 
velocity at the site was predicted. In the initial version of the algorithm, we used an empirical 
fit to an equation derived to account for physical effects. This equation succeeded in predicting 
peak ground velocity such that 90% of events had a measured ground velocity within a factor 
of five of the predicted value. Although the fit was derived with physical effects in mind, it 
was predominantly an empirical construction. To make accurate assessments of whether the 
gravitational-wave detectors will be affected, we prefer the relative error in the ground veloc-
ity predictions, Rfamp, to be close to a factor of two, which is much smaller than the factor 

N Mukund et alClass. Quantum Grav. 36 (2019) 085005



4

of five scatter seen. These predictions have two purposes. Firstly, they provide a meaning-
ful metric which on-site-staff at the detectors can use to plan the response to the incoming 
earthquake. The response could be in the form of switching seismic isolation loops to steer 
the interferometer to a more robust configuration keeping it locked although with a lesser sen-
sitivity [35]. The predictions also serve as inputs to the algorithms that make predictions on 
upcoming downtime, which could be utilized to perform opportunistic maintenance to rectify 
problems typically scheduled for weekly maintenance periods.

3. Methods: seismic data

The first part of our analysis uses data obtained from the GW sites. For each earthquake event 
from the archival database, we take the vertical component of broadband data which is con-
verted to ground velocity (m/s) using a frequency dependent calibration factor appropriate for 
each seismometer. Time-series are chosen to encompass the P-wave arrival and surface wave 
calculated assuming a (very conservative) seismic velocity of 2 km s−1 [36]. As the seismom-
eters located at the end and center stations observe similar values for the relevant frequency 
band, we use the center station sensor for rest of our analysis.

We also perform an analysis of seismic time-series that were made available through IRIS 
seismometer array, covering the last ten years. These stations covering all the conterminous 
US states (see figure 4) have time-series with response between 10 mHz to 10 Hz. A variety 
of sources including anthropogenic and atmospheric disturbances contribute to the observed 
seismic signal. One source present across the world is the oceanic microseism around 0.3 Hz 
that dominate seismic ground spectra everywhere on Earth [37–40]. Systematic processing 
of IRIS data from January 2006 to November 2017 lead us to create a database of around 
733 208 earthquakes. The analysis was restricted to earthquakes with magnitude ranging from 
6.0 to 9.1, which covers the range that is likely to significantly effect the gravitational-wave 
detectors. In section 5 we report the performance of the prediction scheme in the presence of 
variation in local seismic spectra arising from affects such as local geology, topography and 
proximity to urban settlements.

Figure 1. Impact of earthquakes happening worldwide on LIGO Interferometers 
at Hanford and Livingston. Points marked in orange indicate the instances when 
the resulting ground the motion lead to a loss of control over the ability to keep the 
interferometer at its operating point resulting in a lockloss.
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4. Methods: MLA description

Machine learning (ML) has recently become an important aspect of EEW and seismology 
in general. For example, the MyShake EEW system uses artificial neural networks to dif-
ferentiate earthquake and human motions, with 98% of earthquake records within 10 km of 
the epicenter correctly identified, and only 7% of people-induced transients appearing to be 
earthquakes to the algorithm [41]. They have been used to differentiate earthquakes from other 
seismic transients [42–44], discriminate between deep and shallow micro-earthquakes [45] 
and to add to undersampled or missing traces [46]. In addition, they have been used to make 
full-wave tomography images [47]. The idea of our analysis is to compare historical ground 
velocity measurements to predictions made using different machine learning algorithm tech-
niques. The parameters that enter the predictions are M, the magnitude of the earthquake, h, 
the depth, log(r), the distance to the detectors in log scale, θ and φ, the latitude and longitude, 
and α, the earthquake azimuth relative to the detector. On longer timescales, the earthquake 
slip inversion, strike, rake, and dip, and the moment tensor values, Mrt, Mtp, Mrp, Mtt, Mrr, and 
Mpp are also available as additional parameters which could be used in the future to improve 
the prediction accuracy, albeit not at low latency. The target variables correspond to peak 
ground velocities measured using seismometers. This scheme is advantageous over the analyt-
ical equation in a few ways. First of all, by switching to ML, we eliminate the dependence on a 
functional form. Second, it trivially includes more parameters, such as latitude, longitude, and 
earthquake azimuth relative to the detector above and beyond the initial analytical formalism.

In particular, we compare the efficiency of two different machine learning approaches: 
regression and clustering. Within regression, we evaluate the performance of the Tensorflow 
implementation of deep neural networks (DNN) [48], stacked ensemble regressors [49] and 
Gaussian process regression (GPR) [50], while in clustering we use a Mahalanobis distance 
[51] based similarity search to make the predictions. The performance of each algorithm is 
accessed using real and simulated datasets. For each dataset, 80% is used for training with the 
remaining 20% used for predictions. As for simulated data, new samples are generated from 
each of the original datasets by creating a Gaussian jitter distribution centered around the 
parameter value followed by a random draw of samples from these distributions. Artificially 
adding noise (or jitter) to the predictor and response variables in a controlled fashion helps 
to improve the learning and prevent early stopping. The presence of noise enhances the abil-
ity of the ML algorithms to better learn and generalize to the underlying smooth, non-linear 
function. Variance of the jitter distribution should be chosen such that the synthetic samples 
created are neither completely nonsensical nor very much identical to the original data set 
[52]. In most of the cases, USGS do provide us with the level of uncertainty associated with 

Figure 2. Plot shows the sensitivity of both the LIGO detectors to earthquakes in terms 
of distance to the hypocenter from the surface, earthquake magnitude and the Rayleigh 
wave amplitude.
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the estimated earthquake parameters. We set the variance of the jitter distribution such that the 
new samples generated around the original values are well within the measurement uncertain-
ties of each of the variables. For a given input taken from the jittered population, the predicted 
output value would be the weighted average of the outputs of the original training samples 
with the weights proportional to the densities of the jittered distribution. For a very large 
number of such samples, the average predicted value turns out to be the Nadaraya–Watson 
kernel regression estimator [53] where the variance in jitter corresponds to the bandwidth of 
the estimator [54].

The deep neural network (DNN) that we employ to carry out the nonlinear regression has 
a topology inspired from generalized regression neural networks [55], but we back-propagate 
the errors and update the weights by training it through several epochs. DNNs, in general, 
require larger data sets to learn the underlying function without overfitting the data and tend 
to be sensitive to the network architecture and the activation functions. We use a sequen-
tial network with nine dense layers with exponential linear unit activation and the first-order 
gradient-based Adam optimizer [56]. In recent times, stacked ensemble regressors have also 
gained much prominence and are seen to consistently outperform other competing algorithms 
in several datasets hosted at the Kaggle challenge [57]. The first level consists of a set of base 
learners that are individually trained and cross-validated. Their predictions form input to a 
second level meta-learner regressor which is further trained to generate the final ensemble pre-
diction. Such systems are theoretically guaranteed to be the optimal learners in an asymptotic 
sense [58]. Success with DNN and ensemble techniques crucially depends on the amount of 
training data and could be sensitive to the hyper-parameters. As for the GPR, we optimize the 
respective hyper-parameters using Bayesian optimization and use a squared exponential ker-
nel for covariance estimation. But the method scales as O(n3) thus resulting in high memory 
requirements and training time for large data sets.

Mahalanobis distance is the multi-dimensional generalization of z-score which tells you 
how many sigmas the data is away from the mean distribution. It is observed to be a very 
robust technique as it takes into account the covariances between the variables. Our clustering 
technique makes use of this metric to find the closest matching earthquakes that happened in 
the past. This scheme naturally lets one identify outlier earthquakes with no similar events 
in the archival data. Table 1 compares the performance of the different MLAs. We find the 
clustering-based predictor to be the most accurate and select is as the default algorithm for 
EEW pipeline shown in figure 3. In addition to having the best prediction accuracy, it has the 
following advantages. Firstly, as there is no training involved, the need for hyper-parameter 
tuning is eliminated. As we are constantly monitoring the seismic data and appending the 
earthquake database, with time we expect a decrease in prediction error along with a reduction 
in the number of outliers.

5. Results

Figures 5 and 6 show the prediction results from applying Mahalanobis based clustering on 
the simulated and real earthquake data. The events have been ordered by their measured peak 
ground velocity (in orange), and the error bar (in grey) corresponds to a factor of 2.5 within 
the measured value. As compared to the previously used analytic expression, this machine 
learning based scheme leads to a performance improvement from a factor of 5 to 2.5 in scat-
ter of the error in the predicted ground velocity. For both real and simulated cases, accuracy 
in predictions (in blue) is observed to be above 90% for LIGO and 85% for Virgo datasets.
We can attribute the improvement to the increased availability of data, the inclusion of more 
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earthquake parameters and the usage of robust algorithms. This level of accuracy is sufficient 
to switch control configuration during periods of excessive ground motion thus preventing 
the interferometer from losing lock. As for the outliers, they do not seem to show any spe-
cific dependence concerning the input parameters. One reason could be that their parameter 
combination is rather uncommon, so the predicted amplitude is averaged across not-so-sim-
ilar events. The general trend among outliers seems to be that the higher amplitude events 
are underestimated, and the lower amplitude events are over-estimated. Such outliers should 
decrease as we gather more training data. Bringing down the mismatch, especially at the lower 
amplitude side, would require improvements in signal to noise ratio of the ground velocity 
measurements carried out at the site along with the need for more detailed initial earthquake 
information. Availability of low latency information regarding the centroid moment tensors 
associated with the earthquake could be one such solution.

Table 1. Rf amplitude prediction performance for different ML algorithms. The top 
and bottom panel give the percentage of events correctly predicted within a factor of 2.5 
by each of the ML algorithm for simulated and real data.

Deep neural nets Stacked ensemble GPR Clustering

LIGO Livingston
85 %

89 %
89 %

93 %
87 %

94%
94%

98%

LIGO Hanford
84%

86%
88%

91%
89%

92%
92%

97%

Figure 3. Process flowchart depicting the low latency earthquake warning pipeline.
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We also demonstrate the resourcefulness of the above scheme by making predictions across 
the United States using the data recorded by the IRIS network. For ground motion recorded 
in each state, we perform the similarity search using archival data and compare the prediction 
accuracy as shown in figure 7. For each row representing a state, we show how well we can 
make ground velocity predictions based on archival events from itself as well as other states. 
For at least 24 states, the accuracy is seen to be above 90% when we use its training data for 
predicting the new events. The variation seen in predictability along the diagonal might be 
due to the differences in local geology across the US. This observation of unpredictability 
could be beneficial for future site selection surveys looking for suitable locations for next-
generation interferometers. High values seen along several of the off-diagonal terms are due 
to the nearly identical response to tele-seismic events could mean the corresponding similar-
ity within their geological properties such as shear velocity profiles, elasticity, and local soil 
density, etc. In future, state-wise seismic modeling could use this information to augment the 
state-wise data with the ones from similar states especially if the original dataset is sparse. The 
performance shows that the archival data-based prediction scheme can be extended beyond 
the realm of gravitational-wave detector sites for hazard-based early warning alerts. For the 
state of Louisiana, the data from previous states do not seem to make predictions with a high 
level of accuracy. As expected, comparatively better performance is obtained from the neigh-
boring states of Texas, Arkansas, and Mississippi. Since similar anomalies are not observed 
in Florida and Texas data, proximity to the Gulf of Mexico does not seem to a strong reason 
for this behavior. Usage of multiple sensors within each state and the adoption of standardized 
data analysis procedure which includes the individual sensor calibration and data preprocess-
ing minimizes the likelihood of systematic and instrumental effects to bias the results. Another 

Figure 4. Locations of IRIS seismometer array used to collect the earthquake data from 
January 2006 to November 2017.
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Figure 5. Fit of peak velocities seen during O1–O2 at the interferometers (LHO, LLO) 
using Mahalanobis distance-based clustering. Results on simulated and real data are 
respectively shown in the top and bottom rows. The events have been ordered by their 
measured peak ground velocity (in orange), and grey error bar corresponds to a factor 
of 2.5 within the measured value. More than 90% of predictions (in blue) are within a 
factor of 2.5 of the measured value.

Figure 6. Fit of peak velocities seen during O1–O2 at the Virgo interferometer.

N Mukund et alClass. Quantum Grav. 36 (2019) 085005
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possibility is from peculiarities in local geology, but further studies would be required to 
understand the exact cause of this anomaly.

The main benefit of ground velocity predictions for gravitational-wave detectors is to 
inform predictions of whether an earthquake will cause the loss of data for the detector. We 
have previously developed techniques for preventing earthquakes from causing the loss of 
data taking if advanced notice is given [35]. In this work, we use the previously described 

Figure 7. The heat-map on the right shows the ground motion prediction accuracy 
within each state making use of archival data from all the conterminous US states.

Table 2. Performance analysis of lockloss prediction models for LHO and LLO. Each 
of them respectively has an accuracy of 92% and 93%.

LHO In lock Lockloss

True positives 39 10
False positives 1 3
Precision 0.97 0.77
Sensitivity 0.93 0.91
Specificity 0.91 0.93

LLO In lock Lockloss

True positives 49 16
False positives 3 2
Precision 0.94 0.89
Sensitivity 0.96 0.84
Specificity 0.84 0.96

N Mukund et alClass. Quantum Grav. 36 (2019) 085005
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clustering technique to develop a lockloss prediction model as well. We use the same set of 
inputs to the algorithm as in the ground velocity prediction case, but also include the ground 
velocity predictions themselves as inputs. To generate the target variable, we take times when 
the gravitational-wave detectors lost the ability to take data during an earthquake and assign 
a value of 1, and a 0 otherwise. Acknowledging that there is a trade-off between false-alarm 
probability and efficiency standard, we can make predictions for the inliers with an accuracy 
above 92%, keeping the associated false-alarm probability to be less than 10% (See table 2). 
Given this scenario of an impending lockloss, it would be more desirable to switch to a config-
uration that provides enough freedom for common mode motion but at the same time enforces 
the best possible suppression for the local differential motion.

6. Conclusions

In conclusion, we have used MLAs to predict peak ground velocities from tele-seismic earth-
quakes. The estimated ground velocity is used to forecast the potential effect of earthquakes 
on gravitational-wave detectors and issue near real-time alerts at the site. The alert system 
based on this scheme has been implemented at the Advanced GW observatories and will be 
used shortly to switch seismic filters at very low frequencies. Given the significant interest in 
accurate ground velocity predictions for EEW systems in general, we believe the techniques 
here are beneficial beyond the gravitational-wave community. While we focus on the predic-
tion of peak ground velocity here, in future we will explore the possibility of using historical 
seismometer data along with CMT parameters to predict radiation patterns associated with the 
fault rupture. This would provide a way to directly measure transfer functions between ground 
motion very near the earthquake source and those in areas of significant seismological hazard, 
such as in the Los Angeles basin.

Code availability. The code to reproduce the analysis is open-source and available at https://
github.com/ligovirgo/seismon/ for public download.
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