

Seasonal changes in light availability modify the temperature
dependence of secondary production in an arctic stream

Alexander D. Huryn¹ and Jonathan P. Benstead

Department of Biological Sciences
University of Alabama
Tuscaloosa, Alabama 35487-0344
USA

¹corresponding author (email: huryn@bama.ua.edu)

1 **Abstract**

2 Light and temperature are key drivers of ecosystem productivity, but synchrony of their annual
3 cycles typically obscures their relative influence. The coupling of annual light-temperature
4 regimes also drives complementary seasonal cycles of energy supply (primary production) and
5 demand (metabolism), perhaps promoting temporal stability in carbon (C) storage and food web
6 production that may be difficult to discern in most ecosystems. Spring-fed streams in the Arctic
7 are subject to extreme annual fluctuations in light availability but have relatively stable water
8 temperatures, which allows assessment of the independent effects of light and temperature. We
9 used the unusual annual light and temperature regimes of Ivishak Spring, Alaska, U.S.A.
10 (latitude 69°N, annual water temperature range ~4-7°C) to test predictions about the effect of
11 light availability on consumer productivity with minimally confounding effects of temperature.
12 We predicted that: 1) annual patterns of secondary production would follow patterns of primary
13 production, rather than temperature, due to organic C limitation during winter darkness when
14 photosynthesis is effectively halted, 2) C limitation would propagate from primary producers
15 upward through several trophic levels, 3) the lack of temperature dependence during winter
16 darkness would be expressed as anomalous Arrhenius plots of growth rates indicating decoupled
17 production-temperature relationships, and 4) consumer diets would reflect C limitation during
18 winter. As predicted, we found: 1) lowest production by macroinvertebrates and *Salvelinus*
19 *malma* (Dolly Varden char) at the lowest light levels rather than the lowest temperatures, 2)
20 apparent winter C limitation propagated upwards through three trophic levels, 3) anomalous
21 Arrhenius plots indicating lack of temperature dependence of consumer growth rates during
22 winter, and 4) lowest consumption of diatoms (by macroinvertebrates) and invertebrate prey (by
23 *S. malma*) during winter. Together, these results indicate that light drives annual patterns of

24 animal production in Ivishak Spring, with stable annual temperatures likely exacerbating C
25 limitation of ectotherm metabolism during winter. The timing and severity of winter C limitation
26 in this unusual arctic-spring food web highlight a fundamental role for light-temperature
27 synchrony in matching energy supply with demand in most other ecosystem types, thereby
28 conferring a measure of stability in the metabolism of their food webs over annual time-scales.

29

30 Key words: Alaska, food webs, light, seasonality, secondary production, streams, temperature

31

32

33

INTRODUCTION

34 Light and temperature are fundamental drivers of many ecosystem processes (e.g., Roberts et al.
35 2007, Heffernan and Cohen 2010, Trimmer et al. 2012, McMeans et al. 2015). Although their
36 independent effects have been assessed experimentally at small scales (Ylla et al. 2007, Dossena
37 et al. 2012, Matheson et al. 2012), gaining understanding of their relative effects at the larger
38 spatial scales typically used to define ecosystems (e.g., catchment scale) is more challenging
39 because natural cycles of light and temperature are usually synchronized (Huryn et al. 2014).
40 Temperate latitudes, for example, experience short days and low temperatures during winter and
41 long days and higher temperatures during summer (Fig. 1). At lower latitudes, seasonal
42 fluctuation in both day-length and temperature is reduced, while at higher latitudes these
43 fluctuations are more extreme. Regardless, annual cycles of light and temperature remain
44 confounded.

45 Recognition of the confounded effects of light and temperature on ecosystem function is
46 important because difficulties isolating these key drivers impede understanding of how they
47 independently affect processes such as energy flow and food-web interactions. Consider that
48 primary productivity is maximized during periods of high light availability, which coincidentally is
49 also when metabolic demands of ectotherms are greatest due to high temperatures, and
50 minimized during dark, cold periods when metabolic demands are lowest. This seasonal pattern
51 of complimentary supply and demand potentially confers some measure of temporal stability in
52 ecosystem metabolism, carbon storage, and food web production, an effect that is difficult to
53 discern in most ecosystems due to the coupled relationship between light and temperature.
54 Attempts to decouple light and temperature cycles, and the complementary energetic responses

55 by consumers, to our knowledge, have not been made at the ecosystem level, presumably due to
56 a scarcity of systems providing effective controls. One such system, however, is found in the
57 form of arctic spring-streams where the combination of relatively stable water temperature and
58 extreme annual fluctuations in day-length (Appendix S1: Fig. 1) provide an opportunity for
59 advancing understanding of such relationships (Huryn et al. 2014).

60 Perennially flowing, spring-fed streams with relatively stable temperatures are
61 widespread in arctic Alaska. There they provide the only open-water habitat during winter when
62 air temperatures may be $<-40^{\circ}\text{C}$ for extended periods and other headwater streams freeze solid
63 (Huryn et al. 2005, Parker and Huryn 2011). While the annual pattern of primary productivity in
64 these open-canopy ecosystems shows extreme fluctuations due to seasonal cycles of light, stable
65 temperatures result in relatively constant rates of ecosystem respiration (ER) year-round, leading
66 to carbon (C) limitation of ecosystem metabolism during winter when photosynthesis is
67 effectively halted (Huryn et al. 2014). This scenario contrasts with most other ecosystems where
68 seasonal cycles of organic C demand and production are closely coupled (McMeans et al. 2015,
69 Bernhardt et al. 2018).

70 Here we expand an earlier analysis (Huryn et al. 2014) of drivers of annual patterns of
71 ecosystem metabolism in an arctic spring-stream (Ivishak Spring, Alaska) by assessing the
72 effects of light versus temperature on secondary production. We tested several predictions. First,
73 we predicted that patterns of secondary production would be synchronous with primary
74 production, rather than temperature, due to C limitation during winter darkness when
75 photosynthesis is effectively halted (Fig. 1; Huryn et al. 2014). Second, we anticipated that such
76 C limitation would be propagated from primary producers upward through several trophic levels.
77 Third, we predicted that lack of temperature dependence of production during winter would be

78 shown by Arrhenius plots indicating a decoupling of the production-temperature relationship
79 (e.g., Huryn et al. 2014). Finally, we predicted that food consumption would show annual
80 patterns reflecting C limitation during winter.

81

82 **SITE DESCRIPTION**

83 Ivishak Spring (69.024342° , -147.721079°) is a tributary of the Ivishak River, which flows through
84 the Arctic National Wildlife Refuge on the North Slope of Alaska, U.S.A (Appendix S1: Fig. S2).
85 The mean annual precipitation of this region is $250+$ mm yr^{-1} and the mean annual air temperature
86 is $-12^{\circ}C$ (Huryn and Hobbie 2012). The warmest month is July (mean temperature $12-13^{\circ}C$); the
87 coldest is February (mean temperature $-30^{\circ}C$; Huryn and Hobbie 2012). The habitat structure of the
88 265-m stream reach selected for study consists of relatively long, uniform riffles paved with
89 limestone particles covered with the bryophyte *Cratoneuron filicinum* (Hedw.), which is typical
90 for North Slope spring-streams with carbonate substrata (Parker and Huryn 2006, 2011; Huryn et
91 al. 2014). Pools are infrequent. Stream discharge shows relatively little variability (annual mean =
92 136 L s^{-1}), which results in high substratum stability (Parker and Huryn 2006). Water temperature
93 ranges from a constant $7.3^{\circ}C$ at the spring source to a mean temperature of $5.8^{\circ}C$ with an annual
94 fluctuation of $\sim 3-4^{\circ}C$ about 240 m downstream (Benstead and Huryn 2011; Appendix S1: Fig. S1).
95 Nutrient concentrations are similar to other headwater streams of the eastern North Slope for
96 which information is available (i.e., soluble reactive phosphorus [SRP] = $0.10 \mu\text{mol L}^{-1}$, $\text{NH}_4^+ \text{-N} =$
97 $0.05 \mu\text{mol L}^{-1}$, $\text{NO}_3^- \text{-N} = 5.3 \mu\text{mol L}^{-1}$; Huryn et al. 2014). Riparian vegetation consists of willows
98 [primarily *Salix alexensis* (Andersson)] and a sparse gallery of balsam poplar (*Populus*
99 *balsamifera* L.). Predatory freshwater vertebrates include Dolly Varden char [*Salvelinus malma*
100 (Walbaum)], the American dipper (*Cinclus mexicanus* Swainson) and the North American river

101 otter [*Lontra canadensis* (Schreber), Parker and Huryn 2013]. Ivishak Spring provides habitat for
102 juvenile *S. malma*. These fish migrate into Ivishak Spring from downstream spawning habitat
103 during late spring and remain for 3+ years before beginning cyclical migrations to and from the
104 Beaufort Sea (Huryn and Hobbie 2013; A. D. Huryn, *unpublished data*).

105

METHODS

Macroinvertebrate production and diet

108 Macroinvertebrates were sampled on 26 semi-monthly dates from March 2007 to August 2009.
109 Five samples were taken at ~40-m intervals from a randomly selected start point using a Surber
110 sampler (0.09 m², 243-μm mesh). Samples were preserved with ~4% formaldehyde until
111 processing, which consisted of rinsing the sample through nested sieves, removing specimens by
112 hand under magnification, and measuring (body length) and identifying each specimen to the
113 lowest practical taxonomic level (see Appendix S1: Section S1 for further details). Production
114 was estimated using the instantaneous growth method, which requires measurements of
115 individual growth rates and population biomass over time (Benke and Huryn 2017). Individual
116 biomass was estimated using length-mass relationships (Benke et al. 1999). Growth rates were
117 estimated from temporal changes in mean individual biomass based on field data. Population
118 biomass was estimated as the product of abundance and individual biomass. Diet was assessed
119 seasonally by analyzing gut contents (Parker and Huryn 2006, 2011; see Appendix S1: Section
120 S1 for further details) for four abundant taxa [*Rhynchelmis* (Oligochaeta), *Pagastia* (Diptera:
121 Chironomidae), *Ecclisomyia* (Trichoptera: Limnephilidae), *Isoperla* (Plecoptera: Perlodidae)]
122 representing a range of functional feeding groups (e.g., collector-gatherer, scraper, shredder,
123 predator; Merritt et al. 2007). Production and biomass of omnivores was divided into primary

124 and secondary consumer categories using areal proportions of non-animal and animal tissues
125 occurring in their guts and the trophic-basis of production approach (Benke and Huryn 2017)
126 using bioenergetic efficiencies summarized by Huryn (1996). Uncertainty for production
127 statistics was estimated by bootstrapping (Benke and Huryn 2017, see Appendix S1: Section S1
128 for further details).

129

130 *Dolly Varden production, body condition, diet and prey supply-demand budget*
131 We sampled *S. malma* on 11 dates between May 2007 and August 2009. On the first sampling
132 date (25 May 2007), the entire stream reach was sampled (265 m of channel length) using a
133 Smith-Root LR-20 electrofishing machine (Smith-Root, Inc., Vancouver, WA, USA). On the
134 subsequent 10 sampling dates, five randomly selected sub-reaches of known length and width
135 were block-netted and sampled. The combined lengths of the sub-reaches sampled ranged from
136 78 to 104 m (mean length ± 1 S.D. = 94 ± 7 m) or 29 to 39% of the entire study reach on each
137 date. Captured *S. malma* were anaesthetized (buffered tricaine methanesulfonate, 100 ppm),
138 measured for standard length (SL), weighed [± 0.1 g wet mass (WM)], tagged with a 1×2.5 mm
139 VI Alpha tag (Northwest Marine Technology, Shaw Island, WA, USA) inserted subcutaneously
140 along the left dentary, and released at the point of capture. Abundance was estimated from pass-
141 depletion data (3 passes; Removal Sampling II, Pisces Conservation Ltd., Lymington, UK).
142 Relative condition factor for each fish was estimated by dividing its WM by that predicted from
143 the population-level length-mass relationship. Production was estimated using the instantaneous
144 growth method (see *Macroinvertebrate production and diet*, above). Daily growth rates were
145 obtained from recaptured, tagged individuals. Population biomass (g wet mass [WM] m^{-2}) was
146 calculated by correcting total mass sampled from each sub-reach with the maximum-likelihood

147 abundance estimate (mean difference between total captured and the maximum-likelihood
148 estimate was always <5% of estimated total). Wet mass was converted to ash-free dry mass
149 (AFDM) using an empirical coefficient of 0.17 (A. D. Huryn, *unpublished data*). Uncertainty for
150 production statistics was estimated by bootstrapping (see *Macroinvertebrate production and diet*,
151 above). Stomach contents of char caught with unbaited minnow traps were sampled semi-
152 monthly (23 dates) using gastric lavage (Giles 1980). Preserved invertebrates (4% formalin)
153 were measured (total length) and identified, and DM was calculated using published length-mass
154 relationships (Benke et al. 1999, Sabo et al. 2002, see Appendix S1: Section S1 for further details
155 of methods). The difference between *S. malma* prey supply and demand (mg DM m⁻² d⁻¹) was
156 estimated semimonthly following the approach and bioenergetic efficiencies used by Huryn
157 (1996).

158

Light and water temperature

159 Stream temperature (Appendix S1: Fig. S1) was recorded at 15-min intervals using a digital
160 recording pressure-transducer (Hobo U20 Water Level Data Logger, Onset Corporation,
161 Pocasset, MA, USA) deployed in a PVC stilling well. Photosynthetically active radiation (PAR,
162 Appendix S1: Fig. S1) was measured as photon flux density ($\mu\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$) using underwater
163 quantum sensors (LI-190SA, LI-COR, Lincoln, NE, USA) interfaced with digital recorders.
164 Sensors were placed ~10 cm below the surface of the water (approximate average reach depth) at
165 two locations. The first location was approximately 20 m upstream of 0 m; the second was
166 approximately 30 m below 200 m. PAR was measured every 5 s and data were recorded as 5-min
167 means. Data from the two PAR sensors were averaged.

168

170 *Statistical approaches*

171 Apparent energetic coupling between trophic levels (e.g., GPP and macroinvertebrate primary
172 consumer production, etc.) and relationships between temperature, light and secondary
173 production and P:Bs were assessed using least-squares regression and natural log-transformed
174 data when appropriate to improve model fit. Seasonal differences in diet were assessed using
175 ANOVA and natural log transformed data, followed by Tukey's LSD pairwise comparisons. An
176 apparent lack of temperature dependence of animal production during winter was used as an
177 indication of potential C-limitation. This was assessed using Arrhenius plots (Brown and Sibly
178 2012, Huryn et al. 2014) of the natural log of daily P:B (d^{-1}) versus $1/kT$, where k is the
179 Boltzmann constant and T is temperature in degrees Kelvin. Such plots provide an estimate of
180 the activation energy of this metabolic process in eV (with the sign reversed, Brown and Sibly
181 2012). Our ability to estimate apparent metabolic activation energies using Arrhenius plots,
182 however, was problematical due to the extremely small range of kT^{-1} (41.4–41.8 kT^{-1} ; Huryn et
183 al. 2014). Consequently, the temperature dependence of P:B was modeled using Arrhenius plots
184 and fixed-slope, variable-intercept, least-square equations. The activation energy predicted for
185 aerobic metabolic processes by eukaryotes was used as the fixed slope (-0.65 eV; Allen et al.
186 2005, Perkins et al. 2012). Anomalous levels of residual error producing an abrupt break in the
187 slope (e.g., “hockey stick” pattern) in response to winter temperatures were used as an indicator
188 of the break-down of temperature dependence and hence C-limitation of P:B (Huryn et al. 2014).
189 To further assess the relationship between productivity, light and temperature, the residual error
190 from the Arrhenius plots was regressed against natural log-transformed PAR to determine
191 whether the greatest departures from the predicted activation energy occurred at lowest

192 temperatures or the lowest PAR levels. Essentially, this procedure uses data from the Arrhenius
193 plot to isolate the effects of temperature and light on seasonal changes in P:Bs.

194

195

196 **RESULTS**

197 *Macroinvertebrate community members and life cycles*—Eighteen taxa of nominal primary
198 consumers and six taxa of nominal predators (Merritt et al. 2007) were identified (Table 1). Life
199 cycles were diverse, including bivoltine (e.g., *Eukieferiella gracei* species group, *Pagastia*,
200 *Thienemanniella*), univoltine, and semivoltine (e.g., *Isoperla* with a 15- to 18-month life cycle,
201 *Zapada* with an 18- to 20-month life cycle). Most taxa were characterized by rapid growth
202 during spring and summer and little or no growth during winter, even when larvae were present
203 (e.g., *Baetis*, most chironomids). Five taxa, however, showed significant growth (i.e., >60% of
204 total growth) during winter (*Dicranota*, *Ecclisomyia*, *E. gracei* group, *Pericoma*, *Tvetenia*).

205

206 *Macroinvertebrate diet*

207 The four taxa selected for diet analysis together contributed 40% to total macroinvertebrate
208 primary consumer production, when averaged over both years of study [cf. Table 1; *Rhynchemis*
209 (*Oligochaeta*, 6.1%), *Pagastia* (Diptera: Chironomidae, 7.1%), *Ecclisomyia* (Trichoptera:
210 Limnephilidae, 12.1%), *Isoperla* (Plecoptera: Perlodidae, 14.7%)]. Diatoms were prominent
211 components of the diet for each of the four taxa for which gut contents were analyzed. Strong
212 seasonality was apparent, however. During April, diatoms dominated the gut contents for each
213 taxon analyzed (% of total particle area): *Oligochaeta* ($74.2\% \pm 7.0\%$, mean \pm 95% C.I.), *Isoperla*
214 ($79.6\% \pm 11.5\%$), *Ecclisomyia* ($80.2\% \pm 1.9\%$), and *Pagastia* ($72.1\% \pm 14.9\%$). During January,

215 however, amorphous organic matter dominated gut contents while diatoms were minor
216 contributors: Oligochaeta ($7.1\% \pm 11.3\%$, mean $\pm 95\%$ C.I.), *Isoperla* ($1.5\% \pm 2.6\%$), *Ecclisomyia*
217 ($0.9\% \pm 1.3\%$), and *Pagastia* ($10.9\% \pm 14.2\%$). Quantities of diatoms in guts of all four taxa were
218 lower in January than other months ($P < 0.05$, ANOVA, Tukey's LSD, Fig. 2). In addition to
219 diatoms, invertebrate tissue fragments occurred in the gut contents of *Isoperla* (range among
220 individuals analyzed = 0.0 to 96.4% of total μm^2 particle area mg^{-1} individual DM) and *Pagastia*
221 (range = 0.0 to 81.2%). Bryophyte (range = 1.6 to 89.3%) and vascular plant (range = 0.0 to
222 51.6%) fragments were common components of *Ecclisomyia* gut contents. Amorphous organic
223 matter was an important diet item for *Pagastia* (range = 6.5 to 96.5%) and the Oligochaeta
224 (range = 9.3 to 100.0%). With the exception of diatoms, however, no significant seasonal
225 patterns of consumption were detected.

226

227 *Macroinvertebrate biomass, production and P:Bs*—Production by macroinvertebrate primary
228 consumers from 24 May 2007-29 May 2008 was $10.1 \pm 1.6 \text{ g DM m}^{-2}$ (mean $\pm 95\%$ CI), mean
229 biomass was $2.6 \pm 0.3 \text{ g DM m}^{-2}$, and the P:B was 3.9 ± 0.7 (Table 1). Production from 29 May
230 2008-25 May 2009 was $17.4 \pm 2.2 \text{ g DM m}^{-2}$, mean biomass was $4.2 \pm 0.4 \text{ g DM m}^{-2}$, and the P:B
231 was 4.2 ± 0.7 . Both production and mean biomass from 29 May 2008-25 May 2009 were greater
232 than for 24 May 2007-29 May 2008 ($P > 0.05$, 2-sample randomization test; Manly 1991). P:Bs,
233 however, did not differ significantly, indicating that the greater level of production during 29
234 May 2008-25 May 2009 was due to biomass accumulation rather than altered growth rates.
235 Production by macroinvertebrate secondary consumers from 24 May 2007-29 May 2008 was
236 $1.9 \pm 0.5 \text{ g DM m}^{-2}$, biomass was $0.9 \pm 0.2 \text{ g DM m}^{-2}$, and the P:B was 2.2 ± 0.7 (Table 1).
237 Production from 29 May 2008-25 May 2009 was $4.9 \pm 1.0 \text{ g DM m}^{-2}$, biomass was $1.3 \pm 0.2 \text{ g DM}$

238 m^{-2} , and the P:B was 3.9 ± 1.0 . Biomass, production and P:Bs of secondary consumers were all
239 greater in the interval from 29 May 2008-25 May 2009 than 24 May 2007-29 May 2008
240 ($P < 0.05$).

241

242 *Seasonal patterns of total macroinvertebrate production, biomass and P:Bs*—Daily interval
243 production and P:Bs for macroinvertebrate primary consumers showed seasonal cycles, with the
244 highest levels from May-August and lowest from October-January (Fig. 3). Although seasonal
245 cycles of total primary consumer biomass were in general synchrony with production and P:Bs,
246 there was also a trend of increasing biomass over the study (see “*Macroinvertebrate biomass,*
247 *production and P:Bs*” above). Daily production and P:Bs for the macroinvertebrate secondary
248 consumers showed seasonal cycles similar to primary consumers, but the overall pattern was
249 more muted and variable (Fig. 3). The temporal pattern of macroinvertebrate secondary
250 consumer biomass showed little seasonality. Biomass tended to increase over the study,
251 however, as observed for primary consumers.

252

253 *Salvelinus malma abundance and biomass*—A total of 1,454 individual *S. malma* were sampled
254 on 11 dates between May 2007 and August 2009. The SL of captured fish ranged from 5.5 to
255 19.0 cm ($\bar{X} = 9.2 \pm 0.1$ cm, $n = 1,454$) and AFDM ranged from 0.4 to 19.0 g ($\bar{X} = 3.3 \pm 0.1$ g, $n = 1,452$).
256 Mean abundance ranged from 0.10 ± 0.01 to 0.72 ± 0.17 ($\bar{X} \pm \text{SE}$, $n = 5$) individuals m^{-2} , while
257 biomass ranged from 0.27 ± 0.03 to 3.09 ± 0.87 g AFDM m^{-2} .

258

259 *Salvelinus malma growth and condition factor*—Individual growth rates showed strong seasonal
260 fluctuations, with peaks during May - June, while growth rates measured over winter were

261 negative (Fig. 4). Mean condition factor also showed strong seasonal variation (e.g., 1.2 in May
262 2007 to lows of <0.8 in March 2008 and February 2009). Mean condition factor was typically >1
263 during May - August, and condition declined sharply during both winters of the study.

264

265 *Salvelinus malma* production— Estimates of production for *S. malma* were problematic due to
266 low numbers of recaptured individuals (102 total) allowing calculation of growth rates,
267 particularly during the second year of study (~May 2008-May 2009). To counter this, mean
268 individual growth rates were estimated using quadratic regression over quasi-annual periods.
269 Daily growth rates (d^{-1}) from marked individuals were regressed against the midpoint date of
270 their marking and recapture. The first period spanned 20 March 2007-26 May 2008. The
271 equation describing mean daily growth during this period was: $g (d^{-1}) = 523.6 - 26.6 \times \text{date} +$
272 $0.337 \times \text{date}^2$ ($P < 0.0001$, $n=60$ recaptures, $R^2=0.48$), where “date” = Excel[©] date/1000. The
273 second period spanned 4 July 2008-4 August 2009. The equation describing growth rates during
274 this period was: $g (d^{-1}) = 234.3 - 11.8 \times \text{date} + 0.148 \times \text{date}^2$ ($P \leq 0.001$, $n=42$ recaptures,
275 $R^2=0.29$). Although the R^2 values are relatively low, the residual error was distributed
276 symmetrically around the fitted plots, indicating accurate trends of changing g over time.

277 Production by *S. malma* showed dramatic seasonal cycles, with consistently high levels
278 during May-August [e.g., range = 4.6 ± 2.1 to 16.3 ± 7.9 mg AFDM $m^{-2} d^{-1}$ ($\pm 95\%$ C.I.), Fig. 4].
279 The lowest levels of production occurred during October-February (e.g., range = 0.4 ± 0.9 to
280 1.5 ± 2.2 mg AFDM $m^{-2} d^{-1}$, Fig. 4). During these latter intervals the 95% C.I.s include zero.
281 Annual *S. malma* production from 24 May 2007-29 May 2008 was $1,985 \pm 647$ ($\pm 95\%$ C.I.) mg
282 AFDM m^{-2} and production from 29 May 2008-25 May 2009 was $1,711 \pm 727$ mg AFDM m^{-2} . The
283 P:B from 24 May 2007-29 May 2008 was 1.56 ± 0.29 and the P:B from 29 May 2008-25 May

284 2009 was 1.75 ± 0.41 . Annual production or P:Bs did not differ significantly between years
285 ($P > 0.05$, 2-sample randomization test). Semimonthly estimates of *S. malma* prey demand and
286 supply ($\text{mg DM m}^{-2} \text{ d}^{-1}$) indicated that prey production during October – February was generally
287 not sufficient to support demand (Fig. 5).

288

289 *Salvelinus malma* diet—Mean prey taxon richness in stomach contents ranged from 2-6 during
290 November – February to 8-12 during April – August. Similarly, mean prey items individual $^{-1}$
291 ranged from <20 during November – February to ~40 to ~90 during April – August and prey
292 biomass individual $^{-1}$ ranged from <10 mg DM from November – February to >60 mg DM from
293 April – August (Fig. 6, Table 2). Terrestrial invertebrates contributed to prey biomass during
294 May – September, with greatest levels reached in early July [e.g., $65 \pm 49\%$ ($\bar{X} \pm 95\%$ CI)].
295 Essentially no terrestrial prey were consumed during October – May. A comparison of diets
296 during summer (May-June) and winter (January-February) indicates that diets were dominated
297 (i.e., >75% of mean DM gut $^{-1}$) by five taxa (*Baetis*, *Ecclisomyia*, *Isoperla*, *Limnophora*, *Zapada*;
298 Table 2), with *Baetis* larvae comprising the highest proportion of the diet during summer (~59%
299 of mean DM gut $^{-1}$ during summer versus ~4% during winter) and *Isoperla* larvae comprising the
300 highest proportion during winter (~15% during summer versus ~49% during winter). Other
301 seasonal differences included the consumption of adult *Zapada* only during summer, and larval
302 *Zapada* and *Limnophora* only during winter.

303

304 *Light and temperature as correlates of consumer production*—Daily interval production by the
305 macroinvertebrate primary-consumer assemblage was positively related to both PAR (mg DM m^{-2}
306 $\text{d}^{-1} = 2.247 \times \text{PAR}^{0.563}$, $R^2 = 0.73$, $P < 0.0001$, $n = 23$) and temperature ($\text{mg DM m}^{-2} \text{ d}^{-1} = 0.107 \times$

307 $^{\circ}\text{C}^{3.259}$, $R^2=0.21$, $P=0.03$, $n=23$). Daily interval production by the macroinvertebrate secondary-
308 consumer assemblage was not related to either PAR ($P=0.20$, $n=23$) or temperature ($P=0.43$,
309 $n=23$). Daily interval production by *S. malma* was positively related to both PAR (mg AFDM m^{-2}
310 $\text{d}^{-1} = 0.296 \times \text{PAR}^{0.514}$, $R^2=0.50$, $P<0.001$, $n=23$) and temperature (mg AFDM $\text{m}^{-2} \text{d}^{-1} = 0.00001$
311 $\times ^{\circ}\text{C}^{7.101}$, $R^2=0.82$, $P<0.0001$, $n=23$).

312

313 *Apparent energetic coupling of trophic levels*—Daily macroinvertebrate primary consumer
314 production was closely related to the productivity of their putative food source [gross primary
315 production, GPP (mg C $\text{m}^{-2} \text{d}^{-1}$; Huryn et al. 2014); mg DM $\text{m}^{-2} \text{d}^{-1} = 9.040 + 0.020 \times \text{GPP}$,
316 $R^2=0.64$, $P<0.0001$, $n=23$, Fig. 7]. Predaceous macroinvertebrate production (mg DM $\text{m}^{-2} \text{d}^{-1}$)
317 was significantly related to primary consumer production (mg DM $\text{m}^{-2} \text{d}^{-1}$; predator production =
318 $1.962 \times \text{primary consumer production}^{0.457}$, $R^2=0.31$, $P<0.006$, $n=23$) and *S. malma* production
319 (mg AFDM $\text{m}^{-2} \text{d}^{-1}$) was significantly related to prey production (i.e., total macroinvertebrate
320 production, mg DM $\text{m}^{-2} \text{d}^{-1}$; *S. malma* production = $1.789 \times \text{prey production}^{0.263}$, $R^2=0.45$,
321 $P<0.0004$, $n=22$).

322

323 *Patterns of apparent temperature versus light dependence of consumer growth and*
324 *productivity*—Arrhenius plots of daily P:Bs for macroinvertebrate primary consumers, predators,
325 and *S. malma* generally showed similar “hockey stick” patterns, indicating a decoupling of the
326 temperature-P:B relationship as temperatures decrease (Figs. 8a, 8c, 8e). Plots of consumer P:B
327 within a range of $41.4 - 41.6 \text{ } kT^{-1}$ (i.e., $\sim 7^{\circ}\text{C}$ to 5°C) were consistent with plots of least-square
328 fitted equations with slopes fixed as the activation energy predicted for aerobic metabolic
329 processes by eukaryotes (-0.65 eV [Allen et al. 2005], Figs. 8a, 8c, 8e). At $kT^{-1} > 41.6$ (i.e., <

330 ~5°C), however, the apparent temperature dependence broke down, indicating that factors other
331 than temperature were primary drivers of P:B during winter. Arrhenius plots also showed that
332 P:B increased from its nadir as the coldest annual temperatures were approached (i.e., the lowest
333 P:Bs were not observed at the lowest temperatures; Figs. 8a, 8c, 8e). This pattern is consistent
334 with light availability rather than temperature being the driver of the lowest consumer P:B as the
335 lowest levels of light occur in December, while the lowest water temperatures occur in February
336 and March (Appendix S1: Fig. S1; Huryn et al. 2014). Furthermore, the analysis of the residual
337 error from the Arrhenius plots revealed positive relationships between PAR and P:Bs for
338 macroinvertebrate primary consumers (residual error = $0.502 \times \ln(\text{PAR}) - 2.703$, $R^2=0.76$,
339 $P<0.0001$, Fig. 8b) and *S. malma* (residual error = $0.411 \times \ln(\text{PAR}) - 2.319$, $R^2=0.69$, $P<0.01$,
340 Fig. 8f). In both cases, the maximum negative deviation from the regression model occurred at
341 the minimum PAR measured. The plot of residuals derived for the predaceous
342 macroinvertebrates showed a similar pattern, but was not statistically significant (residual error =
343 $0.544 \times \ln(\text{PAR}) - 0.716$, $R^2=0.12$, $P=0.10$, Fig. 8d).

344

345

DISCUSSION

346

How productive is Ivishak Spring?

347 Levels of production estimated for the macroinvertebrate primary consumers (10.1–17.4 g DM
348 $\text{m}^{-2} \text{ yr}^{-1}$) of Ivishak Spring were surprisingly high, particularly given its location above the Arctic
349 Circle (69°N). The mean annual level reported here, for example, exceeds 58% of the community
350 estimates of macroinvertebrate annual production reported worldwide in a recent meta-analysis
351 (Patrick et al., *in press*), despite annual mean water temperatures ranging from only 4.2 to 7.6°C
352 (Appendix S1: Fig. S1). Similarly, the production of *S. malma* measured here is relatively high

353 compared with many other salmonid streams. Our estimates of $1.7 - 2.0 \text{ g AFDM m}^{-2} \text{ yr}^{-1}$ are
354 equivalent to $\sim 100 - 118 \text{ kg WM ha}^{-1} \text{ yr}^{-1}$, which is within the range of levels used to define
355 highly productive trout streams ($\sim 100 - 300 \text{ kg WM ha}^{-1} \text{ yr}^{-1}$; Waters 1988, 1992). Although
356 some macroinvertebrate taxa had bivoltine life cycles and, consequently, relatively high annual
357 P:Bs (i.e., >10), the majority of production was attributed to taxa with annual P:Bs <5.0 , showing
358 that their total productivity is primarily dependent on high biomass rather than high growth rates,
359 as shown for spring-stream communities elsewhere (Berg and Hellenthal 1991). The high
360 primary consumer productivity shown for Ivishak Spring also supports an unusually long food
361 chain (mean length = 3.2 steps) for arctic headwater streams (i.e., the longest food chain length
362 of 19 arctic stream communities analyzed by Parker and Huryn 2013), with documented
363 predators including other macroinvertebrates, *S. malma*, American dipper (*C. americanus*), and
364 North American river otter (*L. canadensis*), which is a predator of *S. malma* (Parker and Huryn
365 2013). Although the level of secondary production we measured here is notable, given the arctic
366 context, it is perhaps not unexpected as GPP measured during summer ($>4.0 \text{ g C m}^{-2} \text{ d}^{-1}$)
367 compares favorably with the highest rates reported for headwater streams at much lower latitudes
368 (Huryn et al. 2014).

369

370 *Drivers of annual cycles of production in Ivishak Spring*

371 In a study of the ecosystem metabolism of Ivishak Spring, Huryn et al. (2014) revealed apparent
372 C limitation of ER during winter when rates of photosynthesis and GPP were at their lowest
373 levels. Two lines of evidence were used to support this conclusion: 1) a strong relationship
374 between gross GPP and ER showing that these processes were closely coupled, and 2) an
375 Arrhenius relationship (White et al. 2012) between temperature and ER that, rather than being

376 linear, showed a “hockey stick” pattern consistent with a deviation from an apparent relationship
377 with temperature that was both sudden and synchronous with a seasonal reduction of light
378 availability. As we show below, the results of our analyses of secondary production indicate a
379 close correspondence to the analyses of drivers of ecosystem metabolism by Huryn et al. (2014).

380

381 *Close coupling of consumer production and energy availability*—Temporal patterns of
382 production by macroinvertebrate primary consumers, predaceous macroinvertebrates and *S.*
383 *malma* were all significantly and positively related to temporal patterns of their food supplies.
384 Although examples are uncommon, similar coupling of production between trophic levels has
385 been shown for other stream ecosystems. For example, strong bottom-up control of primary
386 consumer production that, in turn, controlled predator production was shown for a temperate
387 forest stream ecosystem by Wallace et al. (1999, 2015) in a multi-year experiment that altered
388 organic matter supply. Although an experimental approach was not used in our study, a similar
389 pattern of resource variation was apparently induced by seasonal changes in light and consequent
390 fluctuations in GPP (Fig. 7). This cyclical fluctuation in resource base was then propagated
391 upward through the food web to drive temporal patterns of production by predaceous
392 macroinvertebrates and *S. malma*. Although speculative, the close coupling between secondary
393 production and primary production we document provides support for possible C-limitation
394 during periods of winter darkness, as observed previously for ER (Huryn et al. 2014).

395

396 *Arrhenius plots showing a P:B-temperature anomaly*—The rapid decline of production from
397 summer to winter combined with comparatively minor reductions in water temperature suggests
398 that seasonal C limitation of consumer growth in Ivishak Spring is possible. Assessing this,

399 however, is complicated because water temperature and light availability are confounded, even
400 though the range of water temperature during our 30-month study was only 2.8°C. As a
401 consequence, the control of seasonal patterns of productivity due to temperature, via direct
402 thermal-kinetic effects, or light availability via its control of primary productivity, could not be
403 directly measured. When temporal patterns of daily P:Bs ranging across several trophic level are
404 visualized using Arrhenius plots, however, insight into potential controlling factors is gained.
405 Arrhenius plots of the P:Bs of macroinvertebrate primary consumers, predaceous
406 macroinvertebrates, and *S. malma* each showed similar, relatively slow, linear declines in rates as
407 water temperatures decreased from ~7°C to 5°C, followed by abrupt declines to very low rates as
408 temperatures fell below ~5°C, followed by an increase in rates as temperatures approach the
409 lowest levels measured ($\leq 4.5^{\circ}\text{C}$). Consequently, analyses of the residual error from the Arrhenius
410 plots for both macroinvertebrate primary consumers and Dolly Varden showed strong
411 relationships with PAR, with the greatest negative departures at the lowest levels of light rather
412 than at the coldest temperatures.

413 A further analysis of Arrhenius plots of GPP and ER reported by Huryn et al. (2014)
414 showed temperature anomalies similar to those observed for P:Bs (i.e., GPP showed a rapid
415 decline below 5.6°C followed by an increase as temperatures fell below 4.7°C; ER showed a rapid
416 decline below 5.6°C followed by an increase as temperatures fell below 4.9°C; Figs. 9a, 9c).
417 Moreover, an analysis of the residuals of the Arrhenius plots [i.e., departures from least-square
418 regression with the slope constrained to ~0.3 eV, which approximates activation energy of
419 photosynthesis as constrained by RuBisCO carboxylation (Allen et al. 2005, Anderson-Teixeira
420 and Vitousek 2012), or -0.65 eV, which approximates the expected activation energy of aerobic
421 catabolism (Allen et al. 2005, Perkins et al. 2012)] showed relationships with PAR essentially

422 identical to those shown for consumer P:Bs, with the greatest negative departures from predicted
423 values occurring at lowest levels of light rather than coldest temperatures (GPP residual error =
424 $0.205 \times \ln(\text{PAR}) - 1.248, R^2=0.81, P<0.0001$, Fig. 9b; ER residual error = $0.080 \times \ln(\text{PAR}) -$
425 $0.607, R^2=0.17, P=0.055$, Fig 9d). The fact that ecosystem metabolism and consumer P:Bs were
426 estimated using independent approaches, combined with the close synchrony of their annual
427 cycles and similar anomalous Arrhenius relationships, provides strong support for the conclusion
428 that temporal patterns of secondary production and ER in Ivishak Spring are both controlled by
429 seasonal light cycles rather than temperature. By combining temperature thresholds for the
430 breakdown of temperature dependence of ER and consumer production with daily records of
431 water temperature, the periods when apparent C-limitation affects these processes can be
432 estimated. Although there is year-to-year variation, ER is generally affected by apparent C-
433 limitation from ~October to April, whereas the apparent C-limitation of secondary production is
434 of shorter duration, extending from ~December to March.

435

436 *Seasonal patterns of food consumption*

437 Although direct evidence of C-limitation of macroinvertebrate production during winter is
438 lacking, diet and prey supply-demand analyses provide insight into this possibility. Two
439 observations regarding diet are significant. The first is the serial omnivory documented for
440 *Isoperla petersoni*, the most productive species at Ivishak Spring. The second is the seasonality
441 of diatom consumption by the other taxa analyzed. Although omnivory has been reported
442 previously for *I. petersoni* (Stewart and Stark 2002), its extreme seasonality at Ivishak was
443 striking and provides an example of the importance of the temporal axis when analyzing food
444 web structure (McMeans et al. 2015; Fig. 2). Diatoms, for example, made up almost the entire

445 diet of *I. petersoni* during April (~85%), whereas invertebrate prey were more prevalent during
446 other months (i.e., April ~5% vs. July ~81%, October ~45%, January ~81%). It is important to
447 note that >50% of *I. petersoni* production occurred during the April-June period when diatom
448 consumption was maximized (Fig. 2). *Pagastia*, *Ecclisomyia* and *Rhynchelmis* showed similar
449 patterns, with maximum diatom consumption during April (e.g., range of mean % diatoms
450 among taxa ~74 – 85%), whereas gut contents were essentially devoid of diatoms during January
451 (e.g., range among taxa ~0 – 5%, Fig. 2). Given the correlation between the seasonality of
452 diatom consumption and production by primary consumers, it is possible that low diatom
453 availability limited their production during winter. Although speculative, diatoms may
454 disproportionately contribute to the pool of essential fatty acids required to support production
455 by the macroinvertebrate primary consumers in Ivishak Spring. Diatoms have relatively high
456 levels of total fatty acids, compared with other primary producers (Brett and Müller-Navarra
457 1997) and their near absence in the winter diet of macroinvertebrates may have resulted in low
458 levels of production rather than C-limitation *per se*.

459 Similar to the macroinvertebrates, *S. malma* showed substantial seasonal variation in diet
460 composition, although only five prey taxa contributed $\geq 75\%$ to gut content DM during both
461 summer and winter. In addition to differences in taxonomic richness, the biomass of stomach
462 contents also declined significantly from a high of >60 mg DM during April – August to <10 mg
463 DM from November – February. Although seasonal patterns of growth and condition may have
464 been affected by seasonal differences in prey type (e.g., dominance of *Baetis* larvae during
465 summer), coincident patterns of extremely low gut content DM and low body condition suggest
466 that fasting during winter was the primary driver of the significant losses of individual *S. malma*
467 biomass observed from ~November – February. Although resting metabolic rates of salmonids

468 may be reduced during periods of winter food scarcity in north temperate rivers, which offsets
469 metabolic losses of biomass (Auer et al. 2016), the effects of fasting on individual biomass and
470 condition in Ivishak Spring are presumably exacerbated during winter due to stable water
471 temperatures that drive relatively constant metabolic demands despite declining prey
472 consumption.

473 Potential factors controlling prey biomass consumed by *S. malma* during November –
474 February include the lack of terrestrial invertebrates and a reduction of foraging efficiency due to
475 long periods of darkness. Although the absence of terrestrial prey contributed to lower total prey
476 biomass during winter (e.g., ~8 to 20% during July – August, ~0 to 1% during November –
477 February), most of the reduction in consumption was due to lower quantities of ingested aquatic
478 prey. Whether this is due to an inability to capture prey effectively or due to prey scarcity is
479 unknown, although our analysis of prey supply versus demand indicated that macroinvertebrate
480 production during the winter months (e.g., October – February; Fig. 5) was insufficient to
481 support *S. malma* production or maintain body condition. Although information specific for *S.*
482 *malma* is limited, several studies have shown that stream salmonids tend to forage for benthic
483 prey when drifting prey are uncommon (Dunham et al. 2008) or during periods of darkness
484 (Hagan and Taylor 2001). Furthermore, some studies have shown that foraging during darkness
485 has a lower probability of prey capture than daytime foraging (Fraser and Metcalfe 1997, Watz et
486 al. 2014). Nevertheless, studies of arctic char (*Salvelinus alpinus*) and juvenile Atlantic salmon
487 (*Salmo salar*) have shown that nocturnal feeding is a common overwintering strategy (Alanära
488 and Bränäs 1997, Amundsen et al. 2000). Although data allowing the definitive separation of
489 different factors are lacking, it is likely that the reduction in prey biomass consumed during
490 winter is due to a combination of the lack of terrestrial prey, inefficient foraging during darkness,

491 and low levels of aquatic prey production. Nevertheless, the results of our semi-monthly prey
492 supply-demand analysis indicate that the latter factor is preeminent (Fig. 5).

493

494 *Light availability, not temperature, drives cycles of productivity in Ivishak Spring*
495 Extreme seasonal cycles of light and temperature are key exogenous drivers (e.g., Valett et al.
496 2008) of ecological processes occurring in most arctic ecosystems (Thomas et al. 2008). Arctic
497 spring-streams, however, maintain relatively constant temperatures year-round, which provides
498 an unusual energetic context in which ectothermic consumers are subject to relatively stable
499 metabolic demands while energy supplies undergo annual cycles forced by light availability
500 (Huryn et al. 2014). These factors together result in cycles of C limitation that drive patterns of
501 consumer productivity that are uncoupled from cycles of temperature. In support of this scenario,
502 we found: 1) lack of temperature dependence of daily P:Bs during winter, 2) lowest levels of
503 GPP and daily P:Bs of consumers at lowest light levels rather than lowest water temperatures, 3)
504 minimal consumption of primary producers by macroinvertebrates and prey by *S. malma* during
505 winter, 4) biomass loss by *S. malma* due to fasting during winter, as indicated by direct
506 measurements of individual growth rates and body condition, and 5) a prey supply versus
507 demand budget indicating that macroinvertebrate production was insufficient to support *S.*
508 *malma* production or maintain body condition during winter.

509 In conclusion, we found light, not temperature, to be the apparent driver of annual cycles
510 of secondary production in Ivishak Spring. Our results provide evidence for C limitation of
511 consumer productivity due to changes in the rate of photosynthesis as light waned and waxed
512 through the winter months (consistent with Fig. 1d). We used the unusual annual light and
513 temperature regimes of this arctic spring to test predictions about the effect of seasonal light

514 availability on consumer productivity – with minimally confounding effects of temperature. This
515 exceptional combination of extreme seasonal fluctuations in light and relatively constant and
516 moderate temperatures perhaps raises questions about whether the results of our study can be
517 generalized to other ecosystem types. Although arctic springs are uncommon and remote, they
518 offer a “natural manipulation” of exogenous drivers that are difficult or even impossible to alter
519 experimentally at appropriate scales. By capitalizing on the unusual energetic context of Ivishak
520 Spring, we were able to demonstrate how the almost universal synchrony between annual light
521 and temperature regimes conceals mechanisms by which these two drivers interact to control
522 energy flow through ecosystems. In particular, the timing and severity of winter C limitation we
523 have documented in this spring-stream hints at a fundamental role for light-temperature
524 synchrony in matching ecosystem-level energy supply with demand in most other ecosystem
525 types. This widespread seasonal supply-demand synchrony potentially confers an important
526 measure of stability in the metabolism of food webs over annual time-scales.

527

528 **Acknowledgments**

529 We thank Naomi Whitty and Matt Irinaga (CH2M HILL Polar Services) for logistical support,
530 and Ed Serrano, Pele Tierney, Jonas Calvillo, Bryan Minnear, Don Herbert, Ryan Porhola and
531 Scott Nicholson for helicopter transportation to Ivishak Spring. We also thank Stephanie Parker,
532 Chau Tran, Michael Kendrick, James Ramsey and Jenna Cook (University of Alabama) for help
533 in the field and laboratory. Dr Kirk Winemiller and two anonymous reviewers provided helpful
534 criticism of an earlier version of this paper. Funding was provided by the National Science
535 Foundation (OPP-0611995 and DEB-1637459).

536

537

538

539 **Literature cited**

540 Alanärä, A. and E. Bränäs. 1997. Diurnal and nocturnal feeding activity in Arctic char
541 (*Salvelinus alpinus*) and rainbow trout (*Oncorhynchus mykiss*). Canadian Journal of Fisheries
542 and Aquatic Sciences 54:2894-2900.

543 Amundsen, P.A., H.M. Gabler, T. Herfindal and L.S. Riise. 2000. Feeding chronology of
544 Atlantic salmon parr in subarctic rivers: consistency of nocturnal feeding. Journal of Fish
545 Biology 56:676-686.

546 Auer, S.K., K. Salin, G.J. Anderson and N.B. Metcalfe. 2016. Flexibility in metabolic rate and
547 activity level determines individual variation in overwinter performance. Oecologia 182:703-
548 712.

549 Benke, A.C. and A.D. Huryn. 2017. Secondary production and quantitative food webs. Pp. 235-
550 254 in (F.R. Hauer, G.A. and G.A. Lamberti, eds.) *Methods in Stream Ecology, 3rd Edition.*
551 *Volume 2: Ecosystem Function.* Academic Press, San Diego.

552 Benke, A.C., A.D. Huryn, L.A. Smock and J.B. Wallace 1999. Length-mass relationships for
553 freshwater macroinvertebrates in North America with particular reference to the southeastern
554 United States. Journal of the North American Benthological Society 18:308-343.

555 Benstead, J.P. and A.D. Huryn. 2011. Extreme seasonality of litter breakdown in an arctic
556 spring-fed stream is driven by shredder phenology, not temperature. Freshwater Biology
557 56:2034-2044.

558 Berg, M.B. and R.A. Hellenthal. 1991. Secondary production of Chironomidae (Diptera) in a
559 north temperate stream. Freshwater Biology 25:497-505.

560 Bernhardt, E.S., J.B. Heffernan, N.B. Grimm, E.H. Stanley, J.W. Harvey, M. Arroita, A.P.
561 Appling, M.J. Cohen, W.H. McDowell, R.O. Hall Jr. and J.S. Read. 2018. The metabolic
562 regimes of flowing waters. *Limnology and Oceanography* 63:99-118.

563 Brett, M.T., and D.C. Müller-Navarra. 1997. The role of highly unsaturated fatty acids in aquatic
564 foodweb processes. *Freshwater Biology* 38:483-499.

565 Brown, J.H., and R.M. Sibly. 2012. The metabolic theory of ecology and its central equation.
566 Pages 21-33 *in* J.H. Brown, R.M. Sibly, and A. Kodric-Brown, editors. *Metabolic ecology: a
567 scaling approach*. Wiley-Blackwell, West Sussex, UK.

568 Dossena, M., G. Yvon-Durocher, J. Grey, J.M. Montoya, D.M. Perkins, M. Trimmer, and G.
569 Woodward. 2012. Warming alters community size structure and ecosystem functioning.
570 *Proceedings of the Royal Society: B-Biological Sciences* 279:3011-3019.

571 Dunham, J., C. Baxter, K. Fausch, W. Fredenberg, S. Kitano, I. Koizumi, K. Morita, T.
572 Nakamura, B. Rieman, K. Savvaitova and J. Stanford. 2008. Evolution, ecology, and
573 conservation of Dolly Varden, white spotted char, and bull trout. *Fisheries* 33:537-550.

574 Fraser, N.H.C. and N.B. Metcalfe. 1997. The costs of becoming nocturnal: feeding efficiency in
575 relation to light intensity in juvenile Atlantic salmon. *Functional Ecology* 11:385-391.

576 Giles, N. 1980. A stomach sampler for use on live fish. *Journal of Fish Biology* 16:441-444.

577 Hagen, J. and E.B. Taylor. 2001. Resource partitioning as a factor limiting gene flow in
578 hybridizing populations of Dolly Varden char (*Salvelinus malma*) and bull trout (*Salvelinus
579 confluentus*). *Canadian Journal of Fisheries and Aquatic Sciences* 58:2037-2047.

580 Heffernan, J.B., and M.J. Cohen. 2010. Direct and indirect coupling of primary production and
581 diel nitrate dynamics in a subtropical spring-fed river. *Limnology and Oceanography* 55:677-
582 688.

583 Huryn, A.D. 1996. An appraisal of the Allen Paradox in a New Zealand trout stream. *Limnology*
584 and *Oceanography* 41:243-252.

585 Huryn, A.D., J.P. Benstead & S.M. Parker. 2014. Seasonal changes in light availability modify
586 the temperature dependence of ecosystem metabolism in an arctic stream. *Ecology* 95:2826-
587 2839.

588 Huryn, A.D., and J.E. Hobbie. 2012. Land of extremes: a natural history of the arctic North
589 Slope of Alaska. University of Alaska Press, Fairbanks, Alaska, USA.

590 Huryn, A.D., K.A. Slavik, R.L. Lowe, S.M. Parker, D.S. Anderson, and B.J. Peterson 2005.
591 Landscape heterogeneity and the biodiversity of Arctic stream communities: a habitat
592 template analysis. *Canadian Journal of Fisheries and Aquatic Sciences* 62:1905-1919.

593 Manly, B.F.J., 1991. Randomization and Monte Carlo Methods in Biology. Chapman and Hall,
594 London, UK.

595 McMeans, B.C., K.S. McCann, M. Humphries, N. Rooney and A.T. Fisk. 2015. Food web
596 structure in temporally-forced ecosystems. *Trends in Ecology and Evolution* 30:662-672.

597 Merritt, R.W., K.W. Cummins and M.B. Berg (eds.). 2007. *Introduction to the Aquatic Insects of*
598 *North America*, 4th Edition. Kendall Hunt.

599 Parker, S.M. and A.D. Huryn. 2013. Disturbance and productivity as codeterminants of stream
600 food web complexity in the Arctic. *Limnology and Oceanography* 58:2158-2170.

601 Parker, S.M., and A.D. Huryn. 2006 Food web structure and function in two Arctic streams with
602 contrasting disturbance regimes. *Freshwater Biology* 51:1249-1263.

603 Parker, S.M., and A.D. Huryn. 2011. Effects of natural disturbance on stream communities: a
604 habitat template analysis of Arctic headwater streams. *Freshwater Biology* 56:1342-1357.

605 Patrick., C.J., D. McGarvey, W.F. Cross, D. Allen, A.C. Benke, T. Brey, A.D. Huryn, J. Jones,
606 C. Murphy, C. Ruffing. P. Saffarinia, M.R. Whiles, J.B. Wallace and G. Woodward. In press.
607 Precipitation and temperature drive continental to global patterns of stream invertebrate
608 production. *Science Advances*.

609 Perkins, D.M., G. Yvon-Durocher, B.O.L. Demars, J. Reiss, D.E. Pichler, N. Friberg, M.
610 Trimmer, and G. Woodward. 2012. Consistent temperature dependence of respiration across
611 ecosystems contrasting in thermal history. *Global Change Biology* 18:1300-1311.

612 Roberts, B.J., P.J. Mulholland, and W.R. Hill. 2007. Multiple scales of temporal variability in
613 ecosystem metabolism rates: results from 2 years of continuous monitoring in a forested
614 headwater stream. *Ecosystems* 10:588-606.

615 Sabo, J.L., J.L. Bastow and M.E. Power. 2002. Length–mass relationships for adult aquatic and
616 terrestrial invertebrates in a California watershed. *Journal of the North American
617 Benthological Society* 21:336-343.

618 Stewart, K.W. and B.P. Stark. 2002. Nymphs of North American stonefly genera (Plecoptera).
619 The Caddis Press, Columbus, Ohio.

620 Thomas, D.N., G.E. Fogg, P. Convey, C.H. Fritsen, J.-M. Gili, R. Gradinger, J. Laybourn-Parry,
621 K. Reid and D.W.H. Walton. 2008. *The Biology of Polar Regions: Biology of Habitats*.
622 Oxford University Press.

623 Valett, H.M., S.A. Thomas, P.J. Mulholland, J.R. Webster, C.N. Dahm, C.S. Fellows, C.L.
624 Crenshaw, and C.G. Peterson. 2008. Endogenous and exogenous control of ecosystem
625 function: N cycling in headwater streams. *Ecology* 89:3515-3527.

626 Wallace, J.B., S.L. Eggert, J.L. Meyer and J.R. Webster. 1999. Effects of resource limitation on a
627 detrital-based ecosystem. *Ecological Monographs* 69:409-442.

628 Wallace, J.B., S.L. Eggert, J.L. Meyer and J.R. Webster. 2015. Stream invertebrate productivity
629 linked to forest subsidies: 37 stream-years of reference and experimental data. *Ecology*
630 96:1213-1228.

631 Waters, T.F. 1988. Fish production-benthos relationships in trout streams. *Polskie Archiwum*
632 *Hydrobiologii* 35:545-561.

633 Waters, T.F. 1992. Annual production, production/biomass ratio, and the ecotrophic coefficient
634 for management of trout in streams. *North American Journal of Fisheries Management*
635 12:34-39.

636 Watz, J., J. Piccolo, E. Bergman and L. Greenberg. 2014. Day and night drift-feeding by juvenile
637 salmonids at low water temperatures. *Environmental Biology of Fishes* 97:505-513.

638 White, E.P., X. Xiao, N.J.B. Isaac, and R.M. Sibly. 2012. Methodological tools. Pages 9-20 *in*
639 J.H. Brown, R.M. Sibly, and A. Kodric-Brown, editors. *Metabolic ecology: a scaling*
640 *approach*. Wiley-Blackwell, West Sussex, UK.

641 **Table 1.** Mean annual biomass (B, mg DM m⁻²±95% C.I.), production (P, mg DM m⁻² yr⁻¹±95% C.I.) and P:B (yr⁻¹± 95% C.I.) for
 642 macroinvertebrates occurring in Ivishak Spring, AK. Y1 = 24 May 2007 to 29 May 2008, Y2 = 29 May 2008 to 25 May 2009. Taxa are
 643 primary consumers unless otherwise indicated as †=omnivore or ††=predator. Cases where P:B could not be calculated are indicated as
 644 “n.c.”

Class	Order	Family	Genus	Y1 B	Y2 B	Y1 P	Y2 P	Y1 P:B	Y2 P:B
Turbellaria††				60±19	91±27	64±33	129±76	1.1±0.7	1.5±1.0
Clitellata	Lumbriculida	Lumbriculidae	<i>Rhytchelmis</i> sp.	277±96	428±172	447±211	526±255	1.7±1.0	1.3±0.8
			Misc.	69±35	333±113	141±146	562±568	2.1±1.9	1.7±1.6
Insecta	Ephemeroptera	Baetidae	<i>Baetis cf. foemina</i>	256±48	332±74	1398±492	2058±643	5.5±2.2	6.3±2.4
	Plecoptera	Nemouridae	<i>Zapada haysi</i>	275±77	342±81	1064±414	822±229	3.9±1.9	2.4±0.9
		Perlidae	<i>Isoperla petersoni</i> †	812±218	1009±196	2172±724	4743±1266	2.7±1.2	4.8±1.6
	Diptera	Chironomidae	<i>Corynoneura</i> sp	5±3	8±6	5±4	49±54	1.2±1.7	6.7±10.1
			<i>Diamesa</i> sp.	13±18	19±8	26±58	34±45	5.9±5.9	1.9±2.8
			<i>Eukiefferiella brehmi</i> grp.	15±8	25±10	51±69	211±178	3.8±5.7	8.9±8.2
			<i>Euk. devonica</i> grp.	64±26	168±52	330±212	1398±536	5.4±4.4	8.6±4.4
			<i>Euk. gracei</i> grp.	23±7	81±50	192±135	637±448	8.5±6.4	8.7±8.7
			<i>Micropsectra</i> sp.	75±36	153±68	738±748	1648±894	10.4±12.0	11.4±8.4
			<i>Orthocladius</i> s.s.	85±50	85±49	326±404	222±186	5.8±6.3	4.6±3.1
			<i>O.(Euorthocladius)</i> sp.	28±11	129±44	1±1	673±493	0.0±0.0	5.4±4.5
			<i>Pagastia</i> sp.†	204±64	459±107	772±553	1517±771	3.9±3.1	3.4±1.9
			<i>Rheocricotopus</i> sp	35±27	19±10	434±324	220±101	15.3±23.5	12.4±9.8
			<i>Tvetenia</i> sp.	0±0	20±13	0±0	87±70	n.c.	5.0±5.6
			<i>Thienemanniella</i> sp.	11±4	12±5	108±85	75±61	10.5±9.5	6.7±6.4
		Simuliidae	<i>Prosimulium</i> sp.	55±39	38±30	792±638	273±193	17.0±22.0	8.9±11.3
		Psychodidae	<i>Pericoma</i> sp.	469±122	515±119	1044±388	1469±478	2.3±1.0	2.9±1.2
		Tipulidae	<i>Dicranota</i> sp.†	43±26	53±15	49±30	150±65 1.	3±1.1	2.9±1.6
		Empididae	<i>Chelisera</i> sp.††	242±51	321±59	494±166	1312±434	2.1±0.8	4.1±1.5
			<i>Oreogeton</i> sp.††	0±0	98±46	0±0	531±331	n.c.	5.8±4.9
		Muscidae	<i>Limnophora</i> sp.††	123±61	207±97	362±249	696±450	3.2±2.9	3.6±3.1
Trichoptera	Limnephilidae	<i>Ecclisomyia conspersa</i>		239±79	517±151	1085±467	2251±708	4.7±2.6	4.5±2.0

645

646

647

648 **Table 2.** Summary of Dolly Varden stomach contents from individuals sampled monthly in
649 Ivishak Spring during May-July (2007, 2008, 2009) and January-February (2008, 2009). The taxa
650 shown represent the most common prey items among stomach contents and collectively make up
651 >75% of total mean prey biomass (74.5% for May-July samples, 92.9% for January-February
652 samples). Values are grand means based on estimates of monthly mean stomach content biomass \pm
653 1 S.E. See Table 1 for information regarding the taxonomic classification of listed taxa.

Taxon	May-July mg DM gut ⁻¹	January-February mg DM gut ⁻¹
<i>Baetis cf. foemina</i>	20.7 \pm 5.8	0.3 \pm 0.2
<i>Isoperla petersoni</i>	5.2 \pm 2.7	3.4 \pm 1.0
<i>Zapada haysi</i> (larva)	0.0 \pm 0.0	0.5 \pm 0.3
<i>Zapada haysi</i> (adult)	2.4 \pm 1.2	0.0 \pm 0.0
Empididae (adult)	5.7 \pm 4.3	0.0 \pm 0.0
<i>Limnophora</i> sp.	0.0 \pm 0.0	0.8 \pm 0.5
<i>Ecclisomyia conspersa</i>	2.2 \pm 1.3	2.3 \pm 0.7
Total	35.1 \pm 6.0	7.0 \pm 1.1

654

655

656 **Figure captions**

657 **FIG. 1.** Conceptual model (modified from Huryn et al. 2014) summarizing anticipated annual
658 patterns of primary and secondary production in arctic spring-stream ecosystems. GPP =
659 gross primary production, a.) Coupled pattern of light availability and temperature that
660 normally occurs in high-latitude ecosystems. b.) Decoupling of light and temperature that
661 occurs in arctic springs. c.) De-coupled pattern of annual GPP (controlled by light
662 availability) and consumer metabolism (controlled by temperature). d.) Quasi-coupled
663 pattern of annual GPP (controlled by light availability) and secondary production (controlled
664 by both organic C supplied by GPP and the effect of temperature on consumer metabolism).

665 **FIG. 2.** Temporal patterns of diet composition measured as particle area of gut contents for four
666 abundant macroinvertebrate taxa in Ivishak Spring, AK [*Rhynchelmis* (Oligochaeta),
667 *Pagastia* (Diptera: Chironomidae), *Ecclisomyia* (Trichoptera: Limnephilidae), *Isoperla*
668 (Plecoptera: Perlodidae)]. OM = organic matter. Open symbols are the individual data points
669 ($n = 5-8$ individuals).

670 **FIG. 3.** Temporal patterns of macroinvertebrate primary consumer (a) production and (b)
671 production:biomass ratio and of macroinvertebrate secondary consumer (c) production and
672 (d) production:biomass ratio in Ivishak Spring, AK. Length of box represents measurement
673 period and height of box represents 1 S.E. either side of the mean. Smoothing function (dark
674 grey line) is a locally weighted regression \pm 1. S.E. (shaded).

675 **FIG. 4.** Temporal patterns of (a) specific growth rate, (b) daily production and (c) daily
676 production:biomass ratio for Dolly Varden char (*S. malma*) in Ivishak Spring, AK. In plot (a)
677 bars represent individual char and their length shows the measurement period for growth rate.

678 In plots (b) and (c) length of box represents measurement period and height of box represents
679 1 S.E. either side of the mean.

680 **FIG. 5.** Estimated prey surplus (\pm 95% CIs) for Dolly Varden char (*S. malma*) in Ivishak Spring.
681 Prey surplus was calculated as the difference between interval invertebrate production and
682 energetic demand based on interval char production and assumed gross production efficiency
683 (see Huryn 1996). Dashed line indicates zero surplus.

684 **FIG. 6.** Temporal patterns of aquatic and terrestrial prey consumption measured as mean dry
685 mass (\pm 1 S.E.) of stomach contents of Dolly Varden char (*S. malma*) in Ivishak Spring.
686 Smoothing function (dark grey line) is a locally weighted regression \pm 1. S.E. (shaded).

687 **FIG. 7.** Relationship between mean daily interval production of primary consumers and mean
688 daily gross primary production in Ivishak Spring. Fitted line is a linear least-squares
689 regression \pm 1 S.E. (shaded).

690 **FIG. 8.** Arrhenius plots of daily production:biomass ratio (d^{-1}) vs. Boltzmann temperature for (a)
691 primary consumer macroinvertebrates, (c) secondary consumer macroinvertebrates and (e)
692 Dolly Varden char (*S. malma*) measured semi-monthly in Ivishak Spring, AK (March 2007-
693 August 2009). Dashed lines are least-square fits with slopes constrained to the activation
694 energy predicted for aerobic anabolic metabolism (i.e., \sim 0.65 eV). Panels (b), (d) and (f) plot
695 residual error from the Arrhenius plots vs. photosynthetically active radiation (PAR).

696 **FIG. 9.** Arrhenius plots of (a) GPP ($g C m^{-2} d^{-1}$) and (c) ER ($g C m^{-2} d^{-1}$) measured semi-monthly
697 in Ivishak Spring, AK (March 2007-August 2009). Dashed lines are plots of least-square fit
698 equations with slopes constrained to the activation energies predicted for GPP (i.e., activation
699 energy of RuBisCO carboxylation \sim 0.3 eV) and ER (i.e., \sim 0.65 eV), respectively. Panels (b)

700 and (d) plot residual error from the Arrhenius plots vs. photosynthetically active radiation
701 (PAR).