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Abstract

What does the diffraction pattern from a single atom look like? How does it differ from

the scattering from long-range potential? With the development of new high-dynamic

range pixel array detectors to measure the complete momentum distribution, these

questions have immediate relevance for designing and understanding momentum-

resolved imaging modes. We explore the asymptotic limits of long-range and short-

range potentials. We use a simple quantum mechanical model to explain the general

and asymptotic limits for the probability distribution in both real and reciprocal space.

Features in the scattering potential much larger than the probe size cause the bright field

(BF) disk to deflect uniformly, while features much smaller than the probe size, instead

of a deflection, cause a redistribution of intensity within the BF disk. Because long-range

and short-range features are encoded differently in the diffraction pattern, it is possible

to separate their contributions in differential phase–contrast (DPC) or center-of-mass

(CoM) imaging. The shape profiles for atomic resolution CoM imaging are dominated

by the shape of the probe gradient and not the highly singular atomic potentials or their

local fields. Instead, only the peak height shows an atomic number sensitivity, whose

precise dependence is determined by the convergence angle. At lower convergence

angles, the contrast oscillates with increasing atomic number, similar to BF imaging.

The range of collection angles impacts DPC and CoM imaging differently, with CoM

being more sensitive to the upper cutoff limit, while DPC is more sensitive to the lower

cutoff.
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Introduction

A new generation of high-speed, pixelated detectors has
expanded the possibility for collecting full scattering informa-
tion by recording diffraction patterns from a focused probe in
a scanning transmission electron microscope (STEM), creating
a rich and phase-sensitive four-dimensional (4D) data set. For
high-dynamic range detectors where the full diffraction pat-
tern, including the central beam, can be recorded without sat-
uration, all traditional STEM imaging modes can be
reconstructed quantitatively and simultaneously, with their
signals placed on an absolute scale [1]. However, the rich
information contained in these spatially resolved diffraction
patterns is well suited to more sophisticated imaging modes,
some new, and some long-envisaged, that until now have
been handicapped by detector technology.

Shortly after the practical demonstration of field emis-
sion STEM instruments capable of forming a small probe
[2], researchers began to explore potential imaging modes
that exploited the phase information encoded across the
convergent beam diffraction patterns formed by a coher-
ent, focused electron beam. Rose [3] considered the phase
distribution across the bright field (BF) disk in the presence
of aberrations as a tunable phase plate and proposed a ser-
ies of ring-like detectors matched to regions of opposite
phase to obtain a phase–contrast imaging with higher col-
lection efficiency and resolution than a traditional BF
STEM image. As Rose noted in the paper, matching the
aberration function to the detector and not having it drift
would be challenging, and it was not until actual phase
plates and pixelated detectors were available that a gener-
alized version of this approach was implemented [4].

To overcome the need to rely on aberrations for phase
detection in STEM, Dekker and de Lang [5] proposed
another differential phase–contrast (DPC) method using a
split detector divided into quadrants that would essentially
measure the gradient of a weak phase object without the
need for a phase plate and showed optimal performance
for an aberration-free, in-focus probe, was robust to con-
trast reversals with defocus, and with an information limit
double that of traditional BF STEM phase–contrast image.
This is the same information limit for annular dark field
(ADF) STEM, and as Rose later pointed out [6], DPC (like
ADF) has a contrast transfer function (CTF) typical of a
self-luminous object and incoherent imaging. Rose also
noted that the phase object itself could be obtained by inte-
gration, although the analog integration schemes of the
day would lead to large, low-frequency noise instabilities
[6]. With the advent of widely available Fourier-based
methods, integrated DPC (iDPC) was implemented first for
X-ray microscopy [7] and later electron microscopy [8,9].
Early applications of DPC in STEM included mapping

magnetic fields and domain walls at medium resolution
[10,11]. With the widespread availability of aberration
correctors, DPC for atomic resolution lattice imaging has
also become practical [12,13].

The contrast mechanisms and scattering distributions
are actually somewhat different for the medium resolution
imaging of magnetic domains and atomic resolution
imaging, and the uniform deflections observed in the for-
mer case [10], are not seen in the latter [13], or for that
matter at domain boundaries in ferroelectrics [14]. Our
goal here is to rationalize these different results and pro-
vide a general picture of contrast changes across the dif-
fraction pattern so as to guide development of new and
optimized imaging modes with pixelated detectors.
Considerable early work has already been done, and with
the exception of ptychography [15–17] has largely focused
on identifying simple detection schemes. Nevertheless,
there is still great value in these early derivations that can
be extended to the more modern pixelated detectors. For
instance, Figure 1 of Dekkers and de Lang [5] would be
immediately recognizable to modern researchers perform-
ing single-side-band ptychography – both are targeting the
same contrast changes across the BF disk, and conse-
quently both iDPC and BF ptychography show the same
information limit [18]. However, as more pixels are added
to the detector, the BF ptychography can construct a more
optimal sampling of the disk overlaps, leading to improve-
ments in contrast and collection efficiency [18].

Similarly, using a pixelated detector also allows for
improvements on Dekker and de Lang’s split detector DPC
as a direct phase detection method. Waddell and Chapman
showed that the gradient of a potential is recovered exactly
within the strong phase approximation by calculating the
center of mass (CoM) of the diffraction pattern [11,19].
This CoM signal would of course require a pixelated
detector to perform the linear weighting needed to obtain
the first moment. The first moment or CoM measurement
is a better measurement of DPC, i.e., the phase gradient
compared to the split quadrant detector, at least in terms
of uniformity of the CTF [9,19,20]. Although both the split
detector and the CoM approach are measures of DPC, we
follow the historical and current marketing conventions in
the electron microscopy community and refer to the split
(quadrant) detector as DPC imaging, and the first moment
measure using a more finely pixelated detector as CoM
imaging. As noted more recently, the CoM signal has a
physical meaning in its own right, independent of the
strong phase approximation – it is expectation value of the
quantum mechanical probability current flow of the elec-
tron beam through the sample [13,21]. This more modern
interpretation is helpful in thinking of effects beyond the
weak scattering limit, and while it strictly applies to CoM
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imaging, DPC is often a sufficiently close approximation
that it is also applied there as well.

Both DPC and CoM images are formed by summing
over the diffraction pattern using an anti-symmetric weight-
ing function over the detector. DPC uses a weighting func-
tion of 1 and −1 over the two halves of the detector. CoM
uses the coordinate in momentum space ⃗k as the weighting
function. We will use this convention when referring to
DPC or CoM images. With these weighting functions, any
asymmetry in the diffraction pattern would then lead to a
difference signal. Classically, this asymmetry was due to a
small displacement of the BF disk. However, experiments
have measured a difference signal even when the disk is not
displaced [14]. Instead, there is a redistribution of intensity
within the disk, and this is commonly seen in multislice simu-
lations of diffraction pattern mapping and DPC imaging at
the atomic scale [8,13,20]. Here, we use a phase object
approximation to separate these phenomenon as a result of
different length scales. By choosing the integration angles, we
show how CoM images separate large from small features.
Furthermore, we highlight an important caveat when inter-
preting a CoM image when the feature size is small com-
pared to the probe, cautioning how we should not interpret
atomic CoM/DPC signals as mapping the shape of the
potential, but rather the gradient of the probe shape instead.
We also consider the effect of detector geometry on coher-
ence and optimizing the signal-to-noise ratio (SNR).

We provide experimental examples using a pixelated
detector with high electron sensitivity and a fast readout
time. While 4D diffraction data can be collected using a
traditional CCD [22], CCDs are significantly limited by
readout time and signal saturation. Further, early pixelated
detectors were limited by their poor dynamic range or lim-
ited maximum dose before saturation to studying only the
BF disk, or only the high-angle scattering but not both and
generally with an insufficient number of electrons/per pixel to
discern the contrast changes of interest for this work. To
address these limitations, we apply our recently developed
electron microscope pixel array detector (EMPAD) cap-
able of single-electron detection with a 140:1 signal-to-
noise detection, 1,000,000:1 electron dynamic range, and
a 1-kHz readout speed [1]. With this detector, weak features
inside the high-intensity central disk can be resolved simul-
taneously with low-intensity details at large scattering angles,
for a small electron beam placed on and between single
atoms in two-dimensional (2D) materials – useful and stable
test objects for illustrating our main theoretical points.

CoM contrast changes in momentum space

Classically, the BF disk shifts away from the unscattered
position due to electric or magnetic fields uniformly

deflecting the electron beam. However, despite the presence
of a field, there are numerous instances where the boundar-
ies of the central disk do not move. Instead, there is a redis-
tribution of intensity within the BF disk itself. By using a
quantum mechanical approach and treating the sample as a
phase object, we develop a simple model that explains both
behaviors as a result of differing length scales between probe
and scattering potential.

In order to calculate a diffraction pattern, we start by
writing the probe wavefunction in terms of the probe-
forming aperture and the angular aberrations as

∫ χΨ ( ⃗) = ( ⃗) ( ( ⃗)) ( ⃗⋅ ⃗) ⃗ ( )
π

r A k i k ik r dkexp exp , 10
1
2

where χ ( ⃗)k are the aberrations in the lens and impart a
phase term to the incoming wave. For convenience, we will
assume an aberration-free probe throughout this work
unless otherwise stated. This simplifies the interpretation
but does not limit the generality. The ( ⃗)A k term is the
aperture function and is defined as

⎧⎨⎩( ⃗) = ≤
>

( )A k
k k
k k

1
0

, 20

0

where k0 is the maximum angle of the aperture. After the
probe is formed, the STEM rasters the probe over the sam-
ple. We model the interaction with the sample using the
strong phase approximation, so that after interaction, the
probe has acquired an additional phase:

σΨ( ⃗ ⃗ ) = Ψ ( ⃗ − ⃗ ) ( ( ⃗)) ( )r r r r i V r, exp , 3p p0

where ⃗rp is the scanning position and σ is the interaction par-
ameter [23]. The validity of the strong phase approximation
is dependent on sample composition and thickness.
Simulations of GaN by Muller-Caspery et al. recommend a
thickness under a few nanometers [20]. The diffraction pat-
tern is collected by a detector placed in the back focal plane.
The diffraction pattern is related to the Fourier transform of
our exit wavefunction:

( ⃗) = | [Ψ( ⃗ ⃗ )] | ( )I k F r r, . 4p
2

This process is outlined in Figure 1. Now we look at the
asymptotic cases between the sample potential ( ⃗)V r and
probe size.

Probe size ≪ feature size

When the probe size is much smaller than the feature size,
we can model the sample potential as a linear ramp
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( ⃗) = E xV r 0 . In the strong phase approximation, our initial
wavefunction picks up a phase proportional to the strength
of the sample potential to form our exit wavefunction:

σΨ( ⃗ ⃗ ) = Ψ ( ⃗ − ⃗ ) ( ) ( )r r r r i E x, exp . 5p p0 0

Taking the Fourier transform and squaring the ampli-
tude gives the diffraction pattern:

σ|Ψ( ⃗ ⃗ ) | = |Ψ ( ⃗ − ˆ)| ( )k r k E x, . 6p
2

0 0
2

The resulting diffraction pattern is just the original BF
disk of the unscattered beam uniformly shifted to the
right as shown in Figure 2a. This shift is proportional to
the strength of the field. The result is the same as the clas-
sical result, and the shift from the field shifts the entire
diffraction pattern uniformly. For small shifts, the

asymmetry in placement creates a difference signal on a
split quadrant detector that is also proportional to the
field strength.

Probe size » feature size

In the other limiting case where the feature size is much smal-
ler than the probe, we can model the sample potential as a
delta function δ( ⃗) = ( ⃗)V r V r0 . This time, for analytic simpli-
city, we use a weak phase approximation model for our exit
wavefunction:

σ δΨ( ⃗ ⃗ ) = Ψ ( ⃗ − ⃗ )[ + ( ⃗)] ( )r r r r i V r, 1 . 7p p0 0

The expression for the diffraction pattern is then

π σ

πσ

|Ψ( ⃗ ⃗ ) | = | ( ⃗) | − ( ⃗) ( ⃗⋅ ⃗ )

+ ( )

( | ⃗ |)
| ⃗ |

( | ⃗ |)
| ⃗ |

k r A k A k V k k r

V k

, 4 sin

2 . 8

p
J k r

r p

J k r

r

2 2
0 0

0 0

2

p

p

p

p

1 0

1 0

The first term is just the initial probe’s BF disk, but the
second term gives structure to the BF disk. The third term
is second order in the scattering and so much weaker in
intensity. For the delta function potential, this term is uni-
form in k, providing uniform offset to the diffraction pat-
tern that changes intensity as the probe is scanned across
the potential, but will not contribute to a CoM signal. It
will contribute to the ADF signal and with a more realistic
potential will become the incoherent convolution of the
probe with the square of the potential.

Instead, the first-order change in contrast in the diffrac-
tion pattern is dominated by the second term – ( ⃗⋅ ⃗ )V k rsin p0

Fig. 2. Diffraction patterns for scanning points 0.25 Å apart with a 30-mrad aperture for (a) a constant field that

causes the disk to shift by 10mrad and (b) an atomic-sized potential field, which, instead of a shift, causes an

asymmetry in the intensity within the disk. (a) and (b) describe the limiting cases where the potential is much

larger, and much smaller than the probe size, respectively.

Fig. 1. Schematic of diffraction pattern formation in the kx–ky plane as

probe Ψ0 centered at point ⃗rp is scanned in the x–y plane by shifting ⃗rp.
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in particular. Instead of an asymmetry in the placement of
the disk seen in the other regime, the k-dependence causes
the asymmetry to occur in the intensity of the BF disk itself
and is probe position dependent as shown in Figure 2b.
The modulation is proportional to V0 and not V0

2 as in ADF
imaging, so as we will see below, the atomic number (Z)
dependence for CoM and DPC imaging is closer to Z than
Z2. It is important to note that the presence of a single ( ⃗)A k
in the second term ensures that no intensity redistributions
outside the central disk are allowed, so shifts of the disk
boundary as seen in the classical case cannot occur here.

The intensity redistribution is also observable experi-
mentally – as shown for the experimental diffraction data
collected on a monolayer WSe2 sample shown in Figure 3.
The data were collected on the Cornell-developed EMPAD
using an 80-keV electron beam focused to atomic dimen-
sions using a 21.4-mrad aperture. Figure 3b and c shows
the redistribution of intensity when the probe places close
to nearby atoms in the monolayer lattice.

Consequently, whether the CoM/DPC signal is caused
by a shift of the bright disk or intensity redistribution
inside the disk is dependent on feature and probe size.
Furthermore, short-range and long-range field information
is encoded in separate ways. Low spatial frequency infor-
mation about long-range potentials is found in the uniform
displacement of the BF disk, but high spatial frequency
information about short-range potentials is found in the
redistribution of intensity within the disk itself.

Separating long-range and short-range potentials

in CoM imaging

The difference in how information about the long-range and
short-range potentials are encoded in diffraction space has
been applied empirically to enhance magnetic contrast.
Chapman et al. used an annular DPC detector with an inner
angle that is very close to the semi-angle of the BF disk in
order to emphasize the contrast from the signal that shifts
the BF disk – in their case, a slowly varying magnetic field
[24]. Similarly, Krajnak et al. attempted to isolate only the
shift of the bright disk from the intensity redistribution in
post-processing again in order to enhance magnetic contrast
and suppress non-magnetic features [25]. Using our model
for the diffraction pattern formation, we understand that by
placing the inner angle at the edge of the unscattered beam,
we significantly filter out most of the information from
short-range fields that are contained only within the bright
disk and distributed across the disk. However, long-range
fields are easily detected because even the most minimal shift
will move the beam outside the inner detector angle and cre-
ate a difference signal. The question as to why this worked
to separate magnetic contrast from grain contrast has less to

do with magnetic fields fundamentally always shifting the
BF disk than in many materials magnetic potentials vary
slowly. Provided the electron beam shape is kept much
smaller than the thickness of any domain wall, the magnetic
potential will appear to be slowly varying, thus meeting the
conditions for shifting the BF disk. Grain boundaries tend
to be relatively compact, with structural distortions rarely
extending more than a few nanometer, so for a large probe
needed to detect small angular deflections, grain boundaries
(and sometimes grain size in thin films) can be smaller than
probe size. However, it is important to realize that this filter-
ing is essentially a smoothing or low-pass filtering of the
image rather than a general selection for magnetism. This
can be made more explicit by considering the phase gradient
transfer function for DPC imaging calculated by Majert and
Kohl for an annular detector. When the annulus is reduced
to barely overlapping the unscattered beam, the transfer
function has its most extreme low-pass filter profile [26].

From the diffraction pattern model of section Probe size
>> feature size, we see that all the high-frequency data are
contained within the bright disk. Conversely, by reducing
the outer angle on the detector to inside the BF disk, the
high-frequency contrast is improved by suppressing the

Fig. 3. a) Reconstructed High-Angle Annular Dark-Field (HAADF) image

of WSe2 from diffraction data collected on the EMPAD at 80 keV with a

21.4-mrad aperture. White and black boxes outline the pixels asso-

ciated with diffraction patterns shown in (b) and (c), respectively. Both

diffraction patterns show the redistribution in intensity due to the prob-

ability current flow toward the nearest nuclei, i.e., the probe to the right

of an atom shows enhanced probability current flow to the left, and

vice versa.
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low-frequency contrast contained near the edges of the
disk. Because the shift of the disk caused by the slowly
varying field is typically very small, it is usually unneces-
sary to re-center the detector. However, if the shift is sig-
nificant, it would be necessary to re-center to isolate the
high-frequency portion of the signal.

Figure 4 demonstrates the long-range/short-range
contrast filtering with a thin-film sputtered polycrystalline
ferromagnetic phase of FeGex imaged at 100 K.
Integrating all angles for the CoM image shows some of
the magnetic domain contrast, but by only integrating
close to the edge of the bright disk, the magnetic domains
show up more clearly. On the other hand, integrating
angles within the bright disk picks up the grain contrast
without showing the magnetic domains. The effectiveness
of this strategy relies on the probe size being larger than
the grain contrast, but smaller than the magnetic field
variation. As the probe size is reduced to improve spatial
resolution, the smaller the spatial range of grain contrast
that can be reduced as well.

CoM contrast in real space

We can also examine the CoM image itself in real space.
Previous works have connected the CoM to the probability
current and to local electric fields [9,13,21]. The first
moment or CoM image has each pixel value equal to the
centroid of the diffraction pattern:

∫( ⃗ ) = ⃗ |Ψ( ⃗ ⃗ ) | ⃗ ( )r k k r dkCoM , . 9p p
2

A simple commutation relates this expression to the
expectation value of the momentum operator:

∫( ⃗ ) = Ψ*( ⃗ ⃗ ) ⃗Ψ( ⃗ ⃗ ) ⃗ = < ⃗>
ℏ

( )r k r k k r dk
p

CoM , , . 10p p p

Further calculation [13,21] shows its relation to the 2D
probability current in the specimen plane:

∫( ⃗ ) = Ψ*( ⃗ ⃗ ) ∇⃗Ψ( ⃗ ⃗ )−Ψ( ⃗ ⃗ ) ∇⃗Ψ*( ⃗ ⃗ ) ⃗

( )

r
i

r r r r r r r r drCoM
1
2

, , , , ,

11

p p p p p

( ⃗ ) =
ℏ

⃗ ( ⃗ ) ( )r
m
j rCoM . 12p p

This form is exact for all sample thicknesses. Addition-
ally, by using a strong phase approximation, we can con-
nect the CoM image to the scattering potential to get
another expression for thin samples:

∫
∫σ

( ⃗ ) = Ψ ( ⃗ − ⃗ ) ∇⃗Ψ ( ⃗ − ⃗ ) ⃗

+ ∇⃗ ( ⃗) |Ψ ( ⃗ − ⃗ ) | ⃗
( )

⁎r i r r r r dr

V r r r dr

CoM

.
13

p p p

p

0 0

0
2

This expression is valid for any probe wavefunction Ψ0,
not just non-aberrated probes. If the beam is symmetric,
then the first term goes to zero, otherwise it introduces a
constant offset, ⃗j0. The second term is a cross-correlation
[9] between the potential gradient and the probe:

σ( ⃗ ) = ⃗ + ∇⃗ ( ⃗ ) ⋆ |Ψ ( ⃗ ) | ( )r j V r rCoM . 14p p p0 0
2

Because there is a cross-correlation (or convolution for
symmetric probes) between the probe and the potential
gradient, we must be cautious when interpreting the image,
especially in the regime where the feature size is small. In

Fig. 4. COMx images of ferromagnetic polycrystalline-FeGe. (a) COMx image formed by integrating over all

angles show magnetic domains and grain contrast. (b) By only integrating over an annulus around the edge

of the BF disk, the domains are displayed more clearly. (c) By integrating inside the disk, the grain contrast is

shown while the magnetic domain contrast is greatly suppressed.
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the extreme limiting case where the potential is reduced to
a delta potential δ ( ⃗)V r0 , this leads to a CoM image of

σ( ⃗ ) = − ∇⃗[|Ψ (− ⃗ )| ] ( )r V rCoM . 15p p0 0
2

This is consistent with taking the first moment of
eq. (8). Notably, while the signal strength scales linearly
with scattering strength of the sample, σV0, the spatial
information in the image is related to the probe and not
the potential.

This is shown in Figure 5 with a simulated non-
aberrated probe at 80 keV with a 21.4-mrad aperture for
light and heavy atoms. We neglect thermal effects on CoM
imaging for thin samples, as these have been shown to be
less than a few percent [20]. Since the probe width is much
larger than the width of the simulated tungsten potential,
the resulting CoMx linescan follows the probe profile
rather than the atomic profile. As seen in Figure 5b and c,
this holds for both light and heavy atoms. The main differ-
ence is the relative peak height, which is set by the Z scal-
ing of the atomic potential. By normalizing by height, we

see that the profiles, including the full width at half-
maximum (FWHM) are very similar, independent of Z.
While there are some weak features, these can be muddled
by probe tails, residual aberrations, and very small (sub-
nanometer) changes in defocus in actual experiments.

In Figure 6, a 1-nm change in defocus produces a shift
in mrad comparable to a change in atomic number by
∆ =Z 19. (For comparison, a 1-nm defocus change is
much smaller than the depth of field or defocus spread
from chromatic blur, which are typically 5 nm or more.)
Similarly in Figure 7, linescans of a tungsten potential with
defocus spread with a standard deviation up to 3 nm due
to chromatic aberration changes the peak height, but not
the tails or FWHM. This is expected as the CTF for CoM
or DPC is close to that of a self-lumunious object and thus
pinned at the zero and cutoff frequencies for all aberration
functions, leaving the mid-range frequencies most sensitive
to changes [6]. The CTF for integrated CoM (iCoM) and
iDPC by Lazić show defocus most noticeably affects the
mid frequencies, consistent with our result [9]. CoM and
iCoM are linearly related, so their CTFs are impacted pro-
portionally. Rather than probing the shape of the potential
(or details of the sample’s electric field), the shape of the
signal maps the derivative of the probe shape and is more
sensitive to changes in the probe shape than the underlying
potential. While small changes to defocus most strongly
affected the peak height, other aberrations (especially resi-
duals from tuning higher-orders) can have a stronger effect

Fig. 6. The effect of defocus on COM linescans across atomic potentials

for a 300-keV aberration-free electron probe, with a 30-mrad probe-

forming aperture. At zero defocus, the tungsten (Z = 74) and cesium

(Z = 55) profiles are distinguishable by their peak deflections. However,

with only a 1-nm defocus, the tungsten profile almost exactly matches

the cesium profile. In general, variations from defocus and other higher

order aberrations much smaller than the alignment tolerances of the

microscope give larger effects than charge transfers or bonding

changes.

Fig. 5. COMx images of single atoms. (a) Simulated non-aberrated 80-

keV probe with a 21.4-mrad aperture has a significantly wider profile

than the potential from a single tungsten atom. (b) Simulated COMx

profiles of light and heavy atoms show difference in height, but the

normalized plots in (c) show that the profile shapes are very similar

and closely follow the gradient of the probe profile – both of which

peak at the inflection points of the initial probe.

i156 Microscopy, 2018, Vol. 67, No. S1

Downloaded from https://academic.oup.com/jmicro/article-abstract/67/suppl_1/i150/4835603
by Cornell University Library user
on 18 April 2018



on the probe tails, which will be reflected in the tails of the
CoM image. Overall, this cautions against any interpret-
ation that we are mapping the atomic structure or bond
charge distributions with an atomic CoM/DPC signal.

The relative heights of the CoM peaks can be used to
measure the CoM contrast vs Z number. We compare its
Z-dependence with HAADF using simulations in Figure 8.
CoM has less contrast between light and heavy atoms com-
pared to HAADF. This is why its cousin, the integrated
CoM (iCoM) [9], is an ideal imaging mode for imaging
samples with both light and heavy atoms. Since iCoM is
just a linear integration of CoM, the contrast scaling is the
same for both.

The precise Z-dependence for CoM and DPC imaging
depends on the convergence semi-angle and beam voltage,
or more simply the cutoff measured in inverse Ångstroms.
For small cutoffs, the CoM contrast also does not mono-
tonically increase with Z but shows periodic oscillations
across the periodic table in much the same way that BF
imaging does [23], indicating sensitivity to the shell struc-
ture of the atom. When the cutoff angle is decreased, the
probe becomes larger in real space and the atomic

potential can be better approximated as a delta potential
δ ( ⃗)V r0 . The resulting CoM profile is given in eq. (15)

where the peak height is determined by V0, the mean inner
potential, but additional information beyond that about
the shape of the atomic potential and orbital charges’ spa-
tial distribution is lost, and not reflected in the line profile,
which is instead dominated by the probe shape. As the cut-
off angle is increased, the nuclear terms becomes more
dominant, and the Z-dependence becomes smoother.

We can get a sense of these trends by Fourier transform-
ing equation (14) and noting that |Ψ (− ⃗ ) |rp0

2 is the point
spread function, whose transfer is the CTF ( )kCTF to get

Fig. 8. (a) Atomic number dependence for the peak COM shift from a

single atom as a function of probe-forming aperture semi-angle for a

300-keV diffraction-limited electron beam. For small semi-angles, outer

shell valence trends dominate the Z-dependence, while for large semi-

angles, the more monotonic nuclear contribution dominates. This is

reflected in the increasing exponent for the fitted power law with

increasing aperture size. (b) Comparison with HAADF imaging shows

that COM has a weaker Z-dependence, making it easier to image light

atoms in the presence of heavy atoms (300 keV, 30mrad. HAADF signal

from a 3× to a 5× aperture size).

Fig. 7. The effect of defocus spread due to chromatic aberration on a

COMx linescan of a tungsten potential at 300 keV with a 30-mrad aper-

ture. Defocus spread values shown are the standard deviations. (a)

Similar to Figure 6, defocus spread lowers the peak height with little

effect on the tails as if changing the atomic potential. (b) Normalizing

the heights shows a similar effect to Figure 5c.
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π σ( ⃗) = ⃗ ( ⃗) ( ⃗) ( )k i kV k kCoM 2 CTF . 16

For all focus and aberration values, the boundary points
are fixed at ( ) =CTF 0 1 and ( ) =kCTF 00 . For an in-focus
aberration-free probe, the CTF is a smooth ramp-like func-
tion between them that can be approximated as

( ) ≈ −k k kCTF 1 / 0, resulting in a band-pass sampling of the
potential from 0 to k0. From eq. (16), we see that for small
cutoffs, k ,0 , we sample the small angle scattering that dis-
plays the electronic shell structure. As the cutoff k0
becomes larger than the Thomas–Fermi angle, the contri-
bution from the bare Coulomb potential becomes more
heavily weighted and the Z-dependence becomes more lin-
ear. DPC imaging shows a similar Z-dependence to CoM
imaging, with a Z-dependent exponent just a few percent
less.

Effect of detector geometry

Coherence

The question of signal to noise and coherency are add-
itional considerations for the detector geometry. If the
angular range selected for the detector annulus is too
small, it may not satisfy the condition for incoherent
imaging. Additionally, our diffraction pattern model in
eq. (8) shows that the high-frequency information is a
small fluctuation of intensity within the larger flat back-
ground of the bright disk, whose poor signal-to-
background ratio also implies a poor signal to noise.
Coherence is also affected by source size and chromatic
spread as seen in section Center-of-mass contrast in real
space. In this section, we will focus on detector effects.
With these considerations, we start to explore the effects of
the detector geometry.

We begin with the definition of the CoM image in
eq. (9), but we add a detector function ( ⃗)D k :

∫( ⃗ ) = ⃗ |Ψ( ⃗ ⃗ ) | ( ⃗) ⃗ ( )r k k r D k dkCoM , . 17p p
2

The detector function is defined similarly to our aper-
ture function in eq. (2) but with some maximum detector
angle kd. This calculation can be easily adapted for an
annulus detector by repeating the calculation for the min-
imum angle and subtracting. The final expression is

∫( ⃗ ) = Ψ( ″⃗ ⃗ )Ψ ( ′⃗ ⃗ ) ( ′⃗− ″⃗) ″⃗ ′⃗ ( )⁎r r r r r f r r dr drCoM , , . 18p p p

where ( ⃗)f r is

( ⃗) = [ ⃗ ( ⃗)] = − ∇⃗ = ( )
π π

− ( ) ⃗ ( )
f r F kD k . 19i k J k r

r

ik rJ k r

r
1

2 2
d d d d1

2
2

2

At the asymptotic limits, this function can be expressed
as

⎧
⎨⎪
⎩⎪

δ
( ⃗) =

− ∇⃗ ( ⃗) →∞

→
( )

π

⃗f r
i r k

k 0
. 20

d

ik r
d16

d
4

Eq. (18) makes it clear that the function ( ⃗)f r is a coher-
ency function.

If this is taken at the asymptotic limit where ⃗ →∞kd
with the strong phase approximation, this will reduce to
eq. (11), which is fully incoherent, consistent with the pre-
vious calculation. At the other limit, we obtain the
expression:

( ⃗ ) = [|Ψ( ⃗ ⃗ ) | ] ( )
π ∂

∂ ⃗ ⃗=r k rCoM , . 21p
k

k
p k4

2
0

d
4

If this is applied to the diffraction pattern for a delta
potential in eq. (8), the result is

( ⃗ ) = − ( | ⃗ |) ( )
π σ ⃗

| ⃗ |
r J k rCoM , 22p

k V r

r P1 0
d p

p

4 2
0

which is shaped by the probe wavefunction, not its inten-
sity, and scales linearly with the potential height, consistent
with a coherent image. The coherence length and cross-
over from coherent to incoherent imaging is set by k k/ d0

and the collection angles need to be much smaller (at least
3x) than the convergence angle to see coherent effects.

Signal-to-noise ratio

Another consideration is how the detector geometry affects
the SNR. We simulated a single tungsten atom and found
the scanning points that have the largest CoM signal. The
diffraction pattern was put through a Poisson noise filter
to simulate a shot-noise-limited signal. This was repeated
several times to obtain a robust statistical distribution. The
SNR is the true value of the signal divided by the standard
deviation caused by the Poisson noise. This is then normal-
ized by the incident electron counts N. The simulation was
done for an 80 keV beam with a 21.4-mrad aperture.

The results of these simulations are shown in Figure 9
for both CoM and DPC imaging modes. The best signal to
noise was achieved with a 4-mrad to 33-mrad detector
geometry for the CoM image, and 0mrad to 47mrad for
DPC. Most of the signal for both images come from the
edge of the bright disk. However, the CoM image loses
SNR when expanding the outer angle since it is heavily

i158 Microscopy, 2018, Vol. 67, No. S1

Downloaded from https://academic.oup.com/jmicro/article-abstract/67/suppl_1/i150/4835603
by Cornell University Library user
on 18 April 2018



weighting large angles, which generally have very low elec-
tron counts. On the other hand, the DPC image is largely
independent of outer angle, once it is larger than the BF
disk, but more sensitive to inner angle since it weighs the
small angle electron counts more heavily than does CoM.

Notably, the SNR for both DPC and CoM continue to
increase for collection angles beyond the BF disk (21.4
mrad) despite the weak phase approximation in eq. (8)
showing that information is contained only in the bright
disk. This is due to higher order terms outside the bright
disk that also contribute to the CoM signal, which is shown
in Appendix C. Overall, the DPC weighting has a slightly
higher SNR than the CoM weighting. This begs the ques-
tion whether there are other forms of angular weighting
with greater SNRs while still being reasonable measures of
DPC. Whether the optimal weighting is sample specific is
also unknown. That there is room for improvement is sug-
gested by the slightly higher CTF obtained for BF ptycho-
graphy compared to CoM imaging [18].

Conclusion

The advent of high-speed pixelated detectors has both
motivated and aided a more detailed understanding of
contrast in spatially resolved diffraction patterns from
non-periodic objects and the generation of images from dif-
fraction data. CoM imaging is one example of condensing
the rich 4D diffraction data into a meaningful image. In dif-
fraction space, the scattering behavior and subsequent dif-
fraction pattern formation was heavily dependent on the
probe size versus feature size. For potentials smaller than the

probe size, an asymmetry appeared in the intensity within
the BF disk itself rather than the classically expected displace-
ment. The uniform displacement of the BF disk (and the full
diffraction pattern) was instead a signature of a long-range
potential with a uniform gradient. By taking advantage of
these differences in how long-range and short-range informa-
tion are encoded, it is possible to distinguish slowly varying
magnetic domain contrasts from rapidly varying grain con-
trast by selecting the integration angles. This approach works
best at medium resolution where the probe is larger than
structural features but smaller than the magnetic domains.

In real space, the CoM image is usually interpreted
within the strong phase approximation as a convolution or
correlation of the probe shape with the gradient of the
potential. However, for atomic potentials, the CoM image
profile is usually dominated by the shape of the probe
rather than the sample potential given the strong singular-
ity at the nucleus. While the peak heights differed with the
Z scaling of the atomic potential, the normalized shape
profiles were very similar to the derivative of the probe
shape, and subtle differences from outer shell electrons are
likely to be much smaller than probe tails from residual
geometric and chromatic aberrations. Even peak deflec-
tions can be misleading; a small defocus of 1 nm led to an
apparent change in atomic number of Δ =Z 19 for an iso-
lated W atom.

The precise Z-dependence of CoM is a function of con-
vergence angles and beam voltage, reflecting the range of
momenta sampled. At smaller convergence angles and
beam voltages, the CoM signal shows oscillations from the
shell structure of the imaged atoms, while for larger cutoff

Fig. 9. Simulated SNR for (a) COMx and (b) DPCx image of a single tungsten atom with a 21.4-mrad aper-

ture at 80 keV. Both images show significant gains when integrating the edge of the bright disk. However,

the COM image SNR is reduced when collecting higher angles beyond ~2× the edge of the disk due to

heavily weighing high angles with low electron counts. Conversely, while the DPC image is not adversely

affected by increasing the outer angle, it has a greater sensitivity to the inner angle cutoff.

i159Microscopy, 2018, Vol. 67, No. S1

Downloaded from https://academic.oup.com/jmicro/article-abstract/67/suppl_1/i150/4835603
by Cornell University Library user
on 18 April 2018



angles, a smooth and closer-to-linear Z-dependence is
obtained. As previously noted, this makes CoM and iCoM
imaging well suited for images where both light and heavy
atoms are present.

We explored the effect of detector inner and outer
angles on the SNR for DPC and CoM imaging of a single
atom. In both cases, the best SNR was achieved for an out-
er detector angle being larger than the BF disk. Overall,
DPC showed a slightly higher SNR, and little sensitivity to
increasing the outer angle. In contrast, the CoM SNR
drops once the outer angle is increased much beyond 1.5×
the BF disk due to the angular weighting function enhan-
cing regions with low signal. In thicker samples, this angle
might be pushed out by multiple scattering. Conversely,
the DPC SNR strongly decreased with increasing inner
angle cutoff, but CoM did not, again consistent with their
different angular weightings.

Pixelated detectors and its applications are still in relative
infancy. While they allow a great deal of flexibility in repro-
ducing traditional imaging modes in post-processing, their
true strength may be characterization modes with non-trivial
angular weightings and transformations, like CoM and pty-
chography, that are unique to pixelated detectors. The rich
contrast and signal diversity present in the recorded 4D data
sets suggest rich opportunities in developing new imaging
modes to exploit this new information.

Supplemental data

Supplementary data are available at Journal of Electron Microscopy
online.
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