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Abstract
Children show motor learning deficits relative to adults across a diverse range of tasks. One mechanism that has been pro-
posed to underlie these differences is the contribution of online and offline components to overall learning; however, these 
tasks have almost focused exclusively on sequence learning paradigms which are characterized by performance gains in 
the offline phase. Here, we examined the role of online and offline learning in a novel motor task which was characterized 
by warm-up decrement, i.e., a performance loss, during the offline phase. In particular, using a relatively extended practice 
period, we examined if differences between children and adults persist across relatively long practice periods, and if the 
contribution of online and offline learning is affected by age and by practice itself. Two groups of children, 8–10 years and 
11–13 years old, and one group of young adults (N = 30, n = 10/group) learned a novel task that required control of upper body 
movements to control a cursor on a screen. Participants learned the task over 5 days and we measured movement time as the 
primary task performance variable. Consistent with prior results, we found that 8–10 year olds had longer movement times 
compared to both 11–13 year olds and adults. We also found distinct changes in online and offline learning with practice; the 
amount of online learning decreased with practice, whereas offline learning was relatively stable across practice. However, 
there was no detectable effect of age group on either online or offline learning. These results suggest that age-related differ-
ences in learning among children 8–10 years old are persistent even after extended practice but are not necessarily accounted 
for by differences in online and offline learning.
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Introduction

Across a range of different tasks, children show deficits 
in motor learning relative to adults (Wade 1976; Thomas 
1980). These deficits have been shown both in laboratory 
tasks such as reaching (Yan et al. 2000), visuomotor rota-
tions (Ferrel-Chapus et al. 2002), sequence learning (Lukacs 
and Kemeny 2015), gait adaptation (Vasudevan et al. 2011), 
and in real-world tasks such as juggling (Voelcker-Rehage 
and Willimczik 2006). Importantly, these deficits are not 
attributable simply to differences in motor abilities such as 
strength or size because even in novel virtual tasks that mini-
mize such differences, these deficits still persist (Lee et al. 
2018; Ranganathan et al. 2019).

One potential mechanism to understand the basis of 
these differences is to examine the contribution of online 
vs. offline components to overall learning (Dayan and 
Cohen 2011). Online learning refers to change that occurs 
during practice whereas offline learning refers to change 
that occurs during a period of no practice. Although the 
timescales involved in earlier studies were of the order of 
days—i.e., online performance was measured within-day 
and offline performance was measured between-days (Doyon 
and Benali 2005), these have also been extended to shorter 
timescales—practice blocks in a single day (Du et al. 2016) 
and trials in a block (Bönstrup et al. 2019). Here, we spe-
cifically use the term ‘change’ in performance rather than 
‘improvement’ because even though learning typically refers 
to improvement in performance, this does not always have to 
be the case. There is some evidence that these two mecha-
nisms are impacted differently with development, although 
the findings seem to be both task- and timescale dependent. 
For example, in sequence learning, young children seem to 
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rely more on offline learning, whereas adults seem to depend 
on online learning (Du et al. 2017). However, in an invented-
letter drawing task, younger children seemed to have deficits 
in offline learning, as seen by deficits in long-term retention 
relative to adults (Julius and Adi-Japha 2015). In addition, 
studies examining the role of sleep during offline learning 
have also found differences with age; children show less 
implicit learning (i.e., learning of probabilities embedded 
in the sequence) during the offline phase compared to adults 
(Wilhelm et al. 2012b).

Moreover, there are two unaddressed issues that limit the 
generality of these findings. First, the majority of studies 
have used sequence learning as the experimental paradigm, 
which is characterized by a performance gain in the offline 
phase, i.e., performance after the rest interval is better than 
prior to the rest interval (Robertson et al. 2004; Walker and 
Stickgold 2006). However, this is not fully representative 
of motor learning in general, as there is extensive evidence 
in many tasks for the phenomenon of ‘warm-up decre-
ment’ where there is a performance loss in the offline phase 
(Adams 1961; Nacson and Schmidt 1971; Stratton et al. 
2007; Newell et al. 2009; Verhoeven and Newell 2018). 
Understanding how online and offline learning contribute in 
tasks where warm-up decrement occurs can expand the gen-
erality of the findings from sequence learning. Second, by 
typically using only a 24-h period for examining online and 
offline learning, most studies have examined only a single 
snapshot of these processes—i.e., there is only one measure 
of offline and online learning. Given that age differences in 
learning seem to depend to some extent on how well partici-
pants can initially acquire the skill (Wilhelm et al. 2012a; 
Krishnan et al. 2018) it is critical to also understand if the 
contribution of online and offline learning processes them-
selves change as a function of practice and development. 
Understanding the role of offline and online learning dur-
ing development has implications not only for mechanistic 
insights into motor skill learning, but also potential practi-
cal implications in terms of how practice intervals must be 
spaced relative to rest intervals to optimize learning.

To address both these issues, we examined a virtual cur-
sor control task using a body–machine interface over an 
extended period (i.e., 5 days of learning) in children and 
adults, focusing on the within-day/between-day timescale 
of learning. A feature of this task was that not only was it 
novel and minimized confounds due to size and strength 
differences between adults and children (Lee et al. 2018), 
but critically, in contrast to sequence learning, it is associ-
ated with a warm-up decrement. We examined two research 
questions: (1) do children show deficits in motor learning 
in this task relative to adults even after relatively extensive 
practice, and (2) how are the contribution of the offline and 
online components of learning in this task affected by both 
age and practice?

Methods

Participants

Thirty participants from three different age groups par-
ticipated in the study (n = 10/group): 8–10 year olds (6 
females, M = 9.71 years, SD = 0.99 years), 11–13 year olds 
(5 females, M = 11.88 years, SD = 1.01 years) and adults (5 
females, M 21.24 years, SD = 1.13 years). Children were 
paid $70 for their participation, and young adults (all col-
lege students) received extra course credit. Informed con-
sent (including parental consent when needed) was obtained 
prior to participation and all procedures were approved by 
the Michigan State University Institutional Review Board. 
Although the two child groups are quite close in terms of 
age, the age groups for the current study were based on our 
prior study that showed reliable age differences in this task, 
and our pilot testing indicated that children 7 years or under 
could not reliably complete this task.

Experimental setup and design

The experimental methods and procedures were identical 
to our prior study (Lee et al. 2018) with the exception of 
the duration of practice. The novelty of the current study 
was the use of a multi-day protocol to examine online and 
offline changes in learning. The procedures are briefly sum-
marized below.

Participants sat in front of a 23″ (58.4 cm) computer 
monitor and were instructed to move their upper body to 
control a screen cursor. Four wireless inertial measurement 
units (IMUs) (3-space, YEI Technology, Ohio USA) were 
attached to the anterior and posterior end of the acromio-
clavicular joint on both the left and right sides of the body. 
We only used the signals corresponding to the roll and pitch 
angles from each IMU sensor, resulting in an 8-D signal (4 
IMU sensors × 2 signals/sensor) which constituted the ‘body 
space’.

Mapping body motions to cursor position

We used a linear mapping to convert the 8-dimensional body 
space (h) into the 2-D task space, which was the cursor posi-
tion (p). The mapping used was given by p = A h + p0, where 
A refers to the map and p0 is an offset term. To determine the 
map A, we used a calibration procedure similar to previous 
studies (Farshchiansadegh et al. 2014). During the calibra-
tion, participants performed free exploratory movements for 
60 s where they were asked to explore different motions 
that they could perform with the upper body, while main-
taining a comfortable range of motion. We then performed 
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principal component analysis (PCA) on the calibration data 
and extracted the first two components. These two vectors of 
component coefficients were scaled by a gain factor (which 
was equal to the reciprocal of the square root of the respec-
tive eigenvalue) to make the movements along both axes 
comparable in difficulty, and formed the two rows of the 
matrix A. The offset p0 was set so that the average posture 
during calibration (which was close to the resting posture) 
resulted in the cursor being in the center of the computer 
screen. This procedure allowed the task to be customized 
to each individual, minimizing both sensor placement vari-
ations, and any variations due to biomechanical effects like 
range of motion.

Cursor control task

Participants had to move their shoulders and torso to control 
a cursor on the computer screen to perform a virtual center-
out reaching task (Fig. 1). Participants moved the cursor 
from the home position (r = 2.2 cm, in the center) to one of 
a number of peripheral ‘targets’ (of same radius) presented 

at a distance of 11.5 cm, and then returned back to the home 
position. The peripheral targets were presented in a random 
sequence. Each trial started when the home position showed 
up for 500 ms followed by the presentation of a peripheral 
target. Participants were instructed to move the cursor to the 
target as fast and as close to the center of the target as possi-
ble. The task also required the participant to keep the cursor 
inside of the target circle for 500 ms before they returned to 
the home position. Each trial terminated only when the tar-
get was reached, and upon reaching the target and returning 
to the home position, the subsequent target was presented.

Participants performed two types of blocks: there were 8 
training blocks in which they reached for 4 peripheral tar-
gets in the cardinal directions 5 times each—for a total of 
20 trials, and 3 ‘test’ blocks—pre-, mid- and post-test in 
which they reached for 8 peripheral targets (4 cardinal and 
4 intercardinal) 3 times for a total of 24 trials. The sequence 
in which these blocks were performed was: pre-test, training 
blocks 1–4, mid-test, training blocks 5–8 and the post-test at 
the end. Within each block, targets were presented in pseu-
dorandom order with the constraint that all targets had to be 

Fig. 1   Schematic of experimental setup and protocol. Participants 
from different age groups (8–10  years, 11–13  years, adults) learned 
to control a screen cursor and reach to different virtual targets using 
motions of the shoulder and torso. Participants practiced the task for 
5  days and we examined learning using pre-test, mid-test and post-
test blocks at the beginning, middle and end of each day, respectively. 
The ‘…’ symbol indicates that the protocol in days 2–5 was identi-
cal to that on day 1. Training blocks included targets in the cardinal 

directions (shaded circles), whereas the test blocks included targets in 
both cardinal (shaded circles) and intercardinal directions (open cir-
cles). Online learning (indicated by curled parentheses) on any given 
day was quantified based on the relative difference in performance 
between the pre-test and post-test block. Offline learning (indicated 
by double-sided arrows) was quantified based on relative difference in 
performance between the post-test block on the previous day and the 
pre-test on that day
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presented before a target could repeat. Each day consisted 
of 232 trials lasting typically 45–90 min. Participants per-
formed this task for 5 days with an approximately 48-h gap 
between each session.

Data analysis

All analyses were performed only on the outward move-
ments—i.e., when the participant moved from the home 
position toward the peripheral targets. Only data from the 
pre- and post-tests were included for analyses. The mid-test 
was used as part of the protocol—however, because the 
focus of the current study was on within- and between-day 
learning, the mid-test data were not used for analysis.

Movement time

Based on the fact that our protocol required participants to 
reach the target before the next target was presented (i.e., 
spatial error is ~ 0), and all targets were equidistant from 
the home position, we quantified task performance using 
the movement time. Movement time was calculated from 
the time that the cursor left the home position to the time 
that it reached and stayed inside the target for the subsequent 
500 ms. The return movement from the target to the home 
position was not analyzed.

Normalized path length

The normalized path length was a secondary measure that 
was used to compute the straightness of the trajectories to 
the target. Normalized path length between two targets was 
defined as the actual distance traveled by the cursor divided 
by the straight line distance between the targets (i.e., reach-
ing to a target in a straight line without any movement rever-
sals would result in a normalized path length of 1).

Online learning

The measure of ‘online’ learning was calculated based 
on changes in the movement time from pre- to post-test 
on each day, expressed as a percentage of the pre-test 
score. For example on day 1, online learning = (MTPre-test1 
− MTPost-test1)/(MTPre-test1) × 100. We used a percentage 
change (rather than the raw difference in movement time) 
to account for baseline differences in performance between 
children and adults. Similar calculations were performed for 
the normalized path length.

Offline learning

The measure of ‘offline’ learning was calculated based 
on changes from post-test on a given day to the previous 

day to the pre-test on the subsequent day, expressed as a 
percentage of the post-test score. Again, we used a per-
centage change to account for any potential baseline dif-
ferences in performance. For example on day 1, offline learn-
ing = (MTPost-test1 − MTPre-test2)/(MTPost-test1) × 100. In this 
convention, a negative number for offline learning would 
indicate a ‘warm-up decrement’—i.e., movement times were 
longer and task performance got worse after the period of no 
practice. Similar calculations were performed for the nor-
malized path length.

Statistical analysis

For the purpose of this study, which focused on the contri-
bution of online and offline components to overall learn-
ing, we focused on the four pre-tests that were done ‘after’ 
practice—i.e., pre-test from days 2 to 5. These four tests 
are critical to establish learning since they are essentially 
delayed retention tests. We then examined how the online 
and offline learning contributed to performance on each of 
these tests. For example, the pre-test on day 2 is determined 
by the online and offline component on day 1 (Fig. 1).

Movement time on the four pre-tests after initial prac-
tice (i.e., pre-test 2 to pre-test 5) was analyzed using a 4 × 3 
(day × group) repeated measures ANOVA with day as the 
within-subject factor, and group as the between-subject 
factor.

The online and offline contribution for these four tests 
were analyzed using a 4 × 3 × 2 (day × group ×  type) 
repeated measures ANOVA, where type represents online vs. 
offline learning. There were only 4 days used in the analy-
sis because our last test measure was the pre-test on day 5 
(which meant that the online learning in day 5 was not used 
for analysis).

Violations of sphericity were corrected using the Green-
house–Geisser factor when applicable. Significance levels 
were set at p < 0.05. Statistics were run using JASP (JASP 
Team 2018).

Results

Task performance

Movement time

There was a s ignif icant  main effect  of  day 
[F (1 .73,46.85)  = 9 .771,  p  < 0 .001]  and g roup 
[F(2,27) = 6.719, p = 0.004] (Fig. 2a). The day × group inter-
action was not significant [F(3.47,46.85) = 0.785, p = 0.524]. 
Post hoc comparisons showed that as expected, movement 
times decreased with practice, and that 8–10-year-old 
children had longer movement times compared to both 
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11–13 year olds (p = 0.024) and adults (p = 0.005) (Fig. 2b). 
There were no differences between 11–13 year olds and 
adults (p = 0.802).

Normalized path length

The normalized path length also showed similar results 
to movement time. There was a significant main effect 
of day [F(1.70,45.81) = 5.842, p = 0.008] and group 
[F(2,27) = 5.850, p = 0.008] (Fig. 3a). The day × group inter-
action was not significant [F(3.39,45.81) = 0.881, p = 0.469]. 
Post hoc comparisons showed that as expected, path length 
decreased with practice, and that 8–10-year-old children 

had longer path length compared to both 11–13 year olds 
(p = 0.039) and adults (p = 0.011) (Fig. 3b). There were no 
differences between 11–13 year olds and adults (p > 0.999).

Online and offline learning

Movement time

The ANOVA revealed a significant main effect of type 
[F(1,27) = 83.378, p < 0.001], day [F(2.18,58.87) = 4.007, 
p = 0.02] and a type × day interaction [F(2.28,61.61) = 19.06, 
p < 0.001]. The analysis of the type  ×  day interaction 
showed that the contribution of online learning decreased 

Fig. 2   a Movement time 
changes in all groups as a func-
tion of practice (Pr pre-test, 
Mi mid-test, Po post-test). All 
groups improved with practice 
but 8–10-year-old children 
showed longer movement times 
relative to both 11–13 year olds 
and adults. b Online and offline 
performance on days 1/2 and 
days 4/5 showing the first and 
last blocks of online and offline 
learning. When expressed as a 
percentage, both children and 
adults showed similar online 
performance gains and offline 
performance losses (i.e., warm-
up decrement)
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with practice, from day 1 to day 4 (p < 0.001) (Fig. 4a), 
but the contribution of offline learning remained unaf-
fected (p = 0.351) (Fig. 4b). All other effects were not sig-
nificant—main effect of group, [F(2,27) = 0.372, p = 0.693], 
type × group [F(2,27) = 1.378, p = 0.269], day × group 
[F(4.36,58.87) = 0.801, p = 0.539], and type × day × group 
[F(4.56,61.61) = 1.144, p = 0.346].

Normalized path length

The ANOVA revealed a significant main effect of type 
[F(1,27) = 50.512, p < 0.001], and a type × day interac-
tion [F(1.66,44.72) = 8.774, p = 0.001]. The analysis 

of the type × day interaction showed that the contribu-
tion of online learning decreased with practice, from 
day 1 to day 4 (p < 0.001) (Fig. 4c), but the contribu-
tion of offline learning remained unaffected (p = 0.099) 
(Fig. 4d). All other effects were not significant—main 
effect of group, [F(2,27) = 0.705, p = 0.503], type × group 
[F(2,27) = 2.317, p = 0.118], day [F(1.53,41.20) = 0.441, 
p = 0.593] day × group [F(3.05,41.12) = 0.768, p = 0.521], 
and type × day × group [F(3.31,44.72) = 0.806, p = 0.508].

Fig. 3   a Normalized path length 
changes in all groups as a func-
tion of practice (Pr pre-test, 
Mi mid-test, Po post-test). All 
groups improved with practice 
but 8–10-year-old children 
showed longer normalized 
path lengths relative to both 
11–13 year olds and adults. 
b Online and offline perfor-
mance on days 1/2 and days 
4/5 showing the first and last 
blocks of online and offline 
learning. When expressed as a 
percentage, both children and 
adults showed similar online 
performance gains and offline 
performance losses (i.e., warm-
up decrement)



2871Experimental Brain Research (2019) 237:2865–2873	

1 3

Discussion

In this study, we examined two primary research ques-
tions: (1) do children show deficits in motor learning of a 
novel task relative to adults even after relatively extensive 
practice, and (2) how are the contribution of the offline 
and online components of learning in this task affected by 
both age and practice? Our results showed that (1) even 
though all age groups improved with practice, there were 
persistent age-related differences in task performance 
even after 5 days of practice with the younger children 
(i.e., 8–10 year olds) showing longer movement times, (2) 
the amount of online and offline learning showed distinct 
changes with practice, but did not seem to be differentially 
influenced by age group.

First, we found that consistent with prior studies (Lee 
et al. 2018), younger children (8–10 year olds) showed 
longer movement times across all days of practice. In prior 
studies with shorter time intervals of learning, one potential 
confound was that because of the novel nature of the task, 
children might have showed poor performance because they 
just took longer to get used to the task. Here, we show that 
even after 5 days of learning (~ 1000 + trials), when perfor-
mance has reached a relative asymptote, there were still reli-
able differences between the youngest children and adults, 
with 8–10 year olds being ~ 50% slower, corresponding to 
about 1 s overall. Although interpretations of ‘learning’ 
are difficult when there are differences in baseline (because 
conclusions may differ based on how learning is defined), 
our results support the notion that developmental differences 

Fig. 4   Online and offline learning as a function of both practice and 
group based on the movement time (a, b) and the normalized path 
length (c, d). Negative numbers in offline learning indicate warm-up 
decrement. There were distinct changes with practice, with online 

learning showing a decrease with practice, whereas offline learning 
was relatively stable across practice. There were no statistically sig-
nificant differences between groups in either online or offline learning



2872	 Experimental Brain Research (2019) 237:2865–2873

1 3

in learning are not simply artifacts of novel experimental 
paradigms.

Second, when we parsed out the contribution of online vs. 
offline components to these learning differences, we found 
three key results—(1) online learning resulted in perfor-
mance gains (i.e., reductions in movement time), whereas 
offline learning resulted in performance decrements (i.e., 
increases in movement time), and (2) the amount of online 
learning (measured as a relative %) decreased from days 1 to 
4, whereas the amount of offline learning remained relatively 
constant throughout practice, and (3) these changes in online 
and offline learning were not affected by age.

These results are consistent with the view that the process 
of learning consists of multiple processes that operate at 
distinct timescales (Newell et al. 2001; Smith et al. 2006). 
While prior studies have either used a single snapshot of 
these processes, or averaged across multiple days (Reis et al. 
2009), we focused on whether the amount of online and 
offline learning change with practice. While it is somewhat 
obvious that the ‘absolute’ change (i.e., change measured 
in seconds) would decrease with learning since there is less 
room to improve as participants reach a plateau, the decrease 
in the amount of online learning even when expressed as a 
‘relative’ change (i.e., change measured in %) is less obvious 
and potentially suggestive of a power-law and the presence 
of multiple time scales (Newell et al. 2001). On the other 
hand, the amount of offline learning, which remained rela-
tively fixed, was more characteristic of an exponential with 
one characteristic time scale (Joseph et al. 2013). Although 
these results are based on group averages, which are less 
interpretable than individual curve fits, they do suggest the 
possibility that the dynamics of the online and offline pro-
cesses are distinct. The suggestion that these are two dis-
tinct processes also raises the possibility that they can be 
differentially affected by learning strategies (e.g., a strat-
egy that improves within-session learning may not improve 
the between-session learning). Future experiments with 
extended periods of training are needed to resolve this issue 
in more detail.

When we examined the effect of age on the amount of 
online vs. offline learning, we did not find any evidence 
for any such influence. The result that age did not differ-
entially affect online vs. offline learning is somewhat at 
odds with prior literature which has shown that such dif-
ferences exist (Du et al. 2017; Yan 2017). As mentioned 
in the “Introduction”, there are two main differences from 
prior work. First, the use of a task that shows warm-up 
decrement may be qualitatively different from sequence 
learning tasks that show offline gains. Although there are 
multiple theoretical perspectives on the issue of warm-up 
(Nacson and Schmidt 1971; Ajemian et al. 2010), there 
is no clear consensus on whether the difference between 
tasks showing warm-up decrement and consolidation are 

related directly to the task itself (Reis et al. 2009), or to 
methodological issues of how learning is analyzed (Pan 
and Rickard 2015). Relatedly, a second important differ-
ence from prior studies relates to methodological consid-
eration of using ‘absolute’ change or ‘relative’ change in 
performances. This is because in the context of devel-
opment, where groups are known to differ at baseline, 
absolute change scores might be skewed because groups 
who are worse at task performance have greater room for 
improvement. In our case, when we used a relative meas-
ure to compute the amount of online and offline learning, 
we found no reliable age effect, indicating that while chil-
dren take longer to do the task, they do not proportionally 
take longer. It is also worth noting that the age groups 
used in prior studies vary based on the task used (around 
5–7 years old); this variation may also contribute to some 
of the differences observed in the current study, which 
used relatively older children (8–13 year olds).

There are some limitations to the current work—first, the 
sample size in each group was relatively small, which was 
limited mainly by the relatively long practice period per par-
ticipant. In addition, the age ranges within each of the chil-
dren groups were somewhat wide, potentially causing some 
heterogeneity within the groups. Second, because we did a 
~ 48-h rest period, we cannot disentangle if the offline effects 
were ‘rest-related’ and/or ‘sleep-related’ (Doyon et al. 2009). 
Third, we used average measures in each test block to quan-
tify learning. It is possible that such averaging may create 
artifacts of offline learning (Pan and Rickard 2015) and may 
obscure the true timescale of change (Heathcote et al. 2000; 
Newell et al. 2001). However, given that our task involved 
reaching to eight different targets (instead of typical stud-
ies where the same task is repeated on every trial), we felt 
that an average measure over the entire set of reaches was 
likely a more robust measure of learning than the individual 
trial measures. Finally, although we used movement time as 
the primary measure based on the task instruction, children 
and adults could have had qualitatively different strategies 
in performing the task—for e.g., children could have had 
less reaction time and tried to correct for movements on the 
fly whereas adults may have longer reaction time to improve 
planning of the movements. We do not think this is likely 
because all measures showed the same trends with learning 
in both children and adults; however, this could be an issue 
investigated more conclusively in a future study.

In conclusion, we found that when learning a novel motor 
task, children show sustained worse performance compared 
to adults across multiple days of practice. The contribution 
of online and offline learning itself changed with practice, 
but did not seem to be affected by age. These results sug-
gest that simply practicing for longer is unlikely to close the 
gap between children and adults, and point to the need for 
practice schedules to be customized in children.
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