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Abstract

Children show motor learning deficits relative to adults across a diverse range of tasks. One mechanism that has been pro-
posed to underlie these differences is the contribution of online and offline components to overall learning; however, these
tasks have almost focused exclusively on sequence learning paradigms which are characterized by performance gains in
the offline phase. Here, we examined the role of online and offline learning in a novel motor task which was characterized
by warm-up decrement, i.e., a performance loss, during the offline phase. In particular, using a relatively extended practice
period, we examined if differences between children and adults persist across relatively long practice periods, and if the
contribution of online and offline learning is affected by age and by practice itself. Two groups of children, 8—10 years and
11-13 years old, and one group of young adults (N=30, n=10/group) learned a novel task that required control of upper body
movements to control a cursor on a screen. Participants learned the task over 5 days and we measured movement time as the
primary task performance variable. Consistent with prior results, we found that 8—10 year olds had longer movement times
compared to both 11-13 year olds and adults. We also found distinct changes in online and offline learning with practice; the
amount of online learning decreased with practice, whereas offline learning was relatively stable across practice. However,
there was no detectable effect of age group on either online or offline learning. These results suggest that age-related differ-
ences in learning among children 8—10 years old are persistent even after extended practice but are not necessarily accounted
for by differences in online and offline learning.
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Introduction

Across a range of different tasks, children show deficits
in motor learning relative to adults (Wade 1976; Thomas
1980). These deficits have been shown both in laboratory
tasks such as reaching (Yan et al. 2000), visuomotor rota-
tions (Ferrel-Chapus et al. 2002), sequence learning (Lukacs
and Kemeny 2015), gait adaptation (Vasudevan et al. 2011),
and in real-world tasks such as juggling (Voelcker-Rehage
and Willimczik 2006). Importantly, these deficits are not
attributable simply to differences in motor abilities such as
strength or size because even in novel virtual tasks that mini-
mize such differences, these deficits still persist (Lee et al.
2018; Ranganathan et al. 2019).
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One potential mechanism to understand the basis of
these differences is to examine the contribution of online
vs. offline components to overall learning (Dayan and
Cohen 2011). Online learning refers to change that occurs
during practice whereas offline learning refers to change
that occurs during a period of no practice. Although the
timescales involved in earlier studies were of the order of
days—i.e., online performance was measured within-day
and offline performance was measured between-days (Doyon
and Benali 2005), these have also been extended to shorter
timescales—practice blocks in a single day (Du et al. 2016)
and trials in a block (Bonstrup et al. 2019). Here, we spe-
cifically use the term ‘change’ in performance rather than
‘improvement’ because even though learning typically refers
to improvement in performance, this does not always have to
be the case. There is some evidence that these two mecha-
nisms are impacted differently with development, although
the findings seem to be both task- and timescale dependent.
For example, in sequence learning, young children seem to
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rely more on offline learning, whereas adults seem to depend
on online learning (Du et al. 2017). However, in an invented-
letter drawing task, younger children seemed to have deficits
in offline learning, as seen by deficits in long-term retention
relative to adults (Julius and Adi-Japha 2015). In addition,
studies examining the role of sleep during offline learning
have also found differences with age; children show less
implicit learning (i.e., learning of probabilities embedded
in the sequence) during the offline phase compared to adults
(Wilhelm et al. 2012b).

Moreover, there are two unaddressed issues that limit the
generality of these findings. First, the majority of studies
have used sequence learning as the experimental paradigm,
which is characterized by a performance gain in the offline
phase, i.e., performance after the rest interval is better than
prior to the rest interval (Robertson et al. 2004; Walker and
Stickgold 2006). However, this is not fully representative
of motor learning in general, as there is extensive evidence
in many tasks for the phenomenon of ‘warm-up decre-
ment’ where there is a performance loss in the offline phase
(Adams 1961; Nacson and Schmidt 1971; Stratton et al.
2007; Newell et al. 2009; Verhoeven and Newell 2018).
Understanding how online and offline learning contribute in
tasks where warm-up decrement occurs can expand the gen-
erality of the findings from sequence learning. Second, by
typically using only a 24-h period for examining online and
offline learning, most studies have examined only a single
snapshot of these processes—i.e., there is only one measure
of offline and online learning. Given that age differences in
learning seem to depend to some extent on how well partici-
pants can initially acquire the skill (Wilhelm et al. 2012a;
Krishnan et al. 2018) it is critical to also understand if the
contribution of online and offline learning processes them-
selves change as a function of practice and development.
Understanding the role of offline and online learning dur-
ing development has implications not only for mechanistic
insights into motor skill learning, but also potential practi-
cal implications in terms of how practice intervals must be
spaced relative to rest intervals to optimize learning.

To address both these issues, we examined a virtual cur-
sor control task using a body—machine interface over an
extended period (i.e., 5 days of learning) in children and
adults, focusing on the within-day/between-day timescale
of learning. A feature of this task was that not only was it
novel and minimized confounds due to size and strength
differences between adults and children (Lee et al. 2018),
but critically, in contrast to sequence learning, it is associ-
ated with a warm-up decrement. We examined two research
questions: (1) do children show deficits in motor learning
in this task relative to adults even after relatively extensive
practice, and (2) how are the contribution of the offline and
online components of learning in this task affected by both
age and practice?
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Methods
Participants

Thirty participants from three different age groups par-
ticipated in the study (n=10/group): 8-10 year olds (6
females, M=9.71 years, SD=0.99 years), 11-13 year olds
(5 females, M =11.88 years, SD=1.01 years) and adults (5
females, M 21.24 years, SD=1.13 years). Children were
paid $70 for their participation, and young adults (all col-
lege students) received extra course credit. Informed con-
sent (including parental consent when needed) was obtained
prior to participation and all procedures were approved by
the Michigan State University Institutional Review Board.
Although the two child groups are quite close in terms of
age, the age groups for the current study were based on our
prior study that showed reliable age differences in this task,
and our pilot testing indicated that children 7 years or under
could not reliably complete this task.

Experimental setup and design

The experimental methods and procedures were identical
to our prior study (Lee et al. 2018) with the exception of
the duration of practice. The novelty of the current study
was the use of a multi-day protocol to examine online and
offline changes in learning. The procedures are briefly sum-
marized below.

Participants sat in front of a 23" (58.4 cm) computer
monitor and were instructed to move their upper body to
control a screen cursor. Four wireless inertial measurement
units (IMUs) (3-space, YEI Technology, Ohio USA) were
attached to the anterior and posterior end of the acromio-
clavicular joint on both the left and right sides of the body.
We only used the signals corresponding to the roll and pitch
angles from each IMU sensor, resulting in an 8-D signal (4
IMU sensors X 2 signals/sensor) which constituted the ‘body
space’.

Mapping body motions to cursor position

We used a linear mapping to convert the 8-dimensional body
space (h) into the 2-D task space, which was the cursor posi-
tion (p). The mapping used was given by p=A h+p,, where
A refers to the map and p, is an offset term. To determine the
map A, we used a calibration procedure similar to previous
studies (Farshchiansadegh et al. 2014). During the calibra-
tion, participants performed free exploratory movements for
60 s where they were asked to explore different motions
that they could perform with the upper body, while main-
taining a comfortable range of motion. We then performed
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principal component analysis (PCA) on the calibration data
and extracted the first two components. These two vectors of
component coefficients were scaled by a gain factor (which
was equal to the reciprocal of the square root of the respec-
tive eigenvalue) to make the movements along both axes
comparable in difficulty, and formed the two rows of the
matrix A. The offset p, was set so that the average posture
during calibration (which was close to the resting posture)
resulted in the cursor being in the center of the computer
screen. This procedure allowed the task to be customized
to each individual, minimizing both sensor placement vari-
ations, and any variations due to biomechanical effects like
range of motion.

Cursor control task

Participants had to move their shoulders and torso to control
a cursor on the computer screen to perform a virtual center-
out reaching task (Fig. 1). Participants moved the cursor
from the home position (r=2.2 cm, in the center) to one of
a number of peripheral ‘targets’ (of same radius) presented

at a distance of 11.5 cm, and then returned back to the home
position. The peripheral targets were presented in a random
sequence. Each trial started when the home position showed
up for 500 ms followed by the presentation of a peripheral
target. Participants were instructed to move the cursor to the
target as fast and as close to the center of the target as possi-
ble. The task also required the participant to keep the cursor
inside of the target circle for 500 ms before they returned to
the home position. Each trial terminated only when the tar-
get was reached, and upon reaching the target and returning
to the home position, the subsequent target was presented.
Participants performed two types of blocks: there were 8
training blocks in which they reached for 4 peripheral tar-
gets in the cardinal directions 5 times each—for a total of
20 trials, and 3 ‘test’ blocks—pre-, mid- and post-test in
which they reached for 8 peripheral targets (4 cardinal and
4 intercardinal) 3 times for a total of 24 trials. The sequence
in which these blocks were performed was: pre-test, training
blocks 1-4, mid-test, training blocks 5—8 and the post-test at
the end. Within each block, targets were presented in pseu-
dorandom order with the constraint that all targets had to be

Day 1
PreTest ™" MidTest ™M"Y post Test
24 trials 80 trials 24 trials 80 trials 24 trials
e e
——
Online 1 IOfﬂine 1 Day 2
Pre Test ..s Post Test
O N— g
O O
* Online 2 Offline 2 Day 3
o e O
o o PreTest ... PostTest
O N -
——
Online 3 IOffIine 3 Day 4
Pre Test s Post Test
N o
—— .
Online 4 IOffIine 4 Day 5
{ Pre Test ..a Post Test

Fig.1 Schematic of experimental setup and protocol. Participants
from different age groups (8-10 years, 11-13 years, adults) learned
to control a screen cursor and reach to different virtual targets using
motions of the shoulder and torso. Participants practiced the task for
5 days and we examined learning using pre-test, mid-test and post-
test blocks at the beginning, middle and end of each day, respectively.
The “..." symbol indicates that the protocol in days 2-5 was identi-
cal to that on day 1. Training blocks included targets in the cardinal

directions (shaded circles), whereas the test blocks included targets in
both cardinal (shaded circles) and intercardinal directions (open cir-
cles). Online learning (indicated by curled parentheses) on any given
day was quantified based on the relative difference in performance
between the pre-test and post-test block. Offline learning (indicated
by double-sided arrows) was quantified based on relative difference in
performance between the post-test block on the previous day and the
pre-test on that day
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presented before a target could repeat. Each day consisted
of 232 trials lasting typically 45-90 min. Participants per-
formed this task for 5 days with an approximately 48-h gap
between each session.

Data analysis

All analyses were performed only on the outward move-
ments—i.e., when the participant moved from the home
position toward the peripheral targets. Only data from the
pre- and post-tests were included for analyses. The mid-test
was used as part of the protocol—however, because the
focus of the current study was on within- and between-day
learning, the mid-test data were not used for analysis.

Movement time

Based on the fact that our protocol required participants to
reach the target before the next target was presented (i.e.,
spatial error is ~0), and all targets were equidistant from
the home position, we quantified task performance using
the movement time. Movement time was calculated from
the time that the cursor left the home position to the time
that it reached and stayed inside the target for the subsequent
500 ms. The return movement from the target to the home
position was not analyzed.

Normalized path length

The normalized path length was a secondary measure that
was used to compute the straightness of the trajectories to
the target. Normalized path length between two targets was
defined as the actual distance traveled by the cursor divided
by the straight line distance between the targets (i.e., reach-
ing to a target in a straight line without any movement rever-
sals would result in a normalized path length of 1).

Online learning

The measure of ‘online’ learning was calculated based
on changes in the movement time from pre- to post-test
on each day, expressed as a percentage of the pre-test
score. For example on day 1, online learning = (MTp,. s
— MTpogitest1)/ MTppeiesi1) X 100. We used a percentage
change (rather than the raw difference in movement time)
to account for baseline differences in performance between
children and adults. Similar calculations were performed for
the normalized path length.

Offline learning

The measure of ‘offline’ learning was calculated based
on changes from post-test on a given day to the previous
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day to the pre-test on the subsequent day, expressed as a
percentage of the post-test score. Again, we used a per-
centage change to account for any potential baseline dif-
ferences in performance. For example on day 1, offline learn-
ing = (MTPosl»testl - MTPre—testZ)/(MTPost-lesl1) x 100. In this
convention, a negative number for offline learning would
indicate a ‘warm-up decrement’—i.e., movement times were
longer and task performance got worse after the period of no
practice. Similar calculations were performed for the nor-
malized path length.

Statistical analysis

For the purpose of this study, which focused on the contri-
bution of online and offline components to overall learn-
ing, we focused on the four pre-tests that were done ‘after’
practice—i.e., pre-test from days 2 to 5. These four tests
are critical to establish learning since they are essentially
delayed retention tests. We then examined how the online
and offline learning contributed to performance on each of
these tests. For example, the pre-test on day 2 is determined
by the online and offline component on day 1 (Fig. 1).

Movement time on the four pre-tests after initial prac-
tice (i.e., pre-test 2 to pre-test 5) was analyzed using a 4 X 3
(day x group) repeated measures ANOVA with day as the
within-subject factor, and group as the between-subject
factor.

The online and offline contribution for these four tests
were analyzed using a 4 X 3 X 2 (day X group X type)
repeated measures ANOVA, where type represents online vs.
offline learning. There were only 4 days used in the analy-
sis because our last test measure was the pre-test on day 5
(which meant that the online learning in day 5 was not used
for analysis).

Violations of sphericity were corrected using the Green-
house—Geisser factor when applicable. Significance levels
were set at p <0.05. Statistics were run using JASP (JASP
Team 2018).

Results
Task performance
Movement time

There was a significant main effect of day
[F(1.73,46.85)=9.771, p<0.001] and group
[F(2,27)=6.719, p=0.004] (Fig. 2a). The day X group inter-
action was not significant [F(3.47,46.85)=0.785, p=0.524].
Post hoc comparisons showed that as expected, movement
times decreased with practice, and that 8§—10-year-old
children had longer movement times compared to both
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Fig.2 a Movement time A
changes in all groups as a func- 30
tion of practice (Pr pre-test,
Mi mid-test, Po post-test). All
groups improved with practice
but 8—10-year-old children 25 -
showed longer movement times 8-10 yr
relative to both 11-13 year olds -
and adults. b Online and offline —~ 11-13 yr
performance on days 1/2 and LIJ/ 20 - Adults
days 4/5 showing the first and [}
last blocks of online and offline €
learning. When expressed as a |:
percentage, both children and = 15
adults showed similar online g
performance gains and offline =
performance losses (i.e., warm- )
up decrement) >
O 10+
=
5
S . .
& = = ==
O I | I I I | I I I [ I I I | I
Pr Mi Po Pr Mi Po Pr Mi Po Pr Mi Po Pr Mi Po
Day1 Day2 Day3 Day4 Day5
304 5
[ 8-10yr
W 11-13yr
4 O Adults
P =
E £31
c -
24
g 10- g
= =
14
Day1-Pr Day1-Po Day2-Pr Day4-Pr Day4-Po Day5-Pr

11-13 year olds (p=0.024) and adults (p =0.005) (Fig. 2b).
There were no differences between 11-13 year olds and
adults (p=0.802).

Normalized path length

The normalized path length also showed similar results
to movement time. There was a significant main effect
of day [F(1.70,45.81)=5.842, p=0.008] and group
[F(2,27)=5.850, p=0.008] (Fig. 3a). The day X group inter-
action was not significant [F(3.39,45.81)=0.881, p=0.469].
Post hoc comparisons showed that as expected, path length
decreased with practice, and that 8—10-year-old children

had longer path length compared to both 11-13 year olds
(»=0.039) and adults (p=0.011) (Fig. 3b). There were no
differences between 11-13 year olds and adults (p >0.999).

Online and offline learning

Movement time

The ANOVA revealed a significant main effect of type
[F(1,27)=83.378, p<0.001], day [F(2.18,58.87)=4.007,
p=0.02] and a type X day interaction [F(2.28,61.61)=19.06,

p <0.001]. The analysis of the type X day interaction
showed that the contribution of online learning decreased
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Fig.3 a Normalized path length A
changes in all groups as a func-
tion of practice (Pr pre-test,

Mi mid-test, Po post-test). All
groups improved with practice
but 8—10-year-old children
showed longer normalized

path lengths relative to both
11-13 year olds and adults.

b Online and offline perfor-
mance on days 1/2 and days
4/5 showing the first and last
blocks of online and offline
learning. When expressed as a
percentage, both children and
adults showed similar online
performance gains and offline
performance losses (i.e., warm-
up decrement)
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with practice, from day 1 to day 4 (p <0.001) (Fig. 4a),
but the contribution of offline learning remained unaf-
fected (p=0.351) (Fig. 4b). All other effects were not sig-
nificant—main effect of group, [F(2,27)=0.372, p=0.693],
type X group [F(2,27)=1.378, p=0.269], day X group
[F(4.36,58.87)=0.801, p=0.539], and type X day X group
[F(4.56,61.61)=1.144, p=0.346].

Normalized path length
The ANOVA revealed a significant main effect of type

[F(1,27)=50.512, p<0.001], and a type X day interac-
tion [F(1.66,44.72)=8.774, p=0.001]. The analysis
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of the type X day interaction showed that the contribu-
tion of online learning decreased with practice, from
day 1 to day 4 (p <0.001) (Fig. 4c), but the contribu-
tion of offline learning remained unaffected (p =0.099)
(Fig. 4d). All other effects were not significant—main
effect of group, [F(2,27)=0.705, p=0.503], type X group
[F(2,27)=2.317, p=0.118], day [F(1.53,41.20)=0.441,
p=0.593] day X group [F(3.05,41.12)=0.768, p=0.521],
and type X day X group [F(3.31,44.72)=0.806, p=0.508].
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Fig.4 Online and offline learning as a function of both practice and
group based on the movement time (a, b) and the normalized path
length (¢, d). Negative numbers in offline learning indicate warm-up
decrement. There were distinct changes with practice, with online

Discussion

In this study, we examined two primary research ques-
tions: (1) do children show deficits in motor learning of a
novel task relative to adults even after relatively extensive
practice, and (2) how are the contribution of the offline
and online components of learning in this task affected by
both age and practice? Our results showed that (1) even
though all age groups improved with practice, there were
persistent age-related differences in task performance
even after 5 days of practice with the younger children
(i.e., 8-10 year olds) showing longer movement times, (2)
the amount of online and offline learning showed distinct
changes with practice, but did not seem to be differentially
influenced by age group.

Offline

-50

-100

T T T T
Day1 Day2 Day3 Day4

-50

N

o

oS
1

-150 A

T T T T
Day1 Day2 Day3 Day 4

learning showing a decrease with practice, whereas offline learning
was relatively stable across practice. There were no statistically sig-
nificant differences between groups in either online or offline learning

First, we found that consistent with prior studies (Lee
et al. 2018), younger children (8-10 year olds) showed
longer movement times across all days of practice. In prior
studies with shorter time intervals of learning, one potential
confound was that because of the novel nature of the task,
children might have showed poor performance because they
just took longer to get used to the task. Here, we show that
even after 5 days of learning (~ 1000+ trials), when perfor-
mance has reached a relative asymptote, there were still reli-
able differences between the youngest children and adults,
with 8-10 year olds being ~50% slower, corresponding to
about 1 s overall. Although interpretations of ‘learning’
are difficult when there are differences in baseline (because
conclusions may differ based on how learning is defined),
our results support the notion that developmental differences
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in learning are not simply artifacts of novel experimental
paradigms.

Second, when we parsed out the contribution of online vs.
offline components to these learning differences, we found
three key results—(1) online learning resulted in perfor-
mance gains (i.e., reductions in movement time), whereas
offline learning resulted in performance decrements (i.e.,
increases in movement time), and (2) the amount of online
learning (measured as a relative %) decreased from days 1 to
4, whereas the amount of offline learning remained relatively
constant throughout practice, and (3) these changes in online
and offline learning were not affected by age.

These results are consistent with the view that the process
of learning consists of multiple processes that operate at
distinct timescales (Newell et al. 2001; Smith et al. 2006).
While prior studies have either used a single snapshot of
these processes, or averaged across multiple days (Reis et al.
2009), we focused on whether the amount of online and
offline learning change with practice. While it is somewhat
obvious that the ‘absolute’ change (i.e., change measured
in seconds) would decrease with learning since there is less
room to improve as participants reach a plateau, the decrease
in the amount of online learning even when expressed as a
‘relative’ change (i.e., change measured in %) is less obvious
and potentially suggestive of a power-law and the presence
of multiple time scales (Newell et al. 2001). On the other
hand, the amount of offline learning, which remained rela-
tively fixed, was more characteristic of an exponential with
one characteristic time scale (Joseph et al. 2013). Although
these results are based on group averages, which are less
interpretable than individual curve fits, they do suggest the
possibility that the dynamics of the online and offline pro-
cesses are distinct. The suggestion that these are two dis-
tinct processes also raises the possibility that they can be
differentially affected by learning strategies (e.g., a strat-
egy that improves within-session learning may not improve
the between-session learning). Future experiments with
extended periods of training are needed to resolve this issue
in more detail.

When we examined the effect of age on the amount of
online vs. offline learning, we did not find any evidence
for any such influence. The result that age did not differ-
entially affect online vs. offline learning is somewhat at
odds with prior literature which has shown that such dif-
ferences exist (Du et al. 2017; Yan 2017). As mentioned
in the “Introduction”, there are two main differences from
prior work. First, the use of a task that shows warm-up
decrement may be qualitatively different from sequence
learning tasks that show offline gains. Although there are
multiple theoretical perspectives on the issue of warm-up
(Nacson and Schmidt 1971; Ajemian et al. 2010), there
is no clear consensus on whether the difference between
tasks showing warm-up decrement and consolidation are
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related directly to the task itself (Reis et al. 2009), or to
methodological issues of how learning is analyzed (Pan
and Rickard 2015). Relatedly, a second important differ-
ence from prior studies relates to methodological consid-
eration of using ‘absolute’ change or ‘relative’ change in
performances. This is because in the context of devel-
opment, where groups are known to differ at baseline,
absolute change scores might be skewed because groups
who are worse at task performance have greater room for
improvement. In our case, when we used a relative meas-
ure to compute the amount of online and offline learning,
we found no reliable age effect, indicating that while chil-
dren take longer to do the task, they do not proportionally
take longer. It is also worth noting that the age groups
used in prior studies vary based on the task used (around
5-7 years old); this variation may also contribute to some
of the differences observed in the current study, which
used relatively older children (8—13 year olds).

There are some limitations to the current work—first, the
sample size in each group was relatively small, which was
limited mainly by the relatively long practice period per par-
ticipant. In addition, the age ranges within each of the chil-
dren groups were somewhat wide, potentially causing some
heterogeneity within the groups. Second, because we did a
~48-h rest period, we cannot disentangle if the offline effects
were ‘rest-related’ and/or ‘sleep-related’ (Doyon et al. 2009).
Third, we used average measures in each test block to quan-
tify learning. It is possible that such averaging may create
artifacts of offline learning (Pan and Rickard 2015) and may
obscure the true timescale of change (Heathcote et al. 2000;
Newell et al. 2001). However, given that our task involved
reaching to eight different targets (instead of typical stud-
ies where the same task is repeated on every trial), we felt
that an average measure over the entire set of reaches was
likely a more robust measure of learning than the individual
trial measures. Finally, although we used movement time as
the primary measure based on the task instruction, children
and adults could have had qualitatively different strategies
in performing the task—for e.g., children could have had
less reaction time and tried to correct for movements on the
fly whereas adults may have longer reaction time to improve
planning of the movements. We do not think this is likely
because all measures showed the same trends with learning
in both children and adults; however, this could be an issue
investigated more conclusively in a future study.

In conclusion, we found that when learning a novel motor
task, children show sustained worse performance compared
to adults across multiple days of practice. The contribution
of online and offline learning itself changed with practice,
but did not seem to be affected by age. These results sug-
gest that simply practicing for longer is unlikely to close the
gap between children and adults, and point to the need for
practice schedules to be customized in children.
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