

Manuscript Information

Journal name: The Science of the total environment

NIHMS ID: NIHMS1525893

Manuscript Title: Developmental exposure to chemicals associated with unconventional oil and gas extraction alters immune homeostasis and viral immunity of the amphibian *Xenopus*

Submitter: Author support, Elsevier (ElsevierNIHsupport@elsevier.com)

Manuscript Files

Type	Fig/Table #	Filename	Size	Uploaded
manuscript		STOTEN_31605.pdf	597513	2019-04-26 06:56:36
figure	1	Slide01.tiff	1169862	2019-04-26 06:56:38
figure	2	Slide02.tiff	1169862	2019-04-26 06:56:39
figure	3	Slide03.tiff	1169862	2019-04-26 06:56:40
figure	4	Slide04.tiff	1169862	2019-04-26 06:56:41
figure	5	Slide05.tiff	1169862	2019-04-26 06:56:43
figure	6	Slide06.tiff	1169862	2019-04-26 06:56:44
figure	7	Slide07.tiff	1169862	2019-04-26 06:56:45
figure	8	Slide08.tiff	1169862	2019-04-26 06:56:46
table	1	Table 1.doc	31744	2019-04-26 06:56:37
supplement	1	Supplementary material.doc	74752	2019-03-31 01:34:02

This PDF receipt will only be used as the basis for generating PubMed Central (PMC) documents. PMC documents will be made available for review after conversion. Any corrections that need to be made will be done at that time. No materials will be released to PMC without the approval of an author. Only the PMC documents will appear on PubMed Central -- this PDF Receipt will not appear on PubMed Central.

Accepted Manuscript

Developmental exposure to chemicals associated with unconventional oil and gas extraction alters immune homeostasis and viral immunity of the amphibian *Xenopus*

Jacques Robert, Connor C. McGuire, Susan Nagel, Paige Lawrence, Francisco De Jesús Andino

PII: S0048-9697(19)31394-4
DOI: [doi:10.1016/j.scitotenv.2019.03.395](https://doi.org/10.1016/j.scitotenv.2019.03.395)
Reference: STOTEN 31605

Published in: *Science of the Total Environment*

Received date: 21 January 2019
Revised date: 24 March 2019
Accepted date: 25 March 2019

Cite this article as: Robert J, McGuire CC, Nagel S, Lawrence P, Andino FDJ, Developmental exposure to chemicals associated with unconventional oil and gas extraction alters immune homeostasis and viral immunity of the amphibian *Xenopus*, *Science of the Total Environment*, doi:[10.1016/j.scitotenv.2019.03.395](https://doi.org/10.1016/j.scitotenv.2019.03.395)

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 **Developmental exposure to chemicals associated with unconventional oil and gas extraction**
2 **alters immune homeostasis and viral immunity of the amphibian *Xenopus***

3 Jacques Robert^{1,2}, Connor C. McGuire^{1,2}, Susan Nagel³, Paige Lawrence^{1,2} and Francisco De
4 Jesús Andino¹

5
6 ¹Department of Microbiology and Immunology, University of Rochester

7 ²Department of Environmental Medicine, University of Rochester

8 ³Department of Obstetrics & Gynecology, University of Missouri

9
10
11
12
13 **Running Title:** Hydrofracking-chemicals long-term alteration of *Xenopus* immunity

14

15 **Keywords:** Water pollutants, ranavirus, antiviral immunity, immune toxicant

16

17 **Communicating Author:** Dr. Jacques Robert, Department of Microbiology and Immunology,
18 University of Rochester Medical Center, Rochester, NY 14642; Phone (585) 275-1722; FAX (585)
19 473-9573; e-mail: Jacques_Robert@urmc.rochester.edu

20

21

22

23

24

25

26

27

28

29

30

31

32

33 **ABSTRACT**

34 Although aquatic vertebrates and humans are increasingly exposed to water pollutants associated
35 with unconventional oil and gas extraction (UOG), the long-term effects of these pollutants on
36 immunity remains unclear. We have established the amphibian *Xenopus laevis* and the ranavirus
37 Frog Virus 3 (FV3) as a reliable and sensitive model for evaluating the effects of waterborne
38 pollutants. *X. laevis* tadpoles were exposed to a mixture of equimass amount of UOG chemicals
39 with endocrine disrupting activity (0.1 and 1.0 µg/L) for 3 weeks, and then long-term effects on
40 immune function at steady state and following viral (FV3) infection was assessed after
41 metamorphosis. Notably, developmental exposure to the mixture of UOG chemicals at the tadpole
42 stage affected metamorphic development and fitness by significantly decreasing body mass after
43 metamorphosis completion. Furthermore, developmental exposure to UOGs resulted in
44 perturbation of immune homeostasis in adult frogs, as indicated by significantly decreased number
45 of splenic innate leukocytes, B and T lymphocytes; and a weakened antiviral immune response
46 leading to increased viral load during infection by the ranavirus FV3. These findings suggest that
47 mixture of UOG-associated waterborne endocrine disruptors at low but environmentally-relevant
48 levels have the potential to induce long-lasting alterations of immune function and antiviral
49 immunity in aquatic vertebrates and ultimately human populations.

50

51

52

53 **1. Introduction**

54 Unconventional oil and gas extraction (UOG) has markedly increased production of oil
55 and natural gas in the U.S. over the last 10 years ((Energy Information Administration, 2016;
56 Kassotis et al., 2015a). The process consists of injecting at high pressures millions of gallons of
57 water mixed with sand, and various chemical agents (including acids, friction reducers, and
58 surfactants) into underground shale deposits at high pressures in order to collect trapped oil and
59 natural gas (Carpenter, 2016; Kassotis et al., 2016b; Mrdjen and Lee, 2015). In addition to physical
60 and chemical damage to ecosystems, there is growing concern about negative health impacts on
61 human populations as well as aquatic wild life in regions where UOG is performed. Indeed, among
62 the large number of chemicals associated with UOG (estimated to be over 750) at least 200 have
63 been detected in wastewater, ground water, and surface water (Elsner and Hoelzer, 2016; Vengosh
64 et al., 2014; Waxman et al., 2011; Webb et al., 2014). A number of these chemicals have been
65 shown to be endocrine or developmental disruptors (Casey et al., 2016). Extensive study of water
66 collected at UOG sites has identified certain chemicals that consistently present at concentration
67 ranging from 0.01 to 2.0 mg/L (Gross et al., 2013; Wilkin and Digiulio, 2010). Among these, 23
68 showed significant agonistic or antagonistic activity *in vitro* for various hormone receptors,
69 including androgen, estrogen, and thyroid, progesterone, and glucocorticoid; and are thus
70 considered endocrine disruptor chemicals (EDCs) (Kassotis et al., 2015b; Kassotis et al., 2014).
71 Because of their wide combined distribution across UOG sites, an equimass mixture of these 23
72 EDCs has been used to model health risks from exposure to water contaminated by UOG. The
73 rationale is that while each EDC may be present at below an effective concentration, the additive
74 combination of multiple EDCs can induce biological effects, especially when exposure occurs
75 during the more sensitive early developmental period. Indeed, exposure of pregnant mice via

76 drinking water with this mixture of 23 chemicals at relevant environmental concentrations induces
77 multiple developmental defects in pups including sperm counts and increased testes, body, heart,
78 and thymus weights (Kassotis et al., 2015b). Maternal exposure also induced elevated serum
79 testosterone levels in male pups (Kassotis et al., 2015b) as well as pituitary hormones and
80 mammary gland development in females (Kassotis et al., 2016a; Sapouckey et al., 2018).

81 Another less well appreciated biological system affected by EDCs is the immune system
82 (Maqbool et al. 2016; Vandenberg et al. 2012(Boule and Lawrence, 2016; Kuo et al., 2012). The
83 endocrine system, especially the neuroendocrine axis, is known to play an important role in the
84 development and function of the vertebrate immune system including *Xenopus* (review in (Blom
85 and Ottaviani, 2017; Kinney and Cohen, 2009; Quatrini et al., 2018)). This connection is
86 underlined in metabolic disorders like type 2 diabetes for which EDCs such as bisphenol A and
87 phthalates are considered as promoting factors that affect both endocrine and immune function
88 (Bansal et al., 2018). Notably, early life exposure to several EDCs cause alterations in immune
89 function persisting in adulthood (Boule and Lawrence, 2016). While little is still known about the
90 effects of EDCs associated with UOG, developmental exposure of pregnant mice to similar low
91 doses of the mixture 23 UOG chemicals was found to induce long-term perturbations of the
92 immune system of adult offspring at steady state, and alteration of frequencies of different T cell
93 subsets after immune challenge (Boule et al., 2018). In addition, this developmental exposure to
94 UOG chemicals accentuated immunopathology of experimentally induced of autoimmune
95 encephalitis. Since even modest perturbation of immune function may have decisive consequences
96 on host resistance pathogens, immune alteration potentials of UOG chemical mixture merit further
97 exploration.

98 We have developed a reliable, sensitive and cost-effective model system based on the
99 amphibian *Xenopus* and the ranavirus FV3, which is an excellent complement to the mouse model
100 to investigate the impact of early life exposure to waterborne mixtures of UOG toxicants on
101 immunity later in life (Gantress et al., 2003; Jacques et al., 2017). *Xenopus* are ideally suited to
102 define the long-term health effects of developmental exposure to waterborne pollutants. The
103 *Xenopus* immune system is extensively characterized and remarkably conserved to that of human
104 *Xenopus* (Robert and Ohta, 2009). Importantly, *Xenopus* are completely aquatic at all stages of
105 development and unlike mammals, develop externally, free of maternal influences. Furthermore,
106 metamorphosis parallels the perinatal period in humans (Fini et al., 2012). Ranavirus pathogens
107 like FV3 (large DNA viruses of the family *Iridoviridae*) have become major viral pathogens,
108 causing infectious diseases and targeting a wide range of aquatic vertebrate species such as
109 amphibians, fish, and reptiles worldwide (Bandin and Dopazo, 2011; Chinchar, 2002; Chinchar et
110 al., 2009; Greer et al., 2005; Jancovich et al., 2010). We have shown that similar to mammals,
111 *Xenopus* adult frogs rely on efficient B and T cell responses activated by innate immune cells to
112 control and clear FV3 infection (Chen and Robert, 2011; De Jesus Andino et al., 2012; Morales et
113 al., 2010). This *Xenopus*/FV3 experimental platform has been useful to reveal that certain
114 herbicides (atrazine) and insecticides (carbaryl) contaminating water at low but ecologically-
115 relevant concentrations induce dramatic acute and long-term persisting defects of anti-FV3
116 immune responses (De Jesus Andino et al., 2017; Sifkarovski et al., 2014).

117 To investigate the potential of mixture of EDC water pollutants associated with UOG activity
118 we took advantage of the *Xenopus*/FV3 system. We previously reported that the same mixture of
119 23 UOG chemicals can affect the immune system of the tadpoles of the amphibian *Xenopus laevis*
120 (Robert et al., 2018). More specifically, a three week exposure of tadpoles to an equimass ranging

121 from 1 to 0.1 μ g/L of the 23 UOG chemicals significantly altered homeostatic expression of
122 myeloid lineage genes. Furthermore, upon infection with the ranavirus FV3, the expression of
123 innate immune response genes TNF- α , IL-1 β , and Type I IFN was reduced and the viral loads were
124 increased (Robert et al., 2018). This is of relevance since aquatic animals such as amphibians are
125 continuously exposed to water pollutants and therefore, are likely to become more susceptible to
126 adverse health effects or physiological consequences such as alteration of immune defense
127 mechanisms against ranavirus pathogens.

128 Here, we have further tested the hypothesis that developmental exposure of tadpoles to current
129 environmental levels of a mixture of 23 UOG chemicals with demonstrable EDC activity result in
130 long lasting developmental defects leading to altered immune homeostasis and antiviral immunity
131 in adult frogs, thus increasing susceptibility to pathogens such as FV3.

132

133

134 **2. Materials and Methods**

135

136 *2.1. Animals*

137 All outbred *Xenopus laevis* were from the *X. laevis* research resource for immunology at the
138 University of Rochester (<http://www.urmc.rochester.edu/mbi/resources/Xenopus/>) following
139 standard husbandry methodology regularly updated by the *Xenopus* community (see:
140 <http://www.xenbase.org/entry/>). All animals were handled in accordance with stringent laboratory
141 and University Committee on Animal Research regulations (Approval number 100577/2003-151).

142

143 *2.2. Chemical mixture preparation*

144 Twenty-three chemicals ($\geq 97\%$ purity, Sigma Aldrich) were selected based on prior demonstration
145 of endocrine activity, via the estrogen, androgen, progesterone, glucocorticoid, and/or thyroid
146 receptors (Kassotis et al., 2015b; Kassotis et al., 2014). Stock solutions (1 mg/ml) of chemicals
147 were prepared in 100% ethanol (ThermoFisher Scientific, Waltham, MA), stored at -20°C, and
148 used in experiments within 3 months of preparation. The chemicals were: 1,2,4-Trimethylbenzene;
149 2-(2-Methoxyethoxy)ethanol; 2-Ethylhexanol; 2-Methyl-4-isothiazolin-3-one; Acrylamide;
150 Benzene; Bronopol; Cumene; Diethanolamine; Ethoxylated nonylphenol; Ethoxylated
151 octylphenol; Ethylbenzene; Ethylene glycol; Ethylene glycol monobutyl ether; Naphthalen; N,n;
152 Dimethylformamide; Phenol; Propylene glycol; Sodium tetraborate decahydrate (borax); Styrene
153 Toluene; Triethylene glycol; Xylenes.

154

155 *2.3. Animals exposure to water contaminants*

156 Three-weeks old (stage 52, 1.5 cm long; (Nieuwkoop and Faber, 1967)) tadpoles were exposed for
157 3 weeks UOG mixture by diluting an equimass amount of 23 UOG-associated chemicals in the
158 tadpole housing water (dechlorinated water at room temperature [22°C] and neutral pH 6.8-7.0)
159 from a freshly prepared stock solution at a final concentration of 0.1 and 1.0 $\mu\text{g}/\text{mL}$ of each
160 constituent chemical as previously described (Kassotis et al., 2015b; Kassotis et al., 2014). Control
161 tadpoles were kept in water spiked with the vehicle control (0.2% ethanol). Animals were then
162 raised in clean water until 6 months of age. The doses were chosen based on estimates of
163 environmentally relevant oral exposures, such that the two concentrations are similar to levels
164 detected in surface and groundwater in UOG production regions (Cozzarelli et al., 2017; Crosby
165 et al., 2018; DiGiulio and Jackson, 2016; Gross et al., 2013) as well they are lethal to tadpoles
166 (Robert et al., 2018). Animals were raised in a room that is controlled for light cycle (12 hrs.

167 light/12 hrs. obscurity) and temperature, and has filtered and dechlorinated water. Animals were
168 maintained at a density of 20 tadpoles or 3-5 post-metamorphic froglets per 4 L container. Tadpoles
169 were fed daily with food pellets (Purina Gel Tadpole Diet), adults were fed daily with adult type
170 pellets (Zeigler's Xenopus pellets). While the stability of all 23 chemicals in water is uncertain or
171 unknown, to ensure consistency of exposure, minimize potential degradation and fluctuations in
172 the concentration over time, water and chemicals for each treatment was changed weekly.

173

174 *2.4. Frog virus 3 stocks and infection*

175 Baby hamster kidney cells (BHK-21, ATCC No. CCL-10) were maintained in DMEM (Invitrogen)
176 containing 10% fetal bovine serum (Invitrogen), streptomycin (100 μ g/mL), and penicillin (100
177 U/mL) with 5% CO₂ at 37°C, then 30°C for infection. FV3 was grown using a single passage
178 through BHK-21 cells and was subsequently purified by ultracentrifugation on a 30% sucrose
179 cushion. Adult frogs were infected by i.p. injection of 1x10⁶ PFU in 10 μ L of amphibian PBS
180 (APBS) using a glass Pasteur pipette whose small end had been pulled in a flame (De Jesús Andino
181 et al., 2012). Uninfected control animals were mock-infected with an equivalent volume of APBS.
182 Three and six days post-infection (dpi), animals were euthanized using 0.1% tricaine
183 methanesulfonate (TMS) buffered with bicarbonate prior to dissection and extraction of nucleic
184 acids from tissues (Fig. 1A).

185

186 *2.5. Quantitative gene expression analyses*

187 Total RNA was extracted from frog kidneys, livers and spleens using Trizol reagent, following the
188 manufacturer's protocol (Invitrogen). cDNA was synthetized with 0.5 μ g of RNA in 20 μ l using
189 the iScript cDNA synthesis kit (Bio-Rad, Hercules, CA), and 1 μ l of cDNA template was used in

190 all RT-PCRs and 150 ng DNA for PCR. Minus RT controls were included for every reaction. A
191 water-only control was included in each reaction. RNA was checked for purity via nanodrop and
192 only samples that amplified the housekeeping gene Glyceraldehyde-3-phosphate dehydrogenase
193 (GAPDH) within 20 cycles were used for qPCR analysis. The qPCR analysis was performed using
194 the ABI 7300 real-time PCR system with PerfeCT SYBR Green FastMix, ROX (Quanta) and ABI
195 sequence detection system (SDS) software. GAPDH controls were used in conjunction with the
196 delta^{delta} CT method to analyze cDNA for gene expression. All primer sequences are listed in
197 Table S1.

198

199 *2.6 Viral load quantification by qPCR*

200 FV3 viral loads were assessed by absolute qPCR by analysis of isolated DNA in comparison to a
201 serially diluted standard curve. Briefly, an FV3 DNA Pol II PCR fragment was cloned into the
202 pGEM-T Easy vector (Promega). This construct was amplified in bacteria, quantified and serially
203 diluted to yield 10¹⁰-10¹ plasmid copies of the vDNA POL II. These dilutions were employed as a
204 standard curve in subsequent absolute qPCR experiments to derive the viral genome transcript
205 copy numbers, relative to this standard curve.

206

207 *2.7 Flow cytometry*

208 The *XRRI* provided *X. laevis*-specific monoclonal antibodies (mAbs), including anti-CD5 (1F8),
209 anti-IgM (10A9); anti-NK cell (1F8), anti-class MHCII (AM20) and biotinylated anti-CD8
210 (AM22) as well as fluorophore-goat-anti-mouse Ab (BD Biosciences) and streptavidin-
211 fluorophore (BioLegend). Splenocytes (2.5 × 10⁵ cells/per treatment) were sequentially stained at
212 4°C with 100 µl of the different undiluted hybridoma supernatant, secondary goat Abs,

213 biotinylated anti-CD8 mA and streptavidin according to detailed published protocol (Edholm,
214 2018). Dead cells were excluded with propidium iodide (BD Pharmingen). 10,000 events per
215 sample, gated on live cells, were collected with Accuri C6 (BD Biosciences). Data was analyzed
216 with FlowJo (TreeStar).

217

218 *2.8. Statistical analysis*

219 The Mann-Whitney *U* and ANOVA as well as non-parametric Kruskal-Wallis tests were used for
220 statistical analysis of expression and viral load data. Analyses were performed using a Vassar Stat
221 online resource (<http://vassarstats.net/utest.html>). Statistical analysis of survival data was
222 performed using a Log-Rank Test (GraphPad Prism 6). A probability value of $p < 0.05$ was used
223 in all analyses to indicate significance. Error bars on all graphs represent the standard error of the
224 mean (SEM).

225

226

227 **3. Results**

228

229 *3.1. Effects of UOG mixture on *X. laevis* metamorphic development.*

230 Since anuran metamorphosis is under tight endocrine regulation, we first assessed whether
231 developmental exposure to a mixture of UOG chemicals with EDC activity would affect its
232 completion. Pre-metamorphic tadpoles (stage 52) were exposed for 3 weeks to different amount
233 (1 and 0.1 μ g/L) of UOG mixture, then transferred to clean water to grow until they metamorphose
234 and reach adult stages (Fig. 1A). These two concentrations match those used in mouse to reflect
235 environmentally relevant exposure (Boule et al., 2018) and are in the low range of the average

236 concentration for which each of these chemicals has been found in ground water near UOG
237 operations (i.e., 0.01 to 2.0 $\mu\text{g/L}$; (Gross et al., 2013; Wilkin and Digiulio, 2010)). We did not test
238 higher concentrations (5 and 10 $\mu\text{g/L}$) because they were shown to induce marked mortality in
239 tadpoles during the exposure (Robert et al., 2018).

240 Following 3 weeks exposure to 1.0 or 0.1 $\mu\text{g/L}$ of UOG mixture, no significant increase
241 mortality nor gross developmental abnormality (e.g., limb deformation, etc.) was observed over
242 the whole experiment. In particular, there was no increase in mortality during metamorphosis
243 compared to control animals exposed to 0.2% ethanol (Table 1). To refine our analysis, we
244 determined the time in days for each animal treated at tadpole stage to complete metamorphosis,
245 which is defined by the full loss of the tail. There was no statistically significant difference in the
246 time to complete metamorphosis across the different treatment group (Table 1). However,
247 developmental exposure to both 1.0 $\mu\text{g/L}$ and 0.1 $\mu\text{g/L}$ UOG mixture resulted in a statistically
248 significant decrease whole body weight at the end of metamorphosis (Table 1; Fig. 1B).
249 Collectively, these data strongly suggest that UOG chemicals, even at relatively low doses, have
250 the potential to perturb amphibian metamorphic development.

251

252 *3.2. Effects of developmental exposure to UOG chemicals on splenic leukocytes at steady state*

253 Since *X. laevis* do not have lymph nodes, the spleen is both the primary and main secondary
254 immune organ. As such, we first examined the cellularity and composition of splenocytes in young
255 adult frogs that were exposed to UOG mixture at tadpole stages and were sham-infected by i.p.
256 injection of sterile APBS, which does not elicit detectable innate or adaptive immune responses
257 compared to unmanipulated controls (De Jesus Andino et al., 2017; Morales et al., 2010; Morales
258 and Robert, 2007). Consistent with a decreased whole-body weight, there was a decrease in the

259 total number of cells recovered from the spleen in animals developmentally exposed to UOG
260 chemicals, which was only statistically significant for the group treated with 0.1 $\mu\text{g}/\text{L}$ of UOG
261 chemicals (Fig. 2).

262 To determine whether particular leukocyte populations were affected, we conducted a flow
263 cytometry analysis using available *X. laevis*-specific monoclonal antibodies (mAbs) and the gating
264 strategy depicted in Fig. 3. Cell of larger size and granularity corresponding to granulocytes were
265 gated separately (Gate 1, Fig. 3). Although specific markers of innate immune cells of the myeloid
266 lineage are lacking in *Xenopus*, we can obtain useful information be gating on non-lymphocyte
267 events and MHC class II expression. This population was only minimally stained (1-5%) with T
268 and B cell specific mAbs. Lymphocytes, forming a distinct population according to forward and
269 side scatter, were gated out and further separated into total T cells with the anti-pan T cell marker
270 CD5 recognized by 2B1 mAb, then further subdivided using the anti-CD8 mAb AM22 into CD8
271 (CD8+/CD5+) and putative CD4 or CD4-like (CD8neg/CD5+) cells as previously shown (Chida
272 et al., 2011). B cells were detected from the lymphocyte gate with anti-Mu mAb 10A9 as IgM+
273 cells co-expressing the MHC class II marker recognized by the mAb AM20 (Flajnik et al., 1990).
274 NK cells were also examined using the anti-NK cell marker 1F8 (Horton et al., 2000). As expected
275 in adult frogs, all lymphocytes were positively stained with the anti-class II mAb. We used this
276 gating strategy, to calculate the relative frequency and cell number of each of these populations.

277 The splenic granulocyte populations of mock-treated animals segregated into two distinct
278 MHC class II^{low} and II^{high} subsets (Fig. 4A). Interestingly, the MHC class II^{high} subset was
279 significantly ablated in animals developmentally exposed at either 0.1 or 1.0 $\mu\text{g}/\text{L}$ dose to the UOG
280 mixture, both in frequency and in cell number (sham-infected panel in Fig. 4B, C). The total
281 number but not the frequency of MHC class II^{low} cells was also diminished in treated groups.

282 For splenic lymphocytes at steady state, in addition to a slight decreased frequency of B cells,
283 CD5+ T cells and CD+8 T cells (mainly at the 1.0 $\mu\text{g/L}$ dose), the relative numbers of all
284 lymphocyte subsets, were considerably decreased in animals developmentally exposed to both
285 doses of the UOG mixture (see Fig. 5A, 6A).

286

287 *3.3 Effects of developmental exposure to UOG chemicals on antiviral immune response in the*
288 *spleen*

289 To further investigate the potential impact of developmental exposure to UOG chemicals on the
290 immune system, we assessed immune response during FV3 infection. Young adults that were
291 exposed to 0.1 and 1.0 $\mu\text{g/L}$ of UOG mixture at tadpole stages, were sham-infected or infected
292 intraperitoneally with 1×10^6 pfu of FV3. Cellular immune gene and expression response were
293 monitored at 3 and 6 days post-infection, which corresponds to early mainly innate and at the peak
294 of adaptive immune response, respectively.

295 Since in *Xenopus* the spleen functions both as a primary and secondary lymphoid organ, we
296 first monitored the changes in frequencies and relative numbers of the different cell types by flow
297 cytometry. For the sham-treated 0.2% ethanol exposed control group, antiviral immune response
298 was characterized by an increase frequency of class II^{low} granulocytes at 3 and 6 dpi and a decrease
299 number of class II^{high} cells at 3 dpi (FV3-infected right panel Fig. 4 B, C; statistical significance
300 indicated by #). Interestingly, exposure to 0.1 $\mu\text{g/L}$ and 1.0 $\mu\text{g/L}$ dose of UOG chemicals resulted
301 in a significant deficit in both frequency and numbers of class II^{low} granulocytes at 3 dpi when
302 compared to infected 0.2% ethanol exposed controls (Fig. 4B, C; statistical significance indicated
303 by *). It is noteworthy that this defect occurred before the peak of the adaptive antiviral response
304 in kidneys (Morales and Robert, 2007).

305 An efficient T cell response, especially CD8 cytotoxic T cells, is critical for viral clearance
306 during a FV3 primary infection (Morales and Robert, 2007; Robert et al., 2005). Therefore, we
307 examined in detail the changes in frequency and cells number of total (CD5+), CD8 and CD4-like
308 T cells in the spleen in infected animals at 3 and 6 dpi (Fig. 5B). Notably, the basal deficit in
309 frequency and numbers of the three different splenic T cell populations resulting from
310 developmental exposure to both doses of the UOG mixture was accentuated during FV3 infection.
311 The defect was already notable at 3 dpi for animals developmentally exposed at the higher 1.0
312 µg/L doses of UOG mixture. Whether this was due to a lower T cell expansion and/or recruitment
313 in the spleen that functions as the main immune site, remains to be determined. Developmental
314 exposure to UOG chemicals also impaired the kinetics of NK cell response in the spleen at 6 dpi
315 compared to EtOH treated controls, whereas B cell alteration was most notable at 3 dpi and for the
316 1.0 µg/L group (Fig. 6B).

317 To further examine the T cell function at steady state (sham-infection) as well as the antiviral
318 T cell response at the site of infection (peritoneal cavity) and at the main site of viral replication
319 (kidney), we determined the relative expression of the key T cell co-receptors CD3 ϵ , CD4 and
320 CD8 α (Fig. 7). Interestingly, the basal CD3 ϵ gene expression in the sham-infected group was
321 significantly reduced in the spleen, whereas abnormally high levels of CD4 and CD8 β transcripts
322 were detected in kidneys (Fig. 7A). Upon FV3 infection, the expression of the 3 genes markedly
323 increased at 3 dpi in PLs, as well as in kidneys where they remained elevated at 6 dpi. In contrast,
324 there was a drop (10x on average) in the expression of these three T cell genes in the spleen at 3
325 dpi and to a lesser extent at 6 dpi compared to uninfected controls (Fig. 7B). Notably,
326 developmental exposure to both 0.1 and 1.0 µg/L of the UOG chemical mixture negatively affected
327 the CD8 β gene expression in PLs at 3 dpi. This was also reflected by a similar decrease in CD3 ϵ

328 gene expression, whereas CD4 transcript levels did not show significant alteration. In spleen, gene
329 expression profiling revealed mainly a defect in CD3 ϵ expression. In kidneys, no further alteration
330 of gene expression was detected during FV3 infection (Fig. 7B).

331

332 *3.4 Effects of developmental exposure to UOG chemicals on antiviral immune response in the*
333 *kidneys*

334 To obtain further evidence of the long-term impact of developmental exposure to the mixture
335 of UOG chemicals on antiviral immune response, we monitored the expression of a selected set of
336 genes relevant for innate and adaptive immunity in the kidneys. For a number of genes tested
337 involved in innate immune response (e.g., IL-1 β or IL-10), the differential expression at steady
338 state and during FV3 infection was not significantly different among treatment groups (Fig. 8A;
339 Table S2). However, the expression response of several genes important for antiviral response was
340 perturbated. Notably, FV3-elicited type I IFN gene expression was significantly reduced at both 3
341 and 6 dpi in the kidneys of adult frogs that had been developmentally exposed to the low dose
342 (0.1 μ g/mL) of the UOG chemical mixture (Fig. 8C). In contrast, there was an exacerbated gene
343 expression of type II IFN or IFN γ at 3 and 6 dpi and of the pro-inflammatory TNF α at 6 dpi in
344 frogs developmentally exposed to both doses of the UOG mixture (Fig. 8B).

345 Finally, we assessed whether the alterations of immune response resulting from developmental
346 exposure to the UOG chemical mixture had any consequence in controlling FV3 replication by
347 determining the viral loads. In kidneys, the main site of FV3 replication, viral loads were
348 significantly increased at 6 dpi in frogs developmentally exposed to the high dose (1 μ g/L) of the
349 UOG chemical mixture compared to EtOH exposed controls (Fig 8B). The lower viral genome

350 copy numbers in other tissues including the spleen were not significantly different among the
351 different groups (Table S2).

352

353

354 **4. Discussion**

355 In this study we show that the *Xenopus* model system we have developed with FV3 as viral
356 pathogen is reliable and very sensitive for assessing the long-term negative impacts on immune
357 function resulting from exposure during early life to water EDC pollutants associated with UOG
358 activity. Our data provide strong evidence that at concentrations well below or at the level found
359 in water where UOG activity occurs (Energy Information Administration, 2016; Kassotis et al.,
360 2016c), a mixture of UOG chemicals can induce alterations of the immune system that persists for
361 a long time after exposure. Thus, early life exposure leads to change in adulthood that include
362 weakened host resistance to viral pathogens. These results are relevant and raise concern for
363 aquatic vertebrates near UOG sites or downstream from UOG waste water spills. However, owing
364 to the conservation of the immune system across all jawed vertebrates these findings also clearly
365 pertain to human health.

366

367 Given that each of these 23 UOG chemicals has been selected because of their EDC activity
368 *in vitro*, it is not really surprising that exposure to a mixture of these chemicals can perturb the
369 overall amphibian development. Indeed, effects on metamorphic development have been reported
370 following exposure to EDCs in *Xenopus* (Fini et al., 2012). Given the multiple sources of
371 variability (geography, half-life, concentrations of the various chemicals, time of release, etc.), a
372 defined equimass mixture of these 23 chemicals has been used as a titratable, more controllable

373 and reliable source of contaminants than raw contaminated water from UOG sites. Using this
374 defined UOG mixture, we found that animals exposed to 1 $\mu\text{g}/\text{L}$ and even 0.1 $\mu\text{g}/\text{L}$ of the mixture,
375 despite being raised in clean water for months, exhibited persisting developmental alterations
376 characterized by a significant weight loss at the end of metamorphosis. A low weight just after
377 metamorphosis is likely to negatively impact their overall fitness. Even more striking, was the
378 reduction in the number of immune cells of the spleen of adult frogs that were exposed to the UOG
379 mixture at postembryonic stages. Although this decrease was only statistically significant at 0.1
380 $\mu\text{g}/\text{L}$, the trend was similar at 1 $\mu\text{g}/\text{L}$ and affected most cell types of splenic immune cells including
381 myeloid and lymphoid lineage cells. To which extend this lack of strict dose dependent effects of
382 developmental exposure to the UOG mixture is real or just due to high individual variations is
383 unclear. It is to note, however, that non-linear responses are a commonly known attribute of EDCs
384 (Vandenberg et al., 2012). To which extent this immune cell deficit is related to the overall weight
385 loss of animals developmentally exposed to UOG chemicals is unknown. It is also currently
386 unclear whether this decrease in splenic leukocytes/lymphocytes results from a differentiation
387 defect since the spleen is a major lymphoid organ and/or an alteration of immune cell trafficking
388 in the whole organism. Our data are consistent with both possibilities, because we see a decrease
389 in steady state immune cells as well as decreases in responding lymphocytes that are activated in
390 response to the virus. Nevertheless, developmental exposure to the UOG chemical mixtures
391 induced other persisting immune specific alterations at steady state.

392 Notably, the fraction of innate immune cells expressing high amount of MHC class II
393 molecules at the cell surface was markedly depleted in developmentally treated frogs. In mammals,
394 MHC class II is typically expressed by professional immune cells such as dendritic cells (DCs),
395 monocytes and macrophages. Moreover, the level of MHC class II at the cell surface rapidly

396 increase upon activation by inflammatory stimuli (reviewed in (Holling et al., 2004; Unanue et al.,
397 2016)). As such, the level of MHC class II can serve as a marker of cell activation. In *X. laevis*,
398 cells of the myeloid lineage including monocytes, macrophages and neutrophils also express
399 surface MHC class II (Du Pasquier and Flajnik, 1990; Edholm, 2018; Rollins-Smith and Blair,
400 1990). Although little is still little known about DCs in *Xenopus*, a subset of splenic immune cells
401 named XL cells has recently been characterized that exhibit dual DC and follicular Dendritic
402 (FDCs) characteristics, and that expresses high level of MHC class II (Neely et al., 2018).
403 Furthermore, indirect evidence suggests that as in mammals, there is increased MHC class II
404 surface expression on activated splenic leukocytes (macrophage and putative DCs) during an
405 immune response (Morales et al., 2010). Thus, the marked decline in the innate cell population
406 expressing a high level of MHC class II may indicate some impairment in leukocyte activation.
407 The persistence of lower frequency and number of MHC class II^{high} leukocytes in the spleen
408 following viral infection further supports this possibility. A less effective activation of these innate
409 cell effectors may have negative impact not only on antiviral innate immune response (e.g.,
410 production of inflammatory cytokines) but also on the adaptive immune response by reducing
411 antigen presentation and co-stimulation, which ultimately would delay or decrease B and T
412 lymphocyte activation.

413 Consistent with this, our data indicate that developmental exposure to UOG chemicals resulted
414 in multiple T cell functional deficits. The lower frequency and number of T cells at 6 dpi in the
415 spleen strongly suggests a defect in T cell expansion, which would be consistent with a poor T cell
416 activation by APCs. Lymphocyte expansion in the spleen during FV3 infection is also well
417 documented (Morales and Robert, 2007). While the role of CD4 T cells in antiviral immunity is
418 currently unknown, CD8 T cells that are crucial for viral clearance during a primary infection with

419 FV3 (Morales and Robert, 2007; Robert et al., 2005). Besides an impaired activation in the spleen,
420 our data also suggest an alteration in T cell recruitment at the site of infection. This is based on the
421 relative levels of CD3, CD4 and CD8 β receptor transcripts used as proxy to detect total, CD4 and
422 CD8 T cells. The change of expression of these genes in the spleen is overall consistent with the
423 flow cytometry indicating a poor T cell activation and/or expansion, which provide some validity
424 for the approach. Notably, our qPCR data suggest that there was delay in infiltration of CD8 T
425 cells at 3 dpi in UOG-treated compared to sham-exposed controls. In kidneys, where viral
426 replication is the most prominent, although little difference was observed with regards to T cell
427 occurrence, altered expression of several cytokine encoding genes was observed. Interestingly,
428 IFN γ gene expression response to FV3 infection appeared to be exacerbated in animals
429 developmentally exposed to both doses of UOG chemicals. This again suggests some deregulation
430 of the T cell response. Owing to the demonstrated importance of CD8 T cell as well as innate-like
431 T cells in anti-FV3 response, it will be useful in future experiments to determine the expression of
432 classical MHC class I and MHC class I-like (Edholm et al., 2013).

433

434 In addition to T cells, developmental exposure to UOG chemicals had also lasting negative
435 effects on NK and B cell responses in the spleen. Owing to the lack of information about their
436 development and function, it is unclear whether the lower frequency and number of NK cells
437 during FV3 infection in animal developmentally exposed to 1 μ g/L of UOG chemicals is due to
438 an impairment of their differentiation or their recruitment in the spleen. Concerning B cells, their
439 significant lower frequency and number at 3 dpi suggests a reduced B cell response to FV3 in
440 UOG treated animals, which could be related to an ineffective activation as discussed for T cells.
441 It will be interesting in future experiments to assess the isotypes, magnitude and affinity of

442 antibodies produced during primary and secondary FV3 infection. While there is a B cell response
443 during primary FV3 infections, the thymus-dependent switch from IgM to IgY antibody and the
444 production of high titer of neutralizing IgY in the serum occurs mainly during a secondary FV3
445 infection (Maniero et al., 2006).

446 Aquatic vertebrates and human populations are exposed to an increasing number of EDC water
447 pollutants, whose potential long-term harmful effects on immune function are unclear and
448 understudied. The relative sensitivity of *Xenopus* to waterborne contaminants compared to mice
449 and human is a complex issue since for some chemicals (e.g. TCDD; (Lavine et al., 2005)),
450 *Xenopus* is less sensitive than mouse, whereas *Xenopus* is more sensitive than mammals and fish
451 for other chemicals (e.g., phenols; (Lavine et al., 2005)), In addition, amphibians can adapt and
452 become more resistant to a certain pollutants (Hua et al., 2015; Lavine et al., 2005). Nevertheless,
453 while more work will be needed to define the molecular and cellular pathways targeted by mixtures
454 of EDCs derived from UOG activity, our results provide unequivocal evidence of the long term
455 negative impacts on immune function and immune defenses to pathogens that short perinatal
456 exposure to these water pollutants can induce.

457

458 **Funding information**

459 We thank Tina Martin for animal husbandry. This work was supported by the National Institute of
460 Allergy and Infectious Diseases at the National Institutes of Health (grant number: R24-AI-
461 059830), the National Science Foundation (grant number: IOS-1754274) and a Pilot Project Grant
462 from the Rochester Environmental Health Sciences Center (P30-ES01247). C. M. is supported by
463 the Toxicology Program (T32-ES07026).

464

465 **Acknowledgements**

466 We thank Tina Martin for animal husbandry.

467

468

469

470 **References**

471

472 Bandin, I., Dopazo, C.P., 2011. Host range, host specificity and hypothesized host shift events
473 among viruses of lower vertebrates. *Vet Res* 42.

474 Bansal, A., Henao-Mejia, J., Simmons, R.A., 2018. Immune System: An Emerging Player in
475 Mediating Effects of Endocrine Disruptors on Metabolic Health. *Endocrinology* 159, 32-45.

476 Blom, J.M.C., Ottaviani, E., 2017. Immune-Neuroendocrine Interactions: Evolution, Ecology,
477 and Susceptibility to Illness. *Medical science monitor basic research* 23, 362-367.

478 Boule, L.A., Chapman, T., Hillman, S., Balise, V., O'Dell, C., Robert, J., Georas, S., Nagel , S.,
479 Lawrence, P., 2018. Developmental exposure to a mixture of 23 chemicals associated with
480 unconventional oil and gas operations alters the immune system of mice. *Tox Sci In press*.

481 Boule, L.A., Lawrence, B.P., 2016. Influence of early life environmental exposures on immune
482 function across the lifespan, in: Esser, C. (Ed.), *Environmental Influences on the Immune*
483 *System*. Springer, pp. 21-54.

484 Carpenter, D.O., 2016. Hydraulic fracturing for natural gas: impact on health and environment.
485 *Reviews on environmental health* 31, 47-51.

486 Casey, J.A., Savitz, D.A., Rasmussen, S.G., Ogburn, E.L., Pollak, J., Mercer, D.G., Schwartz,
487 B.S., 2016. Unconventional Natural Gas Development and Birth Outcomes in Pennsylvania,
488 USA. *Epidemiology* 27, 163-172.

489 Chen, G., Robert, J., 2011. Antiviral immunity in amphibians. *Viruses* 3, 2065-2086.

490 Chida, A.S., Goyos, A., Robert, J., 2011. Phylogenetic and developmental study of CD4, CD8
491 alpha and beta T cell co-receptor homologs in two amphibian species, *Xenopus tropicalis* and
492 *Xenopus laevis*. *Dev Comp Immunol* 35, 366-377.

493 Chinchar, V.G., 2002. Ranaviruses (family Iridoviridae): emerging cold-blooded killers.
494 Archives of virology 147, 447-470.

495 Chinchar, V.G., Hyatt, A., Miyazaki, T., Williams, T., 2009. Family Iridoviridae: Poor Viral
496 Relations No Longer. *Curr Top Microbiol* 328, 123-170.

497 Cozzarelli, I.M., Skalak, K.J., Kent, D.B., Engle, M.A., Benthem, A., Mumford, A.C., Haase, K.,
498 Farag, A., Harper, D., Nagel, S.C., Iwanowicz, L.R., Orem, W.H., Akob, D.M., Jaeschke,
499 J.B., Galloway, J., Kohler, M., Stoliker, D.L., Jolly, G.D., 2017. Environmental signatures
500 and effects of an oil and gas wastewater spill in the Williston Basin, North Dakota. *The
501 Science of the total environment* 579, 1781-1793.

502 Crosby, L.M., Tatu, C.A., Varonka, M., Charles, K.M., Orem, W.H., 2018. Toxicological and
503 chemical studies of wastewater from hydraulic fracture and conventional shale gas wells.
504 *Environ Toxicol Chem* 37, 2098-2111.

505 De Jesus Andino, F., Chen, G., Li, Z., Grayfer, L., Robert, J., 2012. Susceptibility of *Xenopus*
506 *laevis* tadpoles to infection by the ranavirus Frog-Virus 3 correlates with a reduced and
507 delayed innate immune response in comparison with adult frogs. *Virology* 432, 435-443.

508 De Jesús Andino, F., Chen, G., Li, Z., Grayfer, L., Robert, J., 2012. Susceptibility of *Xenopus*
509 *laevis* tadpoles to infection by the ranavirus Frog-Virus 3 correlates with a reduced and
510 delayed innate immune response in comparison with adult frogs. *Virology* 432, 435-443.

511 De Jesus Andino, F., Lawrence, B.P., Robert, J., 2017. Long term effects of carbaryl exposure on
512 antiviral immune responses in *Xenopus laevis*. *Chemosphere* 170, 169-175.

513 DiGiulio, D.C., Jackson, R.B., 2016. Impact to Underground Sources of Drinking Water and
514 Domestic Wells from Production Well Stimulation and Completion Practices in the Pavillion,
515 Wyoming, Field. Environ Sci Technol 50, 4524-4536.

516 Du Pasquier, L., Flajnik, M.F., 1990. Expression of MHC class II antigens during *Xenopus*
517 development. Dev Immunol 1, 85-95.

518 Edholm, E.S., 2018. Flow Cytometric Analysis of *Xenopus* Immune Cells. Cold Spring Harbor
519 protocols 2018, pdb.prot097600.

520 Edholm, E.S., Albertorio Saez, L.M., Gill, A.L., Gill, S.R., Grayfer, L., Haynes, N., Myers, J.R.,
521 Robert, J., 2013. Nonclassical MHC class I-dependent invariant T cells are evolutionarily
522 conserved and prominent from early development in amphibians. Proc Natl Acad Sci U S A
523 110, 14342-14347.

524 Elsner, M., Hoelzer, K., 2016. Quantitative Survey and Structural Classification of Hydraulic
525 Fracturing Chemicals Reported in Unconventional Gas Production. Environ Sci Technol 50,
526 3290-3314.

527 Energy Information Administration, U.S., 2016. Dry Shale Gas Production.

528 Fini, J.B., Riu, A., Debrauwer, L., Hillenweck, A., Le Mevel, S., Chevolleau, S., Boulahouf, A.,
529 Palmier, K., Balaguer, P., Cravedi, J.P., Demeneix, B.A., Zalko, D., 2012. Parallel
530 biotransformation of tetrabromobisphenol A in *Xenopus laevis* and mammals: *Xenopus* as a
531 model for endocrine perturbation studies. Toxicol Sci 125, 359-367.

532 Flajnik, M.F., Ferrone, S., Cohen, N., Du Pasquier, L., 1990. Evolution of the MHC: antigenicity
533 and unusual tissue distribution of *Xenopus* (frog) class II molecules. Molecular immunology
534 27, 451-462.

535 Gantress, J., Maniero, G.D., Cohen, N., Robert, J., 2003. Development and characterization of a
536 model system to study amphibian immune responses to iridoviruses. *Virology* 311, 254-262.

537 Greer, A.L., Berrill, M., Wilson, P.J., 2005. Five amphibian mortality events associated with
538 ranavirus infection in south central Ontario, Canada. *Diseases of aquatic organisms* 67, 9-14.

539 Gross, S.A., Avens, H.J., Banducci, A.M., Sahmel, J., Panko, J.M., Tvermoes, B.E., 2013.
540 Analysis of BTEX groundwater concentrations from surface spills associated with hydraulic
541 fracturing operations. *Journal of the Air & Waste Management Association (1995)* 63, 424-
542 432.

543 Holling, T.M., Schooten, E., van Den Elsen, P.J., 2004. Function and regulation of MHC class II
544 molecules in T-lymphocytes: of mice and men. *Human immunology* 65, 282-290.

545 Horton, T.L., Minter, R., Stewart, R., Ritchie, P., Watson, M.D., Horton, J.D., 2000. *Xenopus*
546 NK cells identified by novel monoclonal antibodies. *European journal of immunology* 30,
547 604-613.

548 Hua, J., Jones, D.K., Mattes, B.M., Cothran, R.D., Relyea, R.A., Hoverman, J.T., 2015. The
549 contribution of phenotypic plasticity to the evolution of insecticide tolerance in amphibian
550 populations. *Evolutionary applications* 8, 586-596.

551 Jacques, R., Edholm, E.S., Jazz, S., Odalys, T.L., Francisco, J.A., 2017. *Xenopus-FV3* host-
552 pathogen interactions and immune evasion. *Virology* 511, 309-319.

553 Jancovich, J.K., Bremont, M., Touchman, J.W., Jacobs, B.L., 2010. Evidence for Multiple
554 Recent Host Species Shifts among the Ranaviruses (Family Iridoviridae). *J Virol* 84, 2636-
555 2647.

556 Kassotis, C.D., Alvarez, D.A., Taylor, J.A., vom Saal, F.S., Nagel, S.C., Tillitt, D.E., 2015a.
557 Characterization of Missouri surface waters near point sources of pollution reveals potential

558 novel atmospheric route of exposure for bisphenol A and wastewater hormonal activity
559 pattern. *The Science of the total environment* 524-525, 384-393.

560 Kassotis, C.D., Bromfield, J.J., Klemp, K.C., Meng, C.X., Wolfe, A., Zoeller, R.T., Balise, V.D.,
561 Isiguzo, C.J., Tillitt, D.E., Nagel, S.C., 2016a. Adverse Reproductive and Developmental
562 Health Outcomes Following Prenatal Exposure to a Hydraulic Fracturing Chemical Mixture
563 in Female C57Bl/6 Mice. *Endocrinology* 157, 3469-3481.

564 Kassotis, C.D., Iwanowicz, L.R., Akob, D.M., Cozzarelli, I.M., Mumford, A.C., Orem, W.H.,
565 Nagel, S.C., 2016b. Endocrine disrupting activities of surface water associated with a West
566 Virginia oil and gas industry wastewater disposal site. *The Science of the total environment*
567 557-558, 901-910.

568 Kassotis, C.D., Klemp, K.C., Vu, D.C., Lin, C.H., Meng, C.X., Besch-Williford, C.L., Pinatti, L.,
569 Zoeller, R.T., Drobnis, E.Z., Balise, V.D., Isiguzo, C.J., Williams, M.A., Tillitt, D.E., Nagel,
570 S.C., 2015b. Endocrine-Disrupting Activity of Hydraulic Fracturing Chemicals and Adverse
571 Health Outcomes After Prenatal Exposure in Male Mice. *Endocrinology* 156, 4458-4473.

572 Kassotis, C.D., Tillitt, D.E., Davis, J.W., Hormann, A.M., Nagel, S.C., 2014. Estrogen and
573 androgen receptor activities of hydraulic fracturing chemicals and surface and ground water
574 in a drilling-dense region. *Endocrinology* 155, 897-907.

575 Kassotis, C.D., Tillitt, D.E., Lin, C.H., McElroy, J.A., Nagel, S.C., 2016c. Endocrine-Disrupting
576 Chemicals and Oil and Natural Gas Operations: Potential Environmental Contamination and
577 Recommendations to Assess Complex Environmental Mixtures. *Environ Health Perspect*
578 124, 256-264.

579 Kinney, K.S., Cohen, N., 2009. Neural-immune system interactions in *Xenopus*. *Frontiers in*
580 *bioscience* (Landmark edition) 14, 112-129.

581 Kuo, C.H., Yang, S.N., Kuo, P.L., Hung, C.H., 2012. Immunomodulatory effects of
582 environmental endocrine disrupting chemicals. The Kaohsiung journal of medical sciences
583 28, S37-42.

584 Lavine, J.A., Rowatt, A.J., Klimova, T., Whitington, A.J., Dengler, E., Beck, C., Powell, W.H.,
585 2005. Aryl hydrocarbon receptors in the frog *Xenopus laevis*: two AhR1 paralogs exhibit low
586 affinity for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). *Toxicol Sci* 88, 60-72.

587 Maniero, G.D., Morales, H., Gantress, J., Robert, J., 2006. Generation of a long-lasting,
588 protective, and neutralizing antibody response to the ranavirus FV3 by the frog *Xenopus*.
589 *Dev Comp Immunol* 30, 649-657.

590 Morales, H.D., Abramowitz, L., Gertz, J., Sowa, J., Vogel, A., Robert, J., 2010. Innate immune
591 responses and permissiveness to ranavirus infection of peritoneal leukocytes in the frog
592 *Xenopus laevis*. *J Virol* 84, 4912-4922.

593 Morales, H.D., Robert, J., 2007. Characterization of primary and memory CD8 T-cell responses
594 against ranavirus (FV3) in *Xenopus laevis*. *J Virol* 81, 2240-2248.

595 Mrdjen, I., Lee, J., 2015. High volume hydraulic fracturing operations: potential impacts on
596 surface water and human health. *International journal of environmental health research*, 1-23.

597 Neely, H.R., Guo, J., Flowers, E.M., Criscitiello, M.F., Flajnik, M.F., 2018. "Double-duty"
598 conventional dendritic cells in the amphibian *Xenopus* as the prototype for antigen
599 presentation to B cells. *European journal of immunology* 48, 430-440.

600 Nieuwkoop, P., Faber, J., 1967. Normal table of *Xenopus laevis* (Daudin) : a systematical and
601 chronological survey of the development from the fertilized egg till the end of
602 metamorphosis, 2 ed, Amsterdam: North Holland.

603 Quatrini, L., Vivier, E., Ugolini, S., 2018. Neuroendocrine regulation of innate lymphoid cells.

604 Immunol Rev 286, 120-136.

605 Robert, J., McGuire, C.C., Kim, F., Nagel, S.C., Price, S.J., Lawrence, B.P., De Jesus Andino, F.,

606 2018. Water Contaminants Associated With Unconventional Oil and Gas Extraction Cause

607 Immunotoxicity to Amphibian Tadpoles. Toxicol Sci 166, 39-50.

608 Robert, J., Morales, H., Buck, W., Cohen, N., Marr, S., Gantress, J., 2005. Adaptive immunity

609 and histopathology in frog virus 3-infected *Xenopus*. Virology 332, 667-675.

610 Robert, J., Ohta, Y., 2009. Comparative and developmental study of the immune system in

611 *Xenopus*. Developmental dynamics : an official publication of the American Association of

612 Anatomists 238, 1249-1270.

613 Rollins-Smith, L.A., Blair, P., 1990. Expression of class II major histocompatibility complex

614 antigens on adult T cells in *Xenopus* is metamorphosis-dependent. Dev Immunol 1, 97-104.

615 Sapouckey, S.A., Kassotis, C.D., Nagel, S.C., Vandenberg, L.N., 2018. Prenatal Exposure to

616 Unconventional Oil and Gas Operation Chemical Mixtures Altered Mammary Gland

617 Development in Adult Female Mice. Endocrinology 159, 1277-1289.

618 Sifkarovski, J., Grayfer, L., De Jesus Andino, F., Lawrence, B.P., Robert, J., 2014. Negative

619 effects of low dose atrazine exposure on the development of effective immunity to FV3 in

620 *Xenopus laevis*. Dev Comp Immunol 47, 52-58.

621 Unanue, E.R., Turk, V., Neefjes, J., 2016. Variations in MHC Class II Antigen Processing and

622 Presentation in Health and Disease. Annu Rev Immunol 34, 265-297.

623 Vandenberg, L.N., Colborn, T., Hayes, T.B., Heindel, J.J., Jacobs, D.R., Jr., Lee, D.H., Shiota,

624 T., Soto, A.M., vom Saal, F.S., Welshons, W.V., Zoeller, R.T., Myers, J.P., 2012. Hormones

625 and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses.
626 Endocrine reviews 33, 378-455.

627 Vengosh, A., Jackson, R.B., Warner, N., Darrah, T.H., Kondash, A., 2014. A critical review of
628 the risks to water resources from unconventional shale gas development and hydraulic
629 fracturing in the United States. Environ Sci Technol 48, 8334-8348.

630 Waxman, H.A., Markey, E.J., DeGette, D., 2011. Chemicals Used in Hydraulic Fracturing. US
631 House of Representatives Council Committee on Energy and Commerce Minority Staff
632 Report.

633 Webb, E., Bushkin-Bedient, S., Cheng, A., Kassotis, C.D., Balise, V., Nagel, S.C., 2014.
634 Developmental and reproductive effects of chemicals associated with unconventional oil and
635 natural gas operations. Reviews on environmental health 29, 307-318.

636 Wilkin, R.T., Digiulio, D.C., 2010. Geochemical impacts to groundwater from geologic carbon
637 sequestration: controls on pH and inorganic carbon concentrations from reaction path and
638 kinetic modeling. Environ Sci Technol 44, 4821-4827.

639

640

641

642 **FIGURE LEGENDS**

643
644
645 **Figure 1.** (A) Schematic of developmental treatment strategy. After 3 weeks exposure to the UOG
646 chemical mixture, tadpoles were raised in clean water until 6 month of age, past metamorphosis.
647 (B) Individual and averages \pm SD of whole body weights in mg at metamorphosis completion
648 (developmental stage 66) for each treatment group. * P<0.05 significant differences relative to
649 EtOH treated only controls using one-way ANOVA test and Tukey's post-hoc test (GraphPad
650 Prism 6).

651
652 **Figure 2.** Total number of leukocytes recovered from the spleen and peritoneal cavity from adult
653 frogs that were exposed for three weeks at tadpole stages to 0.2 % ethanol (Ctrl; black) or 0.1
654 (gray) or 1 μ g/L (white) of an equimass mixture of 23 UOG chemicals. After chemical exposure
655 and metamorphosis completion, frogs were either i.p. injected with 1×10^6 pfu of FV3 or sham-
656 infected with amphibian PBS (steady state), and then euthanized after 1, 3, or 6 days or sham-
657 infected (C; steady state). Results are means \pm SEM of 6 individuals per group from two different
658 experiments (3 per experiment). * P <0.05 significant differences among treatment groups relative
659 to the EtOH treated group; # P <0.05 determined between each corresponding mock-infected and
660 FV3-infected treatment group. All the values were determined by one-way ANOVA test and
661 Tukey's post-hoc test (GraphPad Prism 6).

662
663 **Figure 3.** Flow cytometry gating strategy (Flowjo 7). (A) Representative FACS bit map from
664 splenocytes of a single animal: Y-axis (SSC-A): side light scatter (cell granularity and density).
665 X-axis (FSC-A): light scatter (cell size). Two major cell populations were gated: (1) Larger cells
666 (M0, DCs, PMN). (2) Smaller lymphocytes (B and T cells). Splenocytes were stained with mAbs

667 specific for (C) MHC class II; (E) IgM/class II; (F) CD5/CD8 to identify CD8 and CD4 T cells
668 (CD5+/CD8neg; (G) NK cells mAb. A negative control (B) was included for each staining.

669

670 **Figure 4.** Effects of developmental exposure to an equimass mixture of 23 UOG chemicals on
671 myeloid lineage cells at steady state (sham-infected) and during viral infection. (A) MHC class II
672 surface expression by FACS on splenic granulocytes (gate 1) of frogs exposed to 0.2 % EtOH
673 (Ctrl; black), 0.1 (gray) or 1.0 μ g/L (white) of UOGs. (B) Frequencies (%) and (C) cell numbers
674 of class II^{high} and class II^{low} granulocytes from UOG exposed frogs either infected with 1 \times 10⁶
675 pfu of FV3 for 3 or 6 days, or sham-infected. These data are pools of 2 independent experiments
676 (3 animals per group). * P <0.05 significant differences among treatment groups relative to the
677 EtOH treated group; # P <0.05 significant differences determined between each corresponding
678 mock-infected and FV3-infected treatment group. All the values were determined by one-way
679 ANOVA test and Tukey's post-hoc test (GraphPad Prism 6).

680

681 **Figure 5.** Effects of developmental exposure to an equimass mixture of 23 UOG chemicals on T
682 cells at steady state (sham-infected) (A) and during viral infection (B). Frequency (%) and relative
683 number of splenic total (CD5+), CD8 (CD5+/CD8+/CD5) and CD4-like (CD5+/CD8neg)
684 determined by flow cytometry (gate 2) in frogs exposed to 0.2 % ethanol (Ctrl; black) or 0.1(gray),
685 and 1.0 μ g/L (white) of UOGs. *Xenopus*-specific mAb used were: AM20 (class II); 2B1 (CD5);
686 AM22 (CD8). After chemical exposure and metamorphosis, frogs were either i.p. injected with 1
687 \times 10⁶ pfu of FV3 or with amphibian PBS (Ctrl), and then euthanized after 3 and 6 d. Results are
688 means \pm SEM of 6 individuals per group from two different experiments (3 per experiment). * P
689 <0.05 significant differences among treatment groups relative to the ethanol treated group; # P

690 <0.05 significant differences for each infected group relative to uninfected controls. All the values
691 were determined by one-way ANOVA test and Tukey's post-hoc test (GraphPad Prism 6).

692

693 **Figure 6.** Effects of developmental exposure to an equimass mixture of 23 UOG chemicals on B
694 and NK cells at steady state (sham-infected) (A) and during viral infection (B). Frequency and
695 relative number of splenic IgM+ B cells and NK cells determined by flow cytometry (gate 2) in
696 frogs developmentally exposed to 0.2 % ethanol (Ctrl; black) or 0.1 (gray) and 1.0 μ g/L (white) of
697 UOGs then either infected with FV3 for 3 or 6 days, or sham-infected. *Xenopus*-specific mAb used
698 are: AM20 (class II); 10A9 (IgM); 1F8 (NK). These data are pools of 2 independent experiments
699 (3 animals per group). * P <0.05 significant differences among treatment groups relative to the
700 EtOH treated group; # P <0.05 significant differences for each infected group relative to uninfected
701 controls. All the values were determined by one-way ANOVA test and Tukey's post-hoc test
702 (GraphPad Prism 6).

703

704 **Figure 7.** Effects of developmental exposure to UOG chemicals on relative expression of T cell
705 co-receptor CD3, CD4 and CD8 genes at steady state (sham-infected) (A) and during viral
706 infection (B). Relative expression of CD3, CD4 and CD8 genes from the peritoneum, spleen and
707 kidney tissues was determined for adult frogs developmentally exposed to either 0.2% ethanol
708 (Ctrl; black), 0.1 (gray) or 1.0 μ g/L (white) of the UOG mixture. After chemical exposure and
709 metamorphosis completion, frogs were either sham-infected or i.p. infected with 1 \times 10⁶ pfu of
710 FV3, for 3 and 6 days. Results are means \pm SEM of 6 individuals per group from two different
711 experiments (3 per experiment). Gene expression is represented as fold increase (RQ: relative
712 quantification) relative to GAPDH endogenous control. Statistical significance was assessed by

713 Kruskal-Wallis non-parametric test and Dunn's multiple comparison test: (*) P<0.05 between
714 control and treated groups.

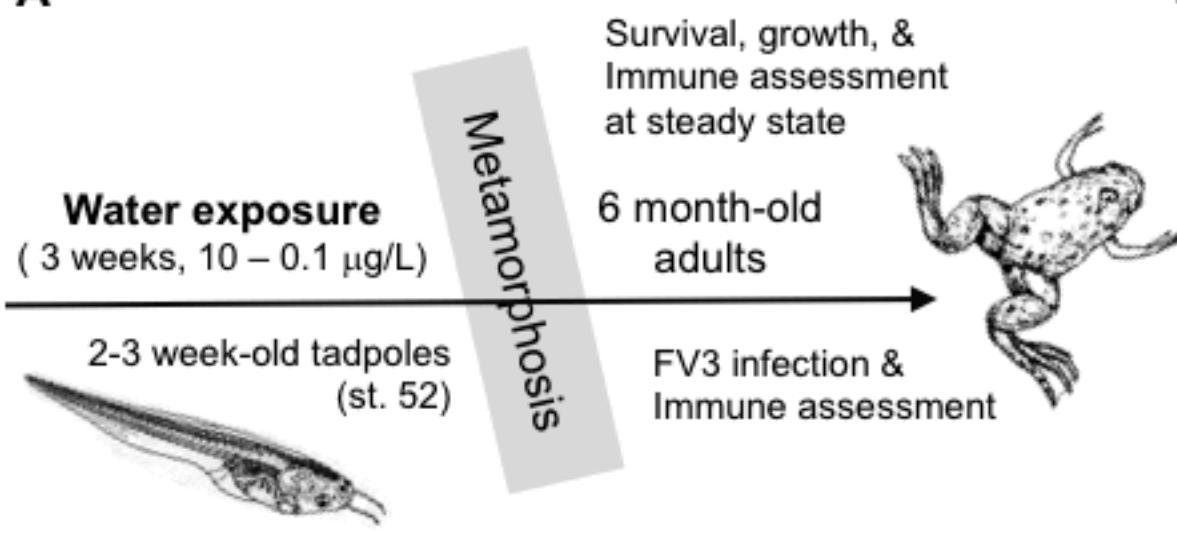
715

716 **Figure 8.** Effects of developmental exposure to UOG chemicals on viral load (A) as well as
717 relative expression of TNF α , Type I and II IFN genes in kidneys at steady state (sham-infected)
718 (B) and during viral infection (C). (A) FV3 genome copy numbers in kidneys of infected adult
719 frogs at 6 dpi that were developmentally exposed to either 0.2% ethanol (Ctrl; black), 0.1 (gray)
720 or 1.0 μ g/L (white) UOG mixture. For each group, the viral genome copy number of each
721 individual determined by absolute qPCR is depicted by different symbol as well as a horizontal
722 bar indicating the average \pm SD. Statistical significance: ** P<0.005 (Kruskal-Wallis non-
723 parametric test and Dunn's multiple comparison test). (B, C) The relative expression of TNF α ,
724 Type I and II IFN genes in kidney was determined for adult frogs developmentally exposed to
725 either 0.2% ethanol (Ctrl), 0.1 or 1.0 μ g/L of the UOG mixture and either sham-infected or i.p.
726 infected with 1 \times 10⁶ pfu of FV3 for 3 and 6 days. Results are means \pm SEM of 6 individuals per
727 group from two different experiments (3 per experiment). Gene expression is represented as fold
728 increase (RQ: relative quantification) relative to GAPDH endogenous control. Statistical
729 significance assessed by Kruskal-Wallis non-parametric test and Dunn's multiple comparison test:
730 (*) P<0.05 between control and treated groups.

731
732

Highlights

- Effects of unconventional oil and gas mixture of chemicals (UOG) in *Xenopus* are presented
- Developmental exposure to 23 UG chemicals (UOG-mix) affects adult frog immunity in adult frogs
- UOG-mix alters immune adult frog homeostasis
- UOG-mix applied to tadpoles weakens frog antiviral immunity after metamorphosis


Type of file: figure

Label: 1

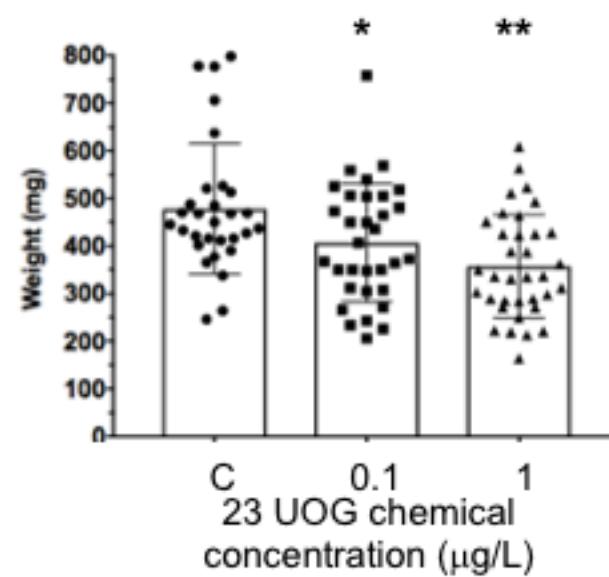
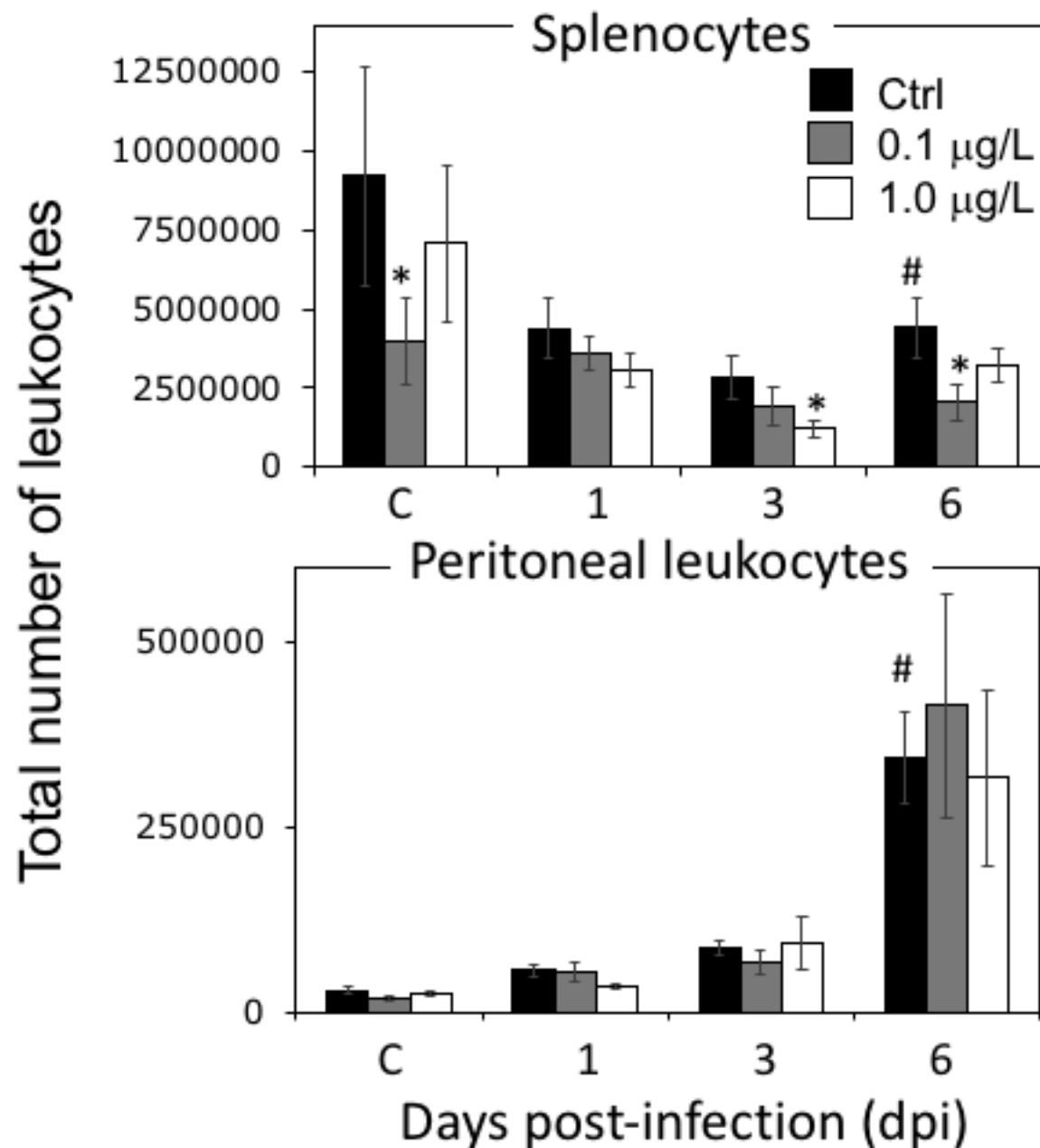

Filename: Slide01.tiff

Fig. 1

A

B

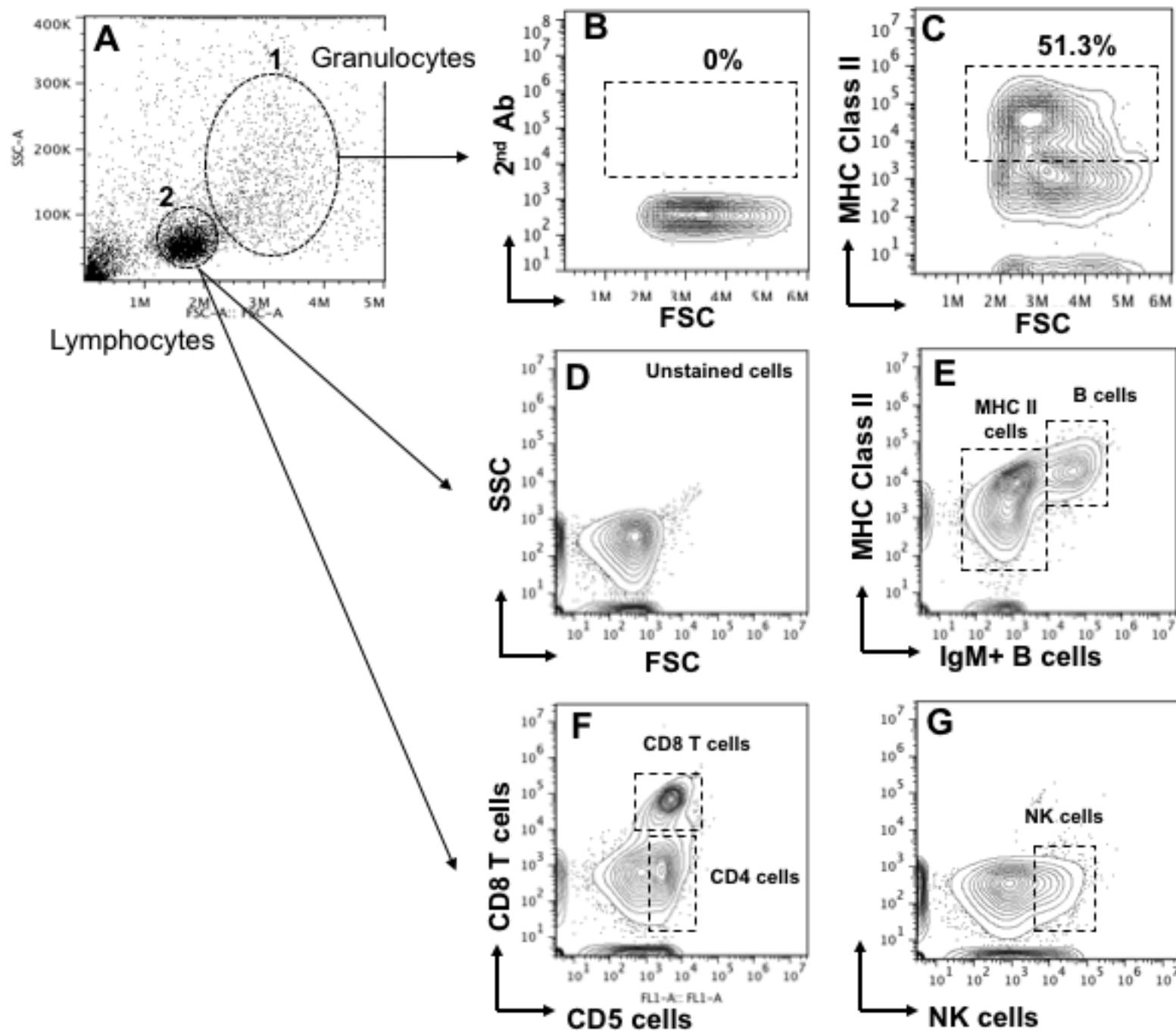


Type of file: figure

Label: 2

Filename: Slide02.tiff

Fig. 2

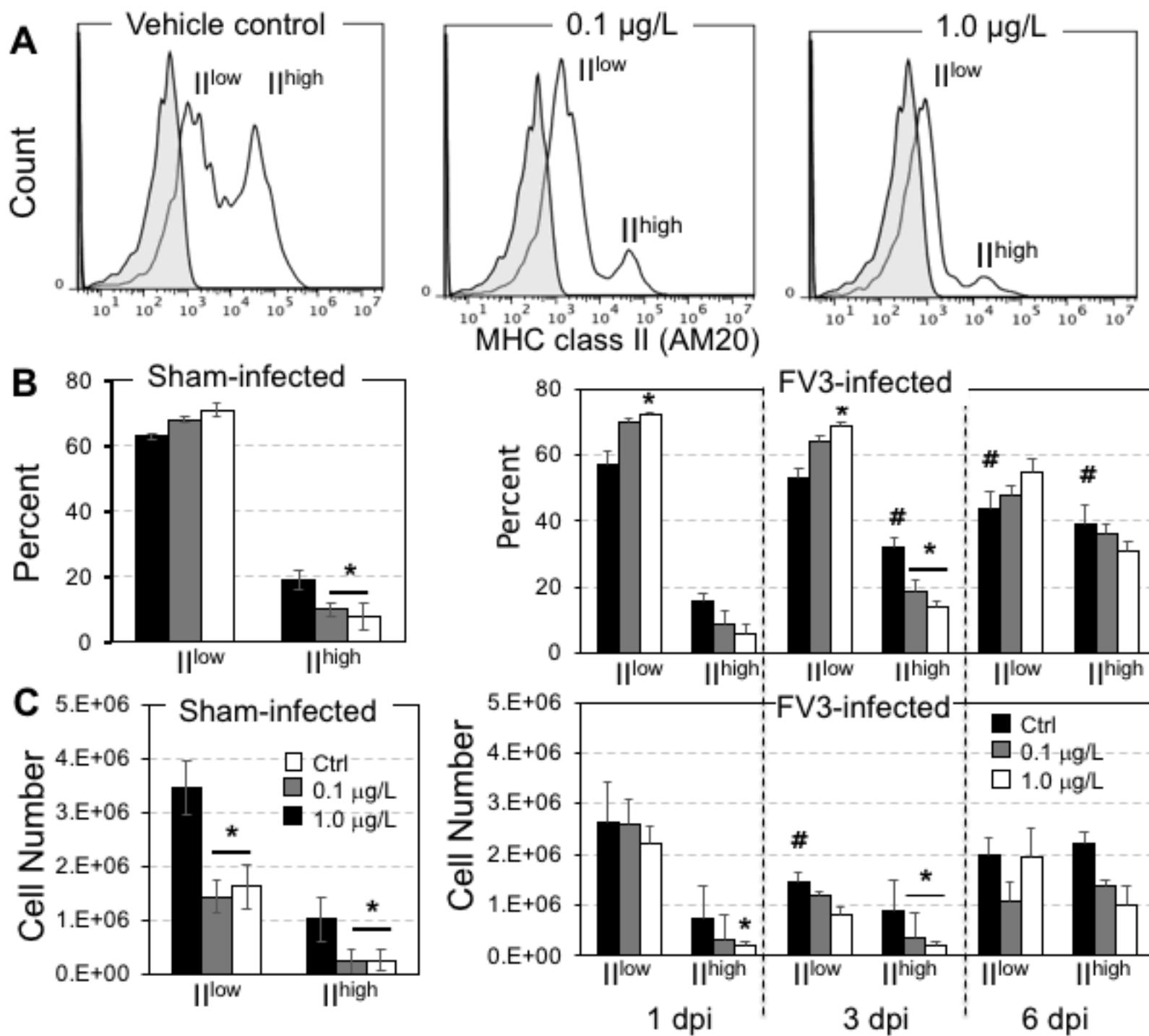


Type of file: figure

Label: 3

Filename: Slide03.tiff

Fig. 3

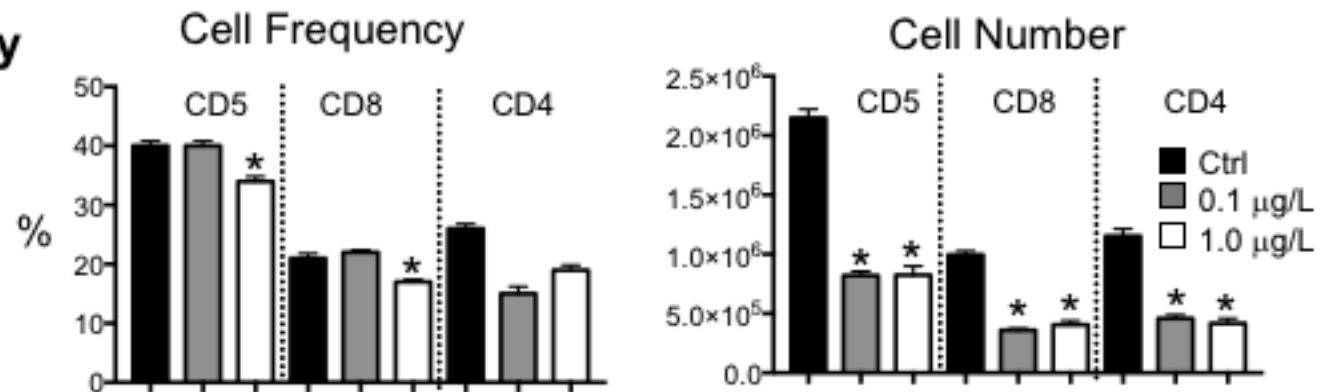
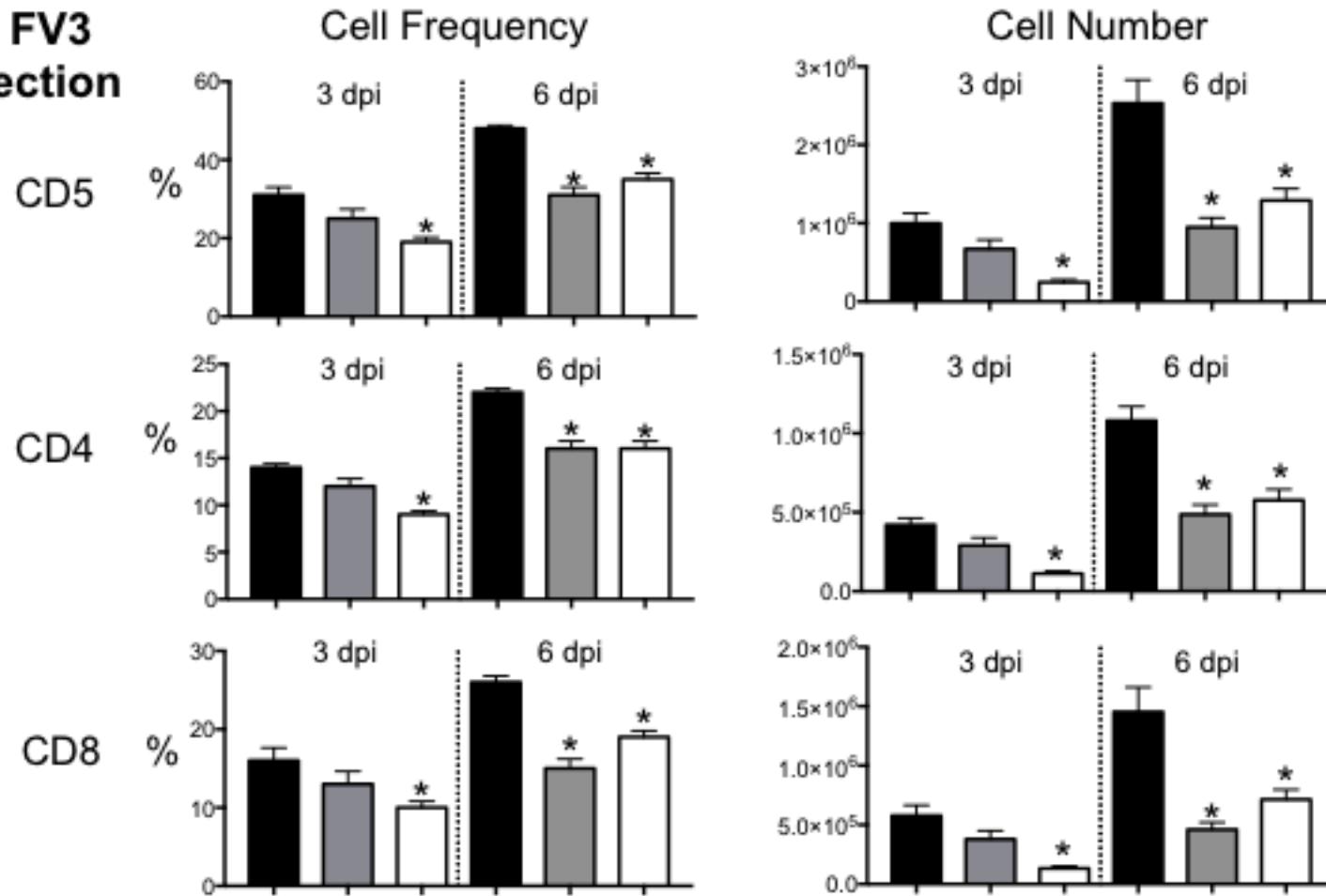


Type of file: figure

Label: 4

Filename: Slide04.tiff

Fig. 4

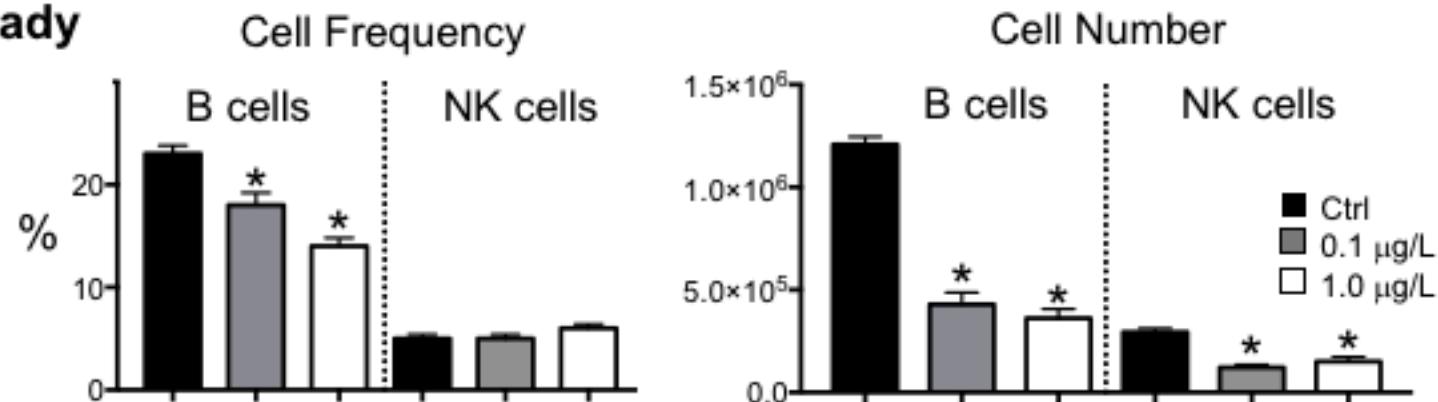
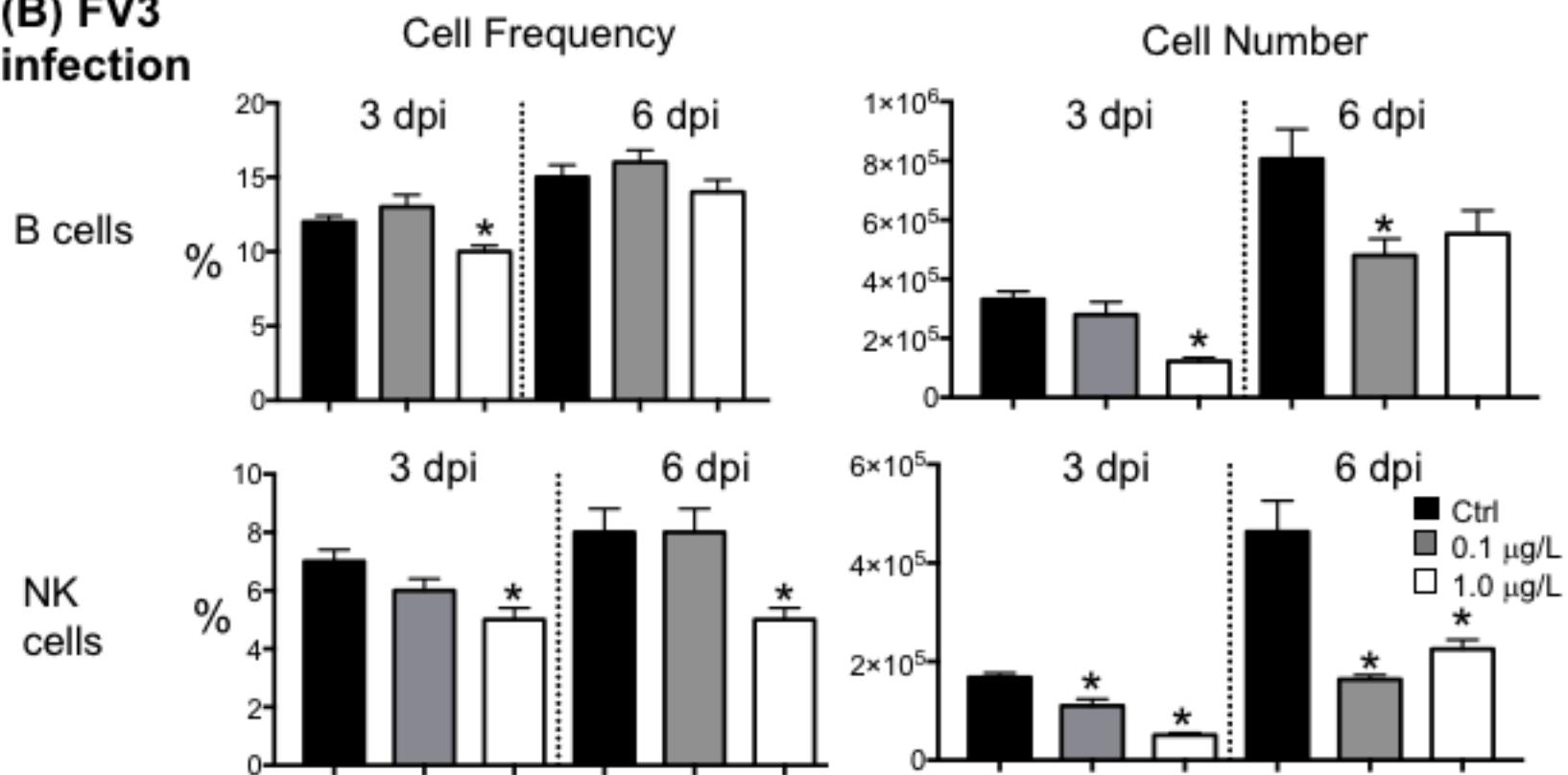



Type of file: figure

Label: 5

Filename: Slide05.tiff

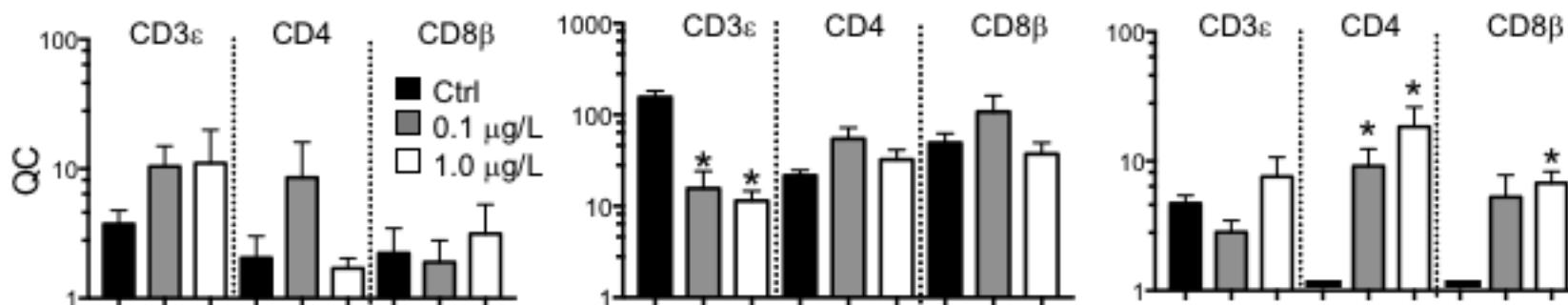
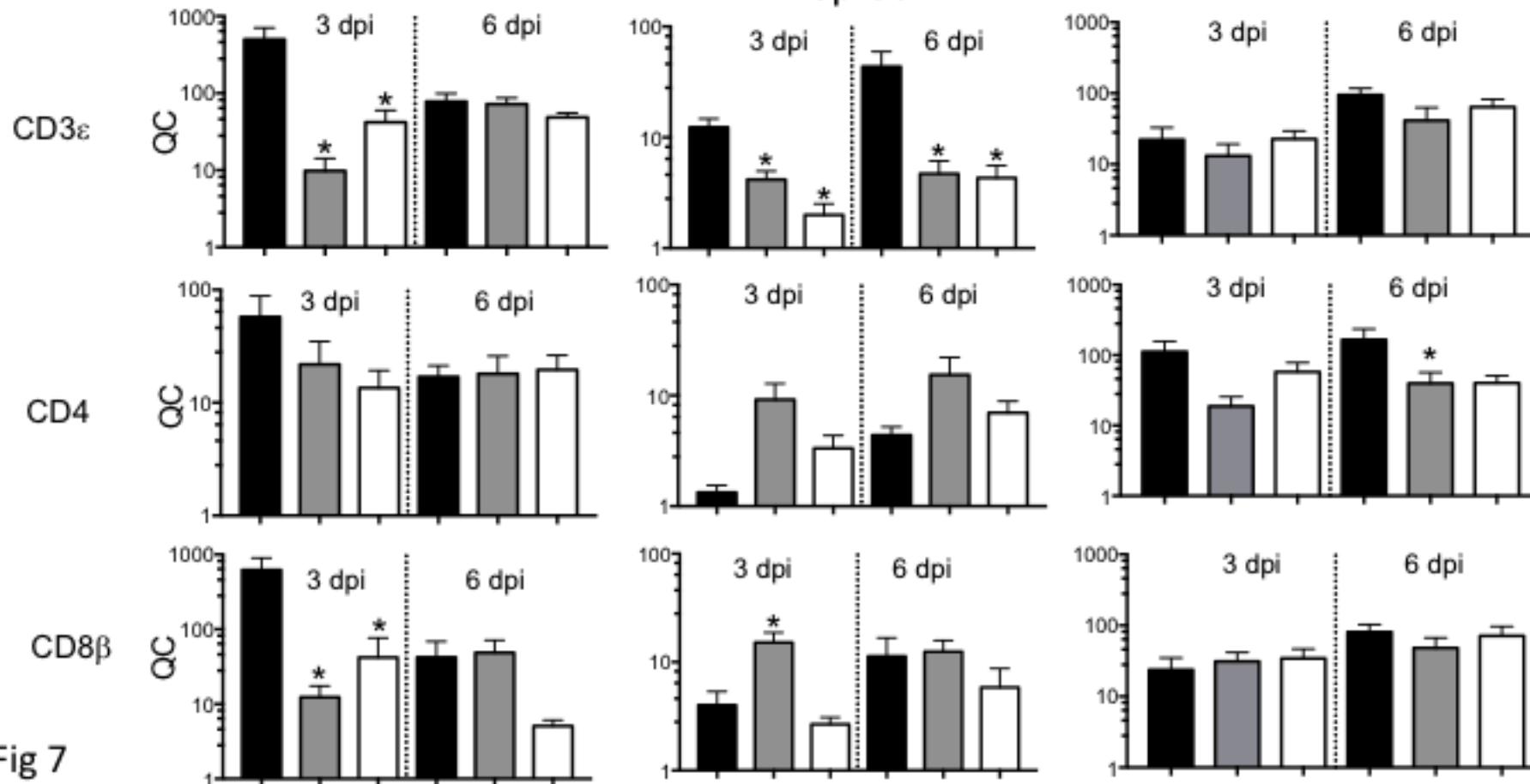
Fig. 5



(A) Steady State**(B) FV3 infection**

Type of file: figure

Label: 6

Filename: Slide06.tiff

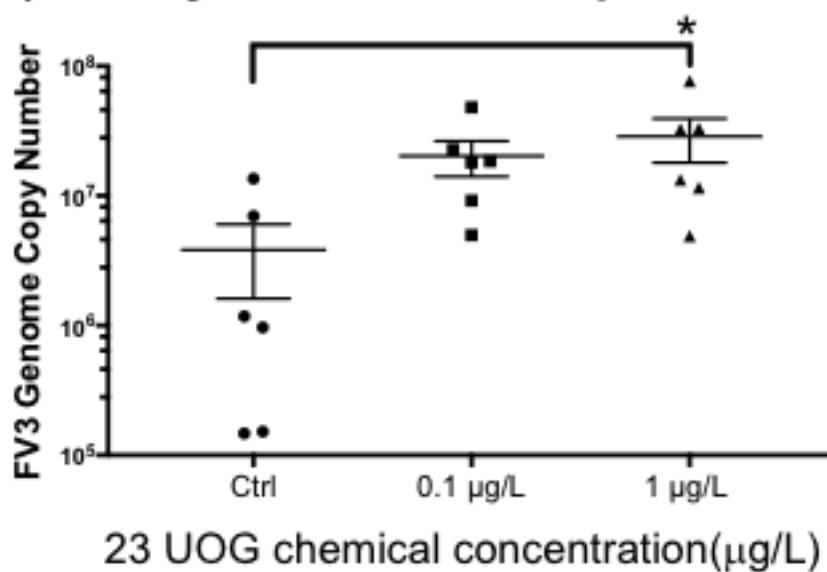
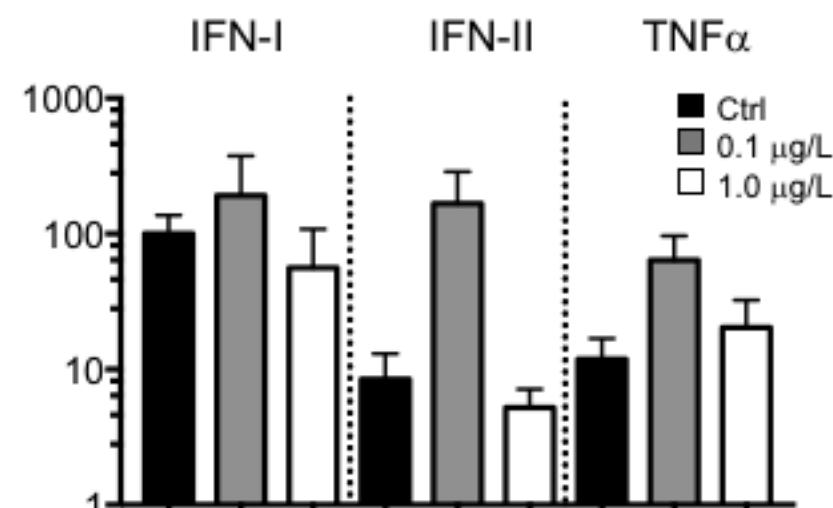
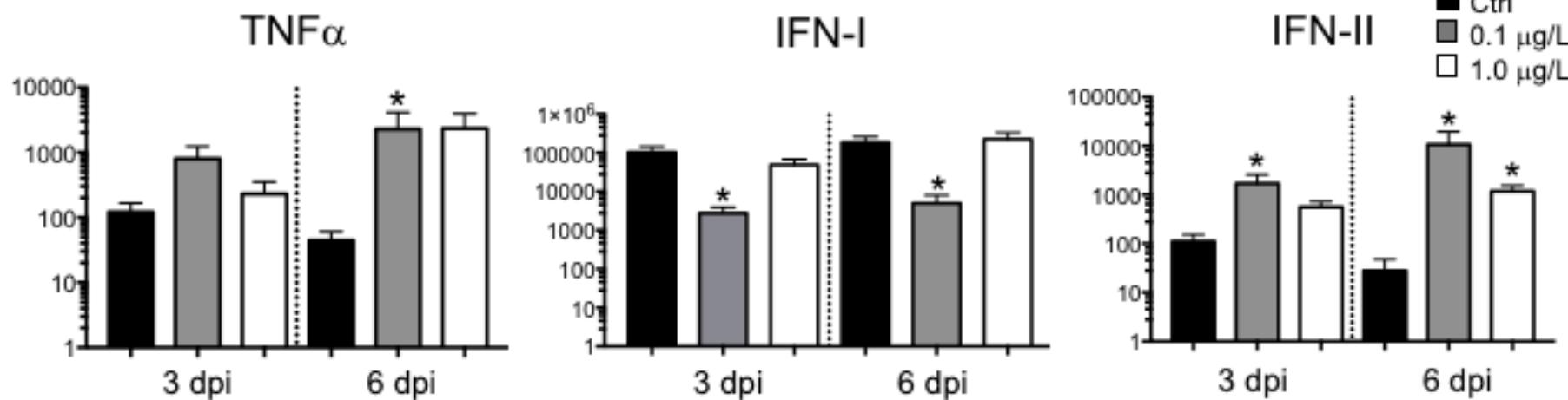


Fig 6

(A) Steady state**(B) FV3 infection**

Type of file: figure

Label: 7

Filename: Slide07.tiff




(A) Steady State**PLs****Spleen****Kidney****(B) FV3 infection****PLs****Spleen****Kidney****Fig 7**

Type of file: figure

Label: 8

Filename: Slide08.tiff

Fig 8

(A) Kidney Viral Load at 6 dpi**(B) Steady State****(C) FV3 infection**

Type of file: table

Label: 1

Filename: Table 1.doc

Table 1: Survival, body weight and median time to reach metamorphosis completion (stage 66) following UOG treatment.

Measurements	Treatment		
	Vehicle control	0.1 µg/L	1 µg/L
Number of animals	30	33	35
Number of dead animals after treatment	4 (13%)	4 (12%)	5 (14%)
Median time (wks.) to reach stage 66	25	19	16
Weight (mg)	478±25	401±22 p>0.04	357±18 p>0.0002

P value determined between vehicle control and UOG-treated animals using one-way ANOVA test and Tukey's post-hoc test (GraphPad Prism 6).

The NIHMS has received the file 'Supplementary material.doc' as supplementary data. The file will not appear in this PDF Receipt, but it will be linked to the web version of your manuscript.