1 2	Methane sources in the waters of Lake Michigan and Lake Superior as revealed by natural radiocarbon measurements
3	
4	DongJoo Joung [*] , Mihai Leonte, and John D. Kessler
5	
6 7	Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY USA
8	*Corresponding author: DongJoo Joung (dongjoo.joung@rochester.edu)
9	
10	Key Points: (140 characters for each sentence)
11 12	• The sources of methane dissolved in the waters of Lakes Michigan and Superior, components of the Great Lake system, were investigated.
13 14	• Natural radiocarbon measurements of methane indicate that the methane source in both lakes was largely from the atmosphere.
15 16	• In-situ aerobic methanogenesis, groundwater inputs, and nuclear power plants also appear to contribute to the methane source.
17	
18	

19 Abstract

The methane dynamics in the waters of Lakes Michigan and Superior, components of the 20 North American Great Lake system, were investigated using measurements of methane 21 concentration and natural radiocarbon (¹⁴C-CH₄) dissolved in these lake waters. All ¹⁴C-CH₄ 22 measurements were above modern levels regardless of location and depth with a range of 117-23 145 percent modern carbon (pMC). Methane concentrations in the deep basin of both lakes were 24 low, ranging from 3.3-4.3 nM, with minimal vertical variation. However, the concentrations of 25 CH₄ increased toward coastal areas in both lakes, possibly due to higher groundwater inputs and 26 aerobic methanogenesis associated with primary productivity. Except for one site, ¹⁴C-CH₄ 27 dissolved in the waters of Lake Michigan was greater than in Lake Superior by ~ 12 pMC, a 28 difference that was likely due to inputs of excess ¹⁴CH₄ from nuclear power plants along the 29 30 coast of Lake Michigan.

31 Plain Language Summary

Methane is a greenhouse gas whose concentration is increasing rapidly in the modern atmosphere, and freshwater lakes globally provide a significant source to the atmosphere. Here, we investigate the dynamics of methane dissolved in waters of the North American Great Lakes, one of the largest liquid freshwater environments on Earth. We found that methane dynamics in both Lakes Michigan and Superior are impacted by atmospheric input, in-situ aerobic methanogenesis, groundwater, and nuclear power plants, as well as rapid vertical mixing in the water column.

39

40 **1. Introduction**

Freshwater lakes are known to be a source of methane (CH₄) to the atmosphere, accounting for 6-16% of natural CH₄ emissions (Bastviken et al., 2004; Borrel et al., 2011). This contribution is substantially higher than oceanic emissions (Rhee et al., 2009), an interesting conclusion given the much smaller surface area of lakes globally (Downing et al., 2006). Lakes are also projected to provide a positive feedback to warming climate with projected increases in stratification (McCormick, 1990), as well as CH₄ production, accumulation, and emission to the atmosphere (Tranvik et al., 2009; Walter et al., 2006).

The North American Great Lake system is globally the largest liquid freshwater 48 environment by area, yet to date CH₄ and associated carbon dynamics across this system have 49 received disproportionately minimal attention compared to other freshwater lake environments 50 51 (Alin and Johnson, 2007). Townsend-Small et al. (2016) reported that Lake Erie is a net source of CH₄ to the atmosphere in late summer with both natural and anthropogenic sources combining 52 to release 1.3×10^8 g CH₄-C per day; assuming these emissions are constant over the entire year, 53 this extrapolates to 0.09% of the global CH₄ emissions from lakes $(54 \times 10^{12} \text{ g C/year}; \text{Bastviken})$ 54 et al. 2011). Including other Laurentian Great Lakes in this emission estimate may further 55 increase the known annual CH4 emissions from this system. 56

A variety of different CH₄ sources and sinks are known to influence emissions from freshwater lake environments. Conventional CH₄ production in lakes is viewed to occur in anoxic sediments through the anaerobic degradation of organic matter (Bartlett et al., 1988; Rudd and Hamilton, 1978), and diffusion from these sediments increases the CH₄ concentration dissolved in bottom waters (Wik et al., 2016). An additional source of CH₄ has more recently been documented where CH₄ is produced within the oxygenated water column as a byproduct of phosphorus regeneration in phosphorus-limited oligotrophic lakes (Yao et al., 2016; Grossart et

64	al., 2011; Bogard et al., 2014). Both inputs from sediments and in-situ production processes are
65	likely responsible for CH ₄ supersaturation in lake water columns (Blees et al., 2015; Tang et al.,
66	2014), leading to net CH ₄ emissions to the atmosphere. However, not all CH ₄ produced in
67	freshwater lakes is emitted to the atmosphere since biological oxidation is substantial in both
68	anaerobic and aerobic environments, removing 30-99% of CH4 produced in freshwater lakes
69	(Bastviken et al., 2008). Despite these known sources and sinks, the additional processes of
70	ebullition, diffusion, and storage in sediments and the water column, and flux through aquatic
71	vegetation, can influence precise regional and global estimates of atmospheric CH4 emissions
72	from freshwater lakes (Wik et al., 2016; Dean et al., 2018).
73	Measurements of the natural isotopic content of CH4 have been used to help constrain
74	CH4 sources and sinks. The stable carbon and hydrogen isotopic contents of CH4 are the most
75	widely used measurements, however, the interpretation of this stable isotopic data can be
76	complicated due to multiple sources containing similar isotopic values and isotopic
77	fractionations caused by both anaerobic and aerobic CH4 oxidation (Whiticar, 1999). The
78	combination of these isotopic effects can lead to variations in measured CH ₄ stable isotopic
79	values both regionally and temporally. Thus, the application and interpretation of stable isotopes
80	to determine CH ₄ dynamics is most informative when the endmembers of different sources and
81	the associated isotopic fractionation processes are known (e.g. Kessler and Reeburgh 2005;
82	Valentine et al. 2001; Leonte et al., 2017 and 2018). While measured less frequently, natural
83	radiocarbon measurements of CH ₄ (¹⁴ C-CH ₄) are uninfluenced by fractionation processes, such
84	as oxidation, since measured $^{14}\mathrm{C}$ isotopic values are conventionally normalized to $^{13}\mathrm{C}$ (Stuiver
85	and Polach, 1977). This measurement is particularly useful when trying to determine the source
86	of CH4 in an environment with both fossil (e.g. hydrocarbon seeps) and modern (e.g. aerobic

87	methanogenesis) endmembers (e.g. Kessler and Reeburgh, 2005; Kessler et al., 2005; Sparrow et
88	al., 2017). Fossil CH ₄ generally refers to a source of carbon that is older than approximately ten
89	¹⁴ C half-lives, leaving analytically undetectable quantities of ¹⁴ C, and is equivalent to 0 percent
90	Modern Carbon (pMC; Stuiver and Polach, 1977). In addition, atmospheric ¹⁴ C-CH ₄ levels are
91	currently supersaturated relative to natural $^{14}\mathrm{C}$ production with values of ~ 135 pMC due to the
92	addition of ¹⁴ CH ₄ from nuclear reactors (Eisma et al., 1995; Lassey et al., 2007; Townsend-small
93	et al., 2012; Sparrow et al., 2018). Thus, radiocarbon isotopic values, together with conventional
94	stable isotopes of CH ₄ , can precisely constrain the age of CH ₄ in aquatic environments and help
95	determine the source (e.g., Kessler and Reeburgh, 2005; Kessler et al., 2005, 2008; Sparrow and
96	Kessler, 2017; Sparrow et al., 2018).

97 In this study, we investigated the radio- and stable-carbon isotopic signatures, together 98 with the concentrations of CH₄ dissolved in the waters of Lakes Michigan and Superior to 99 constrain the dominant sources of CH₄ into the waters of these two Great Lakes. This study 100 provides critical information on CH₄ sources in these environments which can be used to help 101 extrapolate CH₄ emissions across this massive freshwater system.

102 2 Materials and Methods

103 2.1. Study Site

The North American Great Lake system is one of the largest freshwater bodies by total
 area and volume, containing about 21% of Earth's surface liquid freshwater

106 (https://www.epa.gov/greatlakes). Due to their massive size, the Great Lakes have sea-like

107 characteristics with waves, strong currents, and distant horizons, and as such, they have long

108 been referred to as inland seas. Geologically, the Great Lakes were formed at the end of the last

109 glacial period approximately 14,000 years ago as ice retreated and the basins filled with

meltwater (Larson and Schaetzl, 2001). Lake Superior is the largest by volume among the Great 110 Lakes with a water residence time of \sim 193 years (Quinn, 1992); it is an oligotrophic lake with 111 relatively low anthropogenic impact since most of the watersheds are forested with little 112 agriculture activities due to cool climate and poor soils (Dove and Chapar 2015). Lake Michigan 113 is the second-largest of the Great Lakes by volume and is connected to Lake Huron to the 114 115 northeast. The flushing time of water in Lake Michigan is about 60 years (Quinn, 1992). Although Lake Michigan hosts highly populated cities along the coast including Chicago, 116 Milwaukee, Green Bay, Gary, and Muskegon, the lake is classified as oligotrophic (Dove and 117 Chapra, 2015). Recently, the waters of Lake Michigan have been experiencing significant 118 changes in carbon dynamics as an invasive species, quagga mussels, consume primary 119 producers, leading to higher water clarity and increasing pCO₂ in the water column (Lin and 120 Guo, 2016). Groundwater inputs associated with Paleozoic bedrock are known to influence the 121 hydrology of Lake Michigan as areas of saline water bodies near the land surface of the Lower 122 Peninsula of Michigan (Lampe, 2009; Wahrer et al, 1996). 123

124 **2.2.** Determination of concentration and isotopic signature of methane

Sample collections were conducted in Lakes Michigan and Superior during June 14-20, 125 126 2017 using the research vessel R/V Blue Heron (Figure 1). In this sampling campaign, water samples were collected for CH₄ concentration and natural isotopic values (δ^{13} C-CH₄ and 14 C-127 CH₄) together with ancillary sensor measurements of temperature, specific conductivity, 128 129 dissolved oxygen (DO), and chlorophyll a. In addition to the surface water collections, water column profiles were also collected in two deep water sites (i.e., S13 in Lake Michigan and S31 130 131 in Lake Superior) to investigate CH₄ distributions in the water column. Detailed methods and 132 procedures for the determination of CH₄ concentrations and isotopic values can be found in

- Leonte et al (2017) and Sparrow and Kessler (2017), respectively. Briefly, discrete bottle
- 134 samples were collected for dissolved CH₄ concentration analysis in both the surface waters and
- 135 the vertical water column.

136

Figure 1 Map of sampling locations in Lakes Michigan and Superior. Green-rectangles represent sites where dissolved methane
 samples were collected for natural radiocarbon and stable isotope analyses. Red-dots indicate where discrete dissolved methane
 concentration samples were collected in surface waters.

140 The vessel's scientific surface water supply system was used to sample surface waters while

141 Niskin bottles connected to the rosette sampler were used for the water column collections. A

142	comparison of surface water samples collected using both the scientific surface water supply
143	system and the Niskin bottles showed insignificant differences. Immediately after the water
144	samples were collected, a 10 mL headspace of ultra-high purity air was injected via displacement
145	and 100 μ l of supersaturated HgCl ₂ solution were added as a preservative. The samples were
146	stored isothermally in an incubator at 4°C for at least 12 hours while dissolved gases came into
147	equilibrium with the headspace. Concentration of CH4 in the headspace was then determined on
148	the ship with an Agilent 6850 gas chromatograph with a flame ionization detector (GC-FID) and
149	was used along with the solubility of CH4 and the volumes of the headspace and water to
150	determine the initial dissolved concentration.
151	Samples for natural ¹⁴ C-CH ₄ dissolved in lake waters were also collected. Due to the low
152	concentration of CH ₄ dissolved in these waters (3.3-4.3 nM) and the typical sample size for an
153	analysis via Accelerator Mass Spectrometry (ca. 20 µmoles of C), CH4 needed to be extracted
154	from several thousand liters of lake water per sample. A previously published procedure was
155	employed to perform this task in an efficient manner (Sparrow and Kessler, 2017). In brief, a
156	high-performance discharge pump was used to pump water onto the vessel at a rate of
157	approximately 200 liters per minute and the water was sequentially filtered to remove particles
158	(100, 50, and 10 μ m) prior to flowing through two gas-permeable membranes (Liqui-Cel, 3M).
159	A vacuum was applied to the outside of the gas-permeable membrane, extracting the dissolved
160	gases, and the degassed water was continuously returned overboard. The extracted gas was then
161	compressed into a small 1.6 L gas cylinder and returned to the land-based laboratory for further
162	sample processing and analysis. To adequately flush all water and gas handling equipment and
163	collect sufficient quantities of CH4, up to 35,000 L of water were processed per sample. Deeper
164	waters, up to almost 300 m, were sampled for this analysis by connecting multiple hoses together

(each 10 m in length and 7.62 cm in diameter) and attaching them to the winch wire to reach the 165 desired depth. In the Kessler laboratory at the University of Rochester, the CH₄ in the gas sample 166 was purified and combusted into CO₂ and H₂O. This CO₂ was then stored in acid-cleaned and 167 pre-combusted Pyrex tubes prior to analysis for ¹⁴C-CH₄ and δ^{13} C-CH₄ via Accelerator Mass 168 Spectrometry (AMS) and Isotope Ratio Mass Spectrometry, respectively, at the Keck Carbon 169 170 Cycle AMS facility at UC Irvine. Lastly, multiple radiocarbon blank and standard analyses were also conducted showing minimal sample contamination and were used in the interpretation of the 171 results (Supplementary Figure 1). Full details of the procedures, including experimental 172 validations, can be found in Sparrow and Kessler (2017). 173

174 **3. Results and Discussion**

175 3.1. Natural Radiocarbon of CH₄ Dissolved in the Water Column

Natural radiocarbon values of CH₄ dissolved in both lake waters ranged from 117 to 145 176 pMC (Figure 2, and Supplementary Table 1). The average ¹⁴C-CH₄ values in Lake Michigan 177 were significantly greater than Lake Superior (ca. 142 ± 1.5 pMC, n= 5 vs. 132 ± 0.5 pMC, n=5), 178 except at site S14 in Lake Michigan (see below). Atmospheric values of ¹⁴C-CH₄ range from 179 135-136 pMC, values that are above the modern radiocarbon values for CO_2 in the atmosphere 180 181 (ca. 103 pMC) due to thermonuclear weapons and nuclear power generation (Figure 3; Eisma et al., 1995; Lassey et al., 2007; Sparrow et al., 2018; Townsend-small et al., 2012; Wahlen et al., 182 1989; Kessler et al., 2008). Thus, ¹⁴C-CH₄ in the surface waters of Lake Michigan are 183 184 considerably higher than the atmosphere, whereas values in Lake Superior appear closer to equilibrium with the modern atmosphere. Along the Lake Michigan coast are five active nuclear 185 power plants and an additional four are within 120 km from the coast (Supplementary Figure 2). 186

Thus, the higher ¹⁴C-CH₄ in Lake Michigan water is likely the influence of these nuclear power
plants and the subsequent introduction of power plant-derived CH₄ into the lake waters.

189

Figure 2 Vertical profiles of methane (a) radiocarbon (^{14}C -CH₄) and (b) stable ($\delta^{13}C$ -CH₄) isotope values in Lake Michigan and Superior. S13, S13.5 and S14 are in Lake Michigan, and S30 is in Lake Superior. The horizontal bars represent the depth of the water column

193

Unlike Lake Michigan, Lake Superior does not have active nuclear power plants along 194 the coast or in the watershed (Supplementary Figure 2), likely explaining the lower values of 195 ¹⁴C-CH₄ in this environment compared to Lake Michigan. Nonetheless, the water column ¹⁴C-196 CH₄ values are greater than the ¹⁴C contents of any other C pool in the water column (particulate 197 organic carbon, dissolved organic carbon, and dissolved inorganic carbon; avg. $\sim 104.3\pm3.5$ 198 pMC, n=63; Figure 3) (Zigah et al., 2011), suggesting that in-situ production via aerobic 199 methanogenesis has minimal influence on the dissolved CH_4 isotopic signatures. The similarity 200 of the ¹⁴C-CH₄ values between the contemporary atmosphere and dissolved in the waters of Lake 201 Superior instead suggest that the atmosphere is the dominant source of CH₄ to this environment. 202

While modern CH₄ in the surface waters of both lakes is less surprising due to direct 203 interaction with the atmosphere, elevated values of ¹⁴C-CH₄ at the bottom of the water column in 204 both lakes were somewhat unexpected (Figure 2). These results suggest that emissions of CH_4 205 from the lake floor into the water column, be those emissions of fossil or modern CH₄, are 206 negligible. More specifically, Silliman et al. (1996) and Meyers (2003) reported that the age of 207 organic matter in Great Lake sediments was widely distributed (e.g. sediment ${}^{14}C$ ages equal ~ 208 400 yrs at surficial 40 cm sediment in Lake Huron, and about 5700 yrs at 113-119 cm and > 209 20000 yrs at 763-769 cm in Lake Ontario's sediments). In addition, Zigah et al. (2011) reported 210 that water column particulate organic carbon (POC) in Lake Superior has modern ¹⁴C contents 211 $(102.5\pm2.0 \text{ pMC}, n=21)$, meaning that CH₄ generated after this POC is deposited on the lake 212 floor is not a significant source to the water column. One additional argument against the 213 sediments being significant sources of CH₄ to the bottom waters follows the study by Remsen et 214 al. (1989), which found a rapid depletion of CH_4 in the surface (~ 2 cm) sediments of Lake 215 Superior; this study concluded that the CH₄ depletion was due to oxidation under the oxic 216 conditions near the sediment-water interface. Similarly, since the dissolved oxygen concentration 217 we measured in bottom waters from both lakes is > 90% saturation (Supplementary Figure 3), 218 the sediment-water interface is likely oxic, diminishing the diffusive sedimentary fluxes. 219 However, we note that our measurements of ¹⁴C-CH₄ and dissolved oxygen investigated waters 220 221 approximately 5 m above the actual sediment-water interface, and thus, waters closer to the lake floor may display older ¹⁴C-CH₄ reflecting sedimentary diffusive fluxes. Overall, the observed 222 ¹⁴C-CH₄ throughout the water column suggests that the source of CH₄ in these lake waters is 223 largely the atmosphere, with influences from nuclear power plants in Lake Michigan, which is 224

then mixed vertically in the water column; and any influence from sediments into the deeper

227

Figure 3 Schematic diagrams representing ¹⁴C-CH₄ endmembers of nuclear powerplants, atmosphere, in-situ production, and
groundwater. The ¹⁴C-CH₄ values of Lake Michigan and Superior are also shown. a: Easemen et al. 1995, b: Townsend-small et
al., 2012; Lassey et al. 2007; Sparrow et al. 2018, c: Sparrow et al. 2018, d: Zigah et al. 2011; e: Aravena and Wassenaar, 1993,
and f: Zigah et al. 2011.

232

In Lake Michigan, surface water of S14 showed the lowest ¹⁴C-CH₄ (117 pMC), while 233 the other two sites in this lake displayed much higher values $(142.2\pm0.8 \text{ pMC}, n=2)$ (Figure 2). 234 The S14 station is the shallowest (~ 10 m) and closest (ca. 4 km) site to the coast and nuclear 235 power plants in our Lake Michigan sampling locations (Supplementary Figure 2), thus we 236 expected the opposite, that this site would display the highest ¹⁴C-CH₄. We suspect that this site 237 has an additional source of CH₄ that does not appear in the other sites. First, this suspicion is 238 supported by the δ^{13} C-CH₄ at the S14, which is about -6 ‰ lighter than the other sites (Figure 2). 239 Second, the concentration of CH₄ at this surface station was 20 nM, the highest among the 240 samples collected in Lake Michigan (Figure 2). Third, we suspect that the additional CH₄ source 241 is likely a combination of aerobic methanogenesis and groundwater discharge. Typically, 242

shallow sites in water bodies have higher CH₄ concentrations due to groundwater discharge 243 and/or higher rates of aerobic methanogenesis associated with higher rates of primary production 244 (Dulaiova et al., 2010; Lecher et al., 2016). Zigah et al (2011) reported that the ¹⁴C contents in 245 carbon pools from Lake Superior's water ranged from 102-106 pMC, thus, CH₄ produced 246 aerobically from this carbon could potentially diminish the higher ¹⁴C-CH₄ values seen 247 elsewhere in this lake. Chlorophyll concentrations were slightly higher in the southeastern side of 248 Lake Michigan near S14 relative to the central basin (Supplementary Figure 4), suggesting that 249 the aerobically produced CH₄ from the byproducts of primary production may contribute to this 250 ¹⁴C-CH₄ signal. Aravena and Wassenaar (1993) investigated C-isotopes in groundwater collected 251 from aquifer wells in southern Ontario, Canada, north of Lake Ontario, and reported that ¹⁴C-252 CH₄ ranged from 0.5 to 16.7 pMC (avg. 4.9±5.0, n=16). Additional groundwater measurements 253 in the Eastern Ontario aquifer ranged from 1.1 to 26.5 pMC, with an average of $\sim 11.2\pm8.6$ pMC, 254 n=20 (Lemieux et al., 2019). This suggests that groundwater discharge could lead to a significant 255 reduction in the dissolved ¹⁴C-CH₄ in the lake water when mixed with ambient water containing 256 elevated ¹⁴C-CH₄. In ground waters from the southern shore of Lake Michigan, specific 257 conductivity and pH were measured to be typically in the ranges of 165-852 μ S/cm and 5.7-8.0, 258 respectively (Shedlock et al., 1993). Our measurements show a higher specific conductivity and 259 lower pH in the region of S14 relative to the other surface waters in the more central lake 260 (Supplementary Figure 3 and 4), in agreement with potential groundwater contributions to these 261 262 areas. Finally, a report from the USGS also indicated that the development of surficial aquifers is greater in the eastern side of Lake Michigan relative to the west (see, Fig 26 in Olcott et al., 263 1992). Thus, the measurements of relatively older ¹⁴C-CH₄, higher specific conductivity, lower 264 265 pH, and higher chlorophyll in some sites along the eastern coast of Lake Michigan are likely

reflecting contributions from both active groundwater discharge and aerobic methanogenesis,

displaying important components of the coastal CH₄ system in the waters of Lake Michigan, and

268 possibly Lake Superior (e.g., Hofmann et al., 2010; Heilweil et al., 2015).

269 3.2. Concentration of CH₄ Dissolved in the Water Column

Along with radiocarbon analyses, CH₄ concentrations were also determined (Figure 4 and 270 271 Supplementary Table 2)). Surface CH₄ concentrations ranged from 3.5 to 60 nM (Figure 4a) in these two lakes. Concentrations in Lakes Michigan and Superior were much lower than that in 272 the neighboring lake, Lake Erie, where the concentrations ranged from 24.2 - 107.1 nM in the 273 surface (Townsend-Small et al., 2016). This stark difference in concentrations is likely 274 associated with active natural gas seeps, leaking natural gas pipelines, and the relatively shallow 275 water column in Lake Eire (Townsend-Small et al., 2016). While no acoustic investigations were 276 conducted to identify seep bubbles in Lakes Michigan and Superior (Sheikh et al., 2008), our 277 natural ¹⁴C-CH₄ measurements do not suggest that fossil seep CH₄ is a significant source to 278 either the deep or surface waters in these lakes. However, our data does not exclude the 279 possibility that some fossil CH₄ seeps may exist and have more localized influences on the CH₄ 280 dynamics. Nonetheless, in Lakes Michigan and Superior, CH₄ concentrations in surface water 281 282 from the deep basin of both lakes were 3.7 (at S13) and 4.3 (at S30) nM. These concentrations were approximately in equilibrium (or slight supersaturation) relative to the current (June 2017) 283 global average atmospheric concentrations of 1842.9 ppb (or 3.2 nmol/kg at 15°C and 4.2 284 nmol/kg at 4°C in Lake Michigan and Superior, respectively) 285 (https://www.esrl.noaa.gov/gmd/ccgg/trends ch4/). Production and supersaturation of CH₄ at the 286

surface layer may be associated with regeneration of phosphate from methyl-phosphonate, which

is typically observed in oligotrophic lake waters (e.g., Yao et al., 2016; Grossart et al., 2011; 288 Bogard et al., 2014). 289

While both Lakes Michigan and Superior have similarly low CH₄ concentrations in the 290 center of these lakes, we observed localized CH₄ enrichment along the coast of Lake Michigan, 291 reaching up to 60 nM (Figure 4). This distribution of increasing CH₄ concentration toward the 292 293 coast is common, since shallow sites would likely have more primary production and associated in-situ aerobic methanogenesis along with wave actions to enhance pore water exchange with the 294 water column (Borrel et al., 2011; Bastaviken et al., 2011, Hofmann et al., 2010; Heilweil et al., 295 2015; Dulaiova et al., 2010; Lecher et al., 2016). In both lakes, chlorophyll distributions were 296 generally higher toward to the coast (Supplementary Figure 4), and there are many active 297 groundwater discharge sites especially along the coast of Lake Michigan (Olcott et al., 1992), as 298 is suggested in our conductivity and pH distributions. 299

300

303

304	Vertical profiles of CH ₄ concentration in the deep sites in both lakes displayed similarly
305	low concentrations with a range of 3.0-4.5 nM (Figure 4). Though small, there appeared to be a
306	slight decrease in CH ₄ concentration from the surface towards the bottom, similar to the
307	observations in other lakes such as Lake Baikal, Russia (Schmid et al., 2007) and Lower Lake
308	Constance, Germany (see, Fig 2 in Hofmann, 2013), which is likely attributed to aerobic
309	oxidation. However, in our study, bottom water CH_4 concentrations (~ 3.0 nM in both lakes)
310	were slightly higher than the concentrations in bottom waters from the lakes mentioned above,
311	but close to the surface values, suggestive of rapid vertical mixing in both lakes. Overall, CH ₄
312	concentration distributions in Lakes Michigan and Superior are consistent with ¹⁴ C-CH ₄
313	distributions, indicating that atmospheric input, in-situ aerobic methanogenesis, groundwater,
314	and nuclear power plants are important sources of CH4 to the water column.

315 4 Conclusions

Radio- and stable-carbon isotopes and concentration of CH4 dissolved in the waters of 316 Lakes Michigan and Superior were determined to assess CH₄ sources to these environments. Key 317 results include (1) that CH₄ is not fossil and (2) that all measurements of ¹⁴C-CH₄ were above 318 modern, suggesting significant inputs from atmospheric CH₄ (Lakes Michigan and Superior) and 319 nuclear power plants (Lake Michigan). Interestingly, the site closest to a nuclear power plant 320 displayed the lowest value of ¹⁴C-CH₄, likely displaying the influence of groundwater discharge 321 and aerobic methanogenesis. Concentrations of CH4 in the central basin of both lakes were 322 similarly low, which is approximately in equilibrium with the atmosphere. However, CH₄ 323 concentrations in the coastal regions of both lakes were higher than the central basin, and likely 324 associated with in-situ aerobic methanogenesis and groundwater inputs. Overall, our study 325

- 326 provides fundamental information about CH₄ sources and ¹⁴C-CH₄ dynamics in the Great Lakes
- 327 of Lakes Michigan and Superior.

328 Acknowledgments, Samples, and Data

329 We thank to the crew of R/V Blue Heron for their outstanding support during this research. We also acknowledge 330 Katy Sparrow for the advice on the sample preparations and John Southon in the Keck Carbon Cycle AMS facility at UC Irvine for conducting the radiocarbon analysis. This research is funded by NSF grant OCE-331 1634871. Data use in this manuscript are available in supplementary material. References 332 333 Alin, S. R., & Johnson, T. C. (2007). Carbon cycling in large lakes of the world: A synthesis of production, burial, and lake-atmosphere exchange estimates. Global Biogeochemical 334 Cycles, 21(3). https://doi.org/10.1029/2006GB002881 335 336 Aravena, R., & Wassenaar, L. I. (1993). Dissolved organic carbon and methane in a regional confined aquifer, southern Ontario, Canada: Carbon isotope evidence for associated 337 subsurface sources. Applied Geochemistry, 8(5), 483-493. Bartlett, K. B., Crill, P. M., 338 Sebacher, D. I., Harriss, R. C., Wilson, J. O., & Melack, J. M. (1988). Methane flux from 339 the central Amazonian floodplain. Journal of Geophysical Research: 340 Atmospheres, 93(D2), 1571-1582. https://doi.org/10.1016/0883-2927(93)90077-T 341 Bastviken, D., Cole, J., Pace, M., & Tranvik, L. (2004). Methane emissions from lakes: 342 Dependence of lake characteristics, two regional assessments, and a global 343 estimate. Global biogeochemical cycles, 18(4). https://doi.org/10.1029/2004GB002238 344 Bastviken, D., Cole, J. J., Pace, M. L., & Van de Bogert, M. C. (2008). Fates of methane from 345 different lake habitats: Connecting whole-lake budgets and CH4 emissions. Journal of 346 Geophysical Research: Biogeosciences, 113(G2). https://doi.org/10.1029/2007JG000608 347 Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M., & Enrich-Prast, A. (2011). Freshwater 348 349 methane emissions offset the continental carbon sink. Science, 331(6013), 50-50. DOI: 10.1126/science.1196808 350 351 Blees, J., Niemann, H., Erne, M., Simona, M., & Lehmann, M. F. (2014, May). Surface water methane super-saturation and emission in Lake Lugano, southern Switzerland. In EGU 352 353 General Assembly Conference Abstracts (Vol. 16). Bogard, M. J., Del Giorgio, P. A., Boutet, L., Chaves, M. C. G., Prairie, Y. T., Merante, A., & 354 355 Derry, A. M. (2014). Oxic water column methanogenesis as a major component of aquatic CH 4 fluxes. Nature communications, 5, 5350. DOI: 10.1038/ncomms6350 356 357 Borrel, G., Jézéquel, D., Biderre-Petit, C., Morel-Desrosiers, N., Morel, J. P., Peyret, P., et al. (2011). Production and consumption of methane in freshwater lake ecosystems. Research 358 in microbiology, 162(9), 832-847. https://doi.org/10.1016/j.resmic.2011.06.004 359 Dean, J. F., Middelburg, J. J., Röckmann, T., Aerts, R., Blauw, L. G., Egger, M., et al. (2018). 360 Methane feedbacks to the global climate system in a warmer world. Reviews of 361 Geophysics. https://doi.org/10.1002/2017RG000559 362 Dove, A., & Chapra, S. C. (2015). Long-term trends of nutrients and trophic response variables 363 for the Great Lakes. Limnology and Oceanography, 60(2), 696-721. 364 https://doi.org/10.1002/lno.10055 365 Downing, J. A., Prairie, Y. T., Cole, J. J., Duarte, C. M., Tranvik, L. J., Striegl, R. G., et al. 366 (2006). The global abundance and size distribution of lakes, ponds, and 367

368	impoundments. Limnology and Oceanography, 51(5), 2388-2397.
369	https://doi.org/10.4319/10.2006.51.5.2388
370	Dulaiova, H., Camilli, R., Henderson, P. B., & Charette, M. A. (2010). Coupled radon, methane
371	and nitrate sensors for large-scale assessment of groundwater discharge and non-point
372	source pollution to coastal waters. Journal of Environmental Radioactivity, 101(7), 553-
373	563. https://doi.org/10.1016/j.jenvrad.2009.12.004
374	Eisma, R., Vermeulen, A.T. & Van Der Borg, K. (1995). ¹⁴ CH ₄ Emissions from Nuclear Power
375	Plants in Northwestern Europe. Radiocarbon, 37(2), pp.475-483. DOI:
376	10.1017/S0033822200030952
377	Grossart, H. P., Frindte, K., Dziallas, C., Eckert, W., & Tang, K. W. (2011). Microbial methane
378	production in oxygenated water column of an oligotrophic lake. <i>Proceedings of the</i>
379	National Academy of Sciences, 108(49), 19657-19661.
380	https://doi.org/10.1073/pnas.1110/16108
381	Heilweil, V. M., Grieve, P. L., Hynek, S. A., Brantley, S. L., Solomon, D. K., & Risser, D. W.
382	(2015). Stream measurements locate thermogenic methane fluxes in groundwater
383	discharge in an area of shale-gas development. Environmental science &
384	<i>technology</i> , 49(7), 4057-4065. DOI: 10.1021/es503882b
385	Hofmann, H., Federwisch, L., & Peeters, F. (2010). Wave-induced release of methane: Littoral
386	zones as source of methane in lakes. <i>Limnology and Oceanography</i> , 55(5), 1990-2000.
387	https://doi.org/10.4319/10.2010.55.5.1990
388	Hofmann, H. (2013). Spatiotemporal distribution patterns of dissolved methane in lakes: How
389	accurate are the current estimations of the diffusive flux path?. Geophysical Research
390	Letters, $40(11)$, $2/9-2/84$. https://doi.org/10.1002/gr1.50453
391	Kessler, J. D., & Reeburgh, W. S. (2005). Preparation of natural methane samples for stable
392	isotope and radiocarbon analysis. Limnology and Oceanography: Methods, 3(9), 408-
393	418. https://doi.org/10.4319/10m.2005.5.408
394	Kessler, J. D., Reeburgh, W. S., Southon, J., & Varela, R. (2005). Fossil methane source
395	dominates Cariaco Basin water column methane geochemistry. Geophysical Research
396	Letters, 32(12). https://doi.org/10.1029/2005GL022984
397	Kessler, J. D., Reeburgh, W. S., Valentine, D. L., Kinnaman, F. S., Peitzer, E. I., Brewer, P. G.
398	et al. (2008). A survey of methane isotope abundance $({}^{-1}C, {}^{-1}C, {}^{-1}H)$ from five hearshore
399	Coophysical Research, Oceana, 112(C12), https://doi.org/10.1020/2008IC004822
400	Geophysical Research: Oceans, 113(C12). https://doi.org/10.1029/2008JC004822
401	Lampe, D. C. (2009). Hydrogeologic framework of bedrock units and initial salinity distribution
402	Jor a simulation of groundwater flow for the Lake Michigan basin. US Department of the
403	Larson G. & Schootzl P. (2001). Origin and evolution of the Great Lakes. <i>Journal of Great</i>
404	Larson, G., & Schaetzi, R. (2001). Origin and evolution of the Great Lakes. Journal of Great Lakes Research, 27(4), 518,546, https://doi.org/10.1016/S0280.1220(01)70665 V
405	Lakes Research, $27(4)$, 518-540. https://doi.org/10.1010/S0580-1550(01)/0005-A
400	and the" fossil fraction" of the mothene source. Atmospheric Chemistry and Physics 7(8)
407	2141 2140 https://doi.org/10.5104/gop 7.2141.2007
400	Lecher A. I. Kessler I. Sparrow K. Garcia-Tigraros Kodovska F. Dimova N. Murrov I. et
409 410	al (2016) Methane transport through submarine groundwater discharge to the North
410	Pacific and Arctic Ocean at two Alaskan sites <i>Limnology and Oceanography</i> 61(S1)
412	Fractice and Arctice Ocean at two Alaskan sites. Limitology und Oceanography, $01(51)$, 5344 , 5355 , $\frac{1}{1002}$, $\frac{1002}{\ln 0}$, 1012
+ 1∠	5555. https://doi.org/10.1002/100110

413	Lemieux, A. J., Clark, I. D., & Hamilton, S. M. (2019). The origin of methane in an Eastern
414	Ontario aquifer. Nuclear Instruments and Methods in Physics Research Section B: Beam
415	Interactions with Materials and Atoms. https://doi.org/10.1016/j.nimb.2019.01.012
416	Leonte, M., Kessler, J. D., Kellermann, M. Y., Arrington, E. C., Valentine, D. L., & Sylva, S. P.
417	(2017). Rapid rates of aerobic methane oxidation at the feather edge of gas hydrate
418	stability in the waters of Hudson Canyon, US Atlantic Margin. Geochimica et
419	Cosmochimica Acta, 204, 375-387. https://doi.org/10.1016/j.gca.2017.01.009
420	Leonte, M., Wang, B., Socolofsky, S. A., Mau, S., Breier, J. A., & Kessler, J. D. (2018). Using
421	Carbon Isotope Fractionation to Constrain the Extent of Methane Dissolution Into the
422	Water Column Surrounding a Natural Hydrocarbon Gas Seep in the Northern Gulf of
423	Mexico. Geochemistry, Geophysics, Geosystems, 19(11), 4459-4475.
424	https://doi.org/10.1029/2018GC007705
425	Lin, P., & Guo, L. (2016). Do invasive quagga mussels alter CO 2 dynamics in the Laurentian
426	Great Lakes?. Scientific reports, 6, 39078. DOI: 10.1038/srep39078
427	McCormick, M. J. (1990). Potential changes in thermal structure and cycle of Lake Michigan
428	due to global warming. Transactions of the American Fisheries Society, 119(2), 183-194.
429	https://doi.org/10.1577/1548-8659(1990)119%3C0183:PCITSA%3E2.3.CO;2
430	Meyers, P. A. (2003). Applications of organic geochemistry to paleolimnological
431	reconstructions: a summary of examples from the Laurentian Great Lakes. Organic
432	geochemistry, 34(2), 261-289. https://doi.org/10.1016/S0146-6380(02)00168-7
433	Olcott, P. G. (1992). Ground Water Atlas of the United States: Segment 9, Iowa, Michigan,
434	Minnesota, Wisconsin (No. 730-J, pp. J1-J31). US Geological Survey.
435	https://doi.org/10.3133/ha730J
436	Quinn, F. H. (1992). Hydraulic residence times for the Laurentian Great Lakes. J. Great Lakes
437	Res, 18(1), 22-28. https://doi.org/10.1016/S0380-1330(92)71271-4
438	Remsen, C. C., Minnich, E. C., Stephens, R. S., Buchholz, L., & Lidstrom, M. E. (1989).
439	Methane oxidation in Lake Superior sediments. Journal of Great Lakes Research, 15(1),
440	141-146. https://doi.org/10.1016/S0380-1330(89)71468-4
441	Rhee, T. S., Kettle, A. J., & Andreae, M. O. (2009). Methane and nitrous oxide emissions from
442	the ocean: A reassessment using basin-wide observations in the Atlantic. Journal of
443	Geophysical Research: Atmospheres, 114(D12). https://doi.org/10.1029/2008JD011662
444	Rudd, J. W., & Hamilton, R. D. (1978). Methane cycling in a cutrophic shield lake and its effects
445	on whole lake metabolism 1. <i>Limnology and oceanography</i> , 23(2), 337-348.
446	https://doi.org/10.4319/lo.1978.23.2.0337
447	Schmid, M., De Batist, M., Granin, N. G., Kapitanov, V. A., McGinnis, D. F., Mizandrontsev, I.
448	B. et al. (2007). Sources and sinks of methane in Lake Baikal: A synthesis of
449	measurements and modeling. <i>Limnology and Oceanography</i> , 52(5), 1824-1837.
450	https://doi.org/10.4319/lo.2007.52.5.1824
451	Shedlock, R. J., Wilcox, D. A., Thompson, T. A., & Cohen, D. A. (1993). Interactions between
452	ground water and wetlands, southern shore of Lake Michigan, USA. Journal of
453	<i>Hydrology</i> , <i>141</i> (1-4), 127-155. https://doi.org/10.1016/0022-1694(93)90047-D
454	Sheikh, P. A.; Humphries, M.; Ramseur, J.L. & Vann, A Drilling in the Great Lakes:
455	Background and Issues, report, November 11, 2008; Washington D.C
456	(digital.library.unt.edu/ark:/67531/metadc462210/: accessed September 7, 2018)

457	Silliman, J. E., Meyers, P. A., & Bourbonniere, R. A. (1996). Record of postglacial organic
458	matter delivery and burial in sediments of Lake Ontario. Organic Geochemistry, 24(4),
459	463-472. https://doi.org/10.1016/0146-6380(96)00041-1
460	Sparrow, K. J., & Kessler, J. D. (2017). Efficient collection and preparation of methane from low
461	concentration waters for natural abundance radiocarbon analysis. <i>Limnology and</i>
462	Oceanography: Methods, 15(7), 601-617. https://doi.org/10.1002/lom3.10184
463	Sparrow, K. J., Kessler, J. D., Southon, J. R., Garcia-Tigreros, F., Schreiner, K. M., Ruppel, C.
464	D. et al. (2018). Limited contribution of ancient methane to surface waters of the US
465	Beaufort Sea shelf. Science advances, 4(1), eaao4842, DOI: 10.1126/sciadv.aao4842
466	Stuiver, M., & Polach, H. A. (1977). Discussion reporting of 14 C data. <i>Radiocarbon</i> , 19(3).
467	355-363. https://doi.org/10.1017/S0033822200003672
468	Tang, K. W., McGinnis, D. F., Frindte, K., Brüchert, V., & Grossart, H. P. (2014). Paradox
469	reconsidered: Methane oversaturation in well-oxygenated lake waters. Limnology and
470	Oceanography, 59(1), 275-284. https://doi.org/10.4319/lo.2014.59.1.0275
471	Townsend-Small, A., Disbennett, D., Fernandez, J. M., Ransohoff, R. W., Mackay, R., &
472	Bourbonniere, R. A. (2016). Quantifying emissions of methane derived from anaerobic
473	organic matter respiration and natural gas extraction in Lake Erie. Limnology and
474	Oceanography, 61(S1), S356-S366. https://doi.org/10.1002/lno.10273
475	Townsend-Small, A., Tyler, S. C., Pataki, D. E., Xu, X., & Christensen, L. E. (2012). Isotopic
476	measurements of atmospheric methane in Los Angeles, California, USA: Influence of
477	"fugitive" fossil fuel emissions. Journal of Geophysical Research:
478	Atmospheres, 117(D7). https://doi.org/10.1029/2011JD016826
479	Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R. G., Ballatore, T. J.et al.
480	(2009). Lakes and reservoirs as regulators of carbon cycling and climate. <i>Limnology and</i>
481	Oceanography, 54(6part2), 2298-2314. https://doi.org/10.4319/lo.2009.54.6_part_2.2298
482	Valentine, D. L., Blanton, D. C., Reeburgh, W. S., & Kastner, M. (2001). Water column methane
483	oxidation adjacent to an area of active hydrate dissociation, Eel River Basin. Geochimica
484	et Cosmochimica Acta, 65(16), 2633-2640. https://doi.org/10.1016/S0016-
485	7037(01)00625-1
486	Wahlen, M., Tanaka, N., Henry, R., Deck, B., Zeglen, J., Vogel, J. S. et al. (1989). Carbon-14 in
487	methane sources and in atmospheric methane: the contribution from fossil
488	carbon. Science, 245(4915), 286-290. DOI: 10.1126/science.245.4915.286
489	Wahrer, M. A., Long, D. T., & Lee, R. W. (1996). Selected geochemical characteristics of
490	ground water from the glaciofluvial aquifer in the central lower peninsula of
491	Michigan(No. 94-4017). US Geological Survey. https://doi.org/10.3133/wri944017
492	Walter, K. M., Zimov, S. A., Chanton, J. P., Verbyla, D., & Chapin Iii, F. S. (2006). Methane
493	bubbling from Siberian thaw lakes as a positive feedback to climate
494	warming. Nature, 443(7107), 71. https://doi.org/10.1038/nature05040
495	Whiticar, M. J. (1999). Carbon and hydrogen isotope systematics of bacterial formation and
496	oxidation of methane. Chemical Geology, 161(1-3), 291-314.
497	https://doi.org/10.1016/S0009-2541(99)00092-3
498	Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S., & Bastviken, D. (2016). Climate-
499	sensitive northern lakes and ponds are critical components of methane release. Nature
500	Geoscience, 9(2), 99. https://doi.org/10.1038/ngeo2578

- 501 Yao, M., Henny, C., & Maresca, J. A. (2016). Freshwater bacteria release methane as a
- byproduct of phosphorus acquisition. *Applied and environmental microbiology*, AEM 02399. https://doi.org/10.1128/AEM.02399-16
- Zigah, P. K., Minor, E. C., Werne, J. P., & McCallister, S. L. (2011). Radiocarbon and stable
 carbon isotopic insights into provenance and cycling of carbon in Lake
- 506 Superior. *Limnology and Oceanography*, *56*(3), 867-886.
- 507 https://doi.org/10.4319/lo.2011.56.3.0867

508