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Abstract— Many multiple target tracking algorithms operate
in the local frame of the sensor and have difficulty with track
reallocation when targets move in and out of the sensor field of
view. This poses a problem when an unmanned aerial vehicle
(UAV) is tracking multiple ground targets on a road network
larger than its field of view. We propose a Rao-Blackwellized
Particle Filter (RBPF) to maintain individual target tracks
and to perform probabilistic data association when the targets
are constrained to a road network. This is particularly useful
when a target leaves then re-enters the UAV’s field of view.
The RBPF is structured as a particle filter of particle filters.
The top level filter handles data association and each of its
particles maintains a bank of particle filters to handle target
tracking. The tracking particle filters incorporate both positive
and negative information when a measurement is received.
We then implement a receding horizon controller to improve
the filter certainty of multiple target locations. The controller
prioritizes searching for targets based on the entropy of each
target’s estimate.

I. INTRODUCTION

Multiple target tracking has a wide array of applications

ranging from air traffic control [1] to following shoppers in

a store [2]. Many approaches exist to track moving objects,

vehicles, pedestrians, etc. Algorithms of particular interest in-

clude Multiple Hypothesis Tracking (MHT) [3], Probability

Hypothesis Density (PHD) filters [4], Recursive RANSAC

(R-RANSAC) [5], and their variants. Most applications of

these algorithms constrain the area of interest to the field of

view of whatever sensor is employed. Targets that move out

of the field of view are usually forgotten and considered a

new target when seen again.

Other research, where the area of regard is larger than

the field of view of an agent’s sensor, sometimes pose the

situation as a search problem, as in [6] and [7]. It has been

shown that incorporating additional information, such as road

network information, improves the estimate of target state

[8]. Another powerful technique, employed by [6] and [9], is

to incorporate negative information. Traditional localization

would only update the target location belief if it were viewed.

However, if the target is nowhere to be seen within the

agent’s field of view, this still gives some information as

to where it could be.
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As an illustration, consider the case where a target could

be in one of two possible locations. Searching one will reveal

that the target is indeed there or must be at the other location.

This sort of negative information update proves valuable

when an agent can’t follow all of the targets all of the time.

We describe a method for incorporating road map infor-

mation as well as a negative update to track multiple vehicles

in an area larger than the agent’s field of view in the pres-

ence of clutter and missed detections. We demonstrate the

effectiveness of this approach despite the temporal sparsity

of positive target measurements.

The unmanned aerial vehicle (UAV) motion is driven

using a receding horizon controller utilizing the road network

constraint and the estimator, which provides probability

density information about where the target is expected to

be. Numerical simulations demonstrate that the controller

improves target estimate certainty compared to a random

search pattern.

The remainder of the paper is organized as follows:

Section II describes the method for tracking a single target.

Section III extends the estimator to multiple targets with

unknown data association. A receding horizon controller

leveraging the estimator output is presented in Section IV.

Results comparing the controller to a random search pattern

are presented in Section V. Finally, conclusions are presented

in Section VI.

II. TARGET TRACKING

First, consider the case of tracking a single vehicle con-

strained to a road network. The solution provides a building

block for the complete architecture of tracking multiple

vehicles with unknown data correspondence.

A. Particle Filter

The agent describes its belief of the target locations using

a particle filter (PF). Also known as Sequential Monte Carlo,

the PF is a nonparametric implementation of the Bayes

filter [10]. In contrast to a Kalman filter, the PF easily

describes multimodal distributions, and it cleanly handles

nonlinear motion and measurement models. These features

are especially helpful in this scenario, where a target vehicle

could be on any one of a number of roads after passing

through an intersection. Fig. 1 illustrates this scenario where

the agent has not seen the target for some time, and multiple

good hypotheses exist.

Let x denote the state of the target. We can encode our

initial belief of the target state as a probability density

2019 American Control Conference (ACC)
Philadelphia, PA, USA, July 10-12, 2019

978-1-5386-7926-5/$31.00 ©2019 AACC 3817





D. Measurement Model

When a vehicle enters the field of view F, it receives a

measurement based on the target’s 2D location,

yk = τk + ηk, (11)

where τk is the target’s true location at time step k and η ∼
N(0, σ2

τI) is two-dimensional Gaussian noise with standard

deviation στ and I is the identity matrix.

Sensor imperfection is modelled as a probability of false

alarm PFA, and the measurement likelihood model becomes a

mixture of a Gaussian distribution and a uniform distribution

p(yk | xi
k) = (1− PFA)
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where G(xi
k) maps a location in the graph to Cartesian space

and AR is the 2D area spanned by the road network.

Because only the area under the UAV is visible, it receives

measurements that are both temporally and spatially sparse

with regard to the enire area of interest.

E. Negative Update

The agent gathers useful information, even when all it can

see is empty roadway. It can at least know where the target

is less likely to be present. In actuality, the sensor is not

perfect, so the best the agent can determine is that there is

no target within F with probability

Pnull = 1− PFA. (13)

The negative measurement model is then a mixture of two

uniform distributions,

p(zk | xi
k) =

{

Pnull

AF

, G(xi
k) ∈ F

1−Pnull
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, Otherwise
(14)

where AF is the area of the agent’s field of view. When using

a camera fixed with respect to the UAV body frame, F and

consequently AF, become a function of the UAV altitude and

attitude.

III. DATA ASSOCIATION

Section II describes tracking a single target in the presence

of clutter and missed detections. Tracking multiple vehicles

poses its own set of challenges.

A. Known Data Correspondence

Extending this technique to multiple targets is simple if

sensor measurements could give perfect data correspondence.

That is, the sensor reports both the location and ID of the

target. We assume that each target’s motion is independent,

so the joint distribution can be factored as

p(X 1:M
k | y1:k) =

M
∏

j=1

p(X j
k | y1:k), (15)

where M is the number of targets to be tracked, and X j is

the set of particles estimating the location of the jth target.

The agent simply maintains a separate particle filter for

each target. As a positive measurement is received, it would

only be applied to the target that was seen. Negative mea-

surements would be applied to the entire bank of trackers.

Unfortunately, it can be very difficult to visually differen-

tiate two similar looking vehicles. Instead, we implement a

Rao-Blackwellized Particle Filter (RBPF) to handle the data

association, in a manner similar to [9] and [14].

B. Rao-Blackwellized Particle Filter

Let c1:k be the history of data associations; that is, ck =
j, says that the measurement at time step k corresponds to

target j, where j ∈ 1 . . .M and M is the number of targets.

If we let ck be a random variable, then the joint distribution,

given a certain measurement is

p(c1:k,X
1:M
k | y1:k) = p(c1:k | X 1:M

k , y1:k)

M
∏

j=1

p(X j
k | y1:k).

(16)

We can approximate the right-hand side of Eq. (16) using

a Rao-Blackwellized particle filter. In this filter, each particle

maintains its own joint target location distribution described

in Eq. (15), given a certain history of data associations.

Collectively, the particles approximate the distribution over

the history of correspondences.

Typically, the state is factored such that an optimal, closed

form filter is used to reduce the dimensionality of the

problem [15]. Common choices are the Kalman filter or the

Hidden Markov Model (HMM), like that used in [9]. We

found that we had sufficient computational power for each

particle to maintain a bank of PF trackers as described in

section II and therefore chose not to discretize the problem

to fit a HMM. The computational cost of this formulation

is O(HMN), where M and N are as defined above, and

H is the number of history particles. Our approach has an

additional benefit that with a continuous state space, the road

network of interest could be expanded without increasing

the number of discrete states or reducing the discretization

resolution, as would have been necessary with an HMM.

Additionally, we are not bound to a linear Gaussian model,

as with a Kalman filter.

C. Data Association Sampling

Assuming that targets are otherwise indistinguishable, data

association must be determined from the estimated state

of the targets. One approach is maximum likelihood (ML)

association, where the best fit is chosen,

ĉk = argmax
j

p(yk | ck = j, ĉ1:k−1,X
j
k , y1:k). (17)

We instead use Data Association Sampling (DAS) [11],

where data associations are sampled from a categorical

distribution according to their likelihoods,

pck=j ∝ p(yk | ck = j, ĉ1:k−1,X
j
k , y1:k). (18)
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