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Abstract— Many multiple target tracking algorithms operate
in the local frame of the sensor and have difficulty with track
reallocation when targets move in and out of the sensor field of
view. This poses a problem when an unmanned aerial vehicle
(UAV) is tracking multiple ground targets on a road network
larger than its field of view. We propose a Rao-Blackwellized
Particle Filter (RBPF) to maintain individual target tracks
and to perform probabilistic data association when the targets
are constrained to a road network. This is particularly useful
when a target leaves then re-enters the UAV’s field of view.
The RBPF is structured as a particle filter of particle filters.
The top level filter handles data association and each of its
particles maintains a bank of particle filters to handle target
tracking. The tracking particle filters incorporate both positive
and negative information when a measurement is received.
We then implement a receding horizon controller to improve
the filter certainty of multiple target locations. The controller
prioritizes searching for targets based on the entropy of each
target’s estimate.

I. INTRODUCTION

Multiple target tracking has a wide array of applications
ranging from air traffic control [1] to following shoppers in
a store [2]. Many approaches exist to track moving objects,
vehicles, pedestrians, etc. Algorithms of particular interest in-
clude Multiple Hypothesis Tracking (MHT) [3], Probability
Hypothesis Density (PHD) filters [4], Recursive RANSAC
(R-RANSAC) [5], and their variants. Most applications of
these algorithms constrain the area of interest to the field of
view of whatever sensor is employed. Targets that move out
of the field of view are usually forgotten and considered a
new target when seen again.

Other research, where the area of regard is larger than
the field of view of an agent’s sensor, sometimes pose the
situation as a search problem, as in [6] and [7]. It has been
shown that incorporating additional information, such as road
network information, improves the estimate of target state
[8]. Another powerful technique, employed by [6] and [9], is
to incorporate negative information. Traditional localization
would only update the target location belief if it were viewed.
However, if the target is nowhere to be seen within the
agent’s field of view, this still gives some information as
to where it could be.
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As an illustration, consider the case where a target could
be in one of two possible locations. Searching one will reveal
that the target is indeed there or must be at the other location.
This sort of negative information update proves valuable
when an agent can’t follow all of the targets all of the time.

We describe a method for incorporating road map infor-
mation as well as a negative update to track multiple vehicles
in an area larger than the agent’s field of view in the pres-
ence of clutter and missed detections. We demonstrate the
effectiveness of this approach despite the temporal sparsity
of positive target measurements.

The unmanned aerial vehicle (UAV) motion is driven
using a receding horizon controller utilizing the road network
constraint and the estimator, which provides probability
density information about where the target is expected to
be. Numerical simulations demonstrate that the controller
improves target estimate certainty compared to a random
search pattern.

The remainder of the paper is organized as follows:
Section II describes the method for tracking a single target.
Section III extends the estimator to multiple targets with
unknown data association. A receding horizon controller
leveraging the estimator output is presented in Section IV.
Results comparing the controller to a random search pattern
are presented in Section V. Finally, conclusions are presented
in Section VL.

II. TARGET TRACKING

First, consider the case of tracking a single vehicle con-
strained to a road network. The solution provides a building
block for the complete architecture of tracking multiple
vehicles with unknown data correspondence.

A. Particle Filter

The agent describes its belief of the target locations using
a particle filter (PF). Also known as Sequential Monte Carlo,
the PF is a nonparametric implementation of the Bayes
filter [10]. In contrast to a Kalman filter, the PF easily
describes multimodal distributions, and it cleanly handles
nonlinear motion and measurement models. These features
are especially helpful in this scenario, where a target vehicle
could be on any one of a number of roads after passing
through an intersection. Fig. 1 illustrates this scenario where
the agent has not seen the target for some time, and multiple
good hypotheses exist.

Let x denote the state of the target. We can encode our
initial belief of the target state as a probability density
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Fig. 1. The particle filter is able to maintain a finite number of hypotheses,
even after the vehicle has traveled some distance since being seen. Particles
are plotted as transparent dots to indicate density. The blue diamond shows
true target position, the star shows the agent position, and the dashed circle
delineates the agent’s field of view F.

function (pdf) and draw our initial set of particles X{ from
this distribution,

Xo ~ p(o)- M

Each particle is denoted as z, where the superscript i
denotes the ith of N particles at time k. The set of particles
at time k is denoted as Xy, = {z} |i =1... N}. We chose a
uniform distribution for p(x(), implying no prior knowledge
about where the target may initially be in the search area.

Prediction is performed by sampling from the proposal
distribution,

zp, ~ plae | 7)) )

When a measurement yj is received, each particle can
be assigned an importance factor as the ratio of the target
distribution to the proposal distribution,

wi, = p(.ik | yur) 3)
p(@}, | Y1:e—1)
By applying Bayes’ rule to the numerator and factoring, we
see that the importance factor, or weight, is proportional
to the likelihood of the measurement, given the particle’s
current state,

wp, o p(yk | },)- 4)

With the added constraint that all weights must sum to 1,
the proportionality is sufficient to calculate each particle’s
weight.

At this point, the particles can be resampled with proba-
bility proportional to their weights, and their weights reset
to the initial value py = %

We employ two techniques to better fit the posterior
distribution p(z | y1. ). First is the low variance resampling
technique described in [11]. While resampling is necessary
it can remove good particles and lead to particle deprivation.
Low variance resampling helps mitigate this issue.

Another technique is to resample only as often as is
beneficial, known as selective resampling [12]. The idea
behind selective resampling is that if the particles were
sampled from the true posterior, they would all have equal
importance. The deviation from the true posterior can then

be estimated by calculating the number of effective particles,
a metric introduced by [13]:

1

>t (w)?
This provides a way to determine when resampling is nec-
essary. For example, the particles could be resampled when
Neyy drops below the threshold 25

In order to calculate this metric, a particle must keep track
of its importance factor through each measurement update
until resampling occurs, simply

Nepyp = 5)

wi, = nwi,_1p(yk | ), (6)

where 7 is a normalizing factor.
In practice, these two techniques greatly reduce the chance
that good particles are lost during resampling.

B. Road Constraint

Any time a target is outside the agent’s field of view
F, its state can only be estimated predictively. If the target
could move unconstrained on the ground plane, the estimate
would quickly disperse and become unusable. Constraining
the target to a road network allows the agent to accurately
predict the possible places the target could go, even when it
hasn’t been seen for some time (see Fig. 1).

We model this road network constraint as a directed graph,

G=(N,€) (7)

where edges £ are road segments, and nodes A are inter-
sections or corners with known Cartesian coordinates.

Each particle maintains which edge e it is on and how far
along the edge it has traveled s:

zt = (e, s%), e €&, s'eR. (8

The spatial representation of the graph can be used to convert
between a location on an edge and a real-world location.
Even though the target is moving in 2D Cartesian space, the

particles can still represent its location while propagating one
dimensionally along the graph.

C. Motion Model

The dynamic model of the target motion defines the
proposal distribution shown in Eq. (2). While virtually any
dynamic model works with this architecture, this paper uses
a constant velocity model with random perturbations. The
particle’s position s’ is propagated along the road as

§" = veig + v, 9)

where v,i( is some nominal velocity for the road segment ¢,
(e.g., 15 m/s) and v ~ N(0,02) is additive Gaussian white
noise with standard deviation o,,.

When a particle reaches an intersection (i.e., the end of an
edge), in other words, if

st > et (10)

then e’ is randomly assigned with equal probability one of
the edges leaving that node, excluding the edge that returns
to the previous node (i.e., no U-turns).
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D. Measurement Model

When a vehicle enters the field of view F, it receives a

measurement based on the target’s 2D location,
(1D

where 7y, is the target’s true location at time step k and n ~
N(0,021I) is two-dimensional Gaussian noise with standard
deviation o, and [ is the identity matrix.

Sensor imperfection is modelled as a probability of false
alarm Pra, and the measurement likelihood model becomes a
mixture of a Gaussian distribution and a uniform distribution

Y = Tk + Mk,

i 1 1 i 2
o) = (1= Pos) 5o (=56t — )
Pra
—_— 12
o (12)

where G(z%) maps a location in the graph to Cartesian space
and Ag is the 2D area spanned by the road network.

Because only the area under the UAV is visible, it receives
measurements that are both temporally and spatially sparse
with regard to the enire area of interest.

E. Negative Update

The agent gathers useful information, even when all it can
see is empty roadway. It can at least know where the target
is less likely to be present. In actuality, the sensor is not
perfect, so the best the agent can determine is that there is
no target within F with probability

P =1 — Fpa. (13)

The negative measurement model is then a mixture of two
uniform distributions,

, Lo G(xi) €eF
pak | 3) = { . §

. (14)
-, Otherwise
v

Py
where Ay is the area of the agent’s field of view. When using
a camera fixed with respect to the UAV body frame, ' and
consequently A, become a function of the UAV altitude and
attitude.

ITII. DATA ASSOCIATION

Section II describes tracking a single target in the presence
of clutter and missed detections. Tracking multiple vehicles
poses its own set of challenges.

A. Known Data Correspondence

Extending this technique to multiple targets is simple if
sensor measurements could give perfect data correspondence.
That is, the sensor reports both the location and ID of the
target. We assume that each target’s motion is independent,
so the joint distribution can be factored as

M .
)= 1T o).

where M is the number of targets to be tracked, and X7 is
the set of particles estimating the location of the jth target.

(XM | yr (15)

The agent simply maintains a separate particle filter for
each target. As a positive measurement is received, it would
only be applied to the target that was seen. Negative mea-
surements would be applied to the entire bank of trackers.

Unfortunately, it can be very difficult to visually differen-
tiate two similar looking vehicles. Instead, we implement a
Rao-Blackwellized Particle Filter (RBPF) to handle the data
association, in a manner similar to [9] and [14].

B. Rao-Blackwellized Particle Filter

Let cq.; be the history of data associations; that is, ¢, =
7, says that the measurement at time step k corresponds to
target j, where j € 1... M and M is the number of targets.
If we let ¢, be a random variable, then the joint distribution,
given a certain measurement is

M
pler XM [ yrn) = plerw | X yn) H X0 | yir)

(16)

We can approximate the right-hand side of Eq. (16) using
a Rao-Blackwellized particle filter. In this filter, each particle
maintains its own joint target location distribution described
in Eq. (15), given a certain history of data associations.
Collectively, the particles approximate the distribution over
the history of correspondences.

Typically, the state is factored such that an optimal, closed
form filter is used to reduce the dimensionality of the
problem [15]. Common choices are the Kalman filter or the
Hidden Markov Model (HMM), like that used in [9]. We
found that we had sufficient computational power for each
particle to maintain a bank of PF trackers as described in
section II and therefore chose not to discretize the problem
to fit a HMM. The computational cost of this formulation
is O(HMN), where M and N are as defined above, and
H is the number of history particles. Our approach has an
additional benefit that with a continuous state space, the road
network of interest could be expanded without increasing
the number of discrete states or reducing the discretization
resolution, as would have been necessary with an HMM.
Additionally, we are not bound to a linear Gaussian model,
as with a Kalman filter.

C. Data Association Sampling

Assuming that targets are otherwise indistinguishable, data
association must be determined from the estimated state
of the targets. One approach is maximum likelihood (ML)
association, where the best fit is chosen,

¢ = argmax p(yk | ek = j, Gru—1, X}, p1). (17

J
We instead use Data Association Sampling (DAS) [11],
where data associations are sampled from a categorical
distribution according to their likelihoods,

Per=i < P(Yk | ck = 7y Crp—1, XL, y1:5)- (18)
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This can be approximated by summing the measurement
likelihood over all particles for a given target and nomalizing:

Per=j =0y plyk | #"), (19)

i=1
where Eq. (12) is used as the summand. This approach can
better retain multiple data association histories that have
similar likelihood until they can be discriminated using later
measurements.

The RBPF allows the agent to properly associate measure-
ments of targets, even when they leave and re-enter its field
of view. However, these estimation techniques alone are not
sufficient to maintain a good estimate of where all the targets
are at any given time. The information from the estimator
must be used to feed a path planning algorithm. The next
section describes our approach to tracking and following
multiple targets.

IV. PREDICTIVE PATH PLANNING

When tracking multiple targets, the agent should not
simply find and follow one of them. It must spend time
keeping an eye on each target. We propose a path planning
algorithm to maximize the information gained on all targets
as the UAV flies above the road network. Djiktra’s algorithm
provides a good path planning framework, which works in
scalable environments by accounting for particle movement
over time.

A. Dijkstra’s Algorithm

Dijkstra’s algorithm finds the shortest path between two
locations in a graph [16]. The algorithm works by building
a spanning tree of the road network, from which an agent is
then able to identify the shortest path to any desired location.
This paper uses a modified version to search instead for the
path of desired length that will maximize the information
gained during flight. A naive approach to this is to take the
number of particles on an edge and divide by the length of

the edge:
M N

- PRI

=11i=1

(20)

where § denotes the Dirac delta function.

Using this method presents a severe vulnerability. In the
event of a large disparity between the entropy of the targets
the agent will prioritize following the target with the lowest
entropy to the detriment of all other targets. This can be seen
in Fig. 2. In this scenario all the particles for the blue target
are located on one edge giving it a higher priority over the
green target whose particles are distributed evenly across the
road network.

The above scenario can be avoided by implementing target
weighting based on the entropy of a target estimate. The
entropy [17] of a discrete random variable is given by

W = 3" Pla] |yl log Pel |4y QD)
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Fig. 2. Using the naive value function in Eq. (20), the agent exclusively
tracks a single target because of the closely packed particles of that target.
Ideally the agent should weight the target with higher entropy more heavily.
Particles are plotted as transparent dots to indicate density. The diamonds
shows true target positions, the star shows the agent position, and the dashed
circle delineates the agent’s field of view F. One target is represented in
blue while the other is green.

Target weighting is defined by normalizing the target en-
tropies and applying a sigmoid function to add a nonlinear
gain as:

) 7
v = = (23)

1+ e—k(pi—0.5)

where k is a gain defining how strongly target weights get
pushed apart by small differences in entropy. Targets with
higher entropy are given higher weights.

Weighting the targets based on their entropy allows the
agent to prioritize tracking targets with high entropy without
allowing the entropy of other targets to grow unchecked. The
weighted edge value can then be expressed as:

1 N
|— Z ; Seivi e

(24)

In Fig. 3 the agent is pursuing the blue target as it
has a greater weight than the green target. Without target
weighting, the agent would return to track the green target
allowing knowledge of the blue target to dissipate entirely.
With target weighting the agent attempts to maintain a
maximum equal certainty across all targets. This strategy can
be extended by forward predicting the PFs to the time the
agent will be traversing each edge.

B. Dynamic Lookahead

Using a static lookahead is acceptable when the speed of
the targets is negligible compared to the speed of the agent.
Otherwise, particle movement should be accounted for in
path planning. Using receding horizon control and particle
motion prediction, the agent can plan a more beneficial
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Fig. 3. Using edge values weighted by target entropy, the agent prioritizes
the blue particles over the green since the entropy of blue is larger than that
of green.

path. At each intersection, the agent performs a number
of lookahead steps, described in Algorithm 1, in order to
generate a path.

In each lookahead step, a branch is created for each edge
leaving the current node. The edge value, Eq. (24), is added
to that branch, and the particles on that edge are destroyed
for that branch. All remaining particles are then propagated
forward the amount of time it takes the agent to traverse that
edge. This process repeats for each lookahead step until the
maximum number of lookaheads are performed. The branch
with the highest value is chosen as the current path. The
agent traverses the first edge of the path and then recalculates
a new path.

The computational cost of this algorithm is O(M Nd%),
where M is the number of targets, N is the number of
particles per target, d is maximum number of edges leaving
a node, and L is the number of lookahead steps. This
path planning technique shows improvement in simulation
over using unweighted edge values, Eq. (20). Both methods
outperform a random path planner.

V. SIMULATION RESULTS

In this section, the simulation uses the 3x3 road network in
Fig. 4 with two targets, each travelling at a nominal 10 m/s.
The agent flies at 40 m/s. In the top level of the estimator, 10
particles estimate data association histories. Each tracking PF
has 500 particles, with one tracking filter per target per top
level particle (total 20 tracking filters). The target weighting
sigmoid in Eq. (23) uses gain k£ = 10.

Fig. 5 shows how the combined entropy of the estimator
evolves as the agent tries to find and follow both targets.
In region A, the agent has not found either target. The
plot shows some decline in entropy as negative updates are
applied and areas are ruled out. Region B shows the time
after the first target has been found and priority switches
to finding the second target. In region C, the agent tries

Algorithm 1 PerformLookahead(n, &, Vs, )
1: if Max Lookahead Reached then
2:  return [],V;
3: end if
4: Pbsst <~ H
5 Vpest + —1
6: for e leaving n do
7. Ve« Vi+ Ve {Eq. 24}

8: En — 0

9: forec& do

10: if e # ¢ then

11 X < copy(x € €)

12: te %

13: X <« predict(X, t.)

14: En « Particles, X, assigned to their respective
edges

15: end if

16:  end for

17:  n. < destination of €

18: P,V = PerformLookahead(n., &, V,l + 1)
19:  if V > Ve then

20: Prepend € to P
21: Pyest — P

22: Viest <V

23:  end if

24: end for

25: return Pbest; Vbest
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Fig. 4. Simulation of tracking two targets on a 3x3 city block map. Here

the agent is drawn toward the blue target because its estimate has higher
entropy.
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VI. CONCLUSIONS

By employing a Rao-Blackwellized Particle Filter, we
have shown that data association can be performed effec-
tively, even when the target leaves and re-enters the sensor’s
field of view. Further, we have shown that a receding horizon
controller significantly improves tracking performance and
target location certainty versus a naive search pattern.

The current work could be extended by employing a
more advanced motion model, such as that of [8]. Another
limitation is the assumed known number of targets. The
above DAS could be extended to estimate the number of
targets similar to the technique used in [11] for estimating
the number of landmarks in SLAM.

0 50 100 150

Time (s)

200 250 300

Fig. 5. Entropy while simulating the tracking of two targets on a 3x3 city
block map. In region A, the agent is searching for targets. In region B, the
agent has located the first target and is looking for the second. In region C,
the agent is trying to minimize entropy across both targets.
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Fig. 6. Monte Carlo simulation of entropy vs. simulation time over 1000
runs. The agent is able to maintain a more certain (lower entropy) estimate
of where both targets are at any given time using the path planning algorithm
described in Section IV (blue) compared to using unweighted edge values
(orange, dot-dashed) a random search pattern (yellow, dashed). Initially, the
UAV has no knowledge about the location of either target. The area to the
left of the dashed line shows the period where the agent is mostly searching
and the area to the right shows the period where the agent is mostly tracking
targets.

to balance time between following each target to minimize
total entropy. Rapid increases in entropy result when targets
reach an intersection and hypotheses split. Steep declines in
entropy result from positive measurements of the target and
negative measurements ruling out hypotheses.

The simulation was run 1000 times using the controller
from Section IV and the entropy averaged over all the runs.
This was compared to the same controller without weighted
targets and an agent that follows a random path. On average,
the random agent only has an estimate of where one target is
at a time. Unweighted tracking shows marked improvement.
Our solution using entropy based weights outperforms both.
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