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Direct Relative Edge Optimization, A Robust
Alternative for Pose Graph Optimization

James Jackson

Abstract—Pose graph optimization is a common problem in
robotics and associated fields. Most commonly, pose graph opti-
mization is performed by finding the set of pose estimates which
are the most likely for a given set of measurements. In some
situations, arbitrarily large errors in pose graph initialization
are unavoidable and can cause these pose-based methods to diverge
or fail especially in cases where global inputs become available
after some time after initialization. This letter details the param-
eterization of the classic pose graph problem in a relative context,
optimizing directly over relative edge constraints between vertices
in the pose graph and not on the poses themselves. Unlike previous
literature on relative optimization, this letter details relative opti-
mization over an entire pose graph, instead of a subset of edges,
resulting in greater robustness to arbitrarily large errors than the
classic pose-based or prior relative edge-based methods. Several
small-scale simulation comparison studies, along with single and
multi-agent hardware experiments, are presented. Results point to
relative edge optimization as a strong candidate for solving real-
world pose graph optimization problems that contain large heading
propagation or initialization errors.

Index Terms—SLAM, mapping, multi-robot systems.

I. INTRODUCTION

POSE graph is a data structure that encodes relative trans-
form constraints between arbitrary poses of one or mul-
tiple agents. The nodes of a pose graph represent the pose
of each node and the edges represent the relative transforma-
tions between nodes, both sequentially and non-sequentially [1].
When using nonlinear optimization techniques to determine
the maximum-likelihood configuration of the pose graph,
constraints can render the problem as over-constrained.
In the robotics community, pose graphs are commonly used to
solve the full simultaneous localization and mapping (SLAM)
problem. The construction of pose graphs to solve the SLAM
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Fig. 1. Comparison of typical errors in global poses (left) vs individual edge
constraints (right) given a trajectory with heading error.

problem is well researched and has been demonstrated exten-
sively. Some notable examples include [1]-[4]. In these appli-
cations, pose graph optimization is used to obtain a maximum
likelihood estimate for all the poses in the map. Different
techniques have been proposed to improve the performance
and robustness of pose graph optimization including graph re-
duction [5], [6], relaxation [7] incremental-pose parameteriza-
tion [8]-[10] and relative parameterization [11]-[13].

One drawback of global-pose optimization is a strong depen-
dence on the quality of the initialization point for the graph,
and there are several instances when large initialization errors
may arise. For example, small heading errors in a trajectory
compounded over time can cause large errors in the initial pose
estimates [9], [14]. This phenomenon is illustrated in Figure 1.
Large initialization errors also result when an agent is initialized
without global information but later gains global information
during operation. In this case all initial pose estimates can be
arbitrarily far from their true position. Finally, in multi-agent
problems, the initial alignment of each agent’s trajectory is un-
known and can be arbitrarily far from truth. Kim et al. [15]
proposed a method to mitigate this initial error between multi-
ple agents, but requires additional complexity to handle edges
between the graphs.

Graph initialization is an active area of research and there
are several prominent solutions that have been proposed
[15]-[21]. Of particular note, [20] and [21] have shown the
guaranteed optimization of pose graphs even given large initial-
ization errors. These approaches restructure the cost function of
a pose graph optimization problem into a globally convex form
with constraints on the involved variables and use semi-definite
programming techniques to guarantee the optimal solution.

In this letter, we discuss the benefits of optimizing directly
over edge constraints, or relative edge optimization (REO),
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as opposed to the more popular global pose optimization
(GPO) and we extend previously described relative approaches
[11]-[13] to allow optimization over all edges in pose graph
and eliminate the map tears that occur from optimizing over a
local subset. We also show that posing the problem in a relative
context side-steps the above mentioned initialization problems
and keeps the problem well-conditioned even in the worst of
these situations due to its more linear representation.

Performing pose graph optimization over all degrees of free-
dom of the agent and over all measurements can be computa-
tionally prohibitive over long distances with high sensor update
rates. In cases where an IMU is available, the roll and pitch of
an agent become locally observable so to reduce computational
requirements sometimes only the locally-unobservable states
are estimated using loop closures or global information in an
optimization problem over SE2 x R [22]-[24]. This optimiza-
tion also often occurs on a reduced form of marginalized state
and measurement information [22]—[24] to further reduce com-
putational requirements. While the work we present here is de-
signed to be applied in such a situation, it could also be applied
to other SLAM problems, such as those in SE'3.

The following sections first derive relative edge optimization
and describe how to perform relative batch optimization over
all edges in a cyclic graph. Comparisons between REO and
GPO are then performed and discussed with the use of a simple
simulation study. Finally, results from a hardware experiment
with multirotor agents are shown and discussed.

II. DERIVATION

Pose graph optimization is often formulated as a least-squares
optimization problem and this formulation can be derived using
a classical least-squares optimization approach [25] or from a
Bayesian perspective in a factor graph [26]. If the noise about
graph edges is assumed to be Gaussian, both derivations ul-
timately lead to the following expression for the global cost
function of the optimization given in [1]

F(2,2) =% Q'R0+ Y (% —%) ' (& - %)
ieN

+> Y (20— Zii) Q) (2570 —2i:)
i jeS;
()

where z;,; is the edge connecting nodes 7 and j, calculated

as x; Bx;; [-], [-] are the estimated and measured quantities,
respectively; S; is the set of nodes, x;, connected to node x;; N
is the set of all nodes in the graph and (2 is the covariance, or
weighting assigned to the respective measurements. Note that if
x; € S;, then x; ¢ S, else a 1/2 weighting on z;,; would be
required to avoid double counting edge constraints.
The problem is then to find the optimal set of poses

X" =argmin F (X,X,%,7) . 2)
To solve Eq. (2) in a global context the pose graph is initial-
ized by first defining an initial global pose estimate for each

1933

oSS

Fig. 2. Divergent behavior observed in global pose optimization of a multi-
rotor flight around a baseball diamond due to poor initialization. Green lines
indicate the original trajectory, magenta dots and lines indicate GPS measure-
ments and their associated poses. The blue lines indicate the initial trajectory
before optimization on the left and post-optimization on the right.

vertex X; then determining the estimated edges z;,; and then
optimizing using an appropriate method. In general, this is done
using some variety of Gauss—Newton or Levenberg—Marquardt
optimization. Significant work has been done in reducing the
complexity of this problem [1], [6], [10] so that it can be per-
formed in real time under realistic computational constraints.

Optimizing over X in Eq. (2) inherently casts the optimiza-
tion problem into a privileged coordinate frame. While this is
often appropriate, when only relative information is available
the initial global pose estimates can be arbitrarily far from their
true position. If these systems then encounter global inputs,
or are operating in a multi-agent environment with unknown
intial configuration and encounter constraints between agents,
the initial error can cause the Newton method to converge to
a local minimum because of linearization error in pose-based
Jacobians.

Figure 2 demonstrates this phenomenon in an exaggerated
example. The figure shows results of global-pose optimization
on a hardware experiment where a multirotor agent was first
given only relative odometry measurements but later receives
several delayed GPS inputs. Because no global information was
initially available to the system, the agent was initialized with
zero heading, although its true heading was approximately 180
degrees. The initial heading error induced large initial errors
in global pose and the combination of poor linearization and
strong GPS measurement constraints caused the optimization
to converge to an incorrect local minima. While this example
is exaggerated and there are methods intended to account for
this [15]-[19], it illustrates the poor linearization characteristics
of global poses, susceptibility to local minima, and a general
lack of robustness when operating with sparse globally defined
inputs.

Generally speaking, these situations can be difficult to detect
and recover from, and are best avoided all together through
either better a priori information, or more robust approaches
such as the one suggested in this letter.

A. Derivation of Relative Edge Optimization

If one assumes the system only has measurements of trans-
forms between nodes (i.e. z;,; = x; Hx;) with covariance
€2;/;, and that edges are only considered once, then Eq. (1)

Authorized licensed use limited to: Brigham Young University. Downloaded on February 20,2020 at 20:29:08 UTC from IEEE Xplore. Restrictions apply.



1934

83(Z,x0) Hg4(z,%0)

84(z,%0)

Fig. 3. Subtracting two concatenation functions removes any common edges
between the two paths, resulting in a simple loop. The blue path is the result of
subtracting the green path from the red path and does not contain the common
edge zy /q.

reduces to the weighted sum of edge constraints and can be

rewritten as
SN (% 8%) 7))

F(%x,7) =
i jES;
Q].‘/li (%, B%)—2,)

S B -z g - @

i jES;

To further generalize the above case, pose-based portions of
Eq. (1), (X; — )‘q)TQ;1 (X; — X;), can be rewritten as relative
constraints [5], [24], [27]. This makes the simplification in
Eq. (3) quite reasonable. Further, if we reparameterize our state
in terms of the estimated relative transform between nodes,
zj,; = X; HX;, as opposed to estimating the nodes themselves,
Eq. (3) can be expressed as

Faa) =33 I@i-zilo, - @
i jes, o
Theorem 2.1: Given a pose graph that can be expressed
purely in terms of full relative constraints (not including partial
constraints such as range or bearing), the poses reconstructed
from the relative optima arrived at by minimizing Eq. (4) start-
ing at the initial node position x, are identical to the global
optima arrived at by minimizing Eq. (3).
Proof: Let us assume that our estimated poses are at the
optimal value, X = X* = arg ming F'(X,z) and define a com-
pounding function

% =g, (2 € Eg,xq) 5)

that compounds some subset of edges E; in the appropriate
manner from an arbitrary origin (assume x, without loss of
generality) up to the node x;. This is illustrated with the green
arrow in Figure 3 where the position of x4 is computed using
the function g§ with E;, = (z; /0,%4/1). For non-trivial graphs,
there could be multiple selections of E;, that could construct g¥,
and these paths can be combined to generate the equation

% = GM (2,%0)

1 '
— > g/ (2.x0) 6)

E,cM
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where M is a set of possible edges that begin at x, and terminate
at x; with cardinality m = |M|. At the optimum we have that
gF(z*,%0) = % VEy, (i.e. every possible edge sequence results
in the optimal X solution when evaluated at z*). Therefore,
GM (2*,xq) will also have the same optimal solution for %;
regardless of which edge paths are used.

If we re-write Eq. (3) using Eq. (6) we get an expression for
our global optimization function in terms of only the relative
constraints and the initial pose

F (i,Xm Z) —=
M (s M [ -
> (@ zx)BEY (x0) = 2y0) [l
i jeS;
If we assume that we have optimized Eq. (7) with respect to
edges (i.e. z = 2* = argmin,, (F(2,x0,z)) then
oF
= —0
0z '
which implies that
oF 0%
0% 0z
and because 9% /0z # 0, this implies that
or

0%

:0’

0.

|

The above proof shows that the cost functions Eq. (7) and
Eq. (1) share the same minima, regardless of parameterizing
with respect to pose or edges. This fact also allows for leeway
in the selection of which paths, E;, are selected. The only re-
quirement is that all edges in the graph are included, or else
one cannot fully reconstruct Eq. (7). In practice, the choice of
which edges are used could have a significant effect on the re-
sulting Jacobians used in optimization. The choice of edges will
therefore affect optimization performance, however the impact
of this choice appears to be small compared to the nonlinear-
ities induced by large errors in a pose-based optimization and
regardless of loops/paths chosen, the global minima will remain
unchanged.

In practice, actually solving Eq. (7) for arbitrary edge paths is
not straightforward, especially if loops are present. Other rela-
tive approaches to loop closure [11], [12], use a sliding window,
or an active set of edges that do not traverse the full loop. The
advantage to these approaches is that the algorithms run in con-
stant time, even at loop closure (because only a limited set of
nodes in the loop are considered). However, these approaches
result in map tears at the boundary of the active set of nodes that
lead to global map inconsistency. If we instead construct M in
such a way that E;, forms non-trivial loops that includes z; /;
for the evaluation of G}/ and G}’ then we can rewrite Eq. (7)
as a sum over loops rather than individual edge constraints and
optimize each loop independently. This is possible because any
common edges involved in the pose reconstruction of G and
Gé” are subtracted out in Eq. (7), and only a simple loop remains
(see Figure 3). Because some edges may be traversed by more
than one loop, edges must be weighted within a loop inversely
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Fig. 4.

A pose graph, composed of two simply-connected loops that share a single edge. We model the graph as the sum of a subset of simply-connected loops.

Two ways to segment this graph are shown here for reference, but there is a third perfectly valid configuration which is not shown.

proportional to the total number of loops in the optimization
which traverse that edge. This ultimately leads to the final form
of the cost function for relative edge optimization given as

-y Y.

LeM /,Leﬁ

F(z,%0,2)

7/z - Zj/iHsz_;}i ) (®)

where M is the set of loops that must fully span the set of edges,
L is a single loop and n;; is the number of times the edge z;
appears in M. The process of segmenting the graph into simple
loops is illustrated in Figure 4. The graph is split into two simply-
connected loops that share some common edges. The sectioning
of the graph is arbitrary, and two potential options are shown in
the figure.

Starting at Eq. (8), we can re-construct Eq. (7) by select-
ing any subset of loops that contain every x; and rewriting
edge estimates in terms of the compounding functions G (i.e.
z;;; = GY HGM). If we expand this and regroup on nodes
X;, we arrive back to Eq. (7), which we know is equivalent to
Eq. (3).

The cost function in Eq. (8) provides the user with signifi-
cant flexibility and can make the optimization tractable. If all
loops are considered, the optimization can become computa-
tionally expensive. However, users can select a subset of loops
for edge-based optimization that maintains the global minima,
and is also likely to provide good structure, accurate Jacobians,
and tractable computational loads to the optimization algorithm.
While this this letter does not address selection of desired loops
specifically, it will be demonstrated in Sec. III that even for an
arbitrary selection of loops the edge-based optimization applied
to Eq. (8) shows a dramatic increase in robustness when com-
pared to pose-based optimization of Eq. (7). We now discuss the
optimization of Eq. (8).

B. Solving REO

We wish to find the optimal update Az* to our initial edge
estimate 2. Letting ij/yz = h(2;/;, Az) where h properly con-
siders the way that Az maps into the edge update, we see

F(z'2) =} Z 2 =B,
LeM i jEE il
= Z Z Hh J/“AZ> _Z.i/iHQ;/l[,' ©)
LEA[Z]Eﬁ

If we take the derivative of Eq. (9) with respect to Az and set it
to zero, we can solve for the optimal edge update Az*.

Defining and evaluating H = 0h/0z. is non-trivial because
there is no straightforward way to find the interactions be-
tween edges h(z;/;, Az) in the loop. Previously published ap-
proaches to REO [11]-[13] side-step this issue by optimizing a
local subset of edges during a loop closure. However, as noted
in [11]-[13], this often results in a globally inconsistent map.
In contrast, we address these interdependent constraints by first
reparameterizing our cost function into the sum of loops. We
approximate h(z;,;, Az) by modeling each loop as an indepen-
dent loop closure with a series of odometry edges and a single
loop closure edge. The odometry edges and their associated
perturbations are concatenated normally and all error is lumped
into the loop closure edge resulting in the following segmented
definition for h:

hodom (
hLC (Z

Az) =
Az)

Zj/i, zj); + Azjy;

(zb/i + AZl)/i) s (Z(:/b + AZ(z/b)
‘B (2. +Az):)

Finding an approximation of H;; is now possible, even in non-
trivial spaces for all edges in the graph, enabling a globally
consistent solution. For example, in SE(2), H ;’7?“‘ = [, and an

IR

example algorithm for calculating /- is given in Algorithm 1.
This algorithm could be modified to accommodate other systems
such as SE3

The distinction between loop closure and odometry edges in
a simple loop is somewhat arbitrary. In our implementation we
have chosen the loop closure edge as the most recently acquired
measurement in the loop. This is an area of future study because,
as mentioned before, the choice of this edge likely influences
optimization performance.

III. RESULTS COMPARING POSE AND EDGE-BASED
OPTIMIZATION

Several simulation studies and a hardware experiment were
performed to illustrate some of the similarities and differences
of global pose and edge-based optimization. The first study
illustrates the equivalence between REO and GPO in well-
conditioned problems and the second study demonstrates the
improved robustness of REO compared to GPO in the presence
of noisy edge measurements. The third study illustrates the ro-
bustness of REO to gross initial heading error, where GPO often
fails completely. Finally, the hardware experiment demonstrates
that the algorithm works on real-world data collected by an au-
tonomous system and is well-suited for multi-agent scenarios.

Authorized licensed use limited to: Brigham Young University. Downloaded on February 20,2020 at 20:29:08 UTC from IEEE Xplore. Restrictions apply.



1936
1.6
=== jnitial
1.4 \ — truth | 3004
==« REO

1.2 1 \ = + GPO 200 4

1.0 | 1004

0.8 ol

0.025 0.050 0.075

0.6 1 mm GPO
200 -
0.4 4

0.2 100 4

0.0 4
0.00 0.25 0.50 0.75 1.00 1.25 1.50

0.02 0.04
Root Mean Squared Error

Fig. 5. One sample and summary results of simulation example 1 where
trajectories were corrupted with small errors in both translation and heading.
All trials had nearly identical optimization results between relative-edge and
global-pose optimization. The histogram shows the spread of the RMS error for
both REO and GPO over 1000 trials.

Algorithm 1: Calculation Of H (i /2 For A Pose Graph Cycle
With Reversed Edges In SE(2).

1: for Z//t c Eodom do
0At,).
3 Tz R"
aAtj/l m nll i,j "
4 elS%At
az
5: — = R
BAtj/, m,rgi,j m
6 end if
7: end for
8: for z;/; € logom do
9 ifdlr(z]/l) > (0 then
DAL, . OAL, .
10: — = —— = Atp/m
a9]/i m,nz;z',j 8Atn/m /
11: elseazAt DA
12: ke = - o Atn/m
89(7‘/1‘ m,n>i,j 8Atn/m
13: end if
. a/z .
4 gy, i)
15: 0Nt 0
16: end for

Each simulation study focused on the optimization of the pose
graph of a house-shaped trajectory in SFE(2) shown in Figure 5
that contains nine nodes and five loop closures. This trajectory
was chosen because it is simple enough that properly converged
graphs are easy to identify, but also complex enough to illus-
trate non-trivial items of discussion. The Levenberg-Marquardt
optimizer implemented in GTSAM [28] was used as the GPO
algorithm, while a prototype implementation of Algorithm 1
was used for REO. To evaluate performance of the optimization
routines, we considered the RMS error of the final optimized
position of each node in the graph

1 N
J = N;uﬁi —xill, (10)
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TABLE 1
TABLE OF NOISE PARAMETERS USED IN THE SIMULATION EXAMPLES
: 22 2 (2 2 2
Sim# | o;(m*) | o,(m*) | oy (rad”)
1 1x10° [ 1x10° | 1x10~°
2 1x1073 [ 1x1073 | 1 x 1071
3 I1x107° [ 1x107° [ 1 x 1072
1.75 1 s jnitial
.- — truth
1.50 A = = 1 REO
! + GPO
1.25 A 11—
1.00 ! -
1
2 4
0759 . 5 0 0
. 800 - I GPO
0.50 - . 600 -
A Y
0.25 1 400
0.00- 2001
. 04
: : : T 0 5
-0.5 0.0 0.5 1.0 1.5 Root Mean Squared Error
Fig. 6. One sample and summary results of simulation example 2 where 1000

trajectories were corrupted with large errors in both translation and heading.
GPO was often able to find the solution, however, it diverged in approximately
10% of cases (as shown in the RMSE histograms). REO found the optimal
solution each time.

where the heading state of each node was not considered in the
RMS error metric to avoid scaling ambiguity between position
and heading error. The pose of the solution optimized by REO
was calculated by starting at the same origin pose estimated
by GPO and compounding the optimized edge estimates to put
both solutions into the same frame of reference.

A. Simulation Example 1: Well-Conditioned

The first study illustrates that for a typical, well-conditioned
trajectory, the optimizations perform equivalently. The house
trajectory was corrupted with small amounts of random Gaus-
sian noise on both translation and heading (see Table 1) and a
loop closure was placed between nodes at each corner of the
square in the house. One thousand of these trajectories were
solved by both optimization routines and an example is shown
in Figure 5. Every one of these optimizations produced virtually
identical results between global pose and edge-based optimiza-
tion. A histogram of RMS error of the solution found by both
optimization algorithms is also shown in Figure 5. Because of
the noisy inputs, neither approach perfectly resolves the initial
trajectory.

B. Simulation Example 2: Large Noise

As noted earlier, a problematic situation for global pose opti-
mization occurs when significant heading error compounds over
several edges to produce poor initial pose estimates. To model
this situation, the second simulation study was to optimize ran-
dom house trajectories that were generated with significant noise
on translation and heading (see Table I). Figure 6 shows an ex-
ample of one of these trajectories, and a histogram of the RMS
error of the two approaches.
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Fig. 7. One sample and summary results of simulation example 3: the house

trajectory simulation study with 90° initial heading error. GPO was often able to
find the solution, however in approximately 40% of cases, it diverged (as shown
in the RMSE histogram). REO found the optimal solution for each of the 1000
trajectories.

In this situation, while GPO was able to find the correct
solution much of the time (as shown by the large bin close
to zero in the histogram in Figure 6), it sometimes failed to
find the solution at all and resulted in divergent behavior. REO,
however, found the appropriate minima every time. Although
the fit quality is reduced compared to the low noise case, as
expected, REO displays significantly more robustness than GPO
in this case.

C. Simulation Example 3: Global Heading Misalignment

Many global pose optimization methods struggle when the
initial heading is inaccurate. This sort of situation often occurs
in GPS-denied navigation or multi-agent problems when, for
lack of better information, an agent is initialized in a nominal
direction that is out of alignment with its true global heading.
To illustrate this, a simulation study was performed where the
house trajectory was initialized with 90 deg of error in global ori-
entation. Small amounts of translation noise and heading noise
were applied to each edge (see Table I) and loop closures be-
tween the corners of the house were replaced with loop closures
to a virtual node co-located at x, and connected to x, with a
zero-information edge as described in [5], [24], [27]. Figure 7
shows a sample trajectory and summary results from this study.

The results of this study illustrate how GPO struggles in
this situation and may end up stalling in a local, and incorrect,
minima.

The fundamental problem illustrated in Sec. III-B and
Sec. ITI-C is the compounding of errors and uncertainty that
occurs in the pose parameterization. As a result of these large
errors and uncertainty, pose-based Jacobians must be evaluated
far from the solution and incur significant linearization error
(See Figure 1). In contrast, the error and uncertainty about any
relative constraint is independent of any other edges. This means
that a relative parameterization is much more linear in nature,
and easily deals with problems such as arbitrarily large heading
misalignment.

This idea is illustrated by a loop containing four edges with
heading error in Figure 8. Note the size of Ax; and associ-
ated uncertainty in the global update (upper right) compared the
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Fig. 8. A simple loop of four nodes and the associated updates to pose (upper
right) and edges (bottom).

Fig. 9. The hexacopter used to collect the data in the hardware experiment.

incremental edge updates Az; si (bottom). Because the uncer-
tainty estimates for edges do not compound like they do for
poses, both the error and uncertainty for a relative edge con-
straint are typically lower than its connected poses, and there-
fore, linearization errors are smaller. For this reason we believe
that the recent globally guaranteed methods in global pose op-
timization [20], [21] could be applied to our relative parameter-
ization of the cost function. Such an approach would combine
the benefits of guaranteed global convergence with the smaller
initial error in the relative parameterization and potentially im-
prove the speed of convergence.

D. Hardware Experiment

To demonstrate REO on a non-trivial data set, the algo-
rithm was used to optimize data collected by an experimental
autonomous navigation system flying two loops through an in-
door/outdoor environment with an RGBD camera using a mul-
tirotor aircraft, as described in [23] and shown in Figure 9. The
data includes 891 nodes and 30 loop closures calculated us-
ing the methods described in [23] and is shown in Figure 10.
Each loop is approximately 100 meters around and the noise
parameters for the experiment are given in Table II.

Both algorithms produced similar results to the ones found
in [23]. Because the results were not identical they were both
evaluated using the original cost function without global infor-
mation, given in Eq. 4. The the value of the cost function for
REO was 0.00303 and for GPO was 0.115. The specific reason
for the difference between the result given by two algorithms is
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Fig. 10.  The results of the optimization when one agent is collecting data.

TABLE I

TABLE OF NOISE PARAMETERS IN THE HARDWARE EXPERIMENT
Edge Type o%(m?) o(m?) o3 (rad?)
Odometry | 82x 1077 [ 82x 1072 [ 2.2x 107"

Loop Closure | 1 x107° 1x107° 1x1073
Initial Data GPO
REO
—— Path —— Loop closures

Fig. 11.  The results of the optimization when multiple agents are collecting
data. In the plot of the initial data the blue and black lines are the data collected
by the first and second agent respectively.

unclear but may be due to GPO reaching a local minima close
to the global solution.

In a second experiment, to illustrate a collaborative mapping
problem, the same data set was used but the data was split in
two as if it had been collected by independent agents. The initial
position of each agent was assumed to be unknown and therefore
one agent was initialized with a heading error of approximately
180 deg. The associated paths and loop closures for each agent
can be seen in Figure 11.

In the multi-agent case, GPO failed to converge to any solu-
tion other than the initial guess. Additional testing revealed that
GPO only converged if the initial heading error was less than
100 deg. This indicates that the jacobians of the cost function
were so ill-conditioned that the cost function appeared locally
flat and the stopping condition was satisfied in GPO after the
first iteration. REO, on the other hand, converged for the given
initial heading error between agents and closely matches the
results in Figure 10 and [23].

In REO the majority of error in the graph at initialization ex-
ists only in the loop closure edges and there is little incentive for
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the optimization to modify odometry edges until the maps are
first aligned. GPO does not have this property, so previous ap-
proaches deliberately inform the optimization of the alignment
error through the addition of extra anchor nodes and modifica-
tion of the loop closure edges [15]. We require no such modi-
fication, and all constraints can be considered homogeneously
just by nature of the parameterization.

In a real-time application, it is likely that an optimized im-
plementation of REO would perform slower than the GPO im-
plementation in GTSAM because of the dense Jacobian REO
produces. However, given the demonstrated robustness of REO
over traditional methods, optimization of the REO algorithm is
of interest and we believe that REO can be refined to run in real
time on problems of practical importance.

IV. CONCLUSION

In summary, we have shown that optimizing with respect
to relative-edge constraints is robust to large initial and propa-
gated heading errors. We have extended the relative optimization
technique presented in [11] to avoid map tears that occur when
optimizing only a subset of edges. With these improvements, we
conclude that REO should be considered for use in place of, or
in tandem with GPO, for solving graph optimization problems
that exhibit large initial and propagated heading errors that have
proven problematic to global approaches.
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