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Abstract—Ionizing radiation effects spectroscopy (IRES) for
characterization of single-event transients (SET) in space-
deployed electronics is demonstrated. IRES enhances time-
frequency spectroscopy techniques with statistical analysis, al-
lowing for the capture of subtle changes in circuit dynamics.
This is illustrated through the use of experimental data captured
from two-photon absorption (TPA) laser experiments on a phase-
locked loop (PLL) designed and fabricated in a 130 nm CMOS
technology, and further explained through the use of behavioral
modeling of the PLL. The technique leverages the computational
benefits of discrete windowed analysis, requiring as little as
0.2% of the data samples required in high-resolution discrete
Fourier transform analysis while providing a statistical method
for accurately estimating the SET characteristics.

Index Terms—Ionizing Radiation Effects Spectroscopy, Phase
Locked Loops, Radiation Effects, Single Event Effects, Single
Event Transients, Spectroscopy, Time Frequency Analysis, Two
Photon Absorption.

I. INTRODUCTION

THE mitigation of transient radiation effects is generally
accomplished through the increase of capacitance, device

size, and current drive in order to increase the critical charge
required to generate single-event transients (SETs). This type
of circuit hardening occurs at the cost of significant area,
power, and bandwidth penalties [1], [2], and minimizing these
design penalties requires knowledge of the primary radiation
vulnerabilities as well as the potential responses of the circuit
or system. A priori knowledge is particularly challenging for
complex analog and mixed-signal (hybrid analog and digital)
electronics with large state spaces and many potential signal
paths for SETs. Moreover, there exists no standard metric for
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SETs in analog and mixed-signal systems (AMS), as the effect
of a single event (SE) is dependent on the circuit topology,
type of circuit, and the operating mode [3]. This uncertainty
can result in over design and application-specific mitigation
solutions.

One standard method for analyzing the severity of SETs
is through measurement of the magnitude of the erroneous
voltage or current and the time duration (pulse width) of the
events [1]–[3]. The resulting magnitude versus pulse width
scatter plots allow for a coarse classification of events and are
useful for employing filter-based mitigation schemes between
circuits [1], [3]. However, it is difficult to measure these
characteristics in situ; it is often the case that devices are
biased in static modes for ease of measurement, rather than
under the intended operational conditions.

This work uses experimental measurements and simulations
on a phase-locked loop (PLL) circuit fabricated in a 130 nm
CMOS process [4], [5] to demonstrate transient analysis
under dynamic operating conditions and radiation exposure.
However, the techniques presented herein apply to any cir-
cuit or system through the analysis of the output waveform
behavior. Data presented in Section II were captured from
two-photon absorption (TPA) laser experiments [5]–[9] on the
PLL designed and fabricated in a 130 nm CMOS technology.
Then, in Section III, spectrographic techniques are discussed
for general use in AMS and radio frequency (RF) circuits to
assist in the identification of transient anomalies in situ with-
out the need for internal node interrogation. Spectrographic
techniques, such as the Short-Time Fast-Fourier Transform
(STFT) [10] for viewing the frequency and phase content of
a signal versus time are augmented with ionizing radiation
effects spectroscopy (IRES) in Section IV for quantifying the
statistical behavior of the waveforms, which allows for a low-
overhead mechanism for isolating the erroneous signatures
embedded within a signal.

These data illustrate that SET waveforms contain spectral
characteristics that are unique to the strike origin, circuit
state, and operating conditions, quantifiable through statistical
information. Simulations conducted using a behavioral model
of the PLL further emphasize the utility of the technique for
identifying subtle changes in signals associated with circuit
anomalies and instability. Further, these results indicate that
SET spectral content is unique and predictable based on the
ionizing particle interactions and circuit responses.
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Fig. 1. Block diagram of the 130 nm CMOS PLL used to demonstrate
transient spectrographic analysis techniques. The PLL consists of the phase-
frequency detector (PFD), charge pump (CP), low-pass filter (LPF), voltage-
controlled oscillator (VCO), and frequency divider (β). The PLL was designed
with a center frequency of approximately 200 MHz (after [11]).

II. DEVICE UNDER TEST: THE PHASE-LOCKED LOOP

A. PLL Electrical Characteristics

The block diagram of the charge pump (CP) PLL used to
demonstrate the transient spectrographic analysis techniques
in this work is shown in Fig. 1 [11]. While previous works
have shown that the CP topology has an inherent vulnerability
to SETs due to the high impedance output of the CP [2], [5],
[11], [12], CP topologies are often used because of the high
linearity and power supply noise rejection. Thus, the circuit
is commonly found in integrated circuit (IC) clock generators
and serves as a widely applicable demonstration vehicle for
the spectrographic transient analysis techniques.

The CP PLL consists of the phase-frequency detector (PFD),
charge pump (CP), low-pass filter (LPF), voltage-controlled
oscillator (VCO), and frequency dividers. The dividers were
set to unity for all experiments and simulations presented
in this work. The PFD converts the difference in phase and
frequency between the input reference signal (VREF ) and the
PLL’s output (VoutPLL) into electrical current through the CP.
The activation of the CP to source/sink charge to/from the LPF
capacitor CLPF adjusts the voltage, VinV CO, applied to the
input of the VCO, thus modifying the output frequency of the
VCO [4], [5].

The PLL was fabricated using a 130 nm CMOS technol-
ogy available through the MOSIS foundry. The VCO has
a center frequency (frequency at which VinV CO = Vdd/2)
and a maximum frequency of approximately 200 MHz and
530 MHz, respectively. The locking range of the PLL is
between approximately 40 MHz and 350 MHz, over which
the VCO is approximately linear with a gain of 7.75 GHz/V.

B. Experimental Setup

SETs were injected into the PLL circuit using laser-induced
carrier generation based on TPA using high peak power fem-
tosecond pulses at sub-bandgap optical wavelengths [6]–[9].
The device under test (DUT) was mounted on a motorized xyz
translation platform with 0.1 µm resolution. In TPA, optical
pulses are focused through the backside of the wafer onto the
front surface of the DUT with a 100x microscope objective,
resulting in a near-Gaussian beam profile with an approximate
diameter of 1.6 µm at focus [9]. Because the carrier deposition
varies as the square of the irradiance (I2), this corresponds to
a Gaussian carrier density distribution with an approximate
diameter of 1.1 µm (full-width-at-half-maximum) [9]. This

Fig. 2. Example of an output transient following a laser perturbation in the
CP sub-circuit of the 130 nm PLL. The PLL was operating at 200 MHz prior
to the laser strike. Following the laser strike, the output frequency was reduced
to approximately 50 MHz, thus increasing the output phase displacement to
approximately 15 radians. The recovery time of the PLL was over 200 ns [5].

work presents data from a single incident laser energy for
various operating frequencies within the PLL’s linear operating
region. A single incident energy was chosen to ensure repeata-
bility in the measurement, and to examine several aspects
of the spectrographic analysis techniques discussed in the
proceeding sections under control of constant energy transfer.
Reference [5] reports transient data for various energy levels.
All experiments were performed at room temperature with the
nominal power supply voltage of 1.2 V.

In order to characterize output transients following laser
strikes within the PLL, a Tektronix-TDS5104 oscilloscope
was used to capture output waveforms at the sample rate of
625 MS/s. The oscilloscope was set to trigger on the rising
edge of the pulsed laser sync pulse, and the FastFrame feature
was utilized to capture ten transients per injection location.
The experiment was performed by rasterizing the TPA laser
through the CP sub-circuit at a step size of 0.2 µm. Figure 2
shows an example SET following a laser perturbation at the CP
output node. Following the laser strike, the output frequency
(fout) was reduced to approximately 50 MHz, increasing the
phase displacement (φout) to approximately 15 radians. The
recovery time of the PLL was over 200 ns, corresponding to
the PLL’s initial lock time, indicating near-complete depletion
of the charge stored on CLPF .

Figure 3 illustrates a two-dimensional (2D) spatial map
of the sensitive regions in the CP sub-circuit. Each pixel
in the figure represents the average maximum phase dis-
placement (instantaneous cycle-to-cycle phase error) for ten
SETs generated at each x-y location [5]. The mapping of
the output phase displacement versus x-y location was fused
to a layout image of the CP sub-circuit. The dashed square
represents the area interrogated by the TPA laser. Due to slight
microscopic misalignment in the die and the measurement
platform, the laser was traversed over the die slightly askew.
The image illustrates that the output of the CP circuit, in
particular the NMOS switches and current sources, contains
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Fig. 3. A two-dimensional (2D) spatial map of the regions in the CP
sub-circuit sensitive to SETs. The experiment was performed using laser
TPA at a step size of 0.2 µm. Each pixel represents the average maximum
phase displacement (instantaneous cycle-to-cycle phase error) for ten SETs
generated at each x-y location. The image illustrates that the output of the
CP circuit, in particular the NMOS switches and current sources contain the
most sensitive junctions due to their ability to deplete the charge stored in
CLPF (after [5]).

the most sensitive junctions due to their ability to deplete the
charge stored in CLPF . The following sections employ various
spectrographic analysis techniques for the identification and
quantification of these transients. Short-time windowed spec-
troscopy techniques, in particular, the statistics-based method
presented herein, allows for a detailed examination of transient
phenomena with low computational overhead. The techniques
are especially useful when analyzing noisy data.

III. SPECTROGRAPHIC ANALYSIS

Spectroscopy has been employed in reliability applications
for the extraction of the time-dependence associated with
specific physical degradation phenomena [13]. In general,
time-dependent spectroscopy involves the measurement of
timing information associated with a defect or anomalous
behavior, and the development of a statistical profile of such
data. This work employs time-frequency spectral analysis and
develops a methodology for quantifying the statistical param-
eters associated with SET behavior. This section delivers an
overview of time-frequency spectrographic analysis. Section
III.A discusses time-frequency Fourier analysis, overviewing
the various tradeoffs associated with time and frequency do-
mains. Then, in Section III.B, IRES is presented as a method to
augment time-frequency analysis to isolate erroneous transient
behavior embedded within dynamic waveforms.

A. Time-Frequency Analysis

A discrete sampling of signal vout(t) can be decomposed
into its constituent frequencies through the Discrete Fourier
Transform (DFT) [10] according to (1)

V (fn) =
N−1∑
n=0

vne
− j2πnN (1)

where vn = v[n] is the N -point sampled sequence of signal
vout(t) for n = 0, 1, ..., N − 1. It follows that the power
spectral density (PSD), Sv , can be determined through (2).
PSD deconstructs the total signal power into a sequence of
values representing the power for each frequency component
(in units of dB/Hz) contained in the signal [14]. Thus, the
integral of the PSD is the total signal power.

Sv(fn) =
1

N
|V (fn)|2 (2)

One-dimensional (1D) spectral analysis in either time or
frequency domains is useful for steady-state signals. However,
1D spectral analysis has limited use for short-time transient
effects. 2D joint time-frequency analysis allows for the extrac-
tion of short time-frame spectral content where DFT analysis
is conducted in sample-limited windows w[n,m], according
to (3).

V (m, fn) =
N−1∑
n=0

vnw[n−m]e
−j2πn
N = V (fn) ∗ w[n] (3)

In (3), the windowing function w[n,m] is the analysis
window of length m that serves to filter the sampled data. As
such, there is a direct trade-off between the size of the window
and the bandwidth. The resulting short-time discrete Fourier
transform (ST-DFT) can be seen as a convolution of the
sampled signal with the window function. Standard window
functions include rectangular, Gaussian, Hann, and Hamming
[10], though all windows affect the spectral estimates of the
signal. Figure 4 illustrates example ST-DFT spectrograms of
a single laser-induced transient generated within the CP sub-
circuit of the PLL at ∼150 MHz operation to illustrate the
tradeoffs in time and frequency resolution. The spectrograms
in Fig. 4(a)-(c) show the PSD of the PLL’s output waveform
versus time (seen in Fig. 3) as computed in (3) with a Ham-
ming window function. The spectrograms shown in Fig. 4(d)-
(f) were computed from the instantaneous cycle-to-mean phase
jitter waveforms determined by (4)

φk(vn) =
2π|Tk − E(Tk)|

E(Tk)
(4)

where the signal vn is sampled at each rising clock edge k,
Tk corresponds to the instantaneous period at the kth edge,
and E(Tk) is the expected period or population mean [5].
The computation serves to effectively integrate the instan-
taneous frequency of the output waveform, and thus filters
high-frequency noise. The spectrograms shown in Fig. 4(d)-
(f) therefore represent unwanted frequency content contained
within the closed loop rather than the frequency content in
the output waveform. As the nominal bandwidth of the PLL
is approximately 5 MHz, the PSD for frequencies less than or
equal to 5 MHz can be expected to dominate the spectrogram
under normal operation. This can be seen in the spectral
content displayed in Fig. 4(f) prior to the SET. This phase
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Fig. 4. Spectrograms of a laser-induced transient generated within the CP sub-circuit of the PLL at ∼150 MHz operation to illustrate the tradeoffs in time
and frequency resolution. The sample rate of the initial signal was 625 MS/s. The spectrograms in (a)-(c) show the PSD of the PLL’s output waveform versus
time, whereas the spectrograms in (d)-(f) show the PSD of the cycle-to-mean phase jitter versus time as computed using the ST-DFT with a Hamming window
function. Spectrograms (a) and (d) (on left) were computed with a window size of 3% of the total sample length (or 15- and 4-time samples, respectively)
and no overlapping windows. Spectrograms (b) and (e) (in middle) were computed with a window size of 3% of the total sample length (or 15- and 4-time
samples, respectively) and a window overlap of n − 1 and k − 1 samples, respectively. Spectrograms (c) and (f) (on right) were computed with a window
size of 20% of the total sample length (or 100- and 22-time samples, respectively) and a window overlap of n− 1 and k − 1 samples, respectively.

transformation prior to spectral analysis is particularly useful
as it allows for a down-sampling of the output waveform
without sacrificing the ability to detect and quantify the
erroneous SET.

The spectrograms shown in Fig. 4 are also useful for
illustrating the inherent tradeoffs in time and frequency as
functions of window size and overlap (which is inversely
related to the shift). Spectrograms (a) and (d) (on the left of
Fig. 4) were computed with a window size of 3% of the total
sample length (or 15- and 4-time samples, respectively) and
no overlapping windows (i.e., window shifts of 15- and 4-time
samples, respectively). The relatively low number of samples
within each window results in an inadequate assessment of
the PSD via the ST-DFT methodology. However, overlapping
adjacent windows as shown in spectrograms (b) and (e) (in
middle of Fig. 4), where window overlaps of n− 1 and k− 1
samples were included (i.e. a shift of 1 sample), respectively,
improves the assessment of the erroneous spectral content
by re-sampling data points within adjacent windows. This
can be seen as pin-pointing the erroneous content through a
comparison to adjacent content. This is an important point
that is critical for the incorporation of statistical measures, as
discussed in Section III.B.

While overlapping windows improves the ability to detect
an anomaly, the low number of data samples within each
window results in significant noise. Spectrograms (c) and (f)
(on the right of Fig. 4) were computed with a window size of
20% of the total sample length (or 100- and 22-time samples,
respectively) and a window overlap of n−1 and k−1 samples,
respectively. Increasing the window size improves the noise
by increasing the number of samples per window. This can be

seen as an improved low-pass filter at the sacrifice of time-
resolution, as seen in the spectrograms. The transient is clearly
visible in both frequency and phase domains with the lowering
of the output frequency from the PLL’s nominal 150 MHz
and the increase in high-frequency content within the loop
dynamics; however, there is a smearing of the spectral content
in the x-dimension. Nevertheless, the down-sampled spectral
phase content shown in Fig. 4(f) amounts to less than 0.19% of
the number of spectral samples required to quantify the event
shown in Fig. 4(b), corresponding to a decrease of nearly three
orders of magnitude (or a 99.8% decrease).

B. Ionizing Radiation Effects Spectroscopy

Ionizing radiation effects spectroscopy (IRES) is a method
to augment time-frequency analysis through the statistical
measurement of the waveform dynamics. This type of analysis
is intended to leverage the computational savings achieved
with windowed filtering, as discussed in Section III.A while
providing a simple methodology for quantifying and isolating
detected events from nominal behavior. IRES is based on
Radio Frequency-Distinct Native Attribute (RF-DNA) finger-
printing for the identification of essential statistical features
of erroneous signals within a device, circuit, or system. RF-
DNA fingerprinting is a waveform-based technique used for
augmenting existing wireless network security mechanisms.
RF-DNA fingerprinting can be employed in the 1D time or
frequency domains or in 2D through time-frequency analy-
sis, as discussed in Section III.A. Works have demonstrated
successes in the use of RF-DNA for the identification of
unique serial numbers from parts manufactured by the same
vendor and containing the same model number [15]–[21].
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Fig. 5. Illustration of the window sampling method used for the calculation
of statistical measures used in IRES.

Similarly, IRES uses key statistical measures of arbitrary
signals within a device, circuit, or system for correlation to
radiation vulnerabilities. IRES was first demonstrated in [22]
to determine the operational bias voltage and total-ionizing
dose (TID) exposure level in RF circuits. IRES images show
shifting stochastic behavior with increasing TID levels that are
unique for each operational state. These unique states allow for
machine-learning models to identify and quantify degradation
amidst variation in operational conditions.

In this work, the IRES technique is applied to time-domain
signals such that SETs can be identified through statistical
measurements of L signal metrics (e.g., cycle-to-mean jitter
and instantaneous frequency). Similar to the time-frequency
analysis presented in Section III.A, IRES modulates an ar-
bitrary waveform with a window function. Data within the
windows are then viewed from a statistical point of view
in order to (i) assess the likelihood of SET behavior within
a window and (ii) quantify the severity of detected SETs.
The use of multi-dimensional statistical analysis allows for
easier identification of spurious transients in the presence of
noise and allows for ease of integration with statistical models
when compared to standard measurement approaches. The
technique naturally accounts for variability due to process and
measurement uncertainty. IRES images are shown to capture
inherent radiation effects mechanisms and the resulting impact
on circuit behavior.

Fig. 5 illustrates the window sampling process where de-
scriptive statistics [23] are computed for each window. The
statistical measures may include the mean (average of the
data values), standard deviation (average distance between an
observation and the mean), variance (average of the squared
deviations from the mean), skewness (direction and degree of
asymmetry), and kurtosis (heaviness of the distribution tails)
of an arbitrary signal, for example [23]. In this case, we
perform the statistical sampling on the cycle-to-mean jitter
feature due to the improved noise performance and low data
rate requirement, as discussed in Section III.A. The mean of
the instantaneous output frequency is also calculated for each
window for a visual of the transient in a traditional form and
for comparison to the spectrograms shown in Fig. 4. Once
the statistical measures are computed within each window and
normalized such that the maximum value of any measure is 1,
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Fig. 6. Simulated ion strikes to NMOS transistors at output of the CP after
various levels of charge deposited from a current source. These results show
a recovery times between 200 and 300 ns and voltage perturbations between
0.15 and 0.4 V.

they are concatenated to form a column vector. These column
vectors are arranged as a pseudo-time-sequence, forming an
IRES image of the SET characteristic behavior.

IV. SINGLE EVENT TRANSIENT ANALYSIS WITH IRES

IRES is demonstrated through behavioral simulations of
a PLL for the prediction of SET spectrographic data and
validated with experimental data captured from TPA laser
experiments on PLL circuits designed and fabricated in a
130 nm CMOS technology.

A. Simulation Analysis with IRES

Simulations were performed using a behavioral model to
approximate the PLL as a linear system with the ideal design
parameters provided in [5]. The PLL model was designed with
Verilog-A to match the circuit dynamics of the DUT used for
experimental validation. SET simulations were performed with
the Cadence Spectre circuit simulator. Reference [5] showed
that the SET response of the PLL circuit is dominated by
the loop parameters, is largely independent of the ion strike
time constants, and is proportional to the deposited charge.
Equation (5) shows the expected voltage perturbation (Ve) at
the VCO’s control voltage versus deposited charge QSET and
the initial transient pulse width tSET .

Ve =
QSET + ICP tSET

CLPF
≈ QSET
CLPF

(5)

In (5), ICP is the CP current, and CLPF is the capacitance
of the dominant pole in the LPF. In general, the quantity
ICP tSET will be much smaller than QSET due to the short
SET pulse widths in modern CMOS. Thus, a double exponen-
tial model for the ion strike was used to create the initial loop
perturbation, rather than a more accurate ion strike model.
The transient curves for various levels of deposited charge
(determined by integrating the ion strike current pulse) are
provided in Fig. 6 where the VCO control node (VinV CO) ver-
sus time following simulated ion strikes to NMOS transistors
at the output of the CP sub-circuit at 260 MHz are provided.
Note that this node is internal to the PLL loop and may not
be accessible experimentally. Given a linear VCO, VinV CO is
proportional to the PLL’s output frequency and is an indicator
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(a) (b) (c)

(d) (e) (f)

Fig. 7. IRES statistical spectrograms of simulated transients generated at the output of the CP sub-circuit of the PLL at 260 MHz operation. The sample rate
of the initial signals shown in Fig. 6 was 10 GS/s. The images in (a)-(c) show the IRES spectrograms of the cycle-to-mean jitter with a rectangular window
function (unity). The images in (d)-(f) employ a Gaussian window filter for (a/d) 249.2 fC, (b/e) 373.8 fC, and (c/f) 498.3 fC of deposited charge, respectively.
All statistical measures are normalized such that the maximum value is 1.

of the current state of the loop. As expected, the voltage
perturbation and recovery time of the PLL increase as the
deposited charge increases. These changes in the recovery time
and control voltage are gauges of the deposited charge and
indicate a representative behavioral model. These simulation
results are consistent with other works and indicate adequate
loop dynamics for capturing SET phenomena.

The simulated output waveforms of the PLL were sampled
at 10 GS/s to generate IRES images of the SET responses for
various levels of deposited charge at the output node of the CP
sub-circuit. The spectrograms consist of the skewness (Skew),
kurtosis (Kur), variance (Var), standard deviation (Std), and
mean (Mean) statistical measures of the cycle-to-mean jitter
within each sample window of 44 cycles (20% of the cycle-
steps). The images also contain the windowed mean of the
instantaneous frequency (Mean Freq) for comparison to the
ST-DFT spectrograms shown in Fig. 4. The spectrograms in
Fig. 7(a)-(c) show the unfiltered IRES spectrograms of the
cycle-to-mean jitter. The spectrograms in Fig. 7(d)-(f) employ
a Gaussian window filter with α = 5 where the standard
deviation of the filter of width m is computed according to (6)
and the window function given in (7). Finally, the images were
generated for deposited charge values of 249.2 fC (left-most
images Fig. 7(a) and (d)), 373.3 fC (middle images Fig. 7(b)
and (e)), and 498.3 fC (right-most images Fig. 7(c) and (f)).

σ =
m− 1

2α
(6)

w[n] = e−
1
2 (
m
σ )2 (7)

As seen in Fig. 7, the statistical measures such as Mean,
Std, and Var of the cycle-to-mean jitter are elongated in the x-
axis direction for an increased deposited charge. The mean of

the instantaneous frequency combined with the statistical mea-
sures mentioned previously indicate the longer loop recovery
time by the gradual lightening of color. Changes in Skew and
Kur of the cycle-to-mean jitter represent abrupt changes in
transient behavior. The onset of the SET can be seen as a
sudden change in the sample values colored red.

The Var, Std, and Mean of the cycle-to-mean jitter are
measures of the charge deposition and collection processes
as well as the PLL loop response. For example, the time
between the peak Skew and the peak Mean represents the
initial charge collection, whereas the magnitude of the Var
represents the severity of the event (total energy transferred).
The circuit begins to recover following the maximum Mean
value, eventually stabilizing where the Mean, Var, and Std
return to 0. The overall loop characteristic response can also
be seen as the shifts in the mean frequency and the gradual
recovery of the loop when the color changes from orange
to red, shown on the bottom row of the IRES images. It
is important to note that standard measurement techniques
generally only capture and quantify the peak and the length
of time of the perturbation.

B. Experimental Analysis with IRES

Each waveform from the experimental data consisted of a
minimum of 500 timesteps. Cycle-to-mean phase jitter was
extracted for each clock cycle in the waveform and used
to create a feature vector V . Unless otherwise noted, the
experimental data were analyzed with a window consisting
of 20% of the total number of cycles and a shift value of 1
(approximately 95% overlap). Gaussian window filters were
employed according to (6) and (7) with α = 5 identical to
those used in the simulations presented in Section IV.A.
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(a) (b)

Fig. 8. IRES images of an experimentally measured SET originating from a strike on an NMOS transistor connected to the output node of the CP within the
PLL operating at 150 MHz. Six statistical measures were computed within a sliding window sized to 20% of the total sample space and shifted by 1 sample
(95% overlap). The spectrograms were computed with (a) rectangular and (b) Gaussian filters. Peaks in Skew and Kur of the cycle-to-mean jitter indicate the
start of the SET. The statistical measures of the cycle-to-mean jitter are used to identify radiation and circuit response mechanisms.

(a) (b)

Fig. 9. Spectrograms of a laser-induced transient generated from a strike to a PMOS transistor in the CP sub-circuit of the PLL at 150 MHz operation.
The sample rate of the initial signal was 625 MS/s. The spectrograms show (a) the PSD of the PLL’s output waveform versus time and (b) the PSD of the
cycle-to-mean phase jitter versus time as computed using the ST-DFT with a Hamming window function. Both spectrograms were computed with a window
size of 20% of the total sample length (or 100- and 22-time samples, respectively) and a window overlap of n− 1 and k − 1 samples, respectively.

Figure 8 shows the (a) unfiltered and (b) filtered IRES
images of an experimentally measured SET generated from a
laser strike to an NMOS transistor at the output node of the CP
within the PLL operating at ∼150 MHz. Skew and Kur of the
cycle-to-mean jitter indicate the start of the SET. The statistical
measures of the cycle-to-mean jitter are used to identify
radiation and circuit response mechanisms. The IRES image
indicates that the statistical features are unique to the response
signature. Moreover, the experimentally obtained signatures
match the predicted images generated from simulations, as
seen in Fig. 7. Further, the normalization used to create the
IRES images allows for the removal of the magnitude of the
ion strike, thus creating a “fingerprint” characteristic of the
origins of the ion strike. These characteristic IRES features
appear to be inherent to the circuit, the location of the strike,
and the charge collection mechanisms.

Previous works have shown that strikes to the PMOS
transistors within the CP sub-circuit result in a subtler response
when compared to the results shown thus far. Strikes to
PMOS transistors in the output switches or current sources
inject charge onto the loop capacitor CLPF, thus increasing

the instantaneous frequency. According to [5], this positive
frequency modulation limits the instantaneous cycle-to-mean
phase jitter to a maximum value of 2π radians and is therefore
difficult to differentiate from nominal jitter. This effect is
illustrated in Fig. 2 where the 2D spatial map of vulnerable
nodes within the CP show weaker responses from strikes
originating on the PMOS switches and current sources. This
effect is further emphasized with the spectrogram of the output
waveform computed with ST-DFT analysis in Fig. 9. In Fig. 9,
spectrograms of a laser-induced transient generated from a
strike to a PMOS transistor in the CP sub-circuit of the PLL at
∼150 MHz operation are shown. The spectrograms show (a)
PSD of the PLL’s output waveform versus time, and (b) the
PSD of the cycle-to-mean phase jitter versus time as computed
using the ST-DFT with a Hamming window function. Both
spectrograms were computed with a window size of 20%
of the total sample length (or 100- and 22-time samples,
respectively) and a window overlap of n−1 and k−1 samples,
respectively. These data can be compared to the spectrograms
representing a strike to an NMOS transistor in Fig. 3 (c) and
(f). While the event is observable, the time boundaries are
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(a) (b)

Fig. 10. IRES images of an experimentally measured SET originating from a strike on a PMOS transistor connected to the output node of the CP within
the PLL operating at ∼150 MHz. Six statistical measures were computed within a sliding window sized to 20% of the total sample space and shifted by
1 sample (95% overlap). The spectrograms were computed with (a) rectangular and (b) Gaussian filters. Drops in Skew and Kur of the cycle-to-mean jitter
indicate the start of the SET. The statistical measures of the cycle-to-mean jitter are used to identify radiation and circuit response mechanisms. The IRES
images indicates that the statistical features are unique to the response signature.

difficult to discern due to the required filtering.
The IRES statistical spectrograms shown in Fig. 10, how-

ever, can be used to quantify the boundaries of the event,
including the onset, peak, and recovery. Figure 10 shows IRES
images of the experimentally measured SET shown in Fig.
9. Six statistical measures were computed within a sliding
window sized to 20% of the total sample space and shifted by 1
sample (95% overlap). The spectrograms were computed with
(a) rectangular and (b) Gaussian filters. Drops in skewness
and kurtosis of the cycle-to-mean jitter indicate the start of
the SET. These boundaries can then be utilized to perform
spectroscopy targeted to the specific temporal location, or to
isolate the raw data for further processing, thus alleviating
significant computational requirements.

C. Quantification of Error

As the statistical features used in IRES serve as indicators of
the SET behavior, the features can be used as an indirect mea-
sure of the core transient characteristics, namely the magnitude
(peak) and pulse-width of the observable transient. We used
the MATLAB software platform to parse the IRES images
and extract the local minima and maxima of the statistical
measures. These quantities were then used to quantify the peak
cycle-to-mean phase jitter (magnitude), and the full-width-half
maximum (FWHM) estimate of the SET pulse width. The
local maxima of the skewness (or kurtosis) are used to define
the total width of the event, whereas the peak in the mean
is a direct estimate of the SET magnitude. This analysis can
be furthered by examining the difference in the onset of the
event (the first peak in skewness) and time at which the peak
mean occurs as being the rise-time, whereas the fall-time can
be determined as the difference in the time at which the peak
mean occurs and the second peak in skewness. Variance and
standard deviation measures further serve as indicators of the
transient time constants.

This method was evaluated for varying window lengths
from approximately 3% of the total sample size to 60% of
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Fig. 11. Percent (%) error in estimates of the magnitude (peak) and pulse-
width (full-width half-maximum or FWHM) of the SET extracted from IRES
spectrograms versus the window size (in % of total number of samples).

the total sample size. In each case, the window overlap was
k − 1 samples (corresponding to a shift value of 1). Figure
11 shows the % error in the estimate of the SET magnitude
and pulse width versus the window size. The percent error was
determined by computing the difference between the parameter
as determined from the raw waveform (i.e., the expected value)
and that extracted from the IRES spectrograms, divided by the
expected value.

As seen in Fig. 11, the % error in the estimate of the pulse
width decreases for increasing window size, whereas the %
error in the estimate of the magnitude increases with increasing
window size. The estimate of the SET pulse width improves
with increasing window size as the window size approaches
the width of the transient. While the spectral content tends
to smear within the window for larger window sizes, the
boundaries can be clearly defined with significant window
overlap. This has the effect of improving the pulse width
estimate while decreasing the ability to estimate the peak
accurately. This trend continues for increases in window size
until the window is larger than 50% of the total sample size.
In this case, the SET boundaries can no longer be delineated.
Given the inverse relationship between the two measures, there
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exists an optimum window size to balance the error in peak
and width measurements.

These results indicate that the IRES technique is useful for
the extraction of SET pulses from arbitrarily complex wave-
forms and allows for estimates of the transient characteristics
(e.g., pulse width and amplitude) with a vastly reduced sample
size. In this case, SET pulse characteristics were extracted
with as little as 0.2% of the data samples. Additionally,
the technique enables the detection of subtle changes in
characteristics without the need to conduct experimentation
under static conditions. These subtle changes are indicators
of both the charge collection mechanisms and the resulting
circuit responses. IRES not only provides detailed insight into
radiation effects mechanisms through a statistical analysis of
waveform behavior, but the technique also shows promise in
the identification of single-event effects without the need for
interrogation of the internal nodes of the circuit. Potential
application spaces for IRES include identification of SETs
within complex RF waveforms, in situ monitoring and analysis
of SETs, and automated SET detection assisted by machine
learning.

V. CONCLUSION

This work employs IRES for the characterization of SETs in
circuits and systems. The use of multi-dimensional statistical
analysis allows for the identification of spurious transients
in the presence of noise and for integration with statistical
models. This is illustrated through the use of data captured
from TPA laser experiments on a PLL designed and fabricated
in a 130 nm CMOS technology and further illustrated through
the use of behavioral modeling of the circuit dynamics. IRES
shows that SETs can be detected through statistical analysis of
waveform behavior rather than standard signal measurement,
allowing for the capture of the subtle changes in loop recovery
time as well as charge dynamics. The technique leverages
computational benefits of windowed joint time-frequency anal-
ysis, requiring as little as 0.2% of the data samples required
in high-resolution DFT analysis, while providing a statistical
method for accurately estimating the SET characteristics, such
as magnitude and pulse width.
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