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Abstract— Visual-inertial navigation methods have been
shown to be an effective, low-cost way to operate autonomously
without GPS or other global measurements, however most
filtering approaches to VI suffer from observability and con-
sistency problems. To increase robustness of the state-of-the-
art methods, we propose a three-fold improvement. First, we
propose the addition of a linear drag term in the velocity
dynamics which improves estimation accuracy. Second, we
propose the use of a partial-update formulation which limits
the effect of linearization errors in partially-observable states,
such as sensor biases. Finally, we propose the use of a keyframe
reset step to enforce observability and consistency of the
normally unobservable position and heading states. While all
of these concepts have been used independently in the past,
our experiments demonstrate additional strength when they
are used simultaneously in a visual-inertial state estimation
problem.

In this paper, we derive the proposed filter and use a Monte
Carlo simulation experiment to analyze the response of visual-
inertial Kalman filters with the above described additions.
The results of this study show that the combination of all of
these features significantly improves estimation accuracy and
consistency.

I. INTRODUCTION

Visual-inertial (VI) navigation is becoming an increasingly
important tool for autonomous operation of miniature aerial
vehicles (MAVs) and other robotic agents. While many
missions can be performed using GPS or other global mea-
surements to constrain drift, there are numerous scenarios
that do not have reliable access to these global measurements.
For example, a camera and MEMS IMU can provide a
low-cost way to autonomously navigate, and visual camera
features provide a method to constrain IMU drift, while also
making sensor biases observable for accurate integration.

Recent results in this area have demonstrated remarkable
performance and capability [1], [2], [3], [4], [5], [6]. While
smoothing methods and nonlinear batch optimization-based
methods [7], [8], [9] have demonstrated significant advan-
tages in terms of accuracy and consistency, they can be
too computationally intense for many low-cost platforms.
Filtering approaches have the advantage of being computa-
tionally efficient but can struggle in certain situations, due to
significant nonlinearities and unobservability [10], [11], [12].
This paper discusses filtering techniques for VI estimation
that significantly increase robustness to these issues.

One major source of unobservability in VI filtering is the
parameterization of feature locations. Feature locations pa-
rameterized in an inertial coordinate frame typically assume
observability of the transform to that frame. In many situa-
tions, however, this transform is unobservable, and estimation
becomes inconsistent [10], [11], [12]. Recent methods have
shown how to estimate features in the camera frame, rather
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Fig. 1. A sample trajectory from the Monte Carlo simulation experiment.

than an inertial frame [2]. These parameterizations partition
the states cleanly into observable and non-observable states,
with global position and heading being completely unob-
servable. The unobservability of position and heading can
be handled using the method proposed by [10], where the
position and heading states are periodically reset, so that
they remain observable and consistent. The global state and
uncertainty are then calculated using other methods such as
batch optimization, which are external to the Kalman filter.

Finally, many visual-inertial estimation approaches assume
no knowledge about certain aspects of the system dynamics.
In some applications, knowledge of specific parts of the
system dynamics can help improve estimation accuracy
and prevent divergence in certain modes at the expense
of becoming less portable to other systems. [13], [14] For
example, information regarding the speed capabilities of a
multirotor aircraft can bound changes in estimates of depth
to visual features. Leishman et al. [14] showed that including
a linear model of drag on a multirotor significantly improves
estimation accuracy. We will use this model to improve
estimator robustness in this work.

Another source of nonlinearity and unobservability is the
presence of filter states that are only partially observable
or unobservable given specific vehicle motion. Examples of
these states include IMU biases, depth to features and the
above mentioned linear drag term. Brink [15] has shown that
using a partial update can improve filter robustness to these
so-called nuisance states, while maintaining consistency.

In this paper, we extend the robocentric visual-inertial
Kalman filtering approach described in [2] with the principles
of relative navigation described in [16]. We also show that
improving the dynamic model can significantly improve
estimation accuracy of VI estimation applied to a multirotor
and use the partial update formulation to deal with the
additional nuisance state used in modeling drag. The paper
is organized as follows. In section II, we describe several
mathematical concepts and notation used throughout the
paper. In section III, we briefly discuss the derivation of
our baseline filter [2] with the improved dynamic model.
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Sections III-B and III-C discuss the measurement models
used and sections III-D and III-E detail the keyframe reset
and partial update steps, respectively. Finally, section IV
details a Monte Carlo simulation experiment and compares
the performance of the proposed improvements in terms of
accuracy and consistency.

II. NOTATION

The following definitions are used throughout the paper.

e; Unit vector with a one in the i*" element

p,f /1 Position of the body, with respect to the world frame,
expressed in the world frame
v’lj /1 Velocity of the body frame, with respect to the world

frame, expressed in the body frame

q%  Quaternion describing rotation from the world frame
to the body frame

B,  Accelerometer bias

Rate gyro bias

b Linear drag coefficient

Cf/c Unit vector directed at the i'" feature from the
camera origin, expressed in the camera frame
qs*  Quaternion which describes the rotation from the

camera e3 axis to the unit vector {7 /e
Di Inverse distance to the i*" feature

We will also make extensive use of the skew-symmetric
matrix operator defined by

A A 0 —U3 Vo
v =13 U1,
—7V2 U1 0

that is related to the cross-product between two vectors with
VXW= VAW.

To convert back to a vector from a skew-symmetric matrix,
we use the -V operator, so that

") =v.

A. Quaternions

We will use Hamiltonian notation for unit quaternions €
83
_ _ [490
q=qo+qze1+tqye2+q.e3= g, (1
which defines the passive rotation matrix based on a unit
quaternion as

R(q) = (2¢3 — 1) I —290q" +2aq’ € SO(3).  (2)

This definition results in R’r® being interpreted as the
original vector r® expressed in the new coordinate frame
b.

The exponential mapping for a unit quaternion is defined
as

R? = §3

) 3)

exp : 50(3)"

COS (

exp (9) = sin (

)ik

with the corresponding logarithmic map defined as
log : 8% — s0(3)Y 2R3

log (q) £ 2 atan2 (||q]| , go) 4)

a
lall”

The notion of computing the difference between two group
elements leads to defining uncertainty over a member of
the Lie manifold. For example, the attitude quaternion qI}
has four elements but only three degrees of freedom, so its
covariance should be a 3 x 3 matrix. Using the logarithmic
map, we can define the attitude covariance as

by —1 py—1 T
E [log ((q’}) ® ql}) log ((ql}) ® ql}) } e R¥,
&)
Eq. (5) is significant because the covariance is parameterized
in the Lie algebra so (3) (which is a vector space) of SO (3)
and therefore, can be used in a Kalman filtering framework.

B. B and B operators

Hertzberg et al. [17] describe a new syntax that simplifies
working with Lie groups in a filtering and optimization
framework by introducing the H and B operators. This
syntax allows us to work with elements of Lie groups in a
notation similar to that of vectors and will be used to describe
our filter derivation. The B and H operators are defined
differently for different groups. For R", they are simply
defined as the typical addition and subtraction operations.
For attitude quaternions € S3, these operators are defined
by

B:S*xR* —» &3
qB O 2 q®exp(H)
5:8*x8* - R?
qBp £log (p ® Q)
One common application of this syntax can be seen below

in the discretized quaternion dynamics. With 6 = wg /1 dt,
we have

) (t+dt)=q}(t)B6 (6)
0=q)(t+dt)Bd}(t). (7)

While this syntax is convenient, it is important to note that
the dimensionality of @ and q! are different in this case. The
quaternion is not a vector and has four parameters, while 0
has only three parameters but exists in a vector space.

C. Feature Bearing Parameterization

As in [2], we parameterize the feature bearing states in
the camera frame as rotations q$ € S* ~ RS € SO (3),
which describe the rotation from the camera ez axis to the
unit vector directed at the feature. The unit vector directed at
feature ¢ with respect to the camera frame c is then defined
by

¢ = (RS ) e; € S2 C R?, (8)

where we can see that this simply expresses the direction of
the feature in the camera frame.
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Fig. 2.

Tllustration of feature bearing vector geometry.

The difference between two unit vectors ¢; H ¢; can be
described using axis-angle representation, where the direc-
tion of the axis of rotation is orthogonal to both of the unit
vectors, and its length is scaled by the magnitude of rotation,
as shown in Figure 2. There are actually only two degrees
of freedom in this parameterization because rotation about
either feature vector does not change unit vector direction.
To remove the redundant degree of freedom, we note that
the axis of shortest rotation is always in the plane normal to
Cf/c and define a projection matrix

7., = (RS) [e1 €] € R, )

which reduces the dimensionality of the axis-angle represen-
tation to this plane. It can be seen that this projection matrix
is just the two basis vectors orthogonal to feature direction,
defined in the camera reference frame.

We must then define the H and B operators associated
with feature bearing vectors as

B :S0 (3) x R* = SO (3)
q; B8 £ exp(Te6) ® g

H:50 (3) x SO (3) — R?
af Bal £ 0T]s,

where the axis s and angle 6 between the two feature
direction vectors are given by

0 = cos™! (C{,TCJ‘)
¢ x ¢

S [ —

e

With only two degrees of freedom, and with all feature
vectors referencing the camera eg axis, there are an infinite
number of unit quaternions which can be used to represent
the same unit vector. The difference between these rotations
is some angle of rotation about the bearing vector itself. This
is removed by the projection operation and can therefore be
neglected. Reference [18] explores more deeply the validity
of the B and H operators under this assumption.

III. DERIVATION

In this section, we derive the relevant geometry and
dynamics to fully describe and implement the filter proposed
in this paper.

A. State Definition and Kinematics

Let the state x € RO X S3 x R" x S xR x---xS3 xR
be defined by

x:[piﬂ Vi d7 Ba Bo b o p

a" pn |, (10)

with n tracked features. The corresponding covariance matrix
P is then defined as

P=FE|(xB%)(xBx%)"| e RUCTIxAc+m,

where H for objects composed of multiple group elements
implies the use of the appropriate H operator for each
element.

Given measured acceleration 52 /1 and measured angular
velocity GJ’; ne the state has kinematics X = f(x,u+n)
with the elements of f given by [14] and defined as

-
Pg/l = (Rl;) VZ/I

A
- b T_b b T T) . b b b
V1 = €sezay; + Rig" -0 (I — €3€g3 ) Vo/1 — (wb/I) Vi1

an

Q?Iwg/z
B, =0
B,=0
b=0

e T c c A c
qc = 7T(L (wc/l + pi (Cv/c) vc/I)
. 2 c T c
Pi = Pi (Cz/c) Ve/Is

where b is a linear drag term [14], u = [ag/l wg/I} is the

input, n = [N, 7] is input noise, and

b =b

Ay = Ay — IBa —MNa
b -b

Wy =@yr — By — N

Camera linear and angular velocities are also given by

AN
Vo =Ry (VZ/I + (wg/1> PZ/b)
‘-"5/1 = Rg‘-‘-’g/rv

where Ry is the fixed rotation from body to camera frame
and pl; /b is the fixed translation from body to camera in the
body frame.

In the proposed filter, we employ the typical continuous-
discrete Extended Kalman Filter (EKF) equations. However,
the use of H and B operators requires a slightly different
treatment of the propagation and update equations. We prop-
agate the filter forward in time and apply discrete updates
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according to
X(t+dt)=x)B f(x(t),u(t))dt
st =xBK(zBh(),

where K is the Kalman gain, z is a measurement, and h (%)
is a measurement model.

B. Camera Measurement Model

Given a pixel measurement (u,v), pixel location of the
camera’s optical axis (ug,vo), camera focal lengths (fz, fy),
and relative landmark location in the camera frame, the pin-
hole camera model may be written in terms of x as

1 f 0 0 c U,
heam (x) = egTCc [OT fy 0} ¢+ [U(OJ] :

The Jacobian hcam/ox of the camera measurement model
is given by

12)

Hun=0 00 0 0 0 HL 0 --- H, 0],
where using the chain rule, we have
I [f. 0 0 ¢i/eed A
H-:—[z } Iy (C) ...
i e; ;,/C 0 fy 0 e;Cf/C 3x3 C / Gi

C. Accelerometer Measurement Model

Using the multirotor drag model from [14] in (11) pro-
vides the benefit that velocity becomes directly observed by
the accelerometer (assuming a linear drag constant). It is
assumed that the accelerometer measures total acceleration
of the body, neglecting gravity, in addition to a constant bias
B, and zero-mean white noise n,. If we also assume that
thrust 7" acts only along the body e3 axis, we can consider
just the body e; and ey axes, removing any dependence of
the measurement on 7". The measurement model is then given
by

Pace (%) = Ioxs (<0Vhy + B, +m,) . (3)
The Jacobian 9hace/ox is given by
Hace = [ 0 —blaxzs 0 Inxs O —[2><3VZ/1 0o - ].

D. Keyframe Reset

As shown in [10] and [16], performing a keyframe reset
when global states are unobservable can dramatically im-
prove filter consistency and accuracy. A keyframe reset is
performed by resetting the global position and heading states
to zero and updating the covariance matrix appropriately.
Each reset step results in a new node being declared in a pose
graph structure, which can then incorporate loop closures
and other measurements as part of a global optimization
routine. Figure 3 shows an illustration of the coordinate
frames involved in the keyframe reset. Here, we note that
our setup slightly differs from [10] and [16] in that there
is no altimeter measurement available, so altitude is also
unobservable, and we must also reset that state. Therefore,
we can see in Figure 3 that node frames are co-located with
keyframes, instead of on a ground plane.

Fig. 3. Keyframes k; are declared at periodic intervals along the trajectory
flown by the MAYV, while node frames n; are associated with each keyframe
and are gravity-aligned but co-located with each keyframe. The current
body frame b is estimated with respect to the most recent keyframe. New
keyframes are declared when less than 25 percent of the features present in
the previous keyframe are still present. This promotes observability of the
transform between b and the most recent keyframe.

E. Partial Update

A common difficulty faced in visual-inertial navigation is
the estimation of nuisance states which may only be partially
observable during many maneuvers. In the filter derived in
this paper, these states include the inverse depth to each
feature p;, accelerometer and gyro biases 3, and 3, and
the linear drag term b. As noted in [15], estimating these
terms in the traditional manner can cause filter divergence but
ignoring them or considering them as known constants may
produce an overconfident estimate. Because of the abundance
of these states in our system, we employ a version of
the partial-update Schmidt-Kalman filter proposed by [15].
This method allows the designer to tune the effect of a
measurement update on the i'" state with a scalar gain
v;, while correctly estimating uncertainty in these partially-
updated states. While this method loses optimality guaran-
tees in estimating these states in a linear Kalman-filtering
framework, it has been shown to speed up convergence of
these nuisance states by limiting the effect of linearization
errors when applied to the non-linear IMU-camera extrinsics
estimation problem [15].

A drawback of the formulation given in [15] is the
intermediate calculation of X*tand P*. We can manipulate
these equations to remove this intermediate calculation and
maintain algebraic equivalence. Let us first define \; =

1 —;, and for N states, also define
A=A Ao AN,

which contains our tuning parameters. The values in this
vector range from zero to one with ones indicating a full
update to those particular states. The state and covariance
updates may now be given by

" =x"B (A0 K (zBh(x)))
Pt =P +AG ((I—KH)P* (I-KH)" +
KRK' - P7),

where we’ve employed the numerically stable Joseph form
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of the covariance update, ® is the Hadamard product, and
1=[1 1 - 1"
A=1AT + 217 —AXT.

IV. RESULTS

To identify improvements to consistency and accuracy, we
employed a Monte Carlo (MC) simulation of a MAV with
a nonlinear aerodynamic model. The multirotor was com-
manded to fly approximately five meters above a simulated
ground plane at a constant forward velocity of one meter per
second. The commanded heading for each iteration evolved
according to a random walk. A fourth-order Runge Kutta
integration scheme was used for the truth comparison. A
sample trajectory is shown in Figure 1.

Camera measurements consisted of static landmarks pro-
jected onto a simulated image plane via the pin-hole camera
model and were corrupted by a small amount of white
noise. Landmarks were chosen by randomly selecting enough
features in the camera’s field of view to fill the state vector.
These same features were then selected in subsequent time
steps until they left the camera’s field of view, at which point
another landmark was randomly generated in the field of
view. This removes any dependence on a feature tracker in
the MC simulation and results in ideal performance because
there are no data association errors. However, this approach
is appropriate for filter comparisons in an MC simulation
because we wish to identify differences in filter performance
under ideal conditions. Accelerometer and gyro measure-
ments were corrupted with Gauassian noise and slowly
varying biases similar to the observed noise in hardware
experiments.

We implemented four different filters for comparison. The
baseline (BL) filter is the same filter derived in [2] except
with the measurement model for features given as (12)
rather than the patch-based model in the original work. This
was primarily done to simplify modeling in the simulation
environment and to guarantee that all filters received the
same measurements. The second filter modifies the baseline
with a linear drag term (DT) as shown in (13), while the
third filter modifies the baseline with keyframe resets (KF)
given in Section III-D. The fourth filter augments the baseline
with a drag term, keyframe reset, and a partial update
(KF+DT+PU). Each of these filters were given identical
inputs and measurements for each MC iteration, and the
relevant process and sensor noise covariance matrices used
in each filter were derived from the corresponding simulation
parameters.

Inverse depth to each feature was initialized using the
recommended values in [19] of pg = 1/2dm:n and Ry =
1/16d,:» With a minimum distance to each feature assumed to
be d,in = 2 meters. To deal with negative depth estimates,
we used the method in [20], where any negative depth
estimates were immediately re-initialized to d,;,;, and the co-
variance appropriately expanded to account for the additional
uncertainty. Because keyframes are not tied to a specific
image in this estimator (as opposed to the implementation

in [16]) new keyframes were declared when more than one
half of the features present at the declaration of the previous
keyframe were lost.

Absolute accuracy of each filter was compared using the
root mean squared error (RMSE) of the position and attitude
states. Because the filters with a keyframe reset step estimate
this transform with respect to a local keyframe, each time
a new keyframe was declared, (or each time a new node
was created) both the true state X" and the estimated state
x™ of each filter were saved, even in the filters with no
keyframe reset step. We then calculated the RMSE of the
estimated relative transform (position and attitude) between
the previously declared node frame and the current body
frame T for each filter

URA=N
|:p?/71 - pg/nil ’
a, Ba, ||

This method not only ensures that we perform a fair compar-
ison between filters, but it also ensures that the sometimes
large heading errors accumulated before accelerometer and
gyroscope bias measurements converge do not confound
RMSE calculations later on in the trajectory.

Filter consistency was analyzed using normalized estima-
tor error squared (NEES) or the Mahalanobis distance of the
position and attitude states. Because NEES is weighted by
the current covariance matrix of each estimator, the NEES
of a filter with a keyframe reset is calculated with respect to
relative pose, while the NEES of a filter without a keyframe
reset is calculated with respect to global pose. Therefore,
NEES is calculated according to

JrMS = ’

N T N
(T}; = T,’;) Pry (T}; = T};) if KF

= R T )
(T}’EIT}’) Pry (T}’ ET}’) otherwise

Because NEES is calculated over the transform states with
6-DOF (position and attitude), a histogram of the NEES of
an ideal filter should fit a x? distribution with six degrees of
freedom and remain constant over time.

We performed 2016 MC iterations of a five-minute simu-
lation study and calculated the RMSE and NEES at each
time step (250 Hz). The average RMSE and NEES over
time for each filter in the MC simulation study are shown in
Figure 6. In this plot, we see that the RMSE of each filter
decreases as each filter evolves in time and converges on the
unknown biases. A histogram of the RMSE and NEES for
each estimator at the final time is given in Figure 7.

It is clear from the results of this study that using keyframe
resets dramatically affects RMSE and NEES, resulting more
accurate and consistent pose estimates. In filters without a
keyframe reset step, the unobservable position and heading
states cause the filter to become increasingly inconsistent
over time, resulting in large linearization errors and subop-
timal sensor fusion [10].

It appears that while the drag term improves pose accuracy,
it degrades consistency. This is not altogether unexepected as
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the drag term is only partially observable and the resulting
linearization error on the drag term measurement update
(13) causes the filter to become overconfident. The improved
accuracy, however comes from better state integration which
arises from the improved dynamic model.

Drag Coefficient

.
10 20 30 40 50 60
time (s)

Fig. 4. Drag term estimates of a single MC iteration with and without the
partial update.

‘ truth

oT KF+DT+PU ‘

0.01 b I I . . . )
0 10 20 30 40 50 60

time (s)

Fig. 5. Accelerometer biases of a single MC iteration with and without
the partial update.

The overconfidence caused by the drag term can be mit-
igated by using a partial update. In the (KF+DT+PU) filter,
v was set to 0.02, which reduced the effect of linearization
error on the state and covariance. Figure 4, shows a single
run of the drag term with and without the partial update. In
this plot, the drag term without the partial update produces
oscillations corresponding to changes in attitude. This is most
certainly incorrect as we have no reason to believe that the
constant drag term should be correlated with attitude. The
partial update attenuates these oscillations and allows us to
benefit from the improved dynamic model. A similar effect is
observed in accelerometer and gyroscope bias estimates. We
see in Figure 5, that without the drag term, acclerometer bias
estimates become strongly correlated with attitude. Again,
the partial update damps this oscillatory response and keeps
the estimate more aligned with truth.

V. CONCLUSIONS

We have shown that augmenting visual-inertial extended
Kalman filtering with keyframe resets, an improved dynamic
model, and partial updates greatly improves accuracy and
consistency in VI filtering. This is clearly demonstrated in
Figures 6 and 7. The use of keyframe resets improves filter
consistency and accuracy without any observed negative

3 BL DT KF KF+DT+PU
x10
15 T T T

0 50 100 150 200 250 300

0 50 100 150 200 250 300
Time (s)

Fig. 6. Average RMSE of the transform from the most recent keyframe
(top) and average NEES (bottom) for each filter over the entire simulation
time over 2016 runs.

0.2 T T T T T T T T

[
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0 e o ! . .
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0ash o] |
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0 — .
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Fig. 7. The x? distribution with six degrees of freedom compared against
each filter at the final simulation time of 5 minutes using 2016 samples.

consequences. Augmenting the dynamic model with a linear
drag term also improves accuracy but at the expense of
degraded consistency. This inconsistency can be directly
mitigated through the use of a partial update, thus, providing
better accuracy from the improved dynamic model, while
maintaining filter consistency. Finally, the combination of all
three proposed improvements was shown to improve filter
accuracy and consistency over the baseline filter.
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