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Abstract— Visual-inertial navigation methods have been
shown to be an effective, low-cost way to operate autonomously
without GPS or other global measurements, however most
filtering approaches to VI suffer from observability and con-
sistency problems. To increase robustness of the state-of-the-
art methods, we propose a three-fold improvement. First, we
propose the addition of a linear drag term in the velocity
dynamics which improves estimation accuracy. Second, we
propose the use of a partial-update formulation which limits
the effect of linearization errors in partially-observable states,
such as sensor biases. Finally, we propose the use of a keyframe
reset step to enforce observability and consistency of the
normally unobservable position and heading states. While all
of these concepts have been used independently in the past,
our experiments demonstrate additional strength when they
are used simultaneously in a visual-inertial state estimation
problem.

In this paper, we derive the proposed filter and use a Monte
Carlo simulation experiment to analyze the response of visual-
inertial Kalman filters with the above described additions.
The results of this study show that the combination of all of
these features significantly improves estimation accuracy and
consistency.

I. INTRODUCTION

Visual-inertial (VI) navigation is becoming an increasingly

important tool for autonomous operation of miniature aerial

vehicles (MAVs) and other robotic agents. While many

missions can be performed using GPS or other global mea-

surements to constrain drift, there are numerous scenarios

that do not have reliable access to these global measurements.

For example, a camera and MEMS IMU can provide a

low-cost way to autonomously navigate, and visual camera

features provide a method to constrain IMU drift, while also

making sensor biases observable for accurate integration.

Recent results in this area have demonstrated remarkable

performance and capability [1], [2], [3], [4], [5], [6]. While

smoothing methods and nonlinear batch optimization-based

methods [7], [8], [9] have demonstrated significant advan-

tages in terms of accuracy and consistency, they can be

too computationally intense for many low-cost platforms.

Filtering approaches have the advantage of being computa-

tionally efficient but can struggle in certain situations, due to

significant nonlinearities and unobservability [10], [11], [12].

This paper discusses filtering techniques for VI estimation

that significantly increase robustness to these issues.

One major source of unobservability in VI filtering is the

parameterization of feature locations. Feature locations pa-

rameterized in an inertial coordinate frame typically assume

observability of the transform to that frame. In many situa-

tions, however, this transform is unobservable, and estimation

becomes inconsistent [10], [11], [12]. Recent methods have

shown how to estimate features in the camera frame, rather
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Fig. 1. A sample trajectory from the Monte Carlo simulation experiment.

than an inertial frame [2]. These parameterizations partition

the states cleanly into observable and non-observable states,

with global position and heading being completely unob-

servable. The unobservability of position and heading can

be handled using the method proposed by [10], where the

position and heading states are periodically reset, so that

they remain observable and consistent. The global state and

uncertainty are then calculated using other methods such as

batch optimization, which are external to the Kalman filter.

Finally, many visual-inertial estimation approaches assume

no knowledge about certain aspects of the system dynamics.

In some applications, knowledge of specific parts of the

system dynamics can help improve estimation accuracy

and prevent divergence in certain modes at the expense

of becoming less portable to other systems. [13], [14] For

example, information regarding the speed capabilities of a

multirotor aircraft can bound changes in estimates of depth

to visual features. Leishman et al. [14] showed that including

a linear model of drag on a multirotor significantly improves

estimation accuracy. We will use this model to improve

estimator robustness in this work.

Another source of nonlinearity and unobservability is the

presence of filter states that are only partially observable

or unobservable given specific vehicle motion. Examples of

these states include IMU biases, depth to features and the

above mentioned linear drag term. Brink [15] has shown that

using a partial update can improve filter robustness to these

so-called nuisance states, while maintaining consistency.

In this paper, we extend the robocentric visual-inertial

Kalman filtering approach described in [2] with the principles

of relative navigation described in [16]. We also show that

improving the dynamic model can significantly improve

estimation accuracy of VI estimation applied to a multirotor

and use the partial update formulation to deal with the

additional nuisance state used in modeling drag. The paper

is organized as follows. In section II, we describe several

mathematical concepts and notation used throughout the

paper. In section III, we briefly discuss the derivation of

our baseline filter [2] with the improved dynamic model.
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Sections III-B and III-C discuss the measurement models

used and sections III-D and III-E detail the keyframe reset

and partial update steps, respectively. Finally, section IV

details a Monte Carlo simulation experiment and compares

the performance of the proposed improvements in terms of

accuracy and consistency.

II. NOTATION

The following definitions are used throughout the paper.

ei Unit vector with a one in the ith element
pI
b/I Position of the body, with respect to the world frame,

expressed in the world frame
vb
b/I Velocity of the body frame, with respect to the world

frame, expressed in the body frame
qb
I Quaternion describing rotation from the world frame

to the body frame
βa Accelerometer bias
βω Rate gyro bias
b Linear drag coefficient

ζc
i/c Unit vector directed at the ith feature from the

camera origin, expressed in the camera frame
qζi
c Quaternion which describes the rotation from the

camera e3 axis to the unit vector ζc
i/c

ρi Inverse distance to the ith feature

We will also make extensive use of the skew-symmetric

matrix operator defined by

v∧ ≜

[

0 −v3 v2
v3 0 −v1
−v2 v1 0

]

,

that is related to the cross-product between two vectors with

v ×w = v∧w.

To convert back to a vector from a skew-symmetric matrix,

we use the ·∨ operator, so that

(v∧)
∨
= v.

A. Quaternions

We will use Hamiltonian notation for unit quaternions ∈
S3

q = q0 + qxe1 + qye2 + qze3 =
[q0
q̄

]

, (1)

which defines the passive rotation matrix based on a unit

quaternion as

R (q) =
(

2q2
0
− 1

)

I − 2q0q̄
∧ + 2q̄q̄⊤ ∈ SO(3). (2)

This definition results in Rb
ar

a being interpreted as the

original vector ra expressed in the new coordinate frame

b.

The exponential mapping for a unit quaternion is defined

as

exp : so(3)∨ ∼ R
3 → S3

exp (δ) ≜





cos
(

∥δ∥
2

)

sin
(

∥δ∥
2

)

δ

∥δ∥



 , (3)

with the corresponding logarithmic map defined as

log : S3 → so(3)∨ ∼= R
3

log (q) ≜ 2 atan2 (∥q̄∥ , q0)
q̄

∥q̄∥
. (4)

The notion of computing the difference between two group

elements leads to defining uncertainty over a member of

the Lie manifold. For example, the attitude quaternion qb
I

has four elements but only three degrees of freedom, so its

covariance should be a 3× 3 matrix. Using the logarithmic

map, we can define the attitude covariance as

E

[

log
(

(

q̂b
I

)−1

⊗ qb
I

)

log
(

(

q̂b
I

)−1

⊗ qb
I

)⊤
]

∈ R
3×3.

(5)

Eq. (5) is significant because the covariance is parameterized

in the Lie algebra so (3) (which is a vector space) of SO (3)
and therefore, can be used in a Kalman filtering framework.

B. ⊞ and ⊟ operators

Hertzberg et al. [17] describe a new syntax that simplifies

working with Lie groups in a filtering and optimization

framework by introducing the ⊞ and ⊟ operators. This

syntax allows us to work with elements of Lie groups in a

notation similar to that of vectors and will be used to describe

our filter derivation. The ⊞ and ⊟ operators are defined

differently for different groups. For R
n, they are simply

defined as the typical addition and subtraction operations.

For attitude quaternions ∈ S3, these operators are defined

by

⊞ :S3 × R
3 → S3

q⊞ θ ≜ q⊗ exp (θ)

⊟ :S3 × S3 → R
3

q⊟ p ≜ log
(

p−1 ⊗ q
)

.

One common application of this syntax can be seen below

in the discretized quaternion dynamics. With θ = ωb
b/I dt,

we have

qb
I (t+ dt) = qb

I (t)⊞ θ (6)

θ = qb
I (t+ dt)⊟ qb

I (t) . (7)

While this syntax is convenient, it is important to note that

the dimensionality of θ and qb
I are different in this case. The

quaternion is not a vector and has four parameters, while θ

has only three parameters but exists in a vector space.

C. Feature Bearing Parameterization

As in [2], we parameterize the feature bearing states in

the camera frame as rotations qζi
c ∈ S3

∼ Rζi
c ∈ SO (3),

which describe the rotation from the camera e3 axis to the

unit vector directed at the feature. The unit vector directed at

feature i with respect to the camera frame c is then defined

by

ζc
i/c =

(

Rζi
c

)⊤
e3 ∈ S2 ⊂ R

3, (8)

where we can see that this simply expresses the direction of

the feature in the camera frame.
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of the covariance update, ⊙ is the Hadamard product, and

1 = [1 1 · · · 1]
⊤

Λ = 1λ⊤ + λ1⊤ − λλ⊤.

IV. RESULTS

To identify improvements to consistency and accuracy, we

employed a Monte Carlo (MC) simulation of a MAV with

a nonlinear aerodynamic model. The multirotor was com-

manded to fly approximately five meters above a simulated

ground plane at a constant forward velocity of one meter per

second. The commanded heading for each iteration evolved

according to a random walk. A fourth-order Runge Kutta

integration scheme was used for the truth comparison. A

sample trajectory is shown in Figure 1.

Camera measurements consisted of static landmarks pro-

jected onto a simulated image plane via the pin-hole camera

model and were corrupted by a small amount of white

noise. Landmarks were chosen by randomly selecting enough

features in the camera’s field of view to fill the state vector.

These same features were then selected in subsequent time

steps until they left the camera’s field of view, at which point

another landmark was randomly generated in the field of

view. This removes any dependence on a feature tracker in

the MC simulation and results in ideal performance because

there are no data association errors. However, this approach

is appropriate for filter comparisons in an MC simulation

because we wish to identify differences in filter performance

under ideal conditions. Accelerometer and gyro measure-

ments were corrupted with Gauassian noise and slowly

varying biases similar to the observed noise in hardware

experiments.

We implemented four different filters for comparison. The

baseline (BL) filter is the same filter derived in [2] except

with the measurement model for features given as (12)

rather than the patch-based model in the original work. This

was primarily done to simplify modeling in the simulation

environment and to guarantee that all filters received the

same measurements. The second filter modifies the baseline

with a linear drag term (DT) as shown in (13), while the

third filter modifies the baseline with keyframe resets (KF)

given in Section III-D. The fourth filter augments the baseline

with a drag term, keyframe reset, and a partial update

(KF+DT+PU). Each of these filters were given identical

inputs and measurements for each MC iteration, and the

relevant process and sensor noise covariance matrices used

in each filter were derived from the corresponding simulation

parameters.

Inverse depth to each feature was initialized using the

recommended values in [19] of ρ0 = 1/2dmin and R0 =
1/16dmin with a minimum distance to each feature assumed to

be dmin = 2 meters. To deal with negative depth estimates,

we used the method in [20], where any negative depth

estimates were immediately re-initialized to dmin and the co-

variance appropriately expanded to account for the additional

uncertainty. Because keyframes are not tied to a specific

image in this estimator (as opposed to the implementation

in [16]) new keyframes were declared when more than one

half of the features present at the declaration of the previous

keyframe were lost.

Absolute accuracy of each filter was compared using the

root mean squared error (RMSE) of the position and attitude

states. Because the filters with a keyframe reset step estimate

this transform with respect to a local keyframe, each time

a new keyframe was declared, (or each time a new node

was created) both the true state xn and the estimated state

x̂n of each filter were saved, even in the filters with no

keyframe reset step. We then calculated the RMSE of the

estimated relative transform (position and attitude) between

the previously declared node frame and the current body

frame T b
n for each filter

JRMS =
∥

∥

∥
T̂ b
n ⊟ T b

n

∥

∥

∥

=

∥

∥

∥

∥

[

p̂n
b/n − pn

b/n

q̂b
n ⊟ qb

n

]∥

∥

∥

∥

.

This method not only ensures that we perform a fair compar-

ison between filters, but it also ensures that the sometimes

large heading errors accumulated before accelerometer and

gyroscope bias measurements converge do not confound

RMSE calculations later on in the trajectory.

Filter consistency was analyzed using normalized estima-

tor error squared (NEES) or the Mahalanobis distance of the

position and attitude states. Because NEES is weighted by

the current covariance matrix of each estimator, the NEES

of a filter with a keyframe reset is calculated with respect to

relative pose, while the NEES of a filter without a keyframe

reset is calculated with respect to global pose. Therefore,

NEES is calculated according to

ϵ =











(

T̂ b
n ⊟ T b

n

)⊤

PT b
n

(

T̂ b
n ⊟ T b

n

)

if KF
(

T̂ b
I ⊟ T b

I

)⊤

PT b

I

(

T̂ b
I ⊟ T b

I

)

otherwise











.

Because NEES is calculated over the transform states with

6-DOF (position and attitude), a histogram of the NEES of

an ideal filter should fit a χ2 distribution with six degrees of

freedom and remain constant over time.

We performed 2016 MC iterations of a five-minute simu-

lation study and calculated the RMSE and NEES at each

time step (250 Hz). The average RMSE and NEES over

time for each filter in the MC simulation study are shown in

Figure 6. In this plot, we see that the RMSE of each filter

decreases as each filter evolves in time and converges on the

unknown biases. A histogram of the RMSE and NEES for

each estimator at the final time is given in Figure 7.

It is clear from the results of this study that using keyframe

resets dramatically affects RMSE and NEES, resulting more

accurate and consistent pose estimates. In filters without a

keyframe reset step, the unobservable position and heading

states cause the filter to become increasingly inconsistent

over time, resulting in large linearization errors and subop-

timal sensor fusion [10].

It appears that while the drag term improves pose accuracy,

it degrades consistency. This is not altogether unexepected as
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the drag term is only partially observable and the resulting

linearization error on the drag term measurement update

(13) causes the filter to become overconfident. The improved

accuracy, however comes from better state integration which

arises from the improved dynamic model.
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Fig. 4. Drag term estimates of a single MC iteration with and without the
partial update.
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Fig. 5. Accelerometer biases of a single MC iteration with and without
the partial update.

The overconfidence caused by the drag term can be mit-

igated by using a partial update. In the (KF+DT+PU) filter,

γb was set to 0.02, which reduced the effect of linearization

error on the state and covariance. Figure 4, shows a single

run of the drag term with and without the partial update. In

this plot, the drag term without the partial update produces

oscillations corresponding to changes in attitude. This is most

certainly incorrect as we have no reason to believe that the

constant drag term should be correlated with attitude. The

partial update attenuates these oscillations and allows us to

benefit from the improved dynamic model. A similar effect is

observed in accelerometer and gyroscope bias estimates. We

see in Figure 5, that without the drag term, acclerometer bias

estimates become strongly correlated with attitude. Again,

the partial update damps this oscillatory response and keeps

the estimate more aligned with truth.

V. CONCLUSIONS

We have shown that augmenting visual-inertial extended

Kalman filtering with keyframe resets, an improved dynamic

model, and partial updates greatly improves accuracy and

consistency in VI filtering. This is clearly demonstrated in

Figures 6 and 7. The use of keyframe resets improves filter

consistency and accuracy without any observed negative
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Fig. 6. Average RMSE of the transform from the most recent keyframe
(top) and average NEES (bottom) for each filter over the entire simulation
time over 2016 runs.

Fig. 7. The χ
2 distribution with six degrees of freedom compared against

each filter at the final simulation time of 5 minutes using 2016 samples.

consequences. Augmenting the dynamic model with a linear

drag term also improves accuracy but at the expense of

degraded consistency. This inconsistency can be directly

mitigated through the use of a partial update, thus, providing

better accuracy from the improved dynamic model, while

maintaining filter consistency. Finally, the combination of all

three proposed improvements was shown to improve filter

accuracy and consistency over the baseline filter.
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