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Abstract— This paper develops observers and controllers for
relative estimation and circumnavigation of a moving ground
target using bearing-only measurements or range with bearing
measurements. A bearing-only observer, range with bearing
observer, a general circumnavigation velocity command for
an arbitrary aircraft, and nonlinear velocity-based multirotor
controller are developed. The observers are designed in the
body-fixed reference frame, while the velocity command and
multirotor controller are developed in the body-level frame,
independent of aircraft heading. This enables target circumnav-
igation in GPS-denied environments when only a camera-IMU
estimator is used for state estimation and ensures observable
conditions for the estimator. Simulation results demonstrate the
effectiveness of the observers, velocity command, and multirotor
controller under various target motions.

I. NOMENCLATURE

Rb
a Rotation from reference frame a to b

â Estimate of true variable a
ā Measurement of a
ȧ Time derivative a

Superscript

i Expressed in the inertial coordinate frame

l Expressed in the aircraft’s body-level coordinate

frame

b Expressed in the aircraft’s body coordinate frame

⊤ Matrix transpose

Subscript

a/b The state of frame a w.r.t. frame b (e.g. position

or velocity)

The skew symmetric operator is defined by ·∧, such that

a∧b = a× b. We also make use the basis vectors

e1 =
[

1 0 0
]⊤

(1)

e2 =
[

0 1 0
]⊤

(2)

e3 =
[

0 0 1
]⊤

, (3)

and denote other unit vectors by e∗.

*This research was supported through the U.S. Department of Defense
SMART Scholarship program and by the Center for Unmanned Aircraft Sys-
tems (C-UAS), a National Science Foundation-sponsored industry/university
cooperative research center (I/UCRC) under NSF Award No. IIP-1650547
along with significant contributions from C-UAS industry members, and in
part by AFRL grant FA8651-13-1-0005.

1Jerel Nielsen is a graduate student in the Electrical and Computer
Engineering department at Brigham Young University, Provo, UT 84602,
USA jerel.nielsen@gmail.com

2Randal Beard is a professor of the Electrical and Computer Engi-
neering department at Brigham Young University, Provo, UT 84602, USA
beard@byu.edu

II. INTRODUCTION

Target tracking and surveillance from an unmanned air

vehicle (UAV) has been an area of interest in the research

community for many years, primarily aimed at military

applications, due to the cost sensors and aerial platforms.

In recent years however, the development and proliferation

of increasingly smaller sensors, such as inertial measurement

units (IMU) and video cameras has caused the emergence of

small unmanned air systems (sUAS). This phenomenon has

greatly multiplied the possibilities for aerial target tracking

and brought forth many works related to the circumnaviga-

tion of targets [1], [2], [3], [4], [5], [6], [7].

In addition to the interest in target circumnavigation

brought on by the multiplicity of sUAS, a significant effort

has been put forth to fuse IMU measurements with camera

measurements. The IMU provides high rate measurements

of linear acceleration and angular rate, while the camera

provides direction or full vector measurements to landmarks,

depending on the type of camera. These types of mea-

surements are ideal for continuous-discrete Kalman filtering

because the mechanization of IMU measurements provides

high rate prediction, while the camera provides low rate

corrections. The fusion of these measurements has been

thoroughly demonstrated through Kalman filtering, optimiza-

tion, and nonlinear techniques in many recent visual-inertial

odometry (VIO) and simultaneous localization and mapping

(SLAM) works [8], [9], [10], [11], [12], [13].

Many of the existing circumnavigation algorithms assume

a known inertial state [1], [5]. These will not perform as well

when the following agent is only equipped with a camera

and IMU for state estimation because the global position

and heading are not observable [14]. Others have developed

algorithms for GPS-denied target tracking and following [3],

[15] with successful hardware demonstrations. Some even

follow targets using image-based visual servoing (IBVS)

techniques [16]. However, these assume a known object size

or appearance and do not address the observability required

for the state estimator to estimate IMU biases, enabling

accurate attitude estimation.

This paper develops observers and controllers for relative

estimation and circumnavigation of a moving ground target,

assuming that the aircraft is equipped with only a camera and

IMU for state estimation. While cameras typically provide

only bearing information, some modern cameras are capable

of providing depth information. When a depth measurement

is not available, we can create pseudo-depth measurements

by approximating target position relative to static landmark

position estimates [17]. Therefore, we develop two observers
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in this paper, where the first uses bearing-only information

and the second takes advantage of full vector information.

Following the target observers, we also use nonlinear system

theory to define a commanded velocity vector to drive the

aircraft to a circumnavigating path about the target. Finally,

a nonlinear controller for a multirotor aircraft is derived in

the body-level reference frame to drive the multirotor to a

commanded velocity. While we do not develop multirotor

state estimator in this paper, we note that observability of

the IMU biases is also guaranteed because of the persistent

excitation of landmark bearing measurements [18] resulting

from the circumnavigating motion.

We begin in Section III by developing the target observers

using bearing-only and range with bearing measurements.

This is followed by Section IV-A, where we derive the

commanded body-level velocity needed to bring an arbitrary

aircraft to a desired radius and altitude relative to the target.

Next in Section IV-B, we design a controller specific to a

multirotor aircraft to drive the multirotor’s velocity to a com-

manded body-level velocity. Lastly, Section V demonstrates

the effectiveness of these observers and controllers under

various target motions and discusses the results.

III. TARGET ESTIMATION

A. Bearing-only Measurements

The position of the target relative to the UAS and its time

derivative are given by

pb
t/b = Rb

i

(

pi
t/i − pi

b/i

)

(4)

ṗb
t/b = Ṙb

i

(

pi
t/i − pi

b/i

)

+Rb
i

(

ṗi
t/i − ṗi

b/i

)

. (5)

Assuming a stationary target ṗi
t/i = 0 and inserting Ṙb

i =

−
(

ω
b
b/i

)∧

Rb
i , this becomes

ṗb
t/b = −ω

b
b/i × pb

t/b − vb
b/i, (6)

where ω
b
b/i and vb

b/i are the angular and linear rates of the

UAS. Here, we have assumed that the aircraft’s visual-inertial

estimator is working well, such that its observable states

are known, and we have also assumed a stationary target.

However, the error will remain bounded for slowly moving

targets as shown in [5].
Proposition 1: Assuming that the camera only measures

target direction et =
pb

t/b
∥

∥

∥
pb

t/b

∥

∥

∥

, an observer for relative target

position may be given by

˙̂pb
t/b = −ω

b
b/i × p̂b

t/b − vb
b/i − k1

(

I − ete
⊤
t

)

p̂b
t/b, (7)

where k1 is a positive gain.
Proof: With the error p̃b

t/b = p̂b
t/b − pb

t/b, error

kinematics are given by

˙̃pb
t/b =

(

−
(

ω
b
b/i

)∧

− k1
(

I − ete
⊤
t

)

)

p̃b
t/b. (8)

Now, define the Lyapunov function candidate L =
1

2

(

p̃b
t/b

)⊤

p̃b
t/b and differentiate to obtain

L̇ = −k1

∥

∥

∥
p̃b
t/b

∥

∥

∥

2

+ k1

(

e⊤t p̃
b
t/b

)2

, (9)

which is negative semi-definite by the Cauchy-Schwarz in-

equality
∣

∣

∣

〈

et, p̃
b
t/b

〉∣

∣

∣
≤ ‖et‖

∥

∥

∥
p̃b
t/b

∥

∥

∥
=
∥

∥

∥
p̃b
t/b

∥

∥

∥
. (10)

Furthermore, the set S =
{(

et, p̃
b
t/b

)
∣

∣

∣
L̇
(

et, p̃
b
t/b

)

= 0
}

contains only trajectories, where p̃b
t/b = 0 or the directions of

et and p̂b
t/b are aligned. Suppose that we begin with a trajec-

tory where these directions are aligned but p̃b
t/b 6= 0. We then

have the relationship et × p̃b
t/b = d

dt

[

et × p̃b
t/b

]

= 0, and

evaluating the time derivative yields ėt×p̃b
t/b+et× ˙̃pb

t/b = 0,

where ėt = −ω
b
b/i × et −

(

I − ete
⊤
t

) vb
b/i

∥

∥

∥
pb

t/b

∥

∥

∥

. Because

et×p̃b
t/b = 0, its time derivative simplifies to vb

b/i×p̃b
t/b = 0.

The alignment of et and p̂b
t/b implies alignment of et and

p̃b
t/b. Therefore when vb

b/i is not aligned with et, we have

vb
b/i × p̃b

t/b 6= 0. Thus, the trajectory will leave the set S,

except when p̃b
t/b = 0 or when vb

b/i is aligned with et.

B. Range with Bearing Measurements

The position and velocity of the target relative to the agent

are given by

pb
t/b = Rb

i

(

pi
t/i − pi

b/i

)

(11)

vb
t/b = Rb

i

(

vi
t/i − vi

b/i

)

. (12)

Assuming a constant velocity target v̇i
t/i = 0 and inserting

Ṙb
i = −

(

ω
b
b/i

)∧

Rb
i , this becomes

ṗb
t/b = vb

t/b − ω
b
b/i × pb

t/b (13)

v̇b
t/b = −ω

b
b/i × vb

t/b − v̇b
b/i, (14)

where the aircraft’s acceleration v̇b
b/i is measured by its

IMU. This may be written in terms of the accelerometer

measurement as

v̇b
b/i = ābb/i + gRb

le3 − ω
b
b/i × vb

b/i, (15)

where g is gravity’s magnitude and ābb/i is the measured

acceleration of the IMU.

Proposition 2: Assuming that the camera measures

relative target position pb
t/b via RGB-D camera or pseudo-

depth, an observer may be given by

˙̂pb
t/b = v̂b

t/b − ω
b
b/i × p̂b

t/b − k1p̃
b
t/b (16)

˙̂vb
t/b = −ω

b
b/i × v̂b

t/b − v̇b
b/i − k2p̃

b
t/b, (17)

where k1 and k2 are a positive gains.

Proof: With the errors p̃b
t/b = p̂b

t/b − pb
t/b and ṽb

t/b =

v̂b
t/b − vb

t/b, error kinematics are given by

˙̃pb
t/b = −ω

b
b/i × p̃b

t/b + ṽb
t/b − k1p̃

b
t/b (18)

˙̃vb
t/b = −ω

b
b/i × ṽb

t/b − k2p̃
b
t/b. (19)

1123



Now, define the Lyapunov function candidate L =

1

2

(

(

p̃b
t/b

)⊤

p̃b
t/b +

1

k2

(

ṽb
t/b

)⊤

ṽb
t/b

)

and differentiate to

obtain

L̇ = −kz

∥

∥

∥
p̃b
t/b

∥

∥

∥

2

, (20)

which is negative semi-definite.

Moreover, the set S =
{(

p̃b
t/b, ṽ

b
t/b

)
∣

∣

∣
L̇
(

p̃b
t/b, ṽ

b
t/b

)

= 0
}

contains only

trajectories, where p̃b
t/b = 0. Suppose that we begin

with a trajectory with p̃b
t/b = 0 and ṽb

t/b 6= 0. Under this

condition, the errors evolve according to

˙̃pb
t/b = ṽb

t/b (21)

˙̃vb
t/b = −ω

b
b/i × ṽb

t/b, (22)

indicating that this trajectory will leave the set S, except

when p̃b
t/b = ṽb

t/b = 0.

�

IV. CIRCUMNAVIGATION

We derive the following velocity and multirotor controllers

in the body-level reference frame to remove any dependence

on heading.

A. Velocity Control

In this section, we derive the commanded velocity in

the body-level reference frame needed to bring an arbitrary

aircraft to a circumnavigating orbit about a target at some

constant, desired relative radius rd and altitude hd. The

relative radius and altitude in the body-level frame are

computed by rotating the body-fixed relative target position

into the body-level frame and projecting onto the horizontal

plane and vertical axis. These are written in terms of the

relative target position by

r =
∥

∥

∥

(

I − e3e
⊤
3

)

Rl
bp

b
t/b

∥

∥

∥
(23)

h = e⊤
3
Rl

bp
b
t/b. (24)

Differentiating these w.r.t. time yields

ṙ = e⊤r

(

vl
t/i − vl

b/i

)

(25)

ḣ = e⊤
3

(

vl
t/i − vl

b/i

)

, (26)

where er is the horizontal target direction in the body-level

frame and er ⊥ e3. Writing er in terms of et, we also have

er =

(

I − e3e
⊤
3

)

Rl
bet

∥

∥

(

I − e3e
⊤
3

)

Rl
bet
∥

∥

. (27)

Proposition 3: Define the errors r̃ = r−rd, h̃ = h−hd,

and let the commanded velocity in the body-level frame be

given by

vl
c = kr r̃er + vt

e3 × er

‖e3 × er‖
+ khh̃e3 +Rl

bv̂
b
t/i, (28)

where kr and kh are positive gains and vt is the tangential

velocity chosen by the user. Note that for bearing-only target

estimation v̂b
t/i = 0 and for range with bearing target

estimation v̂b
t/i = v̂b

t/b + v̂b
b/i.

Proof: Differentiating the relative radial and altitude

errors with respect to time, we obtain

˙̃r = e⊤r

(

vl
t/i − vl

b/i

)

(29)

˙̃
h = e⊤

3

(

vl
t/i − vl

b/i

)

. (30)

Selecting vl
b/i = vl

c from (28), these become

˙̃r = −kr r̃ (31)

˙̃
h = −khh̃, (32)

ensuring that r̃ → 0 and h̃ → 0.

When the target velocity estimate is fixed at zero, as is

the case for bearing-only estimation, the Lyapunov function

candidate L = 1

2

(

r̃2 + h̃2

)

has the time derivative

L̇ = −kr r̃
2 − khh̃

2 +
(

r̃e⊤r + h̃e⊤
3

)

vl
t/i. (33)

Define x =
[

r̃ h̃
]⊤

and (33) becomes

L̇ = −x⊤Ax+ b⊤x, (34)

where

A =

[

kr 0
0 kh

]

(35)

b =

[

e⊤r v
l
t/i

e⊤
3
vl
t/i

]

. (36)

With σmin = min (kr, kh) and σmax = max (kr, kh), we

then have

σmin ‖x‖
2
≤ x⊤Ax ≤ σmax ‖x‖

2
, (37)

which yields the relation

L̇ ≤ σmin ‖x‖

(

‖b‖

σmin
− ‖x‖

)

. (38)

Therefore, L̇ < 0 if ‖x‖ > ‖b‖
σmin

and the solution is

ultimately bounded in finite time. After convergence to the

bounded region, we have

‖x‖ ≤
‖b‖

σmin
, (39)

which depends on target velocity but can be made arbitrarily

small by choosing kr, kh to be arbitrarily large.

�

We note that in practice, the UAS is constrained by its

own maximum velocity, so there exists a limit to the effect

of these gains.

To reduce the likelihood of the target moving out of the

camera’s field of view, the desired radius and altitude may

be chosen according to the direction of the camera optical

axis during level flight. For a known optical axis angle from

vertical θ, we may choose a desired relative altitude and let

the desired radius be chosen mathematically to align the level

optical axis with the target by

rd = hd tan θ. (40)
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B. Multirotor Velocity Control

Neglecting wind and drag, velocity dynamics of a multi-

rotor aircraft in the body-level frame are given by

v̇l
b/i = ge3 −

T

m
Rl

be3 − ω
l
l/i × vl

b/i, (41)

where g gravitational magnitude, T is thrust, m is vehicle

mass, and the yaw rate of the body-level frame is

ω
l
l/i = e3e

⊤
3
Rl

bω
b
b/i. (42)

Assuming a known hover throttle signal sh, we approxi-

mate thrust with T ≈ mg s
sh

and (41) becomes

v̇l
b/i = g

(

I −
s

sh
Rl

b

)

e3 − ω
l
l/i × vl

b/i. (43)

Defining the velocity error ṽ = vl
c−vl

b/i and holding the

command constant, the time derivative is given by

˙̃v = −g

(

I −
s

sh
Rl

b

)

e3 + ω
l
l/i × vl

b/i. (44)

Now, let

u = sRl
be3, (45)

and (44) becomes

˙̃v =
g

sh
u− ge3 + ω

l
l/i × vl

b/i. (46)

This allows us to select u as a vector input that drives

the velocity error to zero. Define the Lyapunov function

candidate L = 1

2
ṽ⊤ṽ and differentiate to obtain

L̇ = ṽ⊤

(

g

sh
u− ge3 + ω

l
l/i × vl

b/i

)

. (47)

Choose

u = sh

(

e3 −
1

g

(

ω
l
l/i × vl

b/i +Kvṽ
)

)

, (48)

and (47) reduces to

L̇ = −ṽ⊤Kvṽ, (49)

which is negative definite for positive definite Kv . Equating

(45) and (48) gives

sRl
be3 = sh

(

e3 −
1

g

(

ω
l
l/i × vl

b/i +Kvṽ

)

)

. (50)

Using the current aircraft attitude estimate and solving for

the commanded thrust signal yields

sc = she
⊤
3

(

Rl
b

)⊤
(

e3 −
1

g

(

ω
l
l/i × vl

b/i +Kvṽ
)

)

. (51)

Now using the commanded thrust signal, we need to solve for

the commanded attitude. Substituting s = sc, Rl
b =

(

Rl
b

)

c
in (50) and dividing by sc, we have

(

Rl
b

)

c
e3 =

sh
sc

(

e3 −
1

g

(

ω
l
l/i × vl

b/i +Kvṽ
)

)

. (52)

We cannot directly solve for
(

Rl
b

)

c
, but this equation tells us

that the commanded body-down axis in the body-level frame

should point in the direction

(

eb
3

)

c
=

e3 −
1

g

(

ω
l
l/i × vl

b/i +Kvṽ

)

∥

∥

∥
e3 −

1

g

(

ω
l
l/i × vl

b/i +Kvṽ

)∥

∥

∥

. (53)

Having the body-down axis pointed in this direction relative

to the body-level frame will drive the multirotor to the com-

manded velocity, regardless of its heading. The commanded

body-forward and body-right axes in the body-level frame

may then be given by

(

eb
2

)

c
=

(

eb
3

)

c
× e1

∥

∥

(

eb
3

)

c
× e1

∥

∥

(54)

(

eb
1

)

c
=
(

eb
2

)

c
×
(

eb
3

)

c
, (55)

and the commanded attitude is now given by
(

Rl
b

)

c
=
[(

eb
1

)

c

(

eb
2

)

c

(

eb
3

)

c

]

. (56)

However, many flight controllers require roll and pitch

angles along with a commanded yaw rate. Roll and pitch

angles are easily computed from
(

Rl
b

)

c
because it has the

form

(

Rl
b

)

c
=





cos θ sinφ sin θ cosφ sin θ
0 cosφ − sinφ

− sin θ sinφ cos θ cosφ cos θ



 , (57)

which leads to the commanded roll and pitch angles

φc = tan−1

(

−
e⊤
2

(

Rl
b

)

c
e3

e⊤
2

(

Rl
b

)

c
e2

)

(58)

θc = tan−1

(

−
e⊤
3

(

Rl
b

)

c
e1

e⊤
1

(

Rl
b

)

c
e1

)

. (59)

Commanded yaw rate can be given by the angular differ-

ence about the body z axis between the camera optical axis

and the target direction vector. Given the fixed optical axis

defined in the multirotor’s body reference frame ebopt, the

commanded body yaw rate is given by

rc = kre
⊤
3

(

ebopt × et
)

, (60)

where kr is a positive gain. This does not drive the angular

error in yaw exactly to zero but a high gain can reduce the

error close to zero.

V. SIMULATION RESULTS

To demonstrate the performance of the observers and

controllers derived in Sections III and IV, we designed a

simulation of a multirotor and a nonholonomic ground vehi-

cle. The multirotor is modeled with nonlinear aerodynamic

drag and collects measurements of the ground vehicle in the

body reference frame each time step. Measurements of the

target are also corrupted with random Gaussian noise that

is zero mean and has a standard deviation of magnitude
1

10
. The ground vehicle uses a bicycle steering model, has

variable elevation, and follows a cycled list of four waypoints

that form the shape of a square about the inertial origin.
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