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Humans and most animals can learn new tasks without forgetting
old ones. However, training artificial neural networks (ANNs) on new
tasks typically causes them to forget previously learned tasks. This
phenomenon is the result of "catastrophic forgetting", in which train-
ing an ANN disrupts connection weights that were important for solv-
ing previous tasks, degrading task performance. Several recent stud-
ies have proposed methods to stabilize connection weights of ANNs
that are deemed most important for solving a task, which helps al-
leviate catastrophic forgetting. Here, drawing inspiration from algo-
rithms that are believed to be implemented in vivo, we propose a
complementary method: adding a context-dependent gating signal,
such that only sparse, mostly non-overlapping patterns of units are
active for any one task. This method is easy to implement, requires
little computational overhead, and allows ANNs to maintain high per-
formance across large numbers of sequentially presented tasks, par-
ticularly when combined with weight stabilization. We show that this
method works for both feedforward and recurrent network architec-
tures, trained using either supervised or reinforcement-based learn-
ing. This suggests that employing multiple, complimentary methods,
akin to what is believed to occur in the brain, can be a highly effective
strategy to support continual learning.

catastrophic forgetting | continual learning | artificial intelligence |
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1. Introduction

Humans and other advanced animals are capable of learning
large numbers of tasks during their lifetime, without necessarily
forgetting previously learned information. This ability to learn
and not forget past knowledge, referred to as continual learning,
is a critical requirement to design ANNs that can build upon
previous knowledge to solve new tasks. However, when ANNs
are trained on several tasks sequentially, they often suffer from
"catastrophic forgetting", wherein learning new tasks degrades
performance on previously learned tasks. This occurs because
learning a new task can alter connection weights away from
optimal solutions to previous tasks.

Given that humans and other animals are capable of con-
tinual learning, it makes sense to look toward neuroscientific
studies of the brain for possible solutions to catastrophic
forgetting. Within the brain, most excitatory synaptic connec-
tions are located on dendritic spines (1), whose morphology
shapes the strength of the synaptic connection(2, 3). This
morphology, and hence the functional connectivity of the asso-
ciated synapses, can be either dynamic or stable, with lifetimes
ranging from seconds to years (2, 4, 5). Particularly, skill ac-
quisition and retention is associated with the creation and
stabilization of dendritic spines (6, 7). These results have
inspired two recent modelling studies proposing methods that

mimic spine stabilization to alleviate catastrophic forgetting
(8, 9). Specifically, the authors propose methods to measure
the importance of each connection and bias towards solving
a task, and then stabilize each according to its importance.
Applying these stabilization techniques allows ANNs to learn
several (≤10) sequentially trained tasks with only a small loss
in accuracy.

However, humans and other animals will likely encounter
large numbers (»100) of different tasks and environments that
must be learned and remembered, and it is uncertain whether
synaptic stabilization alone can support continual learning
across large numbers of tasks. Consistent with this notion,
neuroscience studies have proposed that diverse mechanisms
operating at the systems (10, 11), morphological (2, 4), and
transcriptional (12) levels all act to stabilize learned informa-
tion, raising the question as to whether several complementary
algorithms are required to support continual learning in ANNs.

In this study, we examine whether another neuroscience-
inspired solution, context-dependent gating (XdG), can further
support continual learning. In the brain, switching between
tasks can disinhibit sparse, highly non-overlapping sets of
dendritic branches (10). This allows synaptic changes to occur
on a small set of dendritic branches for any one task, with
minimal interference with synaptic changes that occurred for
previous tasks on (mostly) different branches. In this study,
we implement a simplified version of this context-dependent
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gating (XdG) such that sparse and mostly non-overlapping
sets of units are active for any one task. The algorithm consists
of an additional signal that is unique for each task, and that is
projected onto all hidden neurons. Importantly, this algorithm
is simple to implement and requires little extra computational
overhead.

We tested our method on feedforward networks trained on
100 sequential MNIST permutations (13) and on the ImageNet
dataset (14) split into 100 sequential tasks. XdG or synaptic
stabilization (8, 9), when used alone, is partially effective at
alleviating forgetting across the 100 tasks. However, when
XdG is combined with synaptic stabilization, networks can
successfully learn all 100 tasks with little forgetting. Fur-
thermore, combining XdG with stabilization allows recurrent
neural networks (RNNs), trained using either supervised or re-
inforcement learning, to sequentially learn 20 tasks commonly
used in cognitive and systems neuroscience experiments (15)
with high accuracy. Hence, this neuroscience-inspired solution,
XdG, when used in tandem with existing stabilization meth-
ods, dramatically increases the ability of ANNs to learn large
numbers of tasks without forgetting previous knowledge.

2. Results

The goal of this study was to develop neuroscience-inspired
methods to alleviate catastrophic forgetting in ANNs. Two
previous studies have proposed one such method: stabiliz-
ing connection weights depending on their importance for
solving a task (8, 9). This method, inspired by neuroscience
research demonstrating that stabilization of dendritic spines is
associated with task learning and retention (6, 7), has shown
promising results when trained and tested on sequences of ≤
10 tasks. However, it is uncertain how well these methods
perform when trained on much larger number of sequential
tasks.

We first tested whether these methods can alleviate catas-
trophic forgetting by measuring performance on 100 sequen-
tially presented digit classification tasks. Specifically, we tested
a fully connected feedforward network with two hidden layers
(2000 units each, Figure 1A) on the permuted MNIST digit
classification task (13). This involved training the network on
the MNIST task for 20 epochs, permuting the 784 pixels in
all images with the same permutation, and then training the
network on this new set of images. This test is a canonical
example of an "input reformatting" problem, in which the
input and output semantics (pixel intensities and digit iden-
tity, respectively) are identical across all tasks, but the input
format (the spatial location of each pixel) changes between
tasks (13).

We sequentially trained the base ANN on 100 permutations
of the image set. Without any synaptic stabilization, this
network can classify digits with an accuracy of 98.5% for any
single permutation, but mean classification accuracy falls to
52.5% after the network is trained on 10 permutations, and to
19.1% after training on 100 permutations.

A. Synaptic Stabilization. Given that this ANN rapidly forgets
previously learned permutations of the MNIST task, we next
asked how well two previously proposed synaptic stabiliza-
tion methods, synaptic intelligence (SI) (8) and elastic weight
consolidation (EWC) (9), alleviate catastrophic forgetting.
Both methods work by applying a quadratic penalty term on
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Fig. 1. Network architectures for the permuted MNIST task. The ReLu activation
function was applied to all hidden units. (A) The baseline network consisted of a multi-
layer perceptron with 2 hidden layers consisting of 2000 units each. (B) For some
networks, a context signal indicating task identity projected onto the two hidden layers.
The weights between the context signal and the hidden layers were trainable. (C)
Split networks consisted of 5 independent subnetworks, with no connections between
subnetworks. Each subnetwork consisted of 2 hidden layers with 733 units each,
such that it contained the same amount of parameters as the full network described in
(A). Each subnetwork was trained and tested on 20% of tasks, implying that for every
task, 4 out of the 5 subnetworks was set to zero (fully gated). A context signal, as
described in B, projected onto the two hidden layers. (D) Context-dependent gating
(XdG) consisted of multiplying the activity of a fixed percentage of hidden units by
0 (gated), while the rest were left unchanged (not gated). The results in Figure 2D
involve gating 80% of hidden units.

adjusting synaptic values, multiplied by a value quantifying
the importance of each connection weight and bias term to-
wards solving previous tasks (see Methods). We note that we
use the term "synapse" to refer to both connection weights
and bias terms. Briefly, EWC works by approximating how
small changes to each parameter affect the network output,
calculated after training on each task is completed, while SI
works by calculating how the gradient of the loss function
correlates with parameter updates, calculated during training.
Both stabilization methods significantly alleviate catastrophic
forgetting: mean classification accuracies for networks with
EWC (green curve, Figure 2A) were 95.3% and 70.8% after 10
and 100 permutations, respectively, and mean classification ac-
curacies for networks with SI (magenta curve, Figure 2A) were
97.0% and 82.3% after 10 and 100 permutations, respectively.
We note that we used the hyperparameters that produced
the greatest mean accuracy across all 100 permutations, not
just the first 10 permutations (see Methods). Although both
stabilization methods successfully mitigated forgetting, mean
classification accuracy after 100 permutations was still far be-
low single-task accuracy. This prompts the question of whether
an additional, complementary method can raise performance
even further.

B. Context Signal. One possible reason why classification ac-
curacy decreased after many permutations was that ANNs
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Fig. 2. Task accuracy on the permuted MNIST benchmark task. All curves show the
mean classification accuracy as a function of the number of tasks the network was
trained on, where each task corresponds to a different random permutation of the input
pixels. (A) The green and magenta curves represent the mean accuracy for networks
with EWC and with SI, respectively. (B) The solid green and magenta curves represent
the mean accuracy for networks with EWC and with SI, respectively (same as in A),
and the dashed green and dashed magenta curves represent the mean accuracy for
networks with a context signal combined with EWC or SI, respectively. (C) The dashed
green and magenta curves represent the mean accuracy for networks with a context
signal combined with EWC or SI, respectively (same as in B), and the solid green and
magenta curves represent the mean accuracy for split networks with a context signal
combined with EWC or SI, respectively. (D) The solid green and magenta curves
represent the mean accuracy for networks with EWC or SI, respectively (same as in
A), the black curve represents the mean accuracy of networks with XdG used alone,
and the dashed green and magenta curves represent the mean accuracy for networks
with XdG combined with EWC or SI, respectively.

were not informed as to what permutation, or context, was
currently being tested. In contrast, context-dependent signals
in the brain, likely originating from areas such as the prefrontal
cortex, project to various cortical areas and allow neural cir-
cuits to process incoming information in a task-dependent
manner (16, 17). Thus, we tested whether such a context
signal improves mean classification accuracy. Specifically, a
one-hot vector (N-dimensional consisting of N-1 zeros and 1
one), indicating task identity, projected onto the two hidden
layers. The weights projecting the context signal could be
trained by the network.

We found that networks including parameter stabilization
combined with a context signal had greater mean classification
accuracy (context signal with SI = 89.6%, with EWC = 87.3%,
Figure 2B) than synaptic stabilization alone. However, the
mean classification accuracy after 100 tasks still falls short of
single-task accuracy, suggesting that contextual information
alone is insufficient to alleviate forgetting.

C. Split Network. Recent neuroscience studies have highlighted
how context-dependent signaling not only allows various corti-
cal areas to process information in a context-dependent man-
ner, but selectively inhibits large parts of the network (18, 19).
This inhibition potentially alleviates catastrophic forgetting,
provided that changes in synaptic weights only occur if their
pre- and post-synaptic partners are active during the task,
and are frozen otherwise.

To test this possibility, we split the network into 5 subnet-
works of equal size (Figure 2C). Each subnetwork contained

733 neurons in each hidden layer, so that the number of con-
nection weights in this split network matched the number of
free parameters in the full network. For each permutation, one
subnetwork was activated, and the other four were fully inhib-
ited. Furthermore, the context signal described in Figure 2B
projected onto the hidden layers. This architecture achieved
greater mean classification accuracies (split networks with
context signal and SI = 93.1%, and EWC = 91.4%) than full
networks with stabilization combined with a context signal.

D. Context-Dependent Gating. These results suggests that
context-dependent inhibition can potentially allow networks
to learn sequentially presented tasks with less forgetting. How-
ever, splitting networks into a fixed number of subnetworks
a priori may be impractical for more real-world tasks. Fur-
thermore, this method forces each subnetwork to learn multi-
ple tasks, whereas greater classification accuracies might be
possible if unique, partially-overlapping sets of synapses are
responsible for learning each new task. Thus, we tested a final
method, context-dependent gating (XdG), in which the activ-
ity of X% of hidden units, randomly chosen, was multiplied by
0 (gated), while the activity of the other (1-X)% was left un-
changed. In this study, we gated 80% of hidden units per task.
The identity of the gated units was fixed during training and
testing for the specific permutation, and a different set of fully
gated hidden units was chosen for each permutation. When
XdG was used alone (black curve, Figure 2D), mean accuracy
was 97.1% after 10 tasks, and 61.4% across all 100 permuta-
tions. However, when XdG was combined with SI or EWC,
mean classification accuracy was 95.4% for both stabilization
methods (dashed green and magenta lines), greater than any
of the previous methods we tested. Thus, while XdG alone
does not support continual learning, it becomes highly effective
when paired with existing synaptic stabilization methods.

The optimal percentage of units to gate is a compromise
between keeping a greater number of units active, increasing
the network’s representational capacity, and keeping a greater
numbers of units gated, which decreases the number of con-
nection weight changes and forgetting between tasks. For
the permuted MNIST task, we found that mean classification
accuracy peaked when between 80% or 86.7% of units were
gated (values of 95.4% and 95.5%, respectively) (Supplemental
Figure 1). We note that this optimal value depends on the
network size and architecture, and the number of tasks upon
which the network is trained.

XdG combined with synaptic stabilization allowed networks
to learn 100 sequentially trained tasks with minimal loss in
performance, with accuracy dropping from 98.2% on the first
task to a mean of 95.4% across all 100 tasks. This result raises
the question of whether XdG allows networks to learn even
more tasks with only a gradual loss in accuracy, or if they would
instead reach a critical point where accuracy drops abruptly.
Thus, we repeated our analysis for 500 sequentially trained
tasks, and found that XdG combined with stabilization allowed
for continual learning with only a gradual loss of accuracy
over 500 tasks (XdG combined with SI = 90.7%, Supplemental
Figure 2). In comparison, mean accuracy for stabilization
alone decreased more severely (SI = 54.9%).

E. Analyzing the interaction between XdG and synaptic sta-
bilization. To demonstrate the first point, which is the basis for
SI (8) and EWC (9), we trained a network with stabilization
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(SI) on 100 MNIST permutations, and then measured the mean
accuracy across all permutations after perturbing individual
synaptic values (see Methods for details regarding analysis).
As expected, perturbing more important synapses degraded
accuracy more than perturbing less important synapses (R =
-0.904, Figure 3A).

To demonstrate that learning new tasks requires flexible
synaptic values that can be adjusted sufficient amounts to
learn new tasks, we show the network’s accuracy on each new
MNIST permutation it learns (y-axis, Figure 3B) versus the
distance between the synaptic values measured before and
after training on each MNIST permutation (x-axis). For SI
and EWC, synaptic importance values accumulates across
tasks (see Methods), leading to greater stabilization and less
flexibility as more tasks are learned. For the first several tasks
(red dots), synapses require less stabilization, allowing the
network to adjust synapse values by relatively large amounts to
accurately learn each new task. However, as the network learns
increasing numbers of tasks (blue dots), synaptic importances,
and hence stabilization, increases, preventing the network
from adjusting synapse values large amounts between tasks,
decreasing accuracy on each new task.

To help us understand why XdG combined with stabiliza-
tion better satisfies this trade-off compared to stabilization
alone, in the left panels of Figures 3C-E we show the distribu-
tion of importance values for synapses connecting the input
and first hidden layers (referred to as layer 1, panel C), con-
necting the first and second hidden layers (layer 2, panel D),
and connection the second hidden and output layers (layer 3).
For all three layers, the mean importance values were lower for
networks with XdG (layer 1, panel C: SI = 0.793, SI + XdG =
0.216; layer 2, panel D, SI = 0.076, SI + XdG = 0.026; layer
3, panel D, SI = 1.81, SI + XdG = 0.897). We hypothesized
that having larger number of synapses with low importance
is beneficial, as the network could adjust those synapses to
learn new tasks with minimal disruption to performance on
previous tasks.

To confirm this, we binned the synapses by their impor-
tance, and calculated the Euclidean distance in synaptic values
measured before and after training on the 100th MNIST per-
mutation (right panels, Figures 3C-E). These panels suggest
that synaptic distances are greater for networks with XdG
combined with SI, and that larger changes in synaptic values
are more confined to synapses with low importances. Thus,
these panels suggest that networks with XdG makes large ad-
justments to synapses of relatively little importance, primarily
in layers 1 and 2.

To confirm, we calculated the synaptic distance calculated
using all synapses from each layer, and found that it was
greater for networks with XdG combined with SI (layer 1,
panel C, SI = 1.21, SI + XdG = 1.65; layer 2, panel D, SI
= 1.26, SI + XdG = 8.54; layer 3, panel E, SI = 0.06, SI +
XdG = 0.09). Furthermore, the distance for each synaptic
value multiplied by its importance was lower for networks
with XdG combined with SI (layer 1, panel C, SI = 457.33,
SI + XdG = 83.56; layer 2, panel D, SI = 109.75, SI + XdG
= 17.83; layer 3, panel E, SI = 12.15, SI + XdG = 3.16).
Thus, networks with XdG combined with stabilization can
make larger adjustments to synapse values to accurately learn
new tasks, and simultaneously make smaller adjustments to
synapses with high importance.
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Fig. 3. Analyzing the interaction between XdG and synaptic stabilization. (A) The
effect of perturbing synapses of various importance is shown for a network with
SI that was sequentially trained on 100 MNIST permutations. Each dot represents
the change in mean accuracy (y-axis) after perturbing a single synapse, whose
importance is indicated on the x-axis. For visual clarity, we show the results from
1000 randomly selected synapses chosen from the connection weights to the output
layer. (B) Scatter plot showing the Euclidean distance in synaptic values measured
measured before and after training on each MNIST permutation (x-axis) versus the
accuracy the network achieved on each new permutation. The task number in the
sequence of 100 MNIST permutation is indicated by the red to blue color progression.
(C) Left panel: histogram of synaptic importances from the connections between the
input layer and the first hidden layer (layer 1), for networks with XdG (green curve)
and without (magenta curve). Right panel: Synaptic distance, measured before and
after training on the 100th MNIST permutation, for groups of synapses binned by
importance. (D) Same as (C), except for the synapses connecting the first and second
hidden layers (layer 2). (E) Same as (C), except for the synapses connecting the
second hidden layer and the output layer (layer 3).

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Masse et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


DRAFT

0 20 40 60 80 100
Task number

0

0.2

0.4

0.6

0.8

1
M

e
a

n
 t
a

s
k
 a

c
c
u

ra
c
y

0 20 40 60 80 100
Task number

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
Task number

0

0.2

0.4

0.6

0.8

1

M
e

a
n

 t
a

s
k
 a

c
c
u

ra
c
y

0 20 40 60 80 100
Task number

0

0.2

0.4

0.6

0.8

1

Base          Base MH

EWC          EWC MH

SI               SI MH

EWC + Context         

SI + Context

Split EWC + Context 

Split SI + Context             

EWC          

SI  

EWC + Context

SI + Context             

XdG       EWC + XdG

EWC      SI + XdG         

SI               

A B

C D

Fig. 4. Similar to Figure 2, except showing the mean image classification accuracy
for the ImageNet dataset split into 100 sequentially trained sections. (A) The dashed
black, green and magenta curves represent the mean accuracies for multi-head
networks without synaptic stabilization, with EWC or SI, respectively. The solid
black, green and magenta curves represent the mean accuracies for non multi-head
networks without synaptic stabilization, with EWC or SI, respectively. All further
results involve non multi-head networks. (B) The solid green and magenta curves
represent the mean accuracies for networks with EWC or SI, respectively (same
as in A). The dashed green and magenta curves represent the mean accuracies
for networks with a context signal combined with EWC or SI, respectively. (C) The
dashed green and magenta curves represent the mean accuracies for networks
with a context signal combined with EWC or SI, respectively (same as in B). The
solid green and magenta curves represent the mean accuracies for split networks,
with a context signal combined with EWC or SI, respectively. (D) The black curve
represents the mean accuracy for networks with XdG used alone. The solid green
and magenta curves represent the mean accuracies for networks with EWC or SI,
respectively (same as in A). The dashed green and magenta curves represent the
mean accuracies for networks with XdG combined with EWC or SI, respectively.

By gating 80% of hidden units, 96% of the weights connect-
ing the two hidden layers and 80% of all other parameters are
not used for any one task. This allows networks with XdG to
maintain a reservoir of synapses that have not been previously
used, or used sparingly, that can be adjusted by large amounts
to learn new tasks without disrupting performance on previous
tasks.

F. Context-Dependent Gating on the ImageNet Dataset. A
simplifying feature of the permuted MNIST task is that the
input and output semantics were identical between tasks. For
example, output unit 1 is always associated with the digit
1, output unit 2 is always associated with the digit 2, etc.
We wanted to ensure that our method generalizes to cases
in which the output semantics are similar between tasks, but
not identical. Thus, we tested our method on the ImageNet
dataset, which comprises approximately 1.3M images, with
1000 class labels. For computational efficiency, we used images
that were downscaled to 32 X 32 from the more traditional 256
X 256 resolution. We divided the dataset into 100 sequential
tasks, in which the first 10 labels of the ImageNet dataset were
assigned to task 1, the next 10 labels were assigned to task
2, etc. The 10 class labels used in each of the 100 tasks are
shown in Supplemental Table 1. Such a test can be considered
an example of a "similar task" problem as defined by (13).

We tested our model on the ImageNet tasks using two
different output layer architectures. The first was a "multi-
head" output layer, which consisted of 1000 units, one for each
image class. The output activity of 990 output neurons not

applicable to the current task was set to zero.
To measure the maximum obtainable accuracy our networks

could achieve when sequentially trained on the 100 tasks, we
trained and tested networks without stabilization and with
resetting synaptic values between tasks, and measured their
accuracy at learning each new task. We disregarded accuracy
on previous tasks. These networks achieved a mean accuracy
of 56.5%, representing the maximum any network of this
architecture could achieve across the sequence of 100 tasks.In
comparison, mean accuracy across 100 sequentially trained
tasks using the "multi-head" output layer was 36.7% without
synaptic stabilization, and adding synaptic stabilization almost
fully alleviated forgetting (SI = 51.1%, EWC = 54.9%)

The multi-headed network architecture, while potentially
effective, can be impractical for real-world implementations as
it requires one output neuron for each possible output class
that the network might encounter, which might not be known
a priori. Thus, we also tested a "single-head" output layer,
which consisted of only 10 units, and the activity of these 10
units was associated with different image classes in different
tasks. Mean classification accuracy for this more challenging
architecture was substantially lower (without stabilization =
10.5%, SI = 12.3%, EWC = 11.6%).

We wanted to know whether our method could alleviate
forgetting for this more challenging architecture, in which
output units were associated with different image classes. Thus,
we repeated our analysis used for Figures 2B-D. We found that
adding a context signal substantially increased mean accuracy
(context signal with SI = 42.7%, with EWC = 44.4%, Figure
5B). Splitting networks into five subnetworks did not lead to
any improvement over using stabilization and a context signal
alone (split networks with context signal and SI = 40.0%,
and EWC = 42.5%, Figure 5C). Next, we trained networks
with XdG, in which we gated 80% of hidden units. Mean
accuracy for XdG alone (black curve, Figure 5D) was greater
than SI or EWC used alone, but was less than networks with
stabilization and a context signal, or split networks (XdG =
28.1%). However, when XdG was combined with SI or EWC,
networks could learn all 100 tasks with little forgetting (XdG
with SI = 50.7%, with EWC = 52.4%, Figure 5D). Thus,
XdG used in tandem with synaptic stabilization can alleviate
catastrophic forgetting even when the output domain differs
between tasks.

G. Context-Dependent Gating of Recurrent Neural Networks.
The sequential permuted MNIST and ImageNet tests demon-
strated that XdG, combined with synaptic stabilization, can
alleviate forgetting for feedforward networks performing clas-
sification tasks, trained using supervised learning. We next
demonstrate that our method generalizes and performs well in
other task conditions. Thus, we trained recurrent neural net-
works (RNNs) on 20 sequentially presented cognitively demand-
ing tasks (15). These 20 tasks are similar to those commonly
used in neuroscience experiments, and involve decision-making,
working memory, categorization and inhibitory control. In a
physical setting, all tasks involve one or multiple visual motion
stimuli, plus a fixation cue, that are presented to a subject,
who reports their decisions by either maintaining gaze fixation
(akin to withholding its response) or by performing a saccadic
eye movement to one of several possible target locations.

Schematics of the first 4 tasks are shown in Figure 5A.
In the Go task, trials begin with a fixation period lasting
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Fig. 5. Task accuracy of recurrent networks sequentially trained on 20 cognitive-
based tasks. (A) Schematics of the first four tasks. All trials involve a motion direction
stimulus (represented by the white dot pattern and green motion direction arrow), a
fixation cue (represented by the white centrally located dot), and a action response
using an eye saccade (represented by a magenta arrow). (B) Green represent mean
accuracy for networks with stabilization (SI) combined with a rule cue, trained using
supervised learning. Magenta dots represent the mean accuracy for networks with
stabilization (SI) combined with XdG, trained using supervised learning. Black dots
represent the mean accuracy for networks with stabilization (SI) combined with XdG,
trained using reinforcement learning.

a random duration, followed by a motion direction stimulus
(represented by a white dot pattern and white arrow) that
could occur in one of two locations. As soon as the fixation
cue (white centrally located dot) disappears, the network
should respond by moving in the dire the motion stimulus
(represented by the red arrow). The RT-Go task is similar to
the task above, except crucially, the network should ignore the
fixation cue and respond as soon as it is presented with the
motion stimulus. In the Delay Go task, the motion stimulus is
briefly presented, and the network must maintain the stimulus
direction in short-term memory across a delay period until
the fixation cue disappears, at which time it can respond.
Lastly, the Anti-Go is similar to the Go task, except that the
network must respond in the direction 180 degrees opposite
to the motion direction stimulus. Thus, to learn many tasks,
the network must learn to ignore, or to actively work against,
information it has learned in previous tasks. Full description
of all 20 tasks is provided in the Methods.

Our RNN consisted of 256 LSTM cells (20) that received
input from 64 motion direction tuned input units and 4 fixa-
tion tuned units. It projected onto 9 output units; one unit
represented the choice to maintain fixation (i.e. withhold
a response), and the other 8 represented responses in eight
different directions.

To assess how various methods can learn these tasks without

forgetting, we trained networks on all tasks sequentially, and
then measured accuracy for each task. We first trained RNNs
using standard supervised learning, in which the network
parameters were adjusted to minimize the difference between
the actual network output and the target output. Using this
approach, RNNs equipped with synaptic stabilization (SI)
and a context-signal (green dots, Figure 5B) achieved a mean
task accuracy of 80.0%, with a range of 43.1% to 100.0%. In
comparison, networks with stabilization combined with XdG
achieved a mean accuracy 98.2%, with a range of 92.9% to
100.0%.

The networks described above were all trained using su-
pervised learning. If our method is to work in more practical
settings, and if something akin to this method is implemented
in the brain, then it should be compatible with reinforcement-
learning based training. Thus, we repeated our test on net-
works with synaptic stabilization (using a modified version
of SI compatible with reinforcement learning, see Methods)
combined with XdG. Mean accuracy across all 20 tasks was
96.4%, with a range of 86.4% to 100.0%. Thus, these re-
sults demonstrate that XdG, when combined with synaptic
stabilization, can allow RNNs to learn a large sequence of cog-
nitively demanding tasks, and is compatible with supervised
or reinforcement-learning.

3. Discussion

In this study, we have shown that context-dependent gating
(XdG), used in conjunction with previous methods to stabilize
synapses, can alleviate catastrophic forgetting in feedforward
and recurrent networks trained using either supervised or rein-
forcement learning, on large numbers of sequentially presented
tasks. This method is simple to implement and computa-
tionally inexpensive. Importantly, this study highlights the
effectiveness of employing multiple, complimentary strategies
to alleviate catastrophic forgetting, as opposed to relying on a
single strategy. Such an approach would appear to be consis-
tent with that used by the brain, which employs a diverse set
of mechanisms to combat forgetting and promote consolidation
(4, 6, 10, 11).

A. Transfer learning. Humans and other advanced animals can
rapidly learn new rules or tasks, in contrast to the thousands
of data points usually required for ANNs to accurately per-
form new tasks. This is because most new tasks are at least
partially similar to tasks or contexts that have been previously
encountered, and one can use past knowledge learned from
these similar tasks to help learn the rules and contingencies of
the new task. This process of using past knowledge to rapidly
solve new tasks is referred to as transfer learning, and several
groups have recently proposed how ANNs can implement this
form of rapid learning (21–23).

Although the context-dependent gating method we have
proposed in this study likely does not support transfer learning
in its current form, one could speculate how such a signal could
be modified to perform this function. Suppose that specific
ensembles of units underlie the various cognitive processes,
or building blocks, required to solve different tasks. Then
learning a new task would not require relearning entirely
new sets of connection weights, but rather implementing a
context-dependent signal that activates the necessary building
blocks, and facilitates their interaction, in order to solve the
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new task. PathNet (23), a recent method in which a genetic
algorithm selects a subset of the network to utilize for each
task, is one prominent example of how selective gating can
facilitate transfer. Although it is computationally intensive,
requires freezing previously learned synapses, and has only
demonstrated transfer between two sequential tasks, it clearly
shows that gating specific network modules can allow the agent
to reuse previously learned information, decreasing the time
required to learn a new task.

We believe that further progress towards transfer learning
will require progress along several fronts. First, as humans
and other advanced animals can seamlessly switch between
contexts, novel algorithms that can rapidly identify network
modules applicable to the current task are needed. Second,
algorithms that can identify the current task or context, com-
pare it to previously learned contexts, and then perform the
required gating based on this comparison, are also required.
The method proposed in this study clearly lacks this capability,
and developing this ability is crucial if transfer learning is to
be implemented in real-world scenarios.

Third, and perhaps most important, is that the network
must represent learned information in a format to support the
above two points. If learned information is located diffusely
throughout the the network, then activating the relevant cir-
cuits and facilitating their interaction might be impractical.
Strategies that encourage the development of a modular rep-
resentation, as is believed to occur in brain (24), might be
required to fully implement continual and transfer learning
(25). We believe that in vivo studies examining how various
cortical and subcortical areas underlie task learning will be
provide invaluable data to guide the design of novel algorithms
that allow ANNs to rapidly learn new information in a wide
range of contexts and environments.

B. Related methods to alleviate catastrophic forgetting. The
last several years has seen the development of several methods
to alleviate catastrophic forgetting in neural networks. Earlier
approaches, such as Progressive Neural Networks (26) and
Learning Without Forgetting (27), achieved success by adding
additional modules for each new task. Both methods include
the use of a multi-head output layer (see Figure 4A), and
while effective, in this study we were primarily interested in
the more general case in which the network size cannot be
augmented to support each additional task, and in which the
same output units must be shared between tasks.

Other studies are similar in spirit to SI (8) and EWC (9)
in that they propose methods to stabilize important network
weights and biases, (28, 29), or to stabilize the linear space of
parameters deemed important for solving previous tasks (30).
While we did not test the performance of these methods, we
note that like EWC and SI, these algorithms could in theory
also be combined with XdG to potentially further mitigate
catastrophic forgetting.

Another class of studies have proposed similar methods
that also gate parts of the network. Aside from PathNet (23)
described above, recent methods have proposed gating network
connection weights (31) or units (32) to alleviate forgetting.
The two key differences between our method and theirs are:
1) gating is defined a priori in our study, which increases com-
putational efficiency, but potentially makes it less powerful,
and 2) we propose to combine gating with parameter stabi-
lization, while their methods involve gating alone. We tested

the Hard Attention to Task (HAT) method (32) and found
that it could learn 100 sequential MNIST permutations with
a mean accuracy of 93.0% (Supplementary Figure 3), greater
than networks with EWC or SI alone. That said, combining SI
and XdG still outperforms HAT (95.8% when using the same
number of training epochs as HAT, Supplementary Figure 3),
and is computationally less demanding. This further highlights
the advantage of using complementary methods to alleviate
forgetting, but also suggests that adding synaptic stabilization
to HAT could allow it to further mitigate forgetting.

C. Summary. Drawing inspiration from neuroscience, we pro-
pose that context-dependent gating, a simple to implement
method with little computational overhead, can allow feed-
forward and recurrent networks, trained using supervised or
reinforcement learning, to learn large numbers of tasks with
little forgetting when used in conjunction with synaptic stabi-
lization. Future work will build upon this method so that it
not only alleviate catastrophic forgetting, but can also support
transfer learning between tasks.

Materials and Methods

Network training and testing was performed using the machine-
learning framework TensorFlow (33). All code is available at
https://github.com/nmasse/Context-Dependent-Gating.

Feedforward Network Architecture. For the MNIST task, we used a
fully connected network consisting of 784 input units, two hidden
layers of 2000 hidden units each, and 10 outputs. We did not
use a multi-head output layer, and thus the same 10 output units
were used for all permutations. The ReLU activation function and
Dropout (34) with a 50% drop percentage was applied to all hidden
units. The softmax nonlinearity was applied to the units in the
output layer.

The ImageNet network included four convolutional layers. The
first two layers used 32 filters with 3 x 3 kernel size and 1 x 1 stride,
and the second two layers used 64 filters with the same kernel size
and stride. Max pooling with a 2 x 2 stride was applied after layers
two and four, along with a 25% drop rate. Gating was not applied
to the convolutional layers. After the four convolutional layers were
two full connected hidden layers of 2000 units each. As above,
the ReLu activation function and a 50% drop rate was applied to
the hidden units in the two fully connected layers. The softmax
activation function was applied to the output layer. We primarily
used a single-head output layer, with 10 units in the output layer
that were used in all tasks (Figures 4A-D). For comparison, we also
tested a multi-head output layer (Figure 4A only) consisting of 1000
output units wherein 990 of the units were masked for any one task.

For computational efficiency, we first trained the ImageNet net-
work on a different, yet similar, dataset, which combined the 50000
images of the CIFAR-10 dataset with the 50000 images of the
CIFAR-100 dataset. After training, we fixed the parameters in
the convolutional layers, and then trained the parameters in the
fully-connected (and not the convolutional) layers of the network
on the 100 tasks of the ImageNet dataset.

Recurrent Network Architecture. All RNNs consisted of 256 LSTM
cells (20) that projected onto 1 unit representing the choice to main-
tain fixation (i.e. withhold a response), and 8 units representing
responses towards eight different directions. The softmax nonlinear-
ity was applied to activity in the output layer. Input into the RNN
consisted of 4 fixation tuned units and 2 sets of 32 motion direction
tuned units, in which each set represents visual motion input from
one of two spatial locations. For RNNs that used a context signal
(green dots, Figure 5B), the input consisted of an additional one-hot
vector of length 20 representing the current task.
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Network Training and Testing. For all networks, parameters were
trained using the Adam optimizer (35) (η = 1 × 10−3, β1 = 0.9,
β2 = 0.999). The optimizer state was reset between tasks.

When training the feedforward and recurrent networks using
supervised learning, we used the cross-entropy loss function. We
trained the networks for 20 epochs for each MNIST task, 40 epochs
for each ImageNet task, and for 6000 training batches on each
cognitive based task. We used a batch size of 256 and a learning
rate of 0.001. We tested classification accuracy on each task using
10 batches; for the MNIST and ImageNet tasks, the test images
were kept separate from the training images.

In addition to supervised learning, we also trained RNNs using
the actor-critic reinforcement learning method (36),

Rτ =
T∑
t=τ

γt−τ rt, [1]

where γ ∈ [0, 1) is the discount factor and rt is the reward
given at time t. For this method, the RNN output consists of a
9-dimensional policy vector that maps the activity of the RNN into
a probability distribution over actions, and a value scalar which
estimates the future discounted reward. Specifically, we denote
the policy output as πθ(at|ht), where θ represents the network
parameters, at the vector of possible actions at time t, and ht as the
output activity of the LSTM cells. We also denote the value output
as Vθ(ht). The loss function can be broken down into expressions
related to the value output, the policy output, and an entropy term
that encourages exploration. First, the network should minimize the
mean squared error between the predicted and expected discounted
future reward,

LV =
1

2T

T∑
t=1

[Vθ(ht)− rt − γVθ(ht+1)]2. [2]

Second, the network should maximize the logarithm of choosing
actions with large advantage values (defined below)

LP = −
1
T

T∑
t=1

At log(πθ(at|ht)), [3]

In this study, we use the generalized advantage estimation (37),
which represents the difference between the expected and the actual
reward:

At = rt + γVθ(ht+1)− Vθ(ht) [4]
We note that when calculating the gradient of the policy loss

function, one treats the advantage function as a fixed value (i.e. one
does not compute the gradient of the advantage function).

We also include an entropy term that the network should max-
imize that encourages exploration by penalizing overly confident
actions:

LH = −
1
T

T∑
t=1

πθ(at|ht) log(πθ(at|ht)). [5]

We obtain the overall loss function by combining all three terms:

L = LP + βLV − αLH , [6]
where α and β control how strongly the entropy and value loss

functions, respectively, determine the gradient.

Synaptic Stabilization. The context-dependent gating method pro-
posed in this study was used in conjunction with one of two previ-
ously proposed methods to stabilize synapses: synaptic intelligence
(SI) (8) and elastic weight consolidation (EWC) (9). Both methods
work by adding a quadratic penalty term to the loss function that
penalizes weight changes away from their values before starting
training on a new task:

L = Lk + c
∑
i

Ωi(θi − θprevi )2, [7]

where Lk is the loss function of the current task k, c is a hyper-
parameter that scales the strength of the synaptic stabilization, Ωi
represents the importance of each parameter θi towards solving the
previous tasks, and θprevi is the parameter value at the end of the
previous task.

For EWC, Ωki is calculated for each task k as the diagonal
elements of the Fisher information F :

F = Ex∼Dk,y∼pθ(y|x)

[(
∂ log pθ(y|x)

∂θ

)(
∂ log pθ(y|x)

∂θ

)T]
, [8]

where the inputs x are sampled from the data distribution for
task k, Dk, and the labels y are sampled from the model pθ. We
calculated the Fisher information using an additional 32 batches of
256 training data points after training on each task was completed.

For SI, for each task k, we first calculated the product between
the change in parameter values, θ(t)− θ(t− 1), with the negative of
the gradient of the loss function ∂Lk(t)

∂θ
, summed across all training

batches t:

ωki =
∑
t

(θi(t)− θi(t− 1))
−∂Lk(t)
∂θi

[9]

We then normalize this term by the total change in each param-
eter ∆θi =

∑
t
(θi(t)− θi(t− 1)) plus a damping term ζ:

Ωki = max
(

0,
ωki

(∆θi)2 + ζ

)
. [10]

Finally, for both EWC and SI, the importance of each parameter
i at the start of task m is the sum of Ωki across all completed tasks:

Ωi =
∑
k<m

Ωki . [11]

Parameter Stabilization for Reinforcement Learning. The method de-
scribed above to calculate SI is ill-suited for reinforcement learning,
as the policy loss function depends on the estimated discounted
future reward, which can be inaccurate, especially early in training.
Thus, we first calculate the product between the change in param-
eter values, θ(t) − θ(t − 1), and the change in the mean reward
obtained for each batch, R(t)−R(t−1), summed across all training
batches t:

ωki =
∑
t

(θi(t)− θi(t− 1))(R(t)−R(t− 1)). [12]

To normalize, we first calculate the sum of the absolute value of
this product that represents the maximum value the above equation
can obtain if sign of the change in parameter and the sign of the
change in mean reward are always aligned:

ωki =
∑
t

|θi(t)− θi(t− 1))(R(t)−R(t− 1))| . [13]

We then divide these two terms, plus a damping term ζ, and
take the absolute value:

Ωki =

∣∣∣∣ ωki
ωki + ζ

∣∣∣∣ . [14]

Hyperparameter Search. We tested our networks on different sets of
hyperparameters to determine which values yielded the greatest
mean classification accuracy. When using SI, we tested networks
with with c = {0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2},
and ζ = {0.001, 0.01} When using EWC, we tested networks with
c = {0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 100, 200, 500, 1000}. Furthermore, for
the MNIST dataset, we tested networks with and without a 20%
drop rate in the input layer.

Once the optimal c and ζ (for SI) for each task were determined,
we tested one additional value c = ci+cj

2 , where ci and cj were the
two values generating the greatest mean accuracies (i and j were
always adjacent). The hyperparameters yielding the greatest mean
classification accuracy across the 100 or 500 MNIST permutations,
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the 100 ImageNet tasks, or the 20 cognitive tasks, were used for
Figures 2, 4 & 5.

Training the RNNs using reinforcement learning required addi-
tional hyperparameters, which we experimented with before settling
on fixed values. We set the reward equal to −1 if the network broke
fixation (i.e. did not choose the fixation action when required), equal
to −0.01 when choosing the wrong output direction, and equal to
+1 when choosing the correct output direction. The reward was
0 for all other times, and the trial ended as soon as the network
received a reward other than zero. The constant weighting the value
loss function, β, was set to 0.-1. The discount factor, γ, was set to
0.9 although other values between 0 and 1 produced similar results.
Lastly, the constant weighting the entropy loss function, α was set
to 0.0001, and the learning rate was set to 0.0005.

Analysis methods. For our analysis into the interaction between
synaptic stabilization and XdG, we trained two networks, one with
stabilization (SI) and one with stabilization combined with XdG, on
100 sequential MNIST permutations. After training, we tested the
network with SI alone after perturbing single connection weights
located between the last hidden layer and the output layer. Specifi-
cally, we randomly selected 1000 connections weights one at a time,
measured the mean accuracy on all 100 MNIST permutation after
perturbing the weights by +10, and then by -10, and then compared
the mean accuracy after perturbation to the mean accuracy without
perturbation. Figure 3A shows the scatter plot of the difference
in mean accuracy before and after perturbation (y-axis) with the
synaptic importance (x-axis) calculated using equation 11.

For Figure 3B, we wanted to compare network flexibility (how
much its connections weights and biases could be adjusted during
training) and the network’s accuracy on each new task. Thus,
we calculated the Euclidean distance between the values of the
connection weights and biases before and after training on each
task, and compared this value with the network’s accuracy on the
new task (Figure 3B). This was done for the entire sequence of 100
MNIST permutations.

For the comparison between synaptic importance and their
change in value when learning a new task (Figures 3C-E, right
panels), we binned the connection weights based on their impor-
tance using 80 evenly spaced bins on the logarithmic scale between
0.001 and 10 (same bins as used for histograms in left panels of
the same figure). For display purposes, we set the minimum impor-
tance value to 0.001. Then, for all connection weights in a bin, we
calculated their Euclidean distance before and after training on the
100th MNIST permutation. This was calculated for networks with
SI only (magenta curves) and with SI combined with XdG (green
curves).
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