


2) Landing site selection. During an emergency, the availability of an officially designated landing site is unlikely. In that case, safety systems
for sUASmust be able to identify a suitable location for landing or crashing. This could include locations such as building tops, trees, lakes, parks,
or roads. This task could be performed offline before the mission so that a database of landing site contingencies exists along the flight plan.

3) Path planning. Once a new emergency landing site is selected, an efficient path to the desired location must be designed. Examples include
optimizing trajectories for power consumption, time to land, or observability constraints. If a sense-and-avoid system is present, a reactive path
planning schememay be used to safely guide thevehicle through air traffic. Additionally, a 3Dobstaclemap could be used to remainwithinUTM-
cleared airspace or to plan paths around static obstacles such as buildings or trees.

4)Fault tolerant control. Depending on the vehicle and the nature of the emergency event, specialized autopilot routinesmay need to be used to
maintainmaneuverability of damaged vehicles.Additionally, it is the goal of the controller to ensure that paths created by the planner are followed.

5) Tactical maneuvering. As the sUASmakes its final approach to the impromptu landing site, there are likely to be dynamic ground obstacles
such as cars, animals, and people that were not accounted for in the path planning stage. The goal of tactical maneuvering is to react to these non-
cooperative ground obstacles using on-board sensing so that the vehicle can land without causing harm to the ground obstacles or itself.
Depending on the population density of the chosen landing site, this step of emergency landing can be themost challenging in regard to safety and
is known as the “last 50 feet” concern by UTM [5].

Safe2Ditch is a concept for an on-board crashmanagement system that continuouslymonitors vehicle health andmission objectives. This paper
focuses on real-time landing site selection and builds upon [10] to introduce visual situation awareness into the site selection process.While other
methods discussed in Sec. II have designed landing site selection schemes, this paper incorporates visual tracking so that the current state of
potential ditch sites can be assessed while still at higher altitudes. In particular, this paper contributes an implementation that combines a database
of landing sites and real-time sensor information. Simulation and hardware experiments demonstrate the ability of Safe2Ditch to quickly select the
best landing site using visual tracking.

The paper is organized as follows. Section II reviews current solutions relevant to forced landing of sUAS. Section III discusses each of the
emergency landing steps in the context of the Safe2Ditch architecture. Section IV discusses the vision processing and target tracking algorithms
that were designed and implemented to inform Safe2Ditch about obstacle motion on the ground. In Sec. V, the Safe2Ditch system is tested in
simulation and in hardware. A discussion of the results is also given. We conclude with final thoughts and next steps in Sec. VI.

II. Related Work

A. Emergency Landing

One of the earliest fully integrated emergency landing systems to be flown on-board an unmanned aerial vehicle was by Scherer et al. [11]. In
real-time, the system demonstrated the ability to detect, select, and navigate a full-scale unmanned helicopter to an unprepared landing site. Using
lidar for perception and on-board computing resources, the system is able to build an online 3Dpoint cloud of the terrain surrounding the full-scale
unmanned helicopter. This terrain model is then used to evaluate how well a 3D model of the landing gear fits at different locations. Once the
contact of the landing gear to the terrain model is nearly level, the landing site is determined and the helicopter autonomously navigates and
lands there.

Mejias and Fitzgerald [12] developed a visual landing site detection systemusing amethod based on image segmentation.Applied to video data
from a Cessna 172 flying at approximately 1500 ft (450 m) above ground level, the detection system is able to find large potential landing sites.
Warren et al. [13] use a similar system that incorporates digital elevation models (DEM) and inertial measurement unit (IMU) data to perform
dense 3D reconstruction using a structure-from-motion technique. Shen et al. [14] also developed a visual landing site detection system for
manned fixed-wing flight to assist pilots in choosing an appropriate landing site, but was only tested on simulated data. Note that the
aforementioned works do not explicitly handle cases of motion in the potential landing sites.

While these automated systemswere successful for larger aircraft, in this paperwe target sUASwith limited size,weight, and power constraints.
Additionally, the operational envelop that we are targeting is below 400 ft (120 m) and with only 1 min to land once the emergency is triggered.
Eendebak et al. [15] demonstrate a vision-based landing site selection on postprocessed video acquired from a handheld camera at 100 ft (30 m).
Using a background estimation filter, foreground elements are exposed and a graph-cut-based segmentationmethod is used to create a 2Dobstacle
map that allows the safest landing site to be chosen. However, the use of background estimation and subtraction requires slow, smooth flight and
the sUAS must hover in place while potential landing sites are being imaged. In the work of Mackay et al. [16], landing site identification for
multirotors is proposed using a plane-fitting algorithm on RGB-D point-cloud data.

Existing commercial solutions are based heavily on parachute technology, such as ParaZero [17]. These passive systems are inexpensive and
effective at ensuring a safe descent, but leave the sUAS vulnerable to wind and crippled in cooperative sense-and-avoid capability. Other sUAS
simply rely on the human operator to steer the drone to a clear landing zone as it slowly descends [18].

Research in other facets of the sUAS emergency landing problem has also been progressing. In emergency landing of manned aviation,
Meuleau et al. [19] present a method of assessing risk and planning minimum risk paths around obstacles such as weather, terrain, and urban
development, which are determined via an offline database and ground control communication. Di Donato and Atkins [20] proposed enhancing
the site-selection process with the addition of nontraditional information such as real-time mobile phone activity to assist in avoiding densely
occupied areas. In contrast, ourwork assumes a database of preselected ditch sites and focuses on refining site selection based on real-timemotion.
Castagno et al. [21] proposed a risk-based planner for rooftop landing of sUAS using a database that is constructed offline. Instead of focusing on
the real-time state of potential landing sites using local sensor input, Castagno et al. [21] use a real-time planner to assess both the landing and path
risk of nearby rooftops outside the perceptual range. Thework of Coombes et al. [22] provides a landing site reachability analysis of a fixed-wing
sUAS that is gliding due to engine failure. Mueller and D’Andrea [23] demonstrate fault-tolerant control of a quadrotor with complete loss of
various propellers.

B. Visual Target Tracking

Visual target tracking is an active area of computer vision research [24,25]. Three defining characteristics of visual trackers are 1) their ability to
track from a stationary versusmoving camera, 2) their ability to track single versusmultiple objects, and 3) detection-free tracking, whichmust be
manually initialized, versus tracking-by-detection, which can self-initialize tracks. In this paper, we use an on-board visualmultiple object tracker
that can self-initialize tracks moving independently from the vehicle’s motion.

In a survey of vision-based techniques used onUAS,Kanellakis andNikolakopoulos [26] discuss variousworks focusing on aerial surveillance
and tracking of ground objects. Rodríguez-Canosa et al. [27] use Parallel Tracking and Mapping (PTAM) for motion estimation, which is then
used to create an artificial optical flow field. The difference between Lucas-Kanade optical flow and the artificial flow field exposes dynamically
moving objects; however, this technique requires initialization using amarkermap andmay struggle to detect objectsmovingwith similar velocity
to the multirotor. Li et al. [28] successfully track other sUAS for sense-and-avoid applications in postprocessed aerial footage; however, they
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assume that targets are nondeformable, which limits the types of objects that can be tracked (e.g., nonbiological objects). Jiang and Cao [29] are
able to track multiple objects in postprocessed aerial video using detections based on background modeling, but do not use Bayesian filtering for
track management. Teutsch and Krüger [30] also track multiple objects in postprocessed aerial videos and demonstrate traffic surveillance and
tracking from a constant altitude. Their approach is most similar to the tracking pipeline used in our work, but assumes constant-altitude stable
flight over structured environments, which results in smooth video input. The visual multiple object tracker used in this paper can detect and track
an arbitrary number of targets in real-time using a bank of Kalman filters.

III. Safe2Ditch Architecture

Safe2Ditch is an sUAS crash management system. Its goal is to provide emergency landing capability to either rotorcraft or fixed-wing
autonomous vehicles. By communicating with the vehicle’s sensors and autopilot, the set of core Safe2Ditch algorithms is able to react to
emergency situations. To allow widespread access to the safety that this system provides, Safe2Ditch is designed as a flexible framework capable
of interfacing with a wide variety of commercial off-the-shelf (COTS) components.

Because of the modular construction of Safe2Ditch, application to fixed-wing vehicles is done by replacing the path planning module. The
current implementation specifically addresses multirotors.

Tomanage each of the emergency landing steps as defined in Sec. I, Safe2Ditch has a number of subsystem components as shown in Fig. 1. This
paper addresses and demonstrates the six components shaded with light gray, while health monitoring and tactical maneuvering are left for future
work. The function and interdependence of each subsystem is described below in the context of the notional emergency scenario depicted inFig. 2.
As the system manages forced landings and crashes, the vehicle’s priorities are to

1) avoid people,
2) avoid damaging property, and
3) avoid damaging itself.

Fig. 1 Notional flight scenario in which Safe2Ditch would be used.
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These priorities are encoded as risks and are allowed to take on different weights in other works [19,21]. We assume that once Safe2Ditch is

engaged, thevehicle is only able to descend andmove laterally (i.e., it cannot ascend). This assumption simulates the urgency of quickly landing in

the event that only 60 s of flight capability is available due to depleted battery.

A. Health Monitoring

The Safe2Ditch system is continuously running for the duration of the sUAS mission. During normal operation, Safe2Ditch is simply

monitoring vehicle health and communication channels that may relay an emergency land directive. For example, the battery or fuel required for

the mission completion may be insufficient due to unexpected headwinds, a fuel leak, or poor battery health. Alternatively, the vehicle state

determined by the autopilot may deviate significantly from the internal dynamicmodel of the healthmonitoring systems. If either of these or other

performance anomalies occur, the health monitoring system engages Safe2Ditch to manage the emergency.

B. Ditch Site Selection

Once Safe2Ditch is engaged, a ditch site is selected. This step is managed by the Ditch Site Selector subsystem, which is connected to the ditch

site database (DitchDB) and the visual tracking subsystem as shown in Fig. 1. A preloaded database provides optional ditch site locationswith key

descriptors. The current position of the sUAS and the estimated time to land from the healthmonitoring system informwhich ditch sites arewithin

range. If no sites are in range, the vehicle immediately begins its descent and uses all of its remaining energy for tactical maneuvering. If prevetted

sites arewithin range, theDitch Site Selector selects the optimal site based on predicted vacancy, size of the site, terrain factors, and otherweighted

factors. Specific values for the weight factors are a subject of ongoing research. The current Safe2Ditch prototype places the highest value on

predicted vacancy because the rotorcraft has no runway length requirement and because the test range is outfitted with many ditch site options

within the vehicles range. Simulation runs using larger real-world scenarios may indicate more emphasis on range to conserve energy for tactical

maneuvering. Once the ditch site is selected, its location is given to the path planner.

The use of a preloaded database has precedence in commercial aviationwhere airport and airspace information is preloaded for use by the flight

management system (FMS) for the planned region for a given flight. This allows the system to have a continually updated set of information and

provides opportunity for governance. For example, future databases could provide optional ditch sites as well as avoidance areas.

C. Path Planning

Using the position of the selected ditch site, the path planner generates an efficient path for landing.An efficient pathminimizes the landing time

andmaximizes the amount of time that the ditch site can be imaged by the on-board camera. By increasing the amount of time that the camera can

image the ditch site, the visual tracking subsystem can better inform the Ditch Site Selector of anymotion in potential ditch sites. Therefore, for a

multirotor, an efficient path can be achieved by spending the majority of the landing time descending at an angle equal to the camera mounting

angle. As discussed in Sec. V, the vehicle used for flight tests has a camera that is mounted at a 45 deg angle toward the ground.

To maximize the time descending at the optimum imaging angle, an intermediate waypoint is inserted between the vehicle’s current position

and the ditch site. This waypoint becomes the top-of-descent (TOD) point, as shown in Fig. 3. For the 45 deg cameramount used in this paper, this

is conveniently located at a distance equal to the vehicle’s current altitude.

Fig. 2 Safe2Ditch system architecture. This paper addresses and demonstrates the six light gray components. When Safe2Ditch is not engaged, the
nominal mission waypoints are passed unchanged.

Fig. 3 Annotated ditch site visualization. The Safe2Ditch path planner creates a TOD point so that imaging of the ditch site for obstacles is maximized.

330 LUSK ETAL.

D
o
w

n
lo

ad
ed

 b
y
 M

IT
 L

IB
R

A
R

IE
S

 o
n
 F

eb
ru

ar
y
 2

0
, 
2
0
2
0
 | 

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 | 
D

O
I:

 1
0
.2

5
1
4
/1

.I
0
1
0
7
0
6
 



D. Tactical Maneuvering

As the vehicle descends toward the selected ditch site, newly detected obstacles in the landing area may cause Safe2Ditch to consider another
ditch site as better suited for landing. However, at some altitude, the sUAS will not have enough battery power to reroute to other ditch sites and
must commit to land. The commitment altitude is calculated by comparing the remaining battery power of the sUAS with the distance needed to
reach other ditch sites. If the sUAS does not have enough power to reach another ditch site, the better-suited ditch site is disregarded and the sUAS
continues its path to the original location. In these cases, Safe2Ditch is forced to choose a suboptimal ditch site that contains moving ground
objects. To maintain safety and prevent harm to the moving ground obstacles, Safe2Ditch alters its 45 deg straight-line path and begins to use a
control scheme that tactically maneuvers around moving ground obstacles in the ditch site. This vision-based control scheme is not discussed in
this paper.

E. Visual Tracking Subsystem

The visual tracking subsystem is made up of the visual front end and the Recursive-RANSAC blocks shown in Fig. 1. Using only the vehicle’s
on-board camera, the visual tracking subsystem can estimate the position and higher-order dynamics of moving ground obstacles, as well as
provide awareness of nonplanar ground objects such as fences or trees. This image-based tracking information is then geolocated and used to
inform the Ditch Site Selector of motion in the ditch site. Additionally, the image-based tracking information could be used for vision-based
control techniques to perform tactical maneuvering. The visual tracking and geolocation components are discussed in more detail in Sec. IV.

IV. Visual Multiple Target Tracking

To enable autonomy in dynamic environments, a visual tracking subsystem is integrated into the Safe2Ditch architecture. This visual target
tracking component plays two roles: 1) to inform the Ditch Site Selector (see Sec. III.B) as it is scoring ditch sites, and 2) for tactical avoidance
during the final landing maneuver. The work presented in this paper builds on our previous work of designing a vision-based multiple target
tracking system for use on a descending platform [10].

The visual target tracking subsystem allows tracking of multiple moving targets from the on-board camera of the sUAS. Combining a visual
measurement sourcewith an online estimation back end known asRecursive-RANSAC, a robust tracking filter is created that requires no operator
intervention to initialize or manage target tracking. Target tracks produced by Recursive-RANSAC are then geolocated and projected onto a flat
Earth model to estimate the 3D position of the visually tracked targets.

A. Camera Geometry

To aid in downstream tasks, the measurement processing of the visual tracker is performed using normalized image coordinates as opposed to
pixels. Consider the geometry of a pinhole camera model, as shown in Fig. 4. Suppose that the pointP exists in 3D space and can be expressed in
the camera frame as Pc � � xc yc zc �T . The perspective projection equations for imaging the point P are given by

u � fxx
im � cx � fx

xc

zc
� cx (1)

v � fyy
im � cy � fy

yc

zc
� cy (2)

where u and v are, respectively, the x and y pixels; fx and fy are the focal lengths in the x and y directions in units of pixels; cx and cy are the pixel
offsets to the camera’s principal point; and xim and yim are the coordinates ofP expressed on the normalized image plane. Note that the focal length
and the principal point offsetsmay be found via camera calibration. In homogeneous coordinates, the normalized image coordinates can bewritten
as the 3-vector

pim � � xim yim 1 �T (3)

Therefore, each u, v pixel received from the camera sensor can be transformed into the normalized image plane using Eqs. (1) and (2).
The use of normalized image coordinates enables parameter tuning to be generalized to different visual systems and different scenarios, using

the camera calibration of each camera to calculate the normalized image coordinates. In particular, this allows altitude-dependent tuning of the
visual tracking algorithm as presented in [10]. Additionally, unit bearing vectors can be constructed from the camera data by normalizing pim.
These bearing vectors are used in this work for target geolocation, as discussed in Sec. IV.D.

B. Visual Measurement Front End

The purpose of the visualmeasurement front end is to process incoming video data and generatemeasurements that can be fed to the Recursive-
RANSAC Tracker. Because of the robustness of the Recursive-RANSAC algorithm, we value many low-quality measurements over few high-
quality measurements. Motivated by this heuristic, the vision processing is performed with a calibrated camera in a three-step pipeline to 1) find
feature correspondences between images, 2) compute a homography, and 3) detect true object motion. Each of these steps is briefly described
below. More information can be found in [10].

1) Feature management: At each time step k, features from the last image Xk−1 are propagated forward into the current image as X�
k−1 using

optical flow [31]. Feature correspondences �Xk−1; X
�
k−1� are sent as input to the next step in the pipeline for further processing. A new set of

features Xk are then found using the Shi-Tomasi corner detection method for the current image I k. These features will be propagated in the next
iteration. This step is known as Kanade–Lucas–Tomasi (KLT) tracking [32] and is depicted in Fig. 5a.

2)Homography generation: Using the feature correspondences �Xk−1; X
�
k−1� from the KLT tracker, a perspective transformationH known as a

homography is estimated. This step is crucial for tracking on-board an sUAS because it allows the set of featuresXk−1 andXk to be represented in
the same coordinate frame through image registration. The quality of a homography estimation between camera views can be visualized via
difference imaging, as shown in Fig. 5b. Note that the visual tracking subsystem only makes use of KLT features and that the difference image is
only computed when assessing the homography estimation quality.
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3)Moving object detection: Equipped with a homography and a set of feature correspondences, the velocity of each of the feature points can be
calculated as

V � X�
k−1 −HXk−1 (4)

If the homography estimate explains themotion of static features in the image planewell, then the velocity of static features will be nearly zero,
leaving behind the motion of independent objects only, as shown in Fig. 5c. Measurements (zj � �x; y; vx; vy�

T
j
∈ Zj) of independently moving

objects are defined as feature points that have a velocity magnitude within predefined thresholds, given by

Zk−1 � f�xi; vi� ∈ X�
k−1 × V: τvmin

≤ kvik2 ≤ τvmax
g (5)

This scan of measurements is then used by Recursive-RANSAC to estimate the position, velocity, acceleration, and jerk of targets.

C. Recursive-RANSAC Tracker

Recursive-RANSAC is an online estimation algorithm capable of tracking an arbitrary number of objects in clutter [33,34]. Measurements are
received in the surveillance regionR of the system, whereR ⊂ R2 and represents the image plane. Recursive-RANSAC uses the random sample
consensus (RANSAC) algorithm to quickly initialize hypothesis models that best fit the current measurements in a maximum-likelihood sense.
Once a model is initialized, a bank of Kalman filters is used to propagate each model forward based on nearly constant jerk kinematics and a data
association step as new measurements are received. The tracks found by Recursive-RANSAC can be seen in Fig. 5d.

The benefits of using Recursive-RANSAC are found in its ease of implementation, lightweight computational requirements, robustness in
rejecting outliers, and its ability to initialize and manage models without an operator [35].

D. Target Geolocation

OnceRecursive-RANSAC produces target tracks, the positionpuas of the sUAS is used to estimate their inertial position. Given the target track
pim expressed in the normalized image plane as in Eq. (3), a normalized line-of-sight (LOS) vector expressed in the camera frame can be
constructed as l̂

c
� pim∕jpimj. Using the unit LOS vector l̂

c
and the height above ground level h of the sUAS, the objective is to estimate the

inertial position of the target, assuming a level ground plane. The inertial position of the target can be expressed as

pi
tgt � pi

uas � Ll̂
i

(6)

whereL is the range from the sUAS to the ground target. Because cameras are bearing-only sensors, the rangemust be estimated. The LOS vector
in the inertial frame is given by

l̂
i
� Ri

bR
b
c l̂

c
(7)

whereRi
b ∈ SO�3� is the rotation from the body frameFb to the inertial frameF i, andR

b
c ∈ SO�3� is the rotation from the camera frameF c to the

body frame. The range L can be calculated using the cosine of γ, the angle between the inertial ki-axis and the unit LOS vector l̂
i
. Note that the

Fig. 4 Example output from each step of the visual multiple target tracker. Images are taken from video processed on-board a descending multirotor.

a) KLT tracking b) Homography c) Moving features d) Tracking results

Fig. 5 Geometry of a pinhole camera with both the pixel plane Fpx and the normalized image planeF im shown.
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vehicle frame shown in Fig. 6 is alignedwith the inertial frame, but translated to the vehicle’s center of gravity (i.e., kv � ki). Using the following

equality

l̂
i
⋅ ki � cos γ �

h

L
(8)

the range can be written

L �
h

l̂
i
⋅ ki

(9)

Thus, the inertial position of the target at time t is given by combiningEqs. (6), (7), and (9). The inertial position ofmoving ground obstacles can

then be used to inform the Ditch Site Selector during an emergency landing, as discussed in Sec. III.B.

V. Experimentation

To demonstrate the obstacle-aware Ditch Site Selection component of the Safe2Ditch system, simulation and hardware experiments were

performed. The multirotor used for hardware tests is shown in Fig. 7 with details given in Table 1.

A. Implementation

The Safe2Ditch system is implemented in C++ and Python for real-time execution on-board an NVIDIA Jetson TX2 embedded computer.

Using the Robot Operating System (ROS) [36] for message passing, each component can be designed, implemented, and tested independently of

each other. This allows for rapid experimentation and hardware validation of the Safe2Ditch concept.
In addition to other standard software engineering concepts used in real-time applications, the visual processing stage is implemented using

CUDA routines to exploit the parallelism inherit in image processing. The NVIDIA Jetson TX2 contains 256 low-power CUDA cores that enable

the use of this type of processing.
The Safe2Ditch system is able to communicate with the Pixhawk autopilot that is used to control the multirotor and to estimate its current pose

and velocity. This allows the geolocation algorithm (see Sec. IV.D) and the Ditch Site Selector (see Sec. III.B) to access the needed inertial

information about the vehicle.

B. Software-in-the-Loop Simulation

To perform successful hardware flight tests, it is important to simulate the integrated system as best as possible. Using the ROS ecosystemwith

the Gazebo physics simulator, it is possible to create a software-in-the-loop (SIL) simulation by executing the Pixhawk/APM software on a

desktop computer. This allows the same Safe2Ditch software that will run on the flight computer to be executed in simulation. Using satellite

imagery, the SIL is additionally able to produce synthetic images of flight test locations with simulated people walking in various ditch sites.

Within the SIL environment, end-to-end emergency landing scenarios are tested that exercise the Safe2Ditch components and increase confidence

in effective flight demonstrations.
Thegeographical location used in SIL simulations is the sUASTest Site at theNASALangleyResearchCenter. The nominalmission startswith

the sUAS taking off at the home position and consists of flying counterclockwise through fivewaypoints at a height above ground level (AGL) of

60 m, as shown in Fig. 8. Three prioritized ditch sites are loaded into the DitchDB and are also shown in Fig. 8, with ditch site 1 being the first

choice. At some random time tengage, Safe2Ditch is engaged and attempts to select ditch site 1, which has the highest priority in the DitchDB.

Safe2Ditch must manage landing safely and quickly in the presence of randomlymoving targets in the area bounded by dashed lines. If a target is

detected in ditch site 1, Safe2Ditch reroutes to the next best ditch site (shown in yellow).
Using this test environment, a series of Monte Carlo simulations were instantiated, parameterized by the number of moving targets,

Nt ∈ f1; 2; : : : ; 10g. The ith target is modeled as a simple unicycle with kinematics

Fig. 6 Target geolocation side view. The objective is to find an estimate of ptgt expressed in the intertial frame.
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_xi � vi cos�θi� _yi � vi sin�θi� _θi � ωi (10)

where vi�t� is linear velocity andωi�t� is angular velocity. Awaypoint-based path planner is used to command each target to a sequence of desired
positions �xdi ; y

d
i � using ωi�t� as the control and letting vi�t� ≡ vi�0�.

For eachNt ∈ f1; 2; : : : ; 10g,M � 200 trials were used to test the sensitivity of Safe2Ditch with respect to the number of moving obstaclesNt

near the ditch site, the initial position �xi�0�; yi�0�� and initial velocity vi�0� of a target, and the time that the Safe2Ditch system receives an
emergency event, tengage. The initial position of the ith target is sampled from a uniform distribution bounded by the area around the first ditch site
as shown in Fig. 8. Subsequent waypoints are sampled from this same distribution, �xdi ; y

d
i � ∼ U�−120;−60� × U�−30; 30�. The velocity with

which the target moves is chosen as vi�0� ∼ U�0.5; 2.5� and tengage ∼ U�30; 70�.

C. Monte Carlo Simulation Results

The following three metrics are used to evaluate simulation results:
1) Time to action, taction. This metric captures howmany seconds it took fromwhen an obstacle entered the currently selected ditch site and is in

the camera field of view to when this obstacle caused a reroute to the next best ditch site. Said another way, taction describes the responsiveness of
the system. Responsiveness is critical for emergency landing systems because each passing second can cause greater loss in controllability,
energy, or altitude.

2) Rate of failure. A failure occurs if the multirotor lands in a ditch site with one or more targets present and in the camera field of view. For the
purposes of simulation, we consider landing to occur once themultirotor descends to 5m.A target is considered present in a ditch site if any part of
the target has continuously intersected the ditch site area formore than 3 s. Additionally, we assume that agents would not knowinglywalk under a
landingmultirotor and in our results we ignore any simulated target that is in the ditch site but not in the field of view of the camera. In the future, a
camera with a wider field of view or complementary sensor modalities could be used to increase the detection region of Safe2Ditch.

3) Rate of false reroutes. As the sUAS descends toward the ditch site, it is possible that the visual tracking system outputs false positives that
cause the Ditch Site Selector to unnecessarily reroute to another ditch site. Additionally, estimation error in the geolocation algorithm could cause
Safe2Ditch to misclassify tracks as being inside the ditch site when the true target position is not.

These metrics are shown in Figs. 9–11 for 2000 Monte Carlo trials. From Fig. 9, we note that the performance of Safe2Ditch is robust to a
varying number of obstaclesmoving in and near the ditch site. This behavior is desirable because as potential landing sites becomemore cluttered,
a fast decision timewill allow time formultiple rerouteswithin the time constraints. In fact, we see fromFig. 10 that Safe2Ditch performswith less
than 1% failure rate as the number of moving obstacles increases, which can be explained by the fact that the opportunity of tracking at least one
moving obstacle in the ditch site is increased. As expected, the higher the number of moving objects in and near a ditch site, the more likely a
reroutewill occur (see Fig. 11). Note that in all the simulation trials, no false reroutes occurred. In the simulation environment, there is no parallax
for the visual tracker to falsely detect as a moving object, and the terrain is actually flat. Because of this, the tracking quality is high and the
geolocation results using Eq. (9) are accurate.

While more obstacles near potential ditch sites make it clear that a ditch site is not ideal, it could become difficult for the multirotor to decide on
ditch site to land in. Future research will investigate selecting an area within a ditch site to land in as long as that subarea is clear. In this way,
obstacles on the far end of the ditch site will not rule out the entire area for landing.

Fig. 7 The multirotor used in hardware experiments, with a Pixhawk autopilot. The camera has a resolution of 800 × 600 at 30 fps and is mounted at a
45 deg angle.

Table 1 Hardware details

Component Description

Platform 3DRY6
Autopilot 3DR Pixhawk with APM v3.5.4
Sensors GPS, IMU, barometer, magnetometer
RGB Camera 800 × 600@ 30 fps, HFOV ≈34°
Processor NVIDIA Jetson TX2
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D. Hardware Flight Test

Sixteen flight demonstrations were performed to exercise and validate the vision-aided Ditch Site Selection component of the Safe2Ditch

emergency landing system. Three of the flights were performed near Provo,UT,with amission height of 100 ft (30m)AGLand ditch site radius of

13 ft (4m). All other flightswere performed at theNASALangley sUASTest Site, with 6 tests operating at 200 ft (60m)AGLand 7 tests operating

at 400 ft (120 m) AGL. The ditch site radius of the tests performed at NASA Langley was 30 ft (9 m). Of the 16 flights, 8 were performed with

motion induced in the ditch site and 1was performedwithmotion strictly outside of the ditch site.Motionwas created by either an operator-driven

RC car or a person wearing personal protective equipment. The other seven flights have no motion induced in or around the ditch site to test for

false positives.

Fig. 8 Simulated environment at the NASA Langley Research Center, expressed in an ENU coordinate frame.
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Fig. 9 Distribution of taction. The inclusion of visual data allows Safe2Ditch to quickly respond to non-cooperative obstacles in the ditch site seen by the
camera.
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Fig. 10 The rate of failed emergency landings givenNt targets.
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Fig. 11 The rate at which Safe2Ditch rerouted to another ditch site because of visually perceivedmotion in the original site. No false reroutes occurred in
any trial.
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Each flight scenario starts with a safety pilot controlling the takeoff phase and then transferring control to the autopilot to fly a predetermined

mission with a number of waypoints. Each flight test has slight variations in its predeterminedmission, with altitudes differing as noted above. At

some time tengage during the execution of eachmission, an emergency event is generated and the Safe2Ditch system disrupts themission operation

and begins to safely land the vehicle. Throughout the duration of the test flights where motion is induced, targets are commanded to move with

arbitrary trajectories and speeds inside of the ditch site.

E. Hardware Results

In addition to the metrics used for simulation results (see Sec. V.C), we analyze the hardware data using the following metrics:
1) Time to track, ttrack. This measurement captures how quickly the visual system detects and tracks moving obstacles. It is measured from the

time that the obstacle was both in the field of view and in the currently selected ditch site. The difference between taction and ttrack measures how
long it took the Ditch Site Selector to consider the track as actionable and reroute to another ditch site.

2) Altitude of reroute, hreroute. For hardware tests where a reroute is expected, hreroute gives the AGL that the reroute occurred.

We present the data in Fig. 12 from the 16 flight tests with motion in the ditch site organized into 3 sets, broken up by the nominal mission

altitude: 1) 3 flights at 30 m AGL, 2) 6 flights at 60 m AGL, and 3) 7 flights at 120 m AGL.

As shown by ttrack in Fig. 12, the visual multiple target tracker can detect and track targets at 120 m and below within approximately 3 s.

However, we can see from taction that the Safe2Ditch system took more time to react to moving ground obstacles for the 120 m set. The greatest

contributor to this latency in response time is the track geolocation algorithm (see Sec. IV.D), which often produced estimates with an error

between 5 and 10m. Because of this error, ground obstacles near the edge of the ditch site would often be misclassified as being inside or outside

the desired landing region. This misclassification caused a single false positive during a flight from the 30m test set (not shown in Fig. 12), where

the moving object was just outside of the ditch site. The seven flights with no motion successfully landed in the first selected ditch site, with no

failures.

We show the trajectories of two of the 120mmission altitude tests flown at NASA Langley in Figs. 13 and 14. Both tests start on the ground at

the origin of a local ENU inertial coordinate frame. The trajectory of themultirotor is shown in black, as it begins to travel counterclockwise about

the nominal mission waypoints. When Safe2Ditch is engaged, the color of the plotted trajectory matches one of the two ditch sites available to be

selected. In Fig. 13, there is no motion in the primary ditch site and the vehicle successfully lands. In Fig. 14, an agent moves around the primary

ditch site, which is detected and plotted as red. Once the track of themoving agent becomes actionable, Safe2Ditch reroutes to the secondary ditch

site, and the color of the plotted trajectory changes.¶

The red plotted points in both Figs. 13 and 14 represent all tracks created by thevisual tracker, throughout all time. Note that, in both figures, the

visual tracker detects and tracks false positives at various locations of the mission. These false positives are a result of the parallax caused by

nonplanar objects in the scene (such as trees, poles, and buildings) and not the Recursive-RANSAC algorithm. Parallax is an effect where

positions of objects in a 3D scene differ when viewed from two different angles. Because monocular RGB cameras do not measure depth, the

planar homography transformation that is discussed in Sec. IV.B cannot compensate for nonplanar motion. While this shows a weakness in the

30 m 60 m 120 m

Test Set by Altitude
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0
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120

Fig. 12 Results from 16 hardware flight tests. Since only eight tests had motion induced in the ditch site, there are only eight data points.

¶Video available at https://youtu.be/r7GNcGiA5uw.
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ability of the visual tracker to differentiate between moving objects and 3D structure, it does not hinder the objective of Safe2Ditch, which is to

avoid obstacles as the vehicle lands. Obstacles in the ditch site that are detected based on motion or parallax will cause the vehicle to reroute to a

safer area.

VI. Conclusions

This paper presented a crash management system for small unmanned aircraft systems (sUAS). This systemwas verified in 2000Monte Carlo

simulations with a constant nominal mission above ground level (AGL) and a varying number of targets. The simulation results were then

supplemented with 16 hardware flight tests with either zero or one target and varying the nominal mission AGL.

Using a precompiled database of potential ditch sites along the route of the nominal mission gives the sUAS potential landing options in the

event of an emergency. The contribution of this paper is the augmentation of a precompiled databasewith on-board vision capabilities, resulting in

the Safe2Ditch system.The use of on-board visual tracking in conjunctionwith a precompiled database for initial landing site selection reduces the

processing requirements of the vision system, but allows the sUAS to react to non-cooperative obstacles in populated environments. It is an

important design criterion that the computational resources needed for managing emergency landing be low so that the normal mission operation

is not hindered.

By incorporating a risk description into the problem, objectives can be better balanced. Future research directions include balancing the risk of

landing in a ditch sitewith moving obstacles with the risk of additional flight time. If there is enough remaining flight time, the vehicle could even

be commanded to perform a fly over to better survey potential ditch sites. Future researchwill also develop the tactical maneuvering component to

allow landing in a ditch site where moving obstacles are present.

Futureworkwill address the accuracy of the geolocation algorithm needed to determine if obstacles are locatedwithin the selected ditch site. To

increase the accuracy of the flat Earth model geolocation estimate, the attitude uncertainty should be projected onto the ground plane as well.

Then, instead of checking if a single point is within a ditch site, the intersection of the uncertainty and the ditch site would indicate how likely a

target is in the ditch site. Alternatively, instead of tracking targets in the image plane, a visual-inertial odometry or visual SLAMapproach could be

taken to resolve the missing depth information from camera data and track targets directly in the inertial frame. This type of approach would

additionally address the effects of parallax when flying low over nonplanar environments.

In addition to the position data from visual tracking, futurework will leverage the estimated velocity of each kinematic model corresponding to

tracked obstacles in R-RANSAC. Using velocity information can help inform the Ditch Site Selector about obstacles that are not currently in the

ditch site, but are headed toward the ditch site. Similarly, this information can positively impact the score of a ditch site if an obstacle is expected to

be quickly leaving the area.
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Fig. 13 Trajectory of flight #12.Noobstacles are present in the primary (green)ditch site.OnceSafe2Ditch is engaged, the vehicle successfully lands in the
ditch site.
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Fig. 14 Trajectory of flight #13. After Safe2Ditch is engaged, motion is detected in the primary ditch site, and the vehicle successfully lands in the
secondary ditch site.
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