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PREMISE: The timing of germination has profound impacts on fitness, population dynamics, 
and species ranges. Many plants have evolved responses to seasonal environmental cues 
to time germination with favorable conditions; these responses interact with temporal 
variation in local climate to drive the seasonal climate niche and may reflect local 
adaptation. Here, we examined germination responses to temperature cues in Streptanthus 
tortuosus populations across an elevational gradient.

METHODS: Using common garden experiments, we evaluated differences among 
populations in response to cold stratification (chilling) and germination temperature and 
related them to observed germination phenology in the field. We then explored how these 
responses relate to past climate at each site and the implications of those patterns under 
future climate change.

RESULTS: Populations from high elevations had stronger stratification requirements for 
germination and narrower temperature ranges for germination without stratification. 
Differences in germination responses corresponded with elevation and variability in 
seasonal temperature and precipitation across populations. Further, they corresponded 
with germination phenology in the field; low-elevation populations germinated in the 
fall without chilling, whereas high-elevation populations germinated after winter chilling 
and snowmelt in spring and summer. Climate-change forecasts indicate increasing 
temperatures and decreasing snowpack, which will likely alter germination cues and 
timing, particularly for high-elevation populations.

CONCLUSIONS: The seasonal germination niche for S. tortuosus is highly influenced 
by temperature and varies across the elevational gradient. Climate change will likely 
affect germination timing, which may cascade to influence trait expression, fitness, and 
population persistence.
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Germination is a critical transition in the life cycle of plants, and the 
seasonal timing of this transition has profound impacts on survival at 
the vulnerable seedling stage. The timing of germination influences 
the ecological and selective environments that an individual will ex-
perience later in its life cycle, including the seasonal conditions expe-
rienced at seedling and adult stages (Donohue, 2002; Donohue et al., 
2005a; Galloway and Etterson, 2007; Korves et  al., 2007; Burghardt 
et  al., 2015). As such, germination timing is critical for individual 
fitness and can scale to influence population dynamics, local per-
sistence, and the distribution of species across the landscape (Kalisz, 
1986; Kalisz and McPeek, 1992; Donohue et al., 2010; Kimball et al., 
2010; Eckhart et al., 2011; Levine et al., 2011; Cochrane et al., 2015). 
Further, variation in germination timing has been shown to influence 
population and community dynamics in response to shifting climatic 
conditions (Kimball et al., 2010, 2011; Levine et al., 2011; Huang et al., 
2016). Thus, the germination niche (the environmental conditions 
under which germination is possible) has important implications for 
population responses to current and future climate change.

Germination traits drive responses to proximal and seasonal envi-
ronmental cues. Seeds may germinate in response to immediate cues 
such as light, soil water potential, and photoperiod, which signal the 
onset of favorable conditions (Finch-Savage and Leubner-Metzger, 
2006; Baskin and Baskin, 2014; Springthorpe and Penfield, 2015; Finch-
Savage and Footitt, 2017). Dormant seeds, however, cannot respond 
to those immediate cues until dormancy is released, which can occur 
after exposure to particular temperature, photoperiod, and other envi-
ronmental factors (Baskin and Baskin, 2014; Finch-Savage and Footitt, 
2017). For example, dormancy may be gradually released in response 
to experiencing a period of after-ripening at warm temperatures, 
which can act to prevent germination of summer-dispersed seeds 
until favorable fall conditions (Baskin and Baskin, 2014; Huang et al., 
2016; Vidigal et al., 2016; Finch-Savage and Footitt, 2017). Conversely, 
seed dormancy may also be released by exposure to low temperatures, 
which may prevent germination from occurring until spring (Penfield 
and Springthorpe, 2012; Fernández-Pascual et al., 2017). As dormancy 
is lifted by these cues, germination can be induced by additional cues 
such as light under an increasing range of temperature and water avail-
ability. Seeds that do not experience such conditions do not germinate 
and instead remain in the seed bank (Finch-Savage and Footitt, 2017). 
Differences in dormancy requirements and responses to seasonal cues 
can drive differences in germination timing across individuals, popu-
lations, and species (Kalisz, 1986; Mayfield et al., 2014; Burghardt et al., 
2015; Huang et al., 2016).

In variable and changing environments, timing germination to 
coincide with favorable conditions can be difficult or nearly impos-
sible. In response, germination traits may evolve to either spread 
the risk of germinating into unfavorable conditions (Cohen, 1966; 
Seger and Brockmann, 1987; Philippi, 1993; Venable, 2007; Gremer 
and Venable, 2014) or to stimulate germination in response to envi-
ronmental cues that signal favorable conditions (Finch-Savage and 
Leubner-Metzger, 2006; Donohue et  al., 2010; Baskin and Baskin, 
2014), or both (Cohen, 1967; Venable and Lawlor, 1980; Philippi and 
Seger, 1989; Simons, 2014; Gremer et al., 2016). Risk spreading can 
be achieved through producing offspring that have variation in ger-
mination traits, which can cause individual seeds to germinate at dif-
ferent times, a strategy known as bet hedging (Seger and Brockmann, 
1987; Philippi, 1993; Simons, 2011). Variation among offspring in 
germination traits, such as primary dormancy and responsiveness to 
environmental cues, can thus act to spread germination either among 
years, across the growing season within years, or both (Simons, 2014; 

Gremer et al., 2016). On the other hand, traits that enhance germina-
tion in response to reliable environmental cues, such as temperature 
and precipitation, can act to time germination with favorable condi-
tions, and these traits define the conditions under which germina-
tion will proceed. The adaptive value of these traits (bet hedging and 
germination cueing) depends on the time scale of variation and the 
reliability of environmental cues (Cohen, 1967; Donaldson-Matasci 
et al., 2013; Botero et al., 2015), and observed germination strategies 
likely reflect past selection for bet hedging, germination cueing, or 
both (Donohue et  al., 2010; Lampei and Tielborger, 2010; Gremer 
et al., 2016; Lampei et al., 2017).

Ecosystems across the globe are experiencing increased tempera-
tures, shifts in the timing of precipitation, and increased variability in 
both temperature and precipitation (IPCC, 2014). Such shifts in envi-
ronmental conditions can alter the availability and reliability of cues 
for life history timing and thus modify the seasonal niche. Cues may 
become decoupled, reducing the correlation between a cue and fu-
ture conditions, or some cues may simply no longer occur (Miller-
Rushing et al., 2010; Walck et al., 2011; Bonamour et al., 2019). Shifts 
in environmental conditions are expected to be particularly salient 
for early developmental stages, such as germination (Dalgleish et al., 
2010; Walck et al., 2011), but few studies have examined the impact 
of shifting cues on germination timing and the consequences under 
climate change (Kimball et  al., 2010; Walck et  al., 2011; Parmesan 
and Hanley, 2015). Those studies have found changes in precipitation  
and temperature regimes to have strong impacts on fitness, selection, 
and population dynamics. In an experimental field study of California 
annual plants, Levine et al. (2011) demonstrated substantial impacts 
of the timing of the first germination-triggering rain events of the sea-
son, with differences in population growth rates varying from 2- to 
5-fold across treatments. In desert annual plants, Kimball et al. (2010) 
documented significant shifts in population dynamics and commu-
nity composition in response to the timing of germination-triggering 
rain events and how those patterns interacted with temperature during 
the growing season. These studies highlight how understanding shifts 
in temperature, timing of precipitation, and how they interact with 
germination responses is critical for understanding the evolutionary 
ecology of germination timing and its consequences under current 
and future climatic conditions.

In this study, we examined variation in temperature cue 
responses mediating the timing of germination in a native 
California wildflower, Streptanthus tortuosus (Brassicaceae), 
across populations along an elevational cline. This species is ideal 
for investigating life history responses to shifting climate because 
it occupies a broad elevational and latitudinal range. It inhabits 
a variable Mediterranean climate that is characterized by strong 
intra- and inter- annual variability in temperature and precipita-
tion (Baldwin, 2014; Rundel et al., 2016), which has already been 
strongly affected by climate change and is expected to continue to 
experience significant warming, drying, and increased variability 
in conditions (Cayan et al., 2008; Loarie et al., 2008). Further, S. 
tortuosus exhibits remarkable life-history variation both within 
and among populations, including differences in germination 
timing as well as the timing and frequency of reproduction. 
Moreover, the timing of germination has been demonstrated to 
affect life-history expression and fitness in two low-elevation 
populations of this species (Gremer et al., 2020), suggesting that 
seasonal germination timing cascades to affect trait expression 
and performance later in the life cycle. Here, we combined germi-
nation experiments in common gardens, field observations, and 
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data on past and future climate to (1) compare differences among 
populations in germination responses to chilling and germina-
tion temperature, (2) determine how differences in germination 
responses relate to local climate across populations, and (3) relate 
germination responses to observed germination phenology in the 
field. Further, we explored the implications of those patterns un-
der future climate change to ask how climate change may shift 
seasonal germination niches and impact population persistence. 
We predicted that low-elevation populations, which experience 
a winter growing season and strong inter-annual variability in 
the timing of germination triggering rains in the fall and winter 
(Gremer et al., 2020), will require little to no chilling for germina-
tion and will germinate under a broader range of temperatures. 
Conversely, we expected that high-elevation populations, which 
experience colder temperatures and snowpack in the winter, will 
have cues that restrict germination to the spring and summer, 

including strong chilling requirements and higher germina-
tion under warmer temperatures (Cavieres and Arroyo, 2000; 
Shimono and Kudo, 2005; Fernández-Pascual et al., 2017).

MATERIALS AND METHODS

Study system

Streptanthus tortuosus (Brassicaceae) is a native forb that occupies 
outcrops and dry, rocky slopes throughout northern California 
and southern Oregon (Preston, 1991; Calflora, 2014). This species 
is found across a broad elevational (200 to 4100 m a.s.l.) and lati-
tudinal range (from southern California to southern Oregon), and 
populations tend to be discontinuously distributed (Preston, 1991; 
Calflora, 2014). We studied 21 populations across an elevational 

FIGURE 1.  Map of Streptanthus tortuosus populations included in the study (A) and contemporary climate patterns for study populations (B–D). See 
Table 1 for site information. Colors indicate the elevation at each source population. For panels B–D, points are means across 30 years (1981–2010) ± 1 
SE for each population. (B) Temperature during the first month with sufficient germination triggering rain (first month with precipitation >25 mm). (C) 
Total chilling hours from 1 October to 1 July. Lines indicate the amount of chilling hours that correspond with stratification treatments (1, 3, 7 weeks). 
(D) April snowpack levels. Low-elevation populations do not accumulate snow.
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gradient (Fig.  1A, Table  1). Of these, all 21 were included in an 
experiment evaluating response to winter chilling (stratification), 
six were included in an experiment testing for differences in ger-
mination responses to temperature with and without stratification 
(thermal germination experiment), and five were surveyed for 
germination phenology in the field (Fig.  1, Table  1). All popula-
tions experience a Mediterranean climate in which precipitation 
comes mainly in the late fall and winter. Low-elevation popula-
tions experience warm temperatures when the first precipitation of 
the season arrives, and these temperatures remain high such that 
only 1–3 weeks of chilling (between 0–4°C) accumulate, and snow 
does not accrue (Fig. 1B–D; see below for details on climate data). 
Conversely, precipitation comes as either rain or snow at higher ele-
vations, which experience cooler temperatures during these first fall 
and winter events, often accumulate 6–7 weeks of chilling over the 
winter, and have substantial snowpack in April (Fig. 1B–D).

Seeds for experiments were collected as maternal seed families at 
all populations between June and September, depending on the tim-
ing of fruit maturation for each population. We did not collect seed 
from plants that produced less than five siliques (fruits) or from 
plants within 1.5 m from a previously sampled plant. Seeds for the 
stratification experiment were collected in 2016; seeds for the ther-
mal germination experiment were collected in 2016 or 2017. Before 
planting, seeds were stored dry at room temperature (~21°C).

Local climate patterns: current and future

We extracted contemporary and future climate data for these sites 
to examine differences among sites in seasonal conditions and gen-
erate predictor variables for later analyses. For each of our sites, we 
extracted contemporary and future climate using the Flint Basin 
Characterization Model, which downscales PRISM (PRISM Climate 
Group, Oregon State University, http://www.prism.orego​nstate.edu/) 
data to a 270-m resolution for the California hydrologic region (Flint 
and Flint, 2014). From these data, we calculated eight variables of 

interest using monthly precipitation, temperature, and snowpack 
records for 1981–2010. We calculated mean annual temperature 
(MAT), mean annual precipitation (MAP), interannual variance in 
temperature (variance in mean annual temperature across years),  
intra-annual variance in temperature (variance across months in the  
year, averaged across years), the mean and coefficient of interannual 
variation in fall precipitation (October to December), the mean and 
coefficient of interannual variation in total growing season precipi-
tation (October to July), the average first month of the year without 
snow, the average temperature during the first month of the grow-
ing season with precipitation over 25 mm, and the average month in 
which that 25 mm of precipitation arrives. We additionally extracted 
daily maximum and minimum temperature records for each site from 
PRISM (PRISM Climate Group, 2004). From these, we interpolated 
hourly temperatures using the R package chillR (Luedeling, 2019) 
and calculated summed chilling hours (hours between 0° and 4°C) 
beginning 1 October at each site for each year between 1981–2010.

To evaluate how future climate change will influence seasonal 
cueing and conditions, we also extracted contemporary and future 
October mean temperature (calculated as the average of minimum 
and maximum temperature, °C), January minimum temperature 
(°C), and April snowpack (in mm water equivalent; Flint and Flint, 
2014). For each of these variables, we extracted 30-year averages and 
detrended standard errors of contemporary climate (1981–2010) and 
four future climate projections for 2070–2099: the NOAA Geophysical 
Fluids Dynamics Laboratory Model (GFDL) and the NCAR Parallel 
Climate Model (PCM), which have been shown to perform well in this 
region (Maher et al., 2017). For these models, we extracted both the B1 
(lower emissions scenario which includes reductions in future emis-
sions) and the A2 (higher, “business-as-usual”, emissions scenario).

Stratification experiment

In fall of 2016, we exposed seeds from each of 21 populations to 0, 
1, 3, or 7 weeks of cold stratification. These durations were chosen 

TABLE 1.  Sites and components included in study. C = cold stratification germination experiment, T = thermal germination experiment, F = field germination 
phenology.

Site name Code Experiment/study Latitude Longitude Elevation (m a.s.l.)

Table Mountain TM C, T, F 39.5926 –121.551 379
Iowa Hill IH C, T 39.0933 –120.921 454
Kings Canyon 2 KC2 C 36.823 –118.835 948
Drum Powerhouse Road DPR C, T 39.2285 –120.815 1019
Kings Canyon 1 KC1 C 36.8297 –118.869 1023
Wrights Lake 1 WL1 C, F 38.7861 –120.214 1614
Sequoia 1 SQ1 C 36.5644 –118.776 1921
Wrights Lake 2 WL2 C, T, F 38.8263 –120.252 2020
Wrights Lake 4 WL4 C 38.8445 –120.231 2131
Wrights Lake 3 WL3 C, F 38.8353 –120.238 2138
Yosemite 1 YOSE1 C 37.6637 –119.625 2141
Carson Pass 2 CP2 C, F 38.6617 –120.131 2244
Carson Pass 3 CP3 C 38.7065 –120.088 2266
Lassen Volcanic 3 LV3 C 40.4664 –121.523 2354
Sequoia 3 SQ3 C 36.7211 –118.849 2373
Yosemite 5 YOSE5 C 37.8579 –119.648 2467
Yosemite 7 YOSE7 C, T 37.809 –119.566 2470
Lassen Volcanic 2 LV2 C 40.4656 –121.515 2501
Yosemite 8 YOSE8 C 37.8112 –119.486 2591
Lassen Volcanic 1 LV1 C, T 40.4747 –121.505 2594
Lassen Peak Trail LVTR C 40.4801 –121.504 2795

http://www.prism.oregonstate.edu/
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based on expectations for how exposure to chilling would vary 
across the elevational gradient (Fig. 1B–D). The start date of each 
treatment was staggered so that all treatments would end on the 
same date and all seeds would be placed in inductive conditions 
at the same time. For each population, we used 5 or 10 maternal 
families depending on availability of seeds (10 maternal families 
were used for all populations except CP2, CP3, KC1, KC2, WL3, and 
WL4; each maternal family was replicated once, i.e., plated in one 
petri dish, in each treatment). To initiate each treatment group, we 
placed 10 seeds from each maternal family into a 60 × 15 mm plas-
tic petri dish on top of germination paper and added 3.5 mL 0.2% 
plant preservation solution (Plant Preservation Mixture, Caisson 
Laboratories, UT, USA). Dishes receiving cold stratification were 
then placed in randomized locations in a dark 4°C chamber to be-
gin treatments. Seeds assigned to the control (0 week) treatment 
were placed in dishes with solution when the other treatments had 
completed stratification, at which time all dishes from all treatments 
were placed in randomized locations in inductive conditions in 
22°C chambers with 12-h daylight cycles (E7/2 growth chambers, 
Conviron, Winnipeg, Manitoba, Canada).

Germination was surveyed twice every week during stratifi-
cation and daily once seeds were placed in inductive conditions. 
Seeds were removed from dishes upon germination, as evidenced 
by radicle emergence. Germination surveys under inductive con-
ditions were conducted for 1 week, after which there was very lit-
tle germination. We re-randomized the location of each petri dish 
during each survey and rotated dishes between shelves each day 
to minimize differences in light exposure across dishes. We added 
1–2 mL plant preservation solution as needed to maintain moisture 
in the dishes.

To determine whether populations differed in their germination 
responses to stratification, we analyzed germination census data us-
ing mixed models (function glmer in R; Bates, 2015). First, we eval-
uated whether germination varied across populations in response 
to treatments using logistic regression (binomial family with logit 
link) with population and treatment and their interaction as fixed 
effects, and maternal family nested within population as a random 
effect. Because we observed germination during the stratification 
treatments, particularly the longest treatment (7 week), we also 
tested for differences among populations for dark germination in 
the 7-week treatment using the same mixed model structure, but 
without the treatment effect or interaction. For both total germi-
nation and dark germination, we also tested whether differences 
in germination responses varied along the elevational cline us-
ing models with elevation as a continuous variable, and included 
germination during stratification in analyses. For each of these 
tests, significance of fixed effects was evaluated using likelihood ra-
tio tests on nested models (i.e., we compared models with and with-
out interactions (if present) and then with and without each main 
effect).

Next we tested whether maximum germination rates varied 
across populations and in response to elevation, temperature, 
and precipitation. Here, maximum germination was calculated 
for each maternal family and represents the highest germination 
fraction observed across all treatments for each family. While not 
a direct estimate of primary seed dormancy, it can act as a proxy, 
since it indicates the maximum potential for germination across the 
range of thermal cues in our experiment. Similarly, we calculated 
variance in germination fractions across treatments for each mater-
nal family. We consider this variance as a metric for specialization 

in germination, since high variation can be achieved by having low 
to no germination in some treatments and higher germination in 
others. Conversely, low variation can be achieved by having low 
germination in all treatments or by having higher germination 
across all treatments. Both maximum and variance were estimated 
and analyzed on a logit scale for each maternal family. We used hi-
erarchical partitioning analyses to determine which factors related 
to climate and elevation explained maximum or variance in ger-
mination fraction. Hierarchical partitioning analyses estimate the 
relative importance of each variable while accounting for multicol-
linearity (Murray and Connor, 2009). In our hierarchical partition-
ing (HP) analysis for maximum germination we included these nine 
variables describing mean and variance in conditions: mean annual 
temperature (MAT), mean annual precipitation (MAP), interan-
nual variance in temperature, intra-annual variance in temperature, 
the mean and coefficient of variation in fall precipitation, the mean 
and coefficient of variation in total growing season precipitation, 
and elevation. For our HP analysis for variance in germination, we 
included these seven variables that related to mean conditions and 
seasonality: MAP, MAT, interannual and intra-annual variation 
in temperature, the average first month of the year without snow, 
the average temperature at the first month with precipitation over 
25 mm, the mean month in which that 25 mm of precipitation ar-
rives, and elevation.

Thermal experiment

To further quantify thermal conditions for germination and how 
these compared across populations, we conducted a thermal ger-
mination experiment using six populations across the elevation 
gradient (DPR, IH, TM, WL2, YOSE7, LV1). In this experiment, 
we exposed seeds to two treatments: 0 or 7 weeks of cold stratifica-
tion. Seeds from the 7-week cold stratification were plated 7 weeks 
before being placed into inductive conditions, while seeds from the 
0 week treatment were plated and placed into inductive conditions 
on the same day. Depending on seed availability, we pooled ~5–10 
field-collected seeds from each of ~20–40 maternal families within 
each population. On 4 May 2018, we initiated the 7-week treatment; 
for each pooled sample from each population, we randomly drew 
10 seeds, placed them into 60 × 15 mm petri dishes with 0.2% plant 
preservation solution and put them in a 4°C chamber in complete 
darkness. On 25 June 2018, we ended the cold stratification treat-
ment, plated the remaining seeds for the control (0 week) treatment, 
and placed all dishes from all treatments in chambers to test for 
germination responses to temperature. Dishes were placed into six 
growth chambers set to inductive (light) conditions across a range 
of temperature treatments: 5, 10, 15, 20, 25, and 30°C, with 12-h 
daylight cycles. Four replicate dishes with seeds from each popula-
tion and stratification treatment were randomly assigned locations 
in each temperature chamber.

Germination was surveyed while seeds were experiencing strati-
fication, and once they were placed in inductive conditions. During 
stratification, we conducted three germination surveys under a 
green safe light to minimize light cues that could trigger germina-
tion. Seeds that germinated during the stratification were removed. 
Upon transfer to inductive conditions, dishes were surveyed daily. 
Germinants were removed from the dishes and discarded. Because 
the thermal germination experiment included lower temperatures 
expected to be suboptimal for germination, we continued germina-
tion censuses for 1 month when a decline in germination rates was 
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observed. An additional 10 surveys were then conducted through 
21 November 2018 to capture the trailing edge of later germination, 
though there was little germination in any but the coldest treat-
ments at these later dates.

For the thermal germination experiment, we fit logistic regres-
sions (binomial GLMs with a logit link function) individually for 
each combination of population and stratification treatment. For 
each of these combinations, we compared fits of three models us-
ing AIC: one that included a linear term for temperature, one with 
a quadratic term for temperature, and a null model with random 
effects only (all models included random effects of dish nested 
within tray). We calculated parameters of interest based on the co-
efficients of the quadratic fits for each combination. We elected to 
calculate parameters based on quadratic fits because these fits are 
biologically appropriate for thermal performance curves which are 
expected to be nonmonotonic (Sheth and Angert, 2014) and were 
generally strongly favored over null models and ranked similarly to 
linear fits (Appendix S1a). These parameters included the tempera-
ture at which germination was maximized (the temperature where 
the quadratic fit peaked), the maximum proportion of germination 
achieved (the height of the peak of the quadratic), and the range 
of temperatures over which 50% germination was achieved. In the 
case of minimum or maximum temperature estimates that were 
outside our experimental range, we truncated them to 5° or 30°C. 
In two cases, the quadratic did not provide reasonable estimates 
for the maximum proportion of germination. For Table Mountain, 
the quadratic fit provided a convex curve precluding an estimate 
of the peak; in this case, we truncated the temperature at 30°C. For 
Wright’s Lake 2 (WL2), the quadratic did not provide a strong fit 
and the parameters were instead estimated for a linear fit. We fit two 
sets of models: one in which we included seeds that had germinated 
during the stratification period and one in which we excluded them.

Germination phenology in the field

To determine germination phenology in the field, we established 
plots at 5 populations across an elevational gradient: TM, WL1, 
WL2, WL3, and CP2. Plots were arrayed along belt transects, in 
large square blocks, or dispersed plots depending on distribution of 
S. tortuosus and the number of plots needed to reach a minimum 
of 100 individuals at each site. Belt transects were established at TM 
(20 plots at each of 2 transects), WL1 (10–20 plots at each of 2 tran-
sects), WL3 (10–20 plots at each of 4 transects), while 26–35 plots in 
each of four large blocks were established at WL2, and six dispersed 
plots were established at CP2. All plots are 0.5 × 0.5 m except at TM 
(0.5 × 0.2 m). In these plots, surveys were conducted throughout 
the growing season from fall 2017 to summer 2018. At our low- 
elevation site (TM), plots were visited to record germination about 
1 week after each rain event with at least 25.4 mm of precipitation. 
Surveys at this site (TM) were conducted throughout fall, winter, 
and spring until seasonal rains concluded and no new germination 
was observed. The higher-elevation sites (WL2, WL3, CP2) were 
surveyed in the fall before they were covered and inaccessible due 
to snowpack; we surveyed these sites until they were inaccessible, 
then returned after snowpack melted in spring. The mid-elevation 
site (WL1) was occasionally accessible during the winter when 
snow melted, and germination censuses were done when possible. 
At each survey, germinants were marked with colored toothpicks 
to indicate the timing of germination (i.e., germination cohort). We 
then estimated the cumulative proportion of germination at each 

census relative to the total number of germinants in a plot, which 
were then averaged for each site and compared across sites.

RESULTS

Stratification experiment

Populations differed significantly in response to stratification 
(chilling) treatments (Fig.  2, population × stratification interac-
tion: χ2 = 534.4, df = 60, P < 0.0001) as expected based on the large 
variation among sites in contemporary climate (Fig. 1B–D). Low-
elevation populations had high-germination fractions in all treat-
ments, and germination was strong without stratification (elevation 
× stratification: χ2= 237.1, df = 3, P < 0.0001, Fig. 2A; Appendix S2). 
Conversely, high-elevation populations had low-germination 
fractions without stratification (Fig.  2A; Appendix  S2), had high 
germination with the longest stratification treatment, and had inter-
mediate germination for the 1- and 3-week treatments. Populations 
from intermediate elevations (~1000 m a.s.l., DPR, KC1, KC2) had 
variable responses to stratification, with one population having 
higher germination with little or no stratification (KC2), another 
with higher germination in the 7-week treatment (DPR), and an-
other having low germination across all treatments (KC1).

In our experiment, seeds from some populations germinated 
while in the cold stratification treatment. Specifically, several low- 
and mid-elevation populations showed germination during the 
longest (7-week) stratification treatment, while high elevation 
populations did not germinate until they were moved to warm, 
inductive conditions after stratification (Fig. 2B, χ2 = 50.25, df = 1, 
P < 0.001). These patterns indicate that low- to mid-elevation 
populations have the ability to germinate in cold and dark con-
ditions given sufficient time, while high-elevation populations do 
not.

To understand patterns of dormancy and the breadth of condi-
tions in which germination occurred across populations, we com-
pared the maximum germination seen across all treatments and 
variance in germination across treatments. Both variables showed 
significant variation across populations (maximum germination: 
F21, 168 = 6.06, P < 0.0001; variance in germination: F21, 168 = 5.68, 
P < 0.0001). Hierarchical partitioning analyses indicated that max-
imum germination was best explained by variation in fall precipi-
tation (Table 2). Populations with high variance in fall precipitation 
had low germination fractions and vice versa (Fig. 3A). Conversely, 
variance in germination was best explained by the first month of the 
year without snow, with higher variance for populations that had 
later snowmelt (Table 2, Fig. 3B) and higher MAP (Table 2).

Thermal germination experiment

Results for our thermal germination experiment also demon-
strated an elevational trend in stratification requirements (Fig. 4). 
Optimal temperatures for germination ranged from 19° to 30°C 
depending on elevation and stratification treatment, with stratifi-
cation tending to increase optima for lower-elevation populations 
(IH and DPR) and lowering optima for higher-elevation popula-
tions (WL2, LV1; Fig. 4; Appendix S1b, c). Stratification increased 
the breadth of temperatures for germination for high-elevation 
populations by promoting germination at low temperatures, but 
had little to no effect on germination temperature ranges for 
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low-elevation populations (Fig.  4; Appendix  S1b). Germination 
remained above 50% for all populations at our highest tempera-
ture treatment (30°C), suggesting that germination does not drop 
off until even higher temperatures. Consistent with the results for 
the stratification experiment, there was substantial germination 
during stratification in the thermal experiment (Appendix S1d), 
and it varied across populations from different elevations in con-
cordance with the stratification experiment. Patterns for thermal 
germination curves that exclude this germination during dark, 
cold treatments (Appendix  S1a–c) show additional differences, 
particularly for low-elevation populations. Specifically, seeds that 
did not germinate while in stratification had lower-germination 
fractions overall and germinated at higher temperatures than 
nonstratified seeds (Appendix  S1b, c). Maximum germination 
proportions across treatments in the thermal germination exper-
iment were consistent with those from the stratification experi-
ment (Figs. 3A, 4).

Germination phenology in the field

Patterns of germination in the field reveal strong differences 
in phenology across populations (Fig.  5). Germination at the 
low-elevation population at Table Mountain occurred from fall 
to spring, with the majority of germination occurring at the first 
germination-triggering rain event in the fall. Conversely, the 
high-elevation populations (WL2, WL3, CP2) germinated after 
snowmelt in the spring and summer, while the mid-elevation 

FIGURE 2.  Total germination (A) and dark germination (B) in the stratification experiment across the elevational cline. (A) Germination fractions for 
populations across the cline in response to stratification (chilling) at 4°C for 0, 1, 3, or 7 weeks (colors indicate length of chilling treatment). Points 
represent means for each population ± 1 SE (back-transformed from logit scale). Regression lines illustrate the patterns from the significant interac-
tion between source-population elevation and stratification (back-transformed from logit scale, colors correspond with chilling treatment). (B) Points 
represent dark germination in the longest (7 week) stratification treatment for all populations (mean ± 1 SE, back-transformed from logit scale). 
Regression line illustrates the significant effect of elevation (back-transformed from logit scale).
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TABLE 2.  Results of hierarchical partitioning analysis for maximum and 
variance in germination across stratification treatments. Direction of relationship 
is whether univariate relationship is either positive (+) or negative (−) based on 
simple linear regression. Independent percentage describes the amount of the 
explained variation that is explained by that variable relative to the others; all 
independent percentages sum to 100%.

Effect
Direction of 
relationship

Independent 
percentage

Maximum germination    
Coefficient of variation of fall precipitation − 23.11
Elevation − 14.54
CV of growing season precipitation − 12.75
Mean annual temperature + 11.67
Intra-annual variance in temperature + 9.63
Mean growing season precipitation − 7.84
Mean annual precipitation − 7.73
Mean fall precipitation − 6.89
Inter-annual variance in temperature − 5.86

Variance in germination    
First month of year without snow + 23.25
Mean annual precipitation + 20.95
Mean annual temperature − 15.91
Inter-annual variance in temperature + 14.83
Elevation + 10.52
Mean temperature of first month with 

precipitation >25 mm
− 9.72

Intra-annual variance in temperature − 4.82

Note: CV = coefficient of variation.
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population (WL1) had some germination in winter and some in 
spring.

Germination patterns in relation to current and future climate

Patterns for contemporary climate match expectations for dif-
ferences among populations due to climate and correspond with 
germination responses in our experiment and field observations. 
Specifically, temperatures during the first rain event fall directly 
in the range of at least 50% germination for low-elevation popula-
tions (Fig. 4A–C), but are too cold for high-elevation populations 
to germinate without stratification (Figs.  1C, 4D–F). Similarly, 
low-elevation populations typically accumulate less than 3 weeks 
of chilling, mid-elevations accumulate 3–7 weeks of chilling, and 
the majority of high-elevation populations have the potential to 
accumulate at least 7 weeks of chilling in most years (Fig. 1B–D). 
These patterns nicely correspond with stratification requirements 
in both germination experiments. Lastly, patterns for April 1 snow-
pack indicate that higher elevation populations are still covered by 
snow in April in most years, which likely delays germination until 
snowmelt in May and June (Fig. 1D).

Forecasts from general circulation models indicate the poten-
tial for strong effects on fall and winter temperatures and declines 
in snowpack (Fig.  6). While there is variation across models in 
these impacts, all populations are expected to experience warming 
temperatures, with increases of 1–3.5°C in fall temperatures and 
1.5–2.5°C in January minimum temperatures (Fig.  6), depending 
on model and population. High-elevation sites, in particular, will 

likely experience the strongest changes in snowpack levels. Together 
these shifts are likely to affect temperature during germination and 
whether stratification requirements are met before spring snowmelt.

DISCUSSION

Seasonal germination timing is often under strong selection 
and may be critical for adaptation to local climate (Donohue 
et  al., 2005b; Fenner, 2005; Baskin and Baskin, 2014). Optimal 
seasonal timing depends upon the ability of seeds to respond to 
appropriate environmental cues signaling favorable conditions. 
Temperature cues are particularly important for the release of 
dormancy to allow germination in response to light and moisture 
availability and may be particularly affected by rising tempera-
tures due to climate change (Cayan et al., 2008; Loarie et al., 2008; 
Footitt et al., 2013, 2018; Baskin and Baskin, 2014; IPCC, 2014). 
However, the optimal response to temperature cues may vary 
with climate among populations. Although clinal within-species 
variation in dormancy and germination traits is often reported 
(Montesinos-Navarro et al., 2012; Vidigal et al., 2016; Barga et al., 
2017; Fernández-Pascual et  al., 2017; Hernández et  al., 2019; 
López et  al., 2019), fewer studies have examined intraspecific 
variation in seed chilling responses, particularly across climatic 
gradients (Cavieres and Arroyo, 2000; Debieu et al., 2013; Rubin 
and Friedman, 2018). Our results demonstrate extensive varia-
tion in stratification (chilling) requirements and ambient tem-
perature responses in S. tortuosus populations across elevation. 

FIGURE 3.  Maximum germination (A) and variance in germination (B) across treatments in the stratification experiment. Maxima and variances were 
estimated for each maternal family across treatments, then averaged across maternal families for each population (means ± 1 SE, back-transformed 
from logit scale). (A) Maximum germination in relation to the coefficient of variation (CV) of fall precipitation. (B) Variance in germination in relation to 
the first month of the year in which there was no snow (snowpack = 0). Colors indicate the elevation at each source population.
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These differences in germination cueing correspond with dra-
matic elevational differences in seasonal climate and germina-
tion phenology in the wild. Further, observed differences among 
populations in maximum germination are consistent with pre-
dictions from bet-hedging theory. Although we cannot rule out 
a contribution from environmental parental effects, these results 
suggest a history of adaptive differentiation in the seed germi-
nation niche among populations across the species’ elevational 
range. However, rapid climate change is bringing increasing tem-
peratures and earlier snowmelt, which may lead to mismatches 
between changes in optimal germination timing and formerly 
adaptive environmental cues (Aitken et al., 2008; Donohue et al., 
2010; Walck et al., 2011).

Stratification requirements for seed dormancy release are ob-
served in many species (Baskin and Baskin, 2014) and can act to 
time germination with appropriate conditions for seedling estab-
lishment. Dormancy release after brief chilling exposure allows 
germination under cooling temperatures in fall. In many fall-ger-
minating species, exposure to prolonged chilling then can re-induce 
secondary dormancy in the seed bank, preventing germination in 

winter and spring (Penfield and Springthorpe, 2012; Baskin and 
Baskin, 2014). In contrast, some species and genotypes require pro-
longed cold exposure to break primary dormancy and therefore ger-
minate in spring (Footitt et al., 2013; Baskin and Baskin, 2014). Cold 
stratification requirements are especially common in species from 
high elevations (Cavieres and Arroyo, 2000; Fernández-Pascual 
et al., 2017; Cavieres and Sierra-Almeida, 2018; Tudela-Isanta et al., 
2018). Less is known about within-species variation, but there is 
some evidence for stronger stratification requirements in high-el-
evation populations of alpine species (Cavieres and Arroyo, 2000). 
Our results from S. tortuosus are consistent with this pattern. Low-
elevation populations lack a cold stratification requirement and 
experience temperatures conducive for germination when precipi-
tation begins in the fall, which would allow them to germinate with 
the first fall rains, as we observed for germination phenology in 
the field. High-elevation populations experience cold temperatures 
with the onset of seasonal precipitation and accumulate several 
weeks of chilling and substantial snowpack. For these populations, 
we would expect germination to be cued such that it is restricted to 
late spring and summer, after snowmelt, again consistent with our 

FIGURE 4.  Germination in response to temperature and stratification treatments for six populations of Streptanthus tortuosus. Results illustrated here 
include seeds that germinated during stratification in analyses. Low-elevation populations illustrated on the top row (A–C) and high-elevation pop-
ulations on the bottom row (D–F), in order of elevation. Stratified treatments in blue, nonstratified in orange. Points represent means; shaded areas 
represent 95% confidence intervals around fixed effects for quadratic model fits. Vertical dashed lines indicate the temperatures at which germination 
proportions were maximized; horizontal lines represent maximum germination proportions. Arrows indicate the breadth of temperatures at which 
germination was >50%; temperature breadths were truncated at the maximum temperature if germination remained above 50% at that temperature.
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field observations. This timing of germination seems to be achieved 
through the interaction of stratification requirements and tempera-
ture responses, since seeds from high elevations were confined to a 
narrow germination window at high temperatures until release of 
dormancy by cold stratification allowed them to germinate across 
a wider thermal range.

Delayed germination through seed dormancy is a classic example 
of biological bet hedging, which is an evolutionary strategy to main-
tain fitness in highly variable environments (Cohen, 1966; Seger and 
Brockmann, 1987; Philippi, 1993; Venable, 2007; Gremer and Venable, 
2014). Indeed, delayed germination has been demonstrated to act as 
a bet-hedging strategy in deserts that experience high variability in 
the timing and extent of rainfall during the growing season (Philippi, 
1993; Venable, 2007; Tielborger et  al., 2012; Gremer and Venable, 
2014; Gremer et al., 2016). In our study, we evaluated maximum levels 
of germination in response to treatments that simulated germination 
cues, namely, cues related to stratification (chilling) and germination 
temperature. While not a direct test of bet hedging, our results are 
consistent with expectations from bet-hedging theory, since pop-
ulations that experience lower variability in fall precipitation had 
higher germination fractions and vice versa. Our results also corre-
spond with a study in a California vernal pool endemic, Lasthenia 

FIGURE 5.  Germination phenology for five Streptanthus tortuosus 
populations. Points are average cumulative germination across plots at 
each site at each census date (±1 SE, back-transformed from logit scale). 
Census dates are calculated as days since 1 October to illustrate the be-
ginning of the water year (and growing season for low-elevation sites). 
Populations from low elevation to high: TM, WL1, WL2, WL3, CP2 (see 
Table 1 for site information). Shapes and colors indicate populations and 
elevations, respectively. The gray-shaded area indicates winter months, 
in which chilling may occur (depending on conditions and site).
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FIGURE 6.  Future projections for temperature and snowpack across pop-
ulations along the elevational cline. Points represent 30-year averages 
(2070–2099) ±1 detrended SD for each population. Contemporary pat-
terns indicated in orange, GFDL and PCM models were used to generate 
forecasts, each using either the B1 or A2 emissions scenarios. (A) October 
temperature, (B) minimum January temperature, and (C) April snowpack.
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fremontii, which experiences high variability in water availability, due 
to interannual variation in the timing and extent of growing-season 
precipitation (Torres-Martínez et  al., 2017). In that study, Torres-
Martínez et  al. (2017) found that among-population variability in 
germination fractions was significantly related to interannual varia-
tion in November precipitation, and this effect was stronger than that 
for total precipitation. In their study and in ours, relationships were 
stronger for fall precipitation than for total growing season precipita-
tion, suggesting that fall precipitation may not be fully predictive of 
total growing-season precipitation and may be an unreliable cue of 
season quality, which would select for higher bet hedging. Similarly, 
the timing and extent of germination-triggering rain events in the 
fall and winter has been shown to be a key driver of bet-hedging ger-
mination strategies in desert annuals (Venable, 2007; Cuello et  al., 
2019) and scales to influence population and community dynamics 
in California annual communities (Levine et al., 2011) and in annual 
desert communities of the southwestern United States (Angert et al., 
2009; Kimball et al., 2010, 2011). In our system, variation in the length 
of the seed stratification requirement within a population could po-
tentially result in two seasonal germination cohorts, with some seeds 
germinating in fall and others in spring, as observed in other species 
(Galloway and Etterson, 2007; Montesinos-Navarro et al., 2012; Picó, 
2012; Baskin and Baskin, 2014). Such variation could allow intra-an-
nual bet hedging (Simons, 2014; Gremer et al., 2016), which might 
be adaptive in mid-elevation populations that experience variation in 
winter snowpack among years.

Plasticity to reliable environmental cues is an alternative 
strategy for dealing with variability in environmental conditions 
(Cohen, 1967; Simons, 2014; Botero et  al., 2015; Gremer et  al., 
2016). Plasticity is not necessarily mutually exclusive with bet 
hedging, and the adaptive value of plasticity versus bet hedging 
depends on the timescale of that variation and reliability of avail-
able cues (Cohen, 1967; Donaldson-Matasci et al., 2013; Botero 
et al., 2015). In our study, we found strong responses of germina-
tion to temperature cues related to winter chilling (stratification) 
and seasonal temperatures, indicating plasticity to temperature. 
These responses varied, such that low-elevation populations did 
not respond to stratification and had high germination across 
treatments, and high-elevation populations had low germination 
unless they experienced substantial chilling (Figs.  2A, 4). For 
high-elevation populations, stratification is likely a reliable cue 
that favorable spring conditions are arriving, and a stratification 
requirement can prevent germination in the fall, which could lead 
to mortality over the winter. Moreover, stratification increased the 
range of temperatures for germination in high-elevation popula-
tions, consistent with results of Fernandez et al. (2017). However, 
stratification is not an appropriate germination cue for low-ele-
vation populations, since waiting until after winter chilling would 
vastly shorten the time for growth and reproduction before the 
onset of summer drought. Instead, lower-elevation populations 
germinated across a broad range of temperatures, with or without 
stratification. These results also correspond with the expectation 
that germination niches are narrower when cues are more reliable 
or more predictive of approaching favorable conditions (Barga 
et al., 2017; Fernández-Pascual et al., 2017). It is interesting that 
precipitation variability seems more important for predicting lev-
els of maximum germination (i.e., dormancy), but that we saw 
strong plasticity in response to temperature cues, suggesting that 
temperature could be a more reliable cue of seasonal conditions 
than precipitation for these populations. We note that our clinal 

gradient does include more variation in temperature than pre-
cipitation (Appendix  S3a, b). We did not directly evaluate how 
both temperature and available moisture jointly affect germina-
tion in our experiments, but that is an interesting area for future 
study. Nonetheless, our results nicely correspond with observed 
germination phenology in the field, underscoring the strong role 
of temperature in our system.

The clinal population variation we found in germination traits 
suggests that the germination niche may be involved in local ad-
aptation to elevation and climate. However, dormancy and ger-
mination traits can also be strongly influenced by the parental 
environment, and such transgenerational plasticity may itself have 
adaptive value (Galloway and Etterson, 2007; Springthorpe and 
Penfield, 2015; Auge et al., 2017; Lampei et al., 2017; Wadgymar 
et  al., 2018). Thus, potentially adaptive phenotypic differences 
among populations may reflect transgenerational plasticity to lo-
cal parental environments as well as local adaptation in response 
to natural selection. For example, in annual species of Israel, seed 
dormancy varies along a cline in aridity and precipitation vari-
ability consistent with adaptive bet hedging (Tielborger et  al., 
2012). Moreover, in those same species, the relative strength of 
parental effects on germination also corresponded with the cline 
in aridity and precipitation variability (Lampei et al., 2017). Our 
experiments used wild-collected seed from our study popula-
tions, so we cannot distinguish the contributions of genetic di-
vergence and transgenerational plasticity across sites. However, 
this design allowed us to assess the realized germination niche 
of each population, that is, the thermal conditions under which 
seeds would actually germinate given each population’s selection 
history and local parental environment.

The California Floristic Province has already experienced 
significant shifts in climate, and rates of climate change will 
continue to be rapid, with up to 66% of species expected to ex-
perience significant reductions in range size by the end of the 
century (Cayan et al., 2008; Loarie et al., 2008). For species that 
cannot disperse fast enough to track these changes through space, 
tracking the shifting conditions through time, through shifting 
seasonal niches, will be critical (Donohue et al., 2010; Walck et al., 
2011; Hereford et  al., 2017). Here we showed that the seasonal 
germination niche for S. tortuosus is highly influenced by tem-
perature and that temperature cues are likely to shift among years 
and in response to climate change. Indeed, forecasts for seasonal 
temperature for our populations include increased temperatures 
in the fall and winter (Fig. 6) and decreasing snowpack for high-
er-elevation populations. Germination rates were higher than we 
expected in our warmest treatment (30°C) for all populations, 
though we expected germination to decline at this tempera-
ture, based on results from a study of several species of annual 
plants from the Sonoran Desert (Huang et  al., 2016). However, 
follow-up studies suggest germination in S. tortuosus drastically 
declines past 30°C and does not occur at temperatures of 40°C 
for several populations (M. Bontrager, unpublished data). It may 
be that increases in germination temperature alone would have 
weak effects on germination timing, but the main effect of in-
creased temperatures with climate change will be through re-
ductions in chilling. Thus, these anticipated changes might have 
stronger impacts on germination at high-elevation populations, 
due to reductions in accumulation of chilling narrowing germi-
nation niches or preventing germination altogether. In addition 
to altering the timing and availability of cues for germination, 
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shifting temperature regimes under climate change may also af-
fect other aspects of seed development and germination, includ-
ing rates of seed maturation, seed aging, and maternal influences 
on seed traits (Donohue et al., 2010; Walck et al., 2011; Penfield 
and Springthorpe, 2012). Further, increased soil temperatures 
anticipated with climate change are likely to decrease seedbank 
persistence (Ooi et al., 2009; Ooi, 2012), which will alter the adap-
tive value of dormancy and germination timing. Of course, these 
effects early in the life cycle, at the seed and seedling stage, can 
cascade to influence trait expression and performance later in 
the life cycle (Kalisz, 1986; Galloway and Burgess, 2009; Wilczek 
et al., 2009; Donohue et al., 2010; Gremer et al., 2020).

Understanding how shifting environmental conditions under 
climate change affect the seasonal niche, through altering the tim-
ing and availability of cues, is critical for predicting future pop-
ulation persistence and distributions across the landscape. Here 
we showed that temperature cues that drive the seasonal germi-
nation niche for S. tortuosus are expected to shift substantially 
under future climate change (Fig.  6). The question is whether 
these populations can adapt in time, for instance, through evo-
lutionary changes in stratification or germination temperature 
requirements. Evidence for rapid evolution of seed traits and ger-
mination during a range expansion was demonstrated in a study 
of an annual plant, Helianthus annuus, which occurred over a rel-
atively short time frame (70 years; Hernández et al., 2019). Similar 
patterns were observed for trait variation, including germination 
phenology, in another invasive annual, Brassica tournefortii, 
across a range expansion in the southwestern United States occur-
ring over about a century (Winkler et al., 2018). These studies sug-
gest that rapid evolutionary response may be possible. Of course, 
evolutionary response depends on standing genetic variation, 
heritability, and constraints on response to selection (Antonovics 
and Vantienderen, 1991; Kopp and Matuszewski, 2014). In a study 
of germination responses to temperature and moisture across 240 
species and 49 families across the globe, Arene et al. (2017) found 
negative correlations among seed and germination traits, as well 
as evidence for phylogenetic constraint in temperature responses. 
Such patterns could constrain the potential for evolutionary re-
sponse to increased temperatures with climate change. Thus, it 
is unclear whether such rapid change can occur in our system, 
but understanding the potential for evolutionary response would 
provide key information on the fate of these populations and the 
future range distribution of this species.

CONCLUSIONS

Using a combination of common garden experiments and field 
observation, we demonstrated that the seasonal germination 
niche in Streptanthus tortuosus is strongly driven by tempera-
ture cues and varies across populations along an elevational 
cline. Further, differences in stratification requirements and how 
they interact with germination temperature cues explain differ-
ential patterns of germination phenology across populations in 
the field. These temperature cues exhibit strong inter- and in-
tra-annual variation and are consistent with expectations under 
local adaptation. Perhaps more importantly, these cues will be 
strongly affected by climate change, which will shift germination 
timing and requirements, particularly for high-elevation popu-
lations. Our study demonstrates the key role of temperature in 

germination timing across environmental gradients, reveals pat-
terns consistent with local adaptation, and highlights the poten-
tial impact of climate change on life history timing, performance, 
and population persistence.
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