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Abstract—Forecasting spatial societal events in social media is significant and challenging. Most existing methods consider the
frequencies of keywords or n-grams to be features, but have not explored the exponentially large space of the conjunctions of those
features, such as keyword co-occurrence in messages, which can serve as crucial precursor rules. Due to the inherent exponential
complexity of ensemble rule learning, existing work typically adopts greedy/heuristic strategies. This means that they cannot guarantee
the solution’s optimality, which would require a considerably more sophisticated model for spatial event forecasting, while still suffering
from major challenges: 1) Exponentially-dimensional feature learning with distant supervision, 2) Numerical values of conjunctive
features, and 3) Spatially heterogeneous conjunction patterns. To concurrently address all these challenges with a theoretical
guarantee, we propose a novel spatial event forecasting model which learns numerical conjunctive features efficiently. Specifically, to
consider their magnitude, traditional Boolean rules are innovatively generalized to deal with numerical conjunctive features with
amenable computational properties. To handle the geographical similarity and heterogeneity in numerical conjunctive feature learning,
we propose a new model that implements through a new bi-space hierarchical sparsity regularization for locations and features.
Moreover, we propose a new algorithm to optimize the model parameters and prove that it enjoys theoretical guarantees for both the
error bounds and time efficiency. Extensive experiments on multiple datasets demonstrate the effectiveness and efficiency of the

proposed method.

Index Terms—conjunctive feature learning, spatial event forecasting, multi-task learning, hierarchical kernel learning

1 INTRODUCTION

Currently, user-generated contents such as microblogs have
become ubiquitous, which serve as real-time “sensors” for
social trends and incidents [26]. People use social media to
plan, advertise, and organize future social events such as
the planned protests in the “Arab Spring” and “Occupy
Wall Street” [28]. The predictive power of microblogs for
social event forecasting has been widely explored by a great
deal of recent research on topics such as crimes [17], civil
unrest [40], and disease outbreaks [2]. These research works
share essentially similar workflows. First, the model features
are typically defined as the counts of terms (e.g., keywords
and hashtags) under the domain of interest. The feature
values in the aggregated collections of massive microblogs
are considered to jointly reflect the social tendencies. The
predictive model is then trained to map the social indicators
to the model response, in this case the occurrence of future
events.

However, the count for a single keyword may not be
sufficiently informative to serve as a precursor for fore-
casting social events. For example, Figure 1(a) shows that
instead of either “teacher” or “reform”, the count of their
conjunction in the same tweets reflects the public concern
regarding educational policy. Similarly, as shown in Fig-
ure 1(b), the count for anyone of “election”, “president”,
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and “fraud” individually is a very noisy signal, while
the massive co-occurrence of them all in the same tweets
is a very informative precursor for the subsequent three
waves of protests against the results of the presidential
election in Mexico. Therefore, unlike the incidence of single
keywords, the co-occurrence of keywords, such as “presi-
dent+election+fraud” typically conveys much more definite
meaning and is thus a significantly more powerful precursor
for future protest events. In this paper, we call such new
features conjunctive features, which in this case refer to two or
more co-occurring keywords in Figure 1, and the standalone
atomic features as primitive features, which here mean single
keywords.

Conjunctive features are highly informative and thus more
interpretable by human observers, which is crucial if de-
cision makers are to understand and utilize the predic-
tive models. However, it is impossible for domain experts
to manually provide an extensive set of all the keyword
conjunctions that are precursors. Better methods for auto-
matically learning an extensive set of significant keyword
conjunctions from the data are clearly required, but due
to the exponential complexity in storage and time of com-
putation, this problem is conventionally unfeasible even
for a moderate sized of keyword set. For example, among
as few as 100 keywords, there are 2100 ~ 1030 possible
combinations of conjunctive features to store and compute,
which are far beyond the existing memory capacity and
computational power.

Existing methods on supervised rule mining typically
utilize greedy or heuristic-based methods [15], where the
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Figure 1: The burstininess of the counts of some keyword
co-occurrences preceded the major events. The keyword
co-occurrence features could be much more determinative and
interpretable than single keywords as precursors for future
events.
optimality of the solution cannot be guaranteed. Despite the
significance of this problem, to the best of our knowledge,
there has been very little work reported on spatial event
forecasting that extensively considers conjunctive features.
Even utilizing the simplest settings, several substantial the-
oretical and practical challenges make this problem unfeasi-
ble to solve: 1) Numerical values of conjunctive features.
Existing methods for conjunctive feature learning typically
require the conjunctive features to be Boolean-valued if effi-
cient computation is to be feasible. However, in spatial event
forecasting, instead of binary values, the numerical frequen-
cies of the keyword conjunctions occurring in the same loca-
tion at a specific time serves as the indicator, which does not
satisfy the Boolean assumption that is universally applied
in existing work. 2) Exponentially-dimensional learning
with distant supervision. Due to the immense volume of
microblog messages, it is prohibitively labor-intensive to
label each individual message. When forecasting spatial
events, typically only labels at the aggregate level (e.g., city-
level) are available, which can thus only provide distant
supervision when learning important conjunctive features.
3) Spatially heterogeneous conjunction patterns. Different
geo-locations may share similar conjunctive features but
also have their own exclusive ones within a particular
geo-neighborhood. For example, “occupy+street” can be a
good indicator for general civil unrest across many different
geo-locations, but “occupy+wall+street” typically appears
in New York State while “occupy+Texas+state” typically

happens in Texas.

In order to simultaneously overcome all the above-
mentioned challenges, we propose a novel model named
Hierarchical-Task Numerical conjunctive feature Learning
(HTNL) for spatial event forecasting. Specifically, a novel
kernel is formulated to represent every possible numerical
conjunctive feature (NCF) and then this exponentially large
set of kernels is correlated via a Directed Acyclic Graph
(DAG). The complexity in NCF selection is reduced from
exponential to polynomial by utilizing the sparsity structure
from the DAG and the favorable computational properties
of the proposed kernel. Finally, the similarities between the
selected NCFs within geo-hierarchical neighborhoods are
enforced to boost model generalizability using the newly
proposed bi-space regularization strategy in both feature
and location spaces. The major contributions of this paper

are as follows:

e Develop a generic framework for conjunctive precur-
sor learning for spatial event forecasting. A generic
framework is proposed for spatial event forecasting that
optimally learns the NCFs, taking into account both
geographical similarity and heterogeneity. A number of
related classic approaches are shown to be special cases of
our model.

« Propose a novel hierarchical multitask model for NCF
learning. First, every possible NCF is formulated as a
novel kernel with structured sparsity on a DAG. Then the
similarity of sparsity patterns is enforced using a newly
proposed bi-space regularization strategy that utilizes
geo-hierarchical knowledge to boost up model general-
izability.

¢ Design an efficient optimization method with a theoreti-
cal guarantee of optimality. The proposed model requires
the optimization of an NCF set that is exponentially
large and geographically correlated. The new algorithm
leverages both the topological sparsity among NCFs and
the computational efficiency of the proposed kernel, and
provides theoretical guarantees for both error bounds and
time complexity.

¢ Conduct extensive experiments for performance eval-
uations. The proposed method is evaluated on multiple
datasets in different domains and found to significantly
outperform the existing methods in prediction perfor-
mance. Moreover, the conjunctive features discovered by
the model clearly demonstrate its effectiveness and inter-
pretability.

The rest of this paper is organized as follows. Section

2 reviews the background and related work and Section 3

introduces the problem setup. Sections 4 and 5 presents our

proposed model and an efficient model parameter optimiza-
tion algorithm, respectively. The experiments on synthetic
and real-world datasets are presented in Section 6, and the
paper concludes with a summary of the research in Section
7.

2 RELATED WORK

Event Detection and Forecasting in Social Media. A con-
siderable amount of work has been done on detecting on-
going events, including disease outbreaks [31], earthquakes
[30] and various other types of events [38], [26]. Generally,
for event detection, either classification or clustering is
utilized to extract tweets of interest and then the spatial
[30], temporal [31], or spatiotemporal burstiness [14] of
the extracted tweets is examined to identify the potential
occurrence of an ongoing event. However, these approaches
typically uncover events only after they have commenced.
To forecast future events, several event forecasting methods
have been proposed, most of which focus on temporal
events and ignore the underlying geographical information,
such as the forecasting of elections [35], stock market move-
ments [7], disease outbreaks [2], box office ticket sales [4],
crimes [36], and others [39], [10]. These works typically
utilize linear/nonlinear regression models [4], [7] or time
series-based methods [2]. Few existing approaches provide
true spatiotemporal resolution for predicted events. In [17],
Gerber used logistic regression for spatiotemporal event
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forecasting using topic-related tweet volumes as features,
while Ramakrishnan et al. [28] built separate LASSO models
for different locations to predict the occurrence of civil
unrest events. Zhao et al. [39] proposed a multi-task learning
framework that jointly learns multiple related spatial loca-
tions. But it requires extra knowledge on dynamic features.
Innovatively formulating the mobility prediction in trans-
portation system as a video prediction task, StepDeep is
proposed by Shen et al. [32] based on novel spatial-temporal
convolution layers. The method StepDeep requires spatial
grid data as input, which cannot be adapted into the setting
of this paper.

Rule Ensemble Learning (REL). Given a set of ba-
sic propositional features describing the data, the goal of
REL is to supervisedly learn a set of feature conjunctions
with good predictability. To handle the inherent exponential
complexity of this problem, many REL methods have been
proposed majorly in three categories: 1) filter-based methods,
which assume that important conjunctive features must
be frequent and thus only retain frequent instances for
classification [9], [11], [33]. This category is correlated to
discriminative frequent pattern mining [9]. However, frequency
and the predictability of features are not equivalent because
predictability is dependent on the specific prediction task
while frequency is not; 2) heuristic/boosting-based methods,
where researchers address the challenge in Category 1, by
learning the feature conjunctions and the predictive model
concurrently [29], [25], [15]. To ensure computational ef-
ficiency, heuristic strategies based on greedy or boosting
methods are generally utilized. And only sub-optimum or
local optimum can be found. 3) optimization-based methods:
To address the problem in Category 2 and ensure efficiency,
recently few methods have been proposed for conjunctive
feature selection with theoretical guarantee on the error
bound to the global optima [5], [20]. This is achieved by
utilizing an active set algorithm to scale down the solution
space. To check the optimality of current active set effi-
ciently, the “product-of-sum” property [5] of Boolean rules
must be exploited. However, existing optimization-based
methods do not apply in more general situations where the
rules are numerical because they violate the “product-of-
sum” property. Classic approaches such as discretizating
the numerical values into multiple binary features arbi-
trarily scale up the number of basic propositional features
and thus exponentially enlarge solution space. In order to
address this problem, our paper proposes a new method
that can directly handle numerical rules efficiently without
discretization.

Multi-task learning: Multi-task learning (MTL) learns
multiple related tasks simultaneously to improve general-
ization performance [3], [24]. Many MTL approaches have
been proposed over the last decade [34]. In [21], Kim et al.
proposed a regularized MTL which constrained the models
of all tasks to be close to each other. The task relatedness
can also be modeled by constraining multiple tasks to share
a common underlying structure, e.g.,, a common set of
features [37], or a common subspace [1]. MTL approaches
have been applied in many domains including computer
vision and bioinformatics.

3 PROBLEM FORMULATION

In this section, the problem in this paper is formulated.
Section 3.1 poses the problem of “precursor rule learning for
event forecasting”. Denote X = {th}ftT as a collection
of input data (e.g., microblog data), where T is the set
for time intervals and S is the set of the spatial locations.
X+ denotes the data for tth time interval (e.g., tth date) at
location s such that X, , € Z"s:t* IVl where ng+ denotes the
number of microblog messages sent during time interval ¢
at location s, and |V| denotes the size of the vocabulary
V, which is a set of primitive features that can include
occurrences of specific keywords, hashtags, and hyperlinks.
X, is defined as a matrix whose element [X ¢]; , € {0,1}
denotes the occurrence (with value 1) or not (with value
0) of the primitive feature v in the ¢th message in location s
during time interval ¢. The important notations in this paper
are listed in Table 1.

As explained earlier, a conjunctive feature (or feature con-
junction) is defined as the conjunction of a set of distinct
primitive features such as keywords that co-occur in the
same message. Hence, the set of all the possible conjunctive
features is denoted as V = {v|[v C V}, whose size is
V| = 2Vl ¢,(Xs+) € RTJ{0} denotes the frequency
of the conjunctive feature v in location s € S at time
t € T. Therefore, instead of assigning this a Boolean value,
in our problem the conjunctive feature is generalized to a
numerical value, referred to as the numerical conjunctive
feature (NCF).

NCFs have topological relationships with each other.
We denote these relationships using a directed acyclic graph
(DAG) known as a feature conjunction lattice: G(V,E), as
illustrated in Figure 2(b). In a feature conjunction lattice,
the top node (i.e., Level 0) is an empty conjunctive feature
while the nodes in Level 1 are the primitive features V. A
node v; € V is called the parent of another node v, € V
if o C vy and |va] + 1 = |v1]; hence vy is a child of
v1. Let D(v) and A(v) denote the set of descendants and
ancestors of v € V, respectively. We assume that both D(v)
and A(v) include the node v. For a subset of nodes U C V,
we define the hull and sources of U as H(U) = U,y A(v)
and S(U) = {v|A(v) NU = {v}}, respectively. [U| denotes
the number of NCFs in set U/ while I/ denotes the comple-
mentary set of U/, namely all the NCFs that are in V but not
inU.

Define Y = {Ygf}sstT as the event occurrences, where
Y+ € {1,—1} such that Y;; = 1 means there is an
event in location s at time ¢, otherwise Y,;, = —1. The
following is our problem definition of spatial forecasting
task: Given the input data X = {X;;}{ for location s € S,
and the primitive feature set V/, our goal is to predict the
output, namely the future event occurrence Y; .. And in the
meanwhile, we also discover the set of NCFs U/, C V that
are crucial precursors for a future event in each location s,
and thus learn a mapping function for event forecasting:

f : {¢U(Xs,t)}v€us — YS,T (1)

where 7 = t 4 ¢, and ¢ is the lead time for forecasting.
Among all of the [V| = 2/VI candidate NCFs, typically only
a few are useful precursors for forecasting.
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Table 1: Important Notations

Notations Explanations

Xs,¢ and Ys ¢ Input data and event occurrence in location s at time ¢
v The set of all the conjunctive features

Du(Xs,t) The frequency of v € V in location s at time ¢

D(v) and A(v) | The sets of descendants and ancestors of v € V

W Weight vector for the conjunctive features in location s
G The set of geographical neighborhoods

O4,r Boundary and interior of a generalized d-simplex

st dual variable for location s at time ¢

j 2 andﬁ D, b and ﬁ—norms,;ﬁ:ﬁ/(ﬁ— 1)7 ﬁ:p/(Q_p)

There are three technical challenges involved in solving
this problem. First, exponential solution space. This prob-
lem is extremely difficult to solve even for a modest size
of V because of the exponentially large size of |V|, which
causes intractability in both memory and computation. Sec-
ond, numerical values of conjunctive features. To ensure
an efficient solution, the state-of-the-art methods require a
conjunctive feature to have a Boolean value. However, in
our problem the conjunctive feature value ¢, (X ) must be
numerical and therefore the Boolean assumption is not sat-
isfied, creating a serious challenge for the model efficiency.
Third, geographical influences in NCF learning. For spatial
event forecasting, both the geographical relationship and
heterogeneity in the conjunctive feature learning are crucial
and must be considered, a combination that has never been
addressed by existing methods. To address all three of these
challenges, we have developed the new model presented in
the following section.

4 MODEL

We propose a new model, HTNL, to address the challenges
described above. First, NCF is mathematically defined and
analyzed in Section 4.1. Second, geographical relationships
and heterogeneity are considered for NCFs in Section 4.2.
The final objective function and its relation to existing
models are proposed in Sections 4.3 and 4.4, respectively.

4.1 Computational Properties of NCFs

The state of the art requires a Boolean value for conjunc-
tive features to ensure efficiency, because this is the only
way the conjunctive features can be efficiently computed
by multiplying the primitive features that they consist of.
However, for our problem of spatial event forecasting, the
Boolean assumption is not satisfied and a new and generic
version, namely NCEF, is required. To ensure the computa-
tional efficiency is retained in such a generalized setting, the
unique formulation and properties of NCF are explored in
the following.

4.1.1 Calculation of the NCF
As noted in Section 3, the value of NCF v in location s at
time ¢, namely ¢, (X ), is defined as the spatiotemporally

accumulated occurrence of NCF v. Given that [X,],; €
{0,1}, ¢ (X5 ,¢) is computed as:

Pu(Xs1)= Zi(/\je} [Xs,t]i,j) = Zz Hjev[Xs,t]i,j 2)

where A ¢, [X;,i]i,; is the logical “and” among the values of
the primitive features. Equation (2) builds a logical mapping

between a spatial location and all the messages it contains.
This mapping is important because it enables us to leverage
the distant supervision on spatial-location level (i.e., the
event occurrence label Y, ; for each location which contains
multiple messages inside it) to learn the feature occurrence
patterns, which is finer-grained on message-level.

4.1.2 The kernel that induces the feature mapping ¢, (X 1)

The computation of NCF ¢, (X ;) is a nonlinear mapping
from the input. In the following, we prove that ¢, (X )
is induced by a kernel and thus can benefit from efficient
computation through kernel methods and kernel hierarchy.

Lemma 1. k(X 4, Xo ¢) = ¢0(Xs 1) - 00( X 1) is a kernel.

The proof of Lemma 1 is in Appendix A. The predictive
mapping f in Equation (1) can be instantiated as the linear
combination of a subset of NCFs: f(W,{¢,(Xs.)}¥) =
ZIL}’ W v00u(Xs,t) + b, where W ,, represents the weight of
the NCF v for location s. Thus, learning such a mapping
function is equivalent to optimizing a subset of ¢/ and their
corresponding weights W = {Ww}fgf . Mathematically,
this can be achieved by jointly optimizing the empirical risk
term and regularization term:

S, T S
anljgczcm,t,f(Ws,.,{%(Xs,t)},‘j)wzém(ws) 3)

s,t

where L(-) is the loss function, which is convex and proper.
To address the classification problem, this could be a hinge
loss. €)(-) is the regularization term that enforces sparsity
so that only a few W, will retain nonzero values to form
the subset /. Due to the property in Lemma 1, the efficient
representer theorem [16] can be utilized to formulate the
predictive function f(W, {¢,(Xs:)}) as a linear combi-
nation of hierarchical kernels. We denote Ws. = {W; ,}Y.
The major computational challenge in solving Equation (3)
comes from the large size of D(v), which is exponential to
|V'| = |v|, Thanks to the favorable properties of our proposed
kernel in Lemma 1, this computation can be reduced to
be linear with |V, which will be proved in Theorem 2 in
Section 5.

4.2 Geographical relationships of NCFs

The geographical relationships of NCFs include both geo-
graphical similarity and geographical heterogeneity.

4.2.1
sors.

Geographical similarity: general conjunctive precur-

For a domain of interest, the sparsity among NCFs for
different locations can be learned jointly because they follow
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the same DAG relation shown in Figure 2. Specifically, the
majority of the important conjunctive features tend to be
the smaller ones (i.e., those consisting of fewer primitive
features), while most long conjunctive features can normally
be enforced to zeros. To achieve this, we enforce £, ;-norm
(p € (1,2)) on the norms of the descendants of each NCF
so that longer conjunctive features will be subject to greater
penalties.

QW) = ZUEV by (ZueD(u) (TD(U)(W»U))I)) ’ (4)

where d, = a‘"', a > 0 is the regularization parameter
corresponding to NCF with a specific length, and p = (1, 2]
controls the sparsity. An NCF can be selected only when all
of its ancestors are selected, in which case p = 2; otherwise,
an NCF could be selected even if its ancestors are zeros.
D (v)(W..») is the norm for each NCF which will be detailed
in next subsection in Equation (5).

4.2.2 Geographical heterogeneity: regional conjunctive
precursors.

Although different locations may share similar general tex-
tual expressions, the strength of this similarity typically
varies. The textual expressions within the same spatial
neighborhood tends to be more similar than those far away.
For example, events that occur at neighboring locations at
around the same time could well involve similar topics,
so the texts from neighboring locations may share a num-
ber of common keyword conjunctions that are related to
the events. As shown in Figure 3, the top popular civil-
unrest-related conjunctive features for different major cities
in major Latin American countries in January 2013 are
shown. Here conjunctive features with similar meanings are
marked by similar colors. It can be seen that the cities in
the same spatial regions or the same countries are more
likely to have similar popular conjunctive features. And
the locations in different geographical neighborhoods (e.g.,
regions, provinces, countries, and other administrative or
geographical divisions) may probably have distinct conjunc-
tive features due to their different public concerns, natural
features, and societal issues.

Here we treat the event prediction for each geographical
location s € S as a task. This means X;; and Y, are the
input and output for time ¢ in the s-task, respectively. To
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Figure 3: Under civil unrest domain, the top popular
conjunctive features for different major cities in major Latin
American countries in Jan 2013. It shows some geographical

regions share similar conjunctive feature patterns.

take into account such geographical heterogeneity, we pro-
pose a new hierarchical multi-task learning strategy for each
NCF’s norm rp,)(W. ) by enforcing an /;-norm on each
geographical neighborhood g C S. Using such scenario, the
above-mentioned geo-heterogeneity among different spatial
locations S will be jointly considered, with those locations
j in the same geo-neighborhood g more similar, which is
enforced by the ¢5-norm which is also named group Lasso:

o W) =Y [{Wialielles w€ D) G

where G is the set of all the geographical neighborhoods.
Combining Equations (4) and (5), we propose the following
novel bi-space regularization term:

G P\
) = o (X, (Z0 HWidiel2) ) ©
vey

where the sparsity of NCFs are enforced by considering
the hierarchical structures in two spaces. Specifically, the
conjunction relation in DAG is modeled by the outer ¢, ;-
norm and geographical hierarchy is modeled by the inner
{3 1-norm.

4.3 Obijective function of HTNL

The regularization term in Equation (6) is non-smooth and
multilevel. To simplify its form, the following elegant equiv-
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alence is proposed in Lemma 2 which is proved in Appendix
B:

Lemma 2. Define 4, = {z € Rz > 0,3, 27 < 1}.
The regularization term QU(W) defined in Equation 6 can be
transferred to an equivalent problem as follows:

Z STIW,l? @)

veV ,-YUHGD(U) Wy g Jj€Eg

min —
VA p

QW
( ) Hu,v,g

where v € Oy 1, A
p/(2=p).

The proof of Lemma 2 is in Appendix B. The equivalent
form is an elegant quadratic form of the weights W .,
making it possible to utilize the representer theorem to solve
the empirical risk minimization problem. By introducing
this equivalent form into Equation (3), we obtain:

’ ‘C(Ystaf(st{¢v( st)}g))
ZHGVZ s Y Wil ®)

2 —1
where \I/u,g(’% A, :u) = <Zv€A(u) fyvkuduﬁ) - The above
problem is convex in 7y, A, u, and W. L(-) is the hinge loss.

= @\Dv)|p/and,uu'ug = ®\G|l p=

min C o
YA, W

4.4 Relationship to previous models

In this section, we show that our proposed model HTNL is
the general form of several state-of-the-art models:

4.4.1 Generalization of multiple kernel learning
Letp=2,Q()=||[W|2 |G| =1,and ns s = 1,Vs,t € S,T.
Our model in Equation (8) is reduced to multiple kernel
learning [18]:

mlgnC' Zjﬁ(yi, flw, ;) + w3

where w is the set of feature weights, n is the number of
samples, x; and y; are the ith input and output of the model.

4.4.2 Generalization of hierarchical kernel learning

Let p = 2, |G| = 1, and only allow Boolean conjunctive
features, i.e., nyy = 1,Vs,t € S,T. Our model in Equation
(8) is thus reduced to hierarchical kernel learning [5]:

mln C’Z L(yi, f

here z; ; is a binary value of jth primitive feature in ith
input.

4.4.3 Generalization of generalized hierarchical kernel
learning

Let |G| = 1 and only allow Boolean conjunctive features,
ie,ns; =1,Vs,t € S,T. Our model in Equation (8) is thus
reduced to generalized hierarchical kernel learning [19]:

min Czk Zl " Lyis f (i, Mo, g 1Y)

VA w
1 m
+ ZUEV \I/u,l(77 >\a 1) Zk Hwk7u||2

where 2y, ; ; is the binary value of the jth primitive feature
in the 7th input of the kth task and wy, ,, is the weight value
of the uth feature of the kth task.

Algorithm 1 Hierarchical-multitask NCF Learning

Require: X,Y, C, G, and V.
Ensure: solution W and b.
1: Initialize ! = S(V), Wi, [, ® = 0.

2: repeat
3 repeat
4 Normalize n + />4 n,
1/(1—
5 Nu(B) (ZLGA(U,) P 1(]1711)) /(1=p)
6: Initialize £4,., = 1/|G|, u € U
7: repeat
8 a < solve Equation (13) given &
9 € « solve Equation (13) given o
10: until convergence
11: step size d < +/log(U)/k/||VH(n)| oo
12: n <« expl+logn—s-VH(n)
13:  until Convergence
14:  if Equation (14) is satisfied then
15: break
16:  else
17: Add the nodes violating Equation (14) to U/
18:  endif

19: until Forever

5 OPTIMIZATION ALGORITHM

In this section, we propose a new efficient algorithm to solve
the objective function of HTNL model in Equation (8) by
leveraging its dual solutions. Specially, first, its dual form
is proposed and simplified in Section 5.1 and then solved
by the proposed algorithm described in Sections 5.2 and
5.3. Finally, theoretical analyses of the convergence and time
complexity are presented in Section 5.4.

5.1

The primal form in Equation (8) of the objective function
can be reformulated into the following duality form:

1 % G
o WY teT,s€S §Zu qu/“*uyg(%)\aﬂ)'h(g,u)

s.t. ZteT st Ysy =0,¥s €S
0<a,; <C,VseSVteT 9)

Duality form

min max Qg t—

where o = {a, t}ftT is the dual variable. h(g,u) =
227 ik @il Pul(X;i)Pu(Xk)yj ke k- The above func-
tlon is convex in v, u, and A and concave in a. However,
the problem as stated involves too many variables and is
thus difficult to solve efficiently. To address this problem,
Theorem 1 proposes a simplified equivalent formation.

w, {Mjeozij}))) +Z ‘I'u1 7, 1,1)[[wy]|5Theorem 1. The objective function in Equation (9) can be

simplified into the following equivalent form.

mﬂinmoa}x Z Qg t — (Znu

teT,se€S uey

1/p
) (10

where 0, (B)=( Y d2BS ")/ =), fu(u) =maxh(g, u).
vEA(u) 9€G

The proof of Theorem 1 is in Appendix C.

5.2 Active Set Algorithm

Because the size of all the possible NCFs V is exponential
to the size of the primitive features V, Equation (10) can
easily be computationally unfeasible to solve even with a
moderate size of V. To handle this problem, the sparsity
of V is taken into account. This means that for the optimal
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solution to Equation (10), most members of v € V should
be 0. Thus, solving the original problem in Equation (10) is
equivalent to solving the following subproblem in Equation
(11) where only the small subset of non-zero variables at
the optimal solution of Equation (10) need to be involved.
The computational effort required in the latter case will be

significantly lower.
1/p
P ) (11)

1 N
mﬁinm(z}x Z st = 5 <Z Nu(B) - h(u)
teT,seS ueU
where U = {u|W,, # 0,u € V} is the set of nonzero-weighted
NCFs. This function is convex in 8 but concave in «.
However, the non-zero variables at the optimum are
unknown beforehand. This leads us to leverage the active
set algorithm [5], which efficiently updates and optimizes
the set ¢/ until the optimality condition is satisfied. The spe-
cific procedures are shown in Algorithm 1. The algorithm
initializes U as the top node in the DAG; the subproblem in
Equation (11) is solved in Lines 3-13, which is elaborated in
Section 5.3. The solution to the subproblem is then validated
against the optimality condition of the original problem via
Theorem 2. If the optimality condition is satisifed, then the
algorithm is terminated; Otherwise, the NCFs that violate
the optimality condition will be added to the current NCF
subset U for the next iteration.

5.3 Solution to the Subproblem in Equation (11)

Equation (10) is simplified to a subproblem where only the
NCFs with nonzero weights are retained. This enables the
active set algorithm to solve the subproblem by varying the
set of nonzero NCFs until the optimality condition is met.

To efficiently solve Equation (11), which is convex and
Lipschitz continuous in 3, we employ the mirror descent
algorithm [8], which achieves a near-optimal convergence
rate when the feasibility set is a simplex such as in our
problem. In general, mirror descent iterations require 3 and
o to be solved alternately. When fixing o, the gradient of
the objective function in Equation (11) with respect to f is
calculated and then f3 is updated by a descent step s. [3 is
then fixed, and the updated « is used to solve the following
problem:

T,S
n):mo?‘xzas,t <Z’r]u
t,s

1/p
) (maxx h(g, u ))p> (12)
ueU

which is difficult to solve due to the “max” function in-
side the £3-norm. To remove the “max” term, an auxiliary
variable ¢ is introduced to transform Equation (12) to the

following equivalent problem:
1/p
B) Zg gg,uh(g u)p) (13)

T,8
maxmmZozst (Z 7 (

t,s ueU
where £, € ©\g|,1- Thus o and § can be solved alternately
until convergence is achieved. Specifically, when fixing &,
solving « is similar to the {;-norm MKL problem [22]
with a different feasibility set for the optimization variables.
When « is updated and fixed, £ is easily optimized by
straightforward linear programming.

5.4 Theoretical Analysis

5.4.1 Optimality analysis for convergence criteria
Algorithm 1 will converge when the current candidate set
of NCFs U C V satisfies the optimality condition. To verify

this, derivation of the sufficient condition of the optimality
is proposed in Theorem 2 and proved in Appendix D.

Theorem 2. Denote (Sy, ) as an ey-approximate optimal
solution of Equation (11) based on the current active set U. It
is then an optimal solution for Equation (10) with a duality gap
less than e if the following condition holds:

h(g,v)

max max
9 ueSU) veD(u) (ZzGA(U)ﬂD(U) du)2

< (X, 1)) +2(c - a)

In the proposed algorithm, the most time-consuming
part is the verification of a sufficient condition of con-
vergence because it involves the search of an exponential
variable space. Due to the use of the NCF lattice in Figure
2(b) and our proposed kernel, this can be reduced to a
polynomial complexity, as stated by Theorem 2 and proved
in Appendix E:

(14)

Theorem 3. The suﬁ‘lczent condition can be exammed efficiently
in polynomial time: (Z 5 ur| e (Z B ur?-e)

The remaining computation in Algorithm 1 primarily
involves the solution of the subproblem in Equation (11).
Denote |U*| as the size of the final active set U*, Then
Equation 11 is solved O(|U{*|) times in the worst case, which
requires log(|U{*|) iterations. The dominant computation in
each iteration is solving Equatlon 12, whose conservative
complexity estimate is O((Z 3) - [u*|?), where ng de-
notes the size of the data for location s. This amounts to
O3, - S - [U*|2log(|U*]). After combining this with the
time complexity proved by Theorem 2, the overall compu-
tatlonal complexity of the proposed algorithm is obained:
O(n2 -5l Plog (U [+(325n2)- U | -e+ (3 n2)-[U*[*-e).

6 EXPERIMENTS

In this paper, the performance of the proposed model HTNL
is evaluated using several synthetic datasets and real-world
datasets. First, the datasets and experimental settings are
introduced. Then, the effectiveness and efficiency of HTNL
are evaluated against several existing methods that are
the state-of-the-arts. In addition, qualitative evaluations on
the selection of NCFs demonstrates the interpretability of
HTNL. All the experiments were conducted on a 64-bit ma-
chine quad-core processor (i7CPU@ 3.10GHz) and 16.0GB
memory.

6.1 Experiment Setup
6.1.1 Synthetic datasets

Several synthetic datasets were generated randomly. The
generation procedures were as follows.

1) Generate NCFs. First, define a vocabulary V' con-
sisting of 1000 primitive features (i.e., |V| = 1000), which
are nominal symbols denoted by distinct IDs: ‘# 1",/# 2/,....
Based on V/, the “ground truth” NCFs set i/* was randomly
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formed as follows: i) 10% elements in V were randomly
selected on into ¢/* following uniform distribution; ii) then
10% of them were further selected to randomly combine
with another primitive features to form NCFs with length
of 2; iii) similar to the previous step, 10% of “length-
2” NCFs were selected to form those with length of 3.
2) Generate NCFs’ weights. As mentioned above, each
location is treated as a task. Here, |S| = 12 tasks were
generated, where each four of them randomly formed as
a group. For each sth task in group g, we randoml?l gen-
erated the “ground truth” NCFs weights W, . € R“| as
follows. We first randomly generated the “group-average”
weights W, ~ Gaussian(0,0.05I), where I is identity
matrix. Then for each task in each group, we generated
its NCFs weights W, . ~ Gaussian(W,,0.011). 2) Gener-
ate the input and output variables. Next, for each task,
we generated 200 samples, and each sample is a matrix
X5 € 72Vl whose each row is formed by randomly
selecting k ~ Poisson(8) elements from all the “ground
truth” NCFs to be valued “1” following a Poisson dis-
tribution. Additional k£ ~ Poisson(2) primitive features
could also be selected to be assigned “1” from all the
primitive features following a uniform distribution. All the
other unselected features were set to 0. Furthermore, the
response variable for tth sample of sth task is determined
by logistic function: Y, = sign(Z?[Xsyt]m - Wi + €),
where ¢ ~ Gaussian(0,0.01). Based on the above strategy,
10 synthetic datasets were generated randomly.

6.1.2 Real-world civil unrest datasets
Table 2: Real-world datasets

Dataset #Tweets Label sources #Events
Argentina 160,564,890 Clarin; La Nacién; Infobae 1427
Colombia 158,332,002 El Espectador; El Tiempo; EL 11,
Colombiano
Paraguay 30,891,602 ABC Color; Ultima Fora; La | )4
acion
Uruguay 10,310,514 El Pai; EI Observador 664
Venezuela | 167,411,358 El Universal; El Nacional; | 535,
Ultimas Noticias
U.S. 6,487,623,208 CDC Flu Activity Map 533

For the datasets on Latin America, the raw data was
obtained by randomly sampling 10% (by volume) of the
Twitter data from Jan 2013 to Dec 2014 in five countries
as shown in Table 2. The Twitter data for the period from
Jan 1, 2013 to Dec 31, 2013 was used for training, while the
data for the second half of the period, from Jan 1, 2014 to
Dec 31, 2014, was used for the performance evaluation. For
the civil unrest domain, the feature set included 2199 ~ 1030
conjunctive features which were all the possible conjunc-
tions of 100 civil unrest related words (such as “protest”
and “riot”) and hashtags (such as “#Megamarch”) based
on the keyword list in [28]. The event forecasting results
were validated against a labeled events set, known as the
gold standard report (GSR) publicly available', as shown in
Table 2. An example of a labeled GSR event was given by
the tuple: (CITY="Curitiba”, STATE = “Paran4d”, COUNTRY
= “Brazil”, DATE = “2013-01-20").

1. In addition to the top 3 domestic news outlets, the following news outlets
are included: The New York Times; The Guardian; The Wall Street Journal;
The Washington Post; The International Herald Tribune; The Times of London;
Infolatam.

1. Open Source Indicators. https:/ /doi.org/10.7910/DVN/ENSFUW

6.1.3 Real-world influenza dataset

For the datasets in the United States, the raw data was
crawled from Jan 2013 to Dec 2014, as shown in Table
2. As in the first dataset, the Twitter data for the period
from Jan 1, 2013 to Dec 31, 2013 was used for training
while the second half of the period, from Jan 1, 2014 to
Dec 31, 2014, was used for the performance evaluation. For
the influenza outbreaks, the feature set consisted of over
2181 ~ 1054 features generated from the combinations of 181
influenza-related words extracted based on the keywords
list used in [23]. The forecasting results for the flu outbreaks
were validated against the corresponding influenza statistics
reported by the Centers for Disease Control and Prevention
(CDC)%. CDC publishes the weekly influenza-like illness
(ILI) activity level within each state in the United States
based on the proportion of outpatient visits to healthcare
providers for ILL. There are 4 ILI activity levels: minimal,
low, moderate, and high, where the level “high” corre-
sponds to a salient flu outbreak and was considered for
forecasting. An example of a CDC flu outbreak event is:
(STATE = “Virginia”, COUNTRY = “United States”, WEEK
= “01-06-2013 to 01-12-2013").

6.1.4 Parameter Settings and Metrics

The event forecasting task is to predict whether or not there
will be an event in the next time-step for a specific location.
For civil unrest datasets, a time step is one day while for
disease outbreaks, a time step is one week. There are several
parameters for our proposed model HTNL. First, p (with
three optional values: {1.1,1.5,1.9} since 1 < p < 2 and p=2
will be tested in gHKL model introduced in the following)
and C (with candidate values:{0.01,0.1,1,10,100}) were
determined with a 3-fold cross validation. The parameters
were set as d, = 2/’ suggested by Jawanpuria et al. [20].
The geographical hierarchy was “state-city” administrative
relation for civil unrest datasets while “HHSregion®-state”
relation for influenza dataset.

6.1.5 Comparison Methods

The proposed HTNL were compared with 7 state-of-the-
art methods on spatial event forecasting and predictive rule
learning described as follows.

1. Least absolute shrinkage and selection operator (LASSO)
[28]. LASSO utilizes a simple ¢;-norm to jointly achieve
curve fitting and select the primitive features. In addition
to merely using the primitive as the features, we also tried
frequent patterns as the features based on frequent pattern
mining techniques which extract the frequent conjunctive
features which appear at least in 1% among all the tweets
in training set as features. The LASSO model using such
features is named “LASSO-Freq” here. The feature set is
the set of the primitive features, namely keyword counts.
The regularization parameter is set based on a 3-fold cross
validation on the training set.

2. Tree-gquided Group Lasso for Multi-task Learning (TMTL)
[21]. The relationships among tasks follow the geo-hierarchy

2.CDC FluView.
fluviewinteractive.htm

3. HHSregions:http:/ /www.hhs.gov/about/agencies/
regional-offices/

http:/ /www.cdc.gov/flu/weekly/
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Table 3: Evaluation results of all methods in effectiveness and efficiency on 9 datasets

[

Prediction Performance Area Under the Curve (AUC) of ROC

[ Train. Time | Test Time

Method | Argentina  Colombia  Paraguay Uruguay Venezuela Influenza (second) (second)
LASSO 0.5738 0.6441 0.6013 0.6526 0.5722 0.6738 40 1073
LogReg 0.7268 0.7384 0.7044 0.7274 0.6792 0.4851 18 1073
LASSO-Freq 0.5857 0.5560 0.5138 0.5801 0.5560 0.6854 120 1073
LogReg-Freq 0.5158 0.4905 0.5012 0.5114 0.5239 0.6554 52 1073
KDE-LDA 0.7665 0.6919 0.6654 0.7279 0.7214 0.2827 656 10~2
MREF 0.7264 0.5296 0.6171 0.6812 0.5887 0.4969 444 1073
TMTL 0.7069 0.5633 0.6129 0.6931 0.6586 0.4989 203 1073
RuleFit 0.7246 0.5101 0.5008 0.5698 0.7080 0.6100 3 1073
gHKL 0.6850 0.5198 0.6067 0.6878 0.6970 0.5000 76 1073
HTNL 0.8264 0.7384 0.7374 0.7538 0.7508 0.6951 132 1073
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Figure 4: The AUC curves of our HTNL and all the comparison methods. HTNL performed consistently best in general.

Table 4: The NCF precursors (translated in English) discovered for different datasets. (# NCF: The number of selected NCFs;
avg. len.: The average length of all the NCFs; The symbol “+” denotes the logical “and” within an NCF)

| Argentina | Colombia | Paraguay | Uruguay | Venezuela | Influenza
government+congress | government+water national+university know+hope government-+high bed+flu+home
government+deputies | water+problem to+avoid security+rights violence+order bed+home
to+end+hate violence+protest war+avoid project+president national+support cold+sick
let’s+fight national+mayor know+rights power+death candidate+march you+flu
Top 10 NCFs | followers+free national+control work+rights power+matches national+students is+epidemic
(length> 2) to+know+results mayor-+control find+food president+hope patria+control flu+bed
protest+against national+government | people+commitment | death+matches national+government | sick+stomach
national+triumph national+water national+freedom project+hope fight+policy yousick
hate+hunger national+freedom national+marches national+university | students+protest have+today
hate+class power+death national+central national+fight government+violence | not+well
# NCFs 131 106 108 71 325 2017
avg. len. 1.2290 1.2837 1.1062 1.0000 1.6892 1.9499

defined by the administrative relation introduced in Section
6.1.4. Keyword counts are the features. The regularization
parameter A = 0.3 are set based on a 3-fold cross-validation.

3. Logistic regression (LR) [10]. LR utilizes a logit function
to map the tweets observations into future event occur-

The input features here
addition to merely using the primitive as the features, we
also tried frequent patterns as the features based on frequent

are the counts of

keywords. In

pattern mining techniques which extract the frequent con-

rences (“-1” denotes no occurrence, “1” denotes occurrence).

junctive features which appear at least in 1% among all the
tweets in training set as features. The LR model using such
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features is named “LR-Freq” here.

4. Kernel density estimation-based logistic regression (KDE-
LR) [17]. This approach utilizes KDE-smoothed historical-
event counts and the proportions of latent topics as features,
and builds a model for each spatial resolution. The number
of topics for each dataset is set based on 3-fold cross-
validation.

5. Multi-resolution Event Forecasting (MREF) [40]. This
method jointly models the prediction tasks in multiple ge-
ographical levels by utilizing their geo-hierarchical relation.
The features are the primitive features, namely the counts
of keywords. The major parameter is the regularization
parameter that is set by 3-fold cross-validation.

6. RuleFit [15]. RuleFit is a well-recognized rule ensem-
ble learning algorithm. All the parameters were set to the
default values mentioned by the authors and recommended
by several publications [19], [12], [13]. To be specific, the
model was set in the mixed linear-rule mode, average size
of tree was set 4, and the maximum number of trees were
set as 500. This method is used to learn the predictive rules
for future events. The model inputs are binary occurrence of
keywords combinations, as it can only handle Boolean rules.

7. Generalized hierarchical kernel learning (gHKL) [19].
gHKL is a state-of-the-art rule ensemble learning algorithm.
There are two sensitive parameters, the type of norm and
the value of regularization parameter. We have tried 1.1-
, 1.5-, and 1.9-norms, while tuned the with regularization
parameter with values in {1073,1072,--- |10} using 3-fold
cross validation.

6.2 Performance

In this section, the proposed HTNL is evaluated quantita-
tively in effectiveness, efficiency, and scalability on synthetic
and real-world datasets. In addition, the illustration of the
selected NCFs by the proposed HTNL is also presented.

6.2.1 Quality of NCFs selection

The quality of the selected NCFs by the methods for con-
junctive feature learning, namely RuleFit, gHKL, and our
HTNL were evaluated on synthetic datasets against the
“ground-truth” NCFs. Precision and recall were utilized
to evaluate the percentage of correct NCFs among all the
selected NCFs, and the percentage ground-truth NCFs suc-
cessfully selected, respectively. F-measure, which is the har-
monic mean of precision and recall, is also shown in Table
5. In general, the proposed HTNL outperforms the com-
parison methods by 15% in F-measure, and also achieved
the best recall and second-best precision. Moreover, HTNL
always achieved much smaller standard deviations than the
comparison methods, showing a robust performance across
different datasets. Both precision and recall are near 90%
of HTNL, demonstrating that it can effectively discover the
ground-truth conjunctive features just based on the train-
ing data. Moreover, both HTNL and gHKL can effectively
consider both the difference and similarity among different
tasks, this explains why they outperform RuleFit. Further-
more, HTNL can further consider the grouping relationship
among different tasks, which helps it further outperform
gHKL.

10

Table 5: Conjunctive feature selection performance in the
precision, recall, and F-measure on 10 synthetic datasets.

Method | Precision | Recall | F-measure
RuleFit | 0.90840.064 | 0.5684-0.116 | 0.688+0.083
gHKL 0.730£0.095 | 0.936+0.018 | 0.817+0.047
HTNL 0.86940.051 | 0.93740.015 | 0.901+0.027

6.2.2 Performance on real-world datasets

In the experiment based on real-world datasets, Twitter
data collection was partitioned into a sequence of date-
interval subcollections. The event forecasting task was to
utilize one day tweet data to predict whether or not there
would be an event in the next day for a specific city (for
the civil unrest domain), or a specific state (for the influenza
outbreaks domain), which means the lead time ¢ = 1. To
perform this task, we created a training set and a test set
for each city (or state), where each data sample was the
daily tweet observation with the above-mentioned features.
The predicted events were structured as tuples of (date,
city/state). A predicted event was matched to a real event
if both the date and location attributes were matched. To
validate the prediction performance, the Area Under the
Curve (AUC) of Receiver operating characteristic (ROC)
curve were adopted. ROC curve illustrates the performance
of a binary classifier as its discrimination threshold is varied.
The curve is created by plotting the true positive rate (TPR)
against the false positive rate (FPR) at various threshold
settings. The AUC measures the area below this curve,
which is a well-recognized metric for the comprehensive
performance of a classifier.

Table 3 summarizes the effectiveness and efficiency of
the proposed HTNL on different datasets. The AUC mea-
sure was adopted to quantify the performance. First, the
results shown in Table 3 demonstrates that the methods
that take into account the spatial information, especially
the geographical hierarchy, performed better. Specifically,
KDE-LDA, MREETMTL, and the proposed HTNL typically
performed the best in most situations. KDE-LDA performed
much better on civil unrest datasets than the influenza
dataset. This might be because this method was specially
designed to forecast crimes, which are small-scale social
events unlike influenza epidemics in “state” level. LogReg
also achieved a very competitive performance with AUC
larger than 0.73 on three datasets. Second, HTNL outper-
formed all the other methods in all the six datasets. This
is because HTNL not only considers the geo-hierarchy, but
more importantly, is to consider the NCFs like the frequen-
cies of keyword co-occurrences as new features that capture
crucial precursors for future events. In contrast, the Boolean
rule learning methods including RuleFit and gHKL only
achieved the AUCs around 0.6 on the datasets, generally
worse than the other methods. This is because they can
only consider the binary occurrence of keywords on each
date instead of the frequencies of keywords. Thus they lose
much information of the magnitude of the social indicators.
Among all the datasets, the overall performance for Ar-
gentina was generally the best while the Influenza outbreaks
forecasting was a relatively difficult prediction task with
lower AUCs for most of the methods. Finally, the method
directly utilizing frequent pattern mining strategy to treat
the most frequent conjunctive features as the features cannot
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achieve a competitive performance. Specifically, LogReg-
Freq achieved a worse performance than that of LogReg
because there are much more features (i.e., frequent pat-
terns as conjunctive feautres) involved purely based on the
input of training set, which are likely to enforce the over-
fitting somehow due to the largely-increased number of
features against the number of training samples. LASSO-
Freq performs clearly better than LogReg-Freq because it
can regularize the large number of features involved in
LogReg, and hence achieved better generalizability. Both of
LASSO-Freq and LogReg-Freq cannot perform as good as
our method because the frequent patterns selected based
on their method can only consider the frequency of the
features. But more frequent does not necessarily mean
more important and beyond merely inputs, our method can
jointly consider both inputs and outputs and hence is able
to learn which conjunctive feature inputs are important for
prediction outputs.

6.2.3 Efficiency and scalability

The rightmost column of Table 3 shows the training and test
time efficiency comparison among HTNL and the compet-
ing methods for forecasting influenza outbreaks. The effi-
ciency evaluation results on civil unrest datasets followed
a similar pattern and are not provided due to space limi-
tations. The test runtime for all the methods are extremely
small (no more than 0.01 sec) for each prediction, though
KDE-LDA is relatively slower (i.e., 1072) due to extra com-
putation required for computing for the latent topics. For the
training runtime, Table 3 shows that RuleFit required small-
est amount of time of only 3 seconds, because of two reasons
1) it binarizes the numerical frequencies into Boolean values
as inputs; and 2) it utilizes an efficient heuristic procedure to
obtain a suboptimal solution. Simpler methods like LASSO
and LogReg also achieved high efficiency with less than 50
seconds. In addition, even though HTNL need optimize a
problem with exponentially large set of candidate features,
it still achieved highly efficient computation. This is because
of the good property of the proposed kernel in Lemma 1,
which is proved to reduce the exponential time complexity
down to polynomial as proved in Theorem 3.

In addition, Figure 5 illustrates the scalability of the
proposed HTNL in synthetic datasets in the runtime when
the size of the datasets vary. Each setting of synthetic
datasets was generated randomly for ten times and thus the
standard deviation was calculated and shown by the error
bars. Specifically, Figure 5(a) shows that when the number
of features in active set does not change, the runtime ba-
sically will not increase because only the active set is es-
sentially involved in subproblem computation in Equation
(11). This demonstrated the theoretically-advantageous and
practically-useful characteristics of HTNL which can handle
large number of sparse features where only few of them
are useful for the prediction tasks. Furthermore, Figure 5(c)
shows that when the features in active set increases, the
runtime generally increases super-linearly, which verifies
the time complexity proved in Theorem 3. In addition, the
runtime is linear in the number of tasks while super-linear
in the number of total samples, which again match Theorem
3.
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Figure 5: The scalability of the proposed method.

6.2.4 Event forecasting performance on ROC curves

In Figure 4, the event forecasting performance in ROC
curves for six datasets is illustrated. For all these datasets,
the proposed HTNL performed consistently among the
best whose curves were farthest away from the point
(1,0). Specifically, For the the civil unrest datasets like “Ar-
gentina”, “Paraguay”, “Uruguay”, and “Venezuela”, HTNL
generally performed the best, with ROC curves covering the
largest areas above the x-axis. For the dataset of “Colombia”,
HTNL, KDE-LDA, and LogReg were among the best, where
HTNL typically performed the best when FPR was larger
than 0.5. This merit is important because it indicates that
HTNL tends to provide the most extensive true positive
alarms among all the methods. Comprehensive detections
of sensitive social events are important to many applications
such as social emergency management. For the influenza
dataset, according to Figure 4(i), HTNL consistently out-
performed the other methods with different FPR and TPR
values. LogReg and LASSO also achieved quite competitive
performance.

6.2.5 Qualitative Evaluation

Another advantage of our HTNL is its strong interpretabil-
ity compared to most of the spatial event forecasting models
that merely use primitive features. Table 4 shows the results
on the selection of NCFs by the proposed HTNL for the
six real-world datasets. Specifically, the top 10 NCFs with
length larger than 1, namely precursor rules, are listed. The
amount and average length of the selected NCFs are also
presented. The original Spanish words were translated into
English by Google Translator 4. The symbol “+” denotes the
logical “and” within an NCF. An NCF will be triggered only
if all its words connected by “+” co-occur in a tweet. Accord-
ing to Table 4, the proposed HTNL effectively selected high-
quality NCFs robustly for all the datasets in two different
domains, namely civil unrest and influenza outbreaks. For
civil unrest datasets, the NCFs in Table 4 typically represent
the motivations or propaganda of the protest events. For
example, the high frequency of the NCF “water”+“problem”
could probably be one important reason that causes so-
cial unrest in Colombia, while the NCFs like “govern-
ment”+“congress” and “government”+“deputies” could be
the triggers for those future events in Argentina. The NCFs
can also be propaganda-related, such as “to”+“end”+”hate”

4. Google Translate: https:/ /translate.google.com/
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and “let’s”+"fight”. In contrast to civil unrest datasets, those
top NCFs for influenza dataset were typically not about the
motivation or advertisement of organized social events, but
the symptoms or discussions about flu. For example, NCF
like “bed”+“flu”+“home” appearing together in a tweet was
likely to be a strong indicator for a person’s disease status.
“sick”+"stomach” could also be a symptom of stomach flu.
Additionally, the numbers of total NCFs optimally selected
for different datasets show that for larger countries, the
numbers and average lengths of NCFs tend to be larger. This
is because larger size of population typically leads to more
various social issues and thus the social events could be
indicated by more diverse precursors. Finally, the average
length of the selected features for Uruguay dataset is 1,
which indicates that the selected conjunctive features are
all single keyword features. The reason is because Uruguay
has relatively small number of tweets and fewer tweets per
event on average, as shown in Table 2. This makes this
dataset to have small number of existence of conjunctive
features for each sample. This indicates that for this country,
conjunctive features with size larger than one are not strong
signals to indicate future events because of the scarcity of
them..

7 CONCLUSION

Forecasting spatial societal events in social media is sig-
nificant. It is also very challenging because the precursors
of the future events are not straightforward and can be
sophisticated ensemble of underlying rules. Most existing
methods simplified this problem by considering frequen-
cies of keywords or predefined phrases as features due to
the challenges such as the inherent exponential complexity
of ensemble rule learning, distant supervision, numerical
values, geographical relations. To jointly handle all the
challenges with theoretical guarantee, we propose a novel
spatial event forecasting model named HTNL which learns
the NCFs efficiently. an efficient algorithm is proposed to
optimize the model parameters and prove its theoretical
guarantees for error bound and time efficiency. Extensive
experiments on multiple datasets demonstrate the effec-
tiveness and efficiency of the proposed method. Moreover,
qualitative analysis on the extracted NCFs explicitly shows
the strong interpretability of HTNL.
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APPENDIX A

PROOF OF LEMMA 1

PT’OOf. Define kv,i,j(Xs,th/,t’) ¢U,i(Xs,t) . ¢U,j(Xs,t)/

therefore we have k., (Xs¢, Xs.t) = >0 kv,ij(Xst, Xsr 1)

In the following, we will first prove k, ; j(Xs,, Xo /) is a

kernel.

kv,i,j(Xs,t, Xs’,t’) - ¢'U L(

- HkEv

According to the properties of kernel, because each
([ Xs,t)ik, (X 1]j6) is a kernel on each feature dimen-
sion, the multiplication of kernels on all the dimensions
kyi;(Xst, Xo ) must be a kernel.

Finally, according to the theory of convention ker-
nels [6], k,(Xs+, Xs:) is a kernel if and only if each
kyij(Xst, X 1) is a kernel. The proof is completed. O

S, ) : ¢v,j(Xs’t)
s t ik * Hka[Xs,t]j,k

st i,k [—Xs’,t']j,k> (15)

APPENDIX B
PROOF OF LEMMA 2

Proof. According to Micchelli and Pontil [27], we have the
following equality holds based on the Holder inequality.
min

d d (r+1)/r
o r/(r+1>)
bEOg i=1 al/bl (Zizl @

where ©,4, = {z € Rz > 0,3, 27 < 1}. By repeatedly
applying Equation (16) on Equation (6), we have the follow-
ing equation:

QW)? = (Zvev ds (ZuED(v) (Zj ||{W"“}?||2)p> %)2
= min Zuev % (ZueDw) (ZZ ”W“HQ)p) i
=mind_ % Zuemu) A:u (ZT HW“H2)2

EOMIID M D MU

- A,
VA weD(v) 11, u,'vg
= GDv)p/ and Huv,g = @Gl D=

(16)

where v € Oy 1, A
p/(2—p)

0

APPENDIX C
PROOF OF THEOREM 1

In order to prove Theorem 1, we need to first prove the
following lemma:

Lemma 3. The following two problems are equivalent.

P
e’
max | 3 Woug(v, A ) - h(g,u) (17)
oA uey g
B
ta>d, P < h(u
16212 malna s.t.a>d, Z 51; “ (18)

u€eD(v)

Proof. According to the Proposition 11 in Jawanpuria et al.
[19], Equation (17) is equivalent to the following:

Z Z(Sgu xuﬂq, h(g,u)

ueD(z) ¢

P

max min max (19)

Y. SEA zEV
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By applying Chebyshev approximation, Equation (19) is
equivalent to:

D(v) G /2 P
. 61} uAU 71/149 ”h(g7 U)

.t. > : : :
mAamen %qeaic maax a, s.t.,a> Eu Eg ( 2
The above is equivalent to the following according to the
Sion-Kakutani minimax theorem.

D(v) @

j :2 :évu vuugu (97 )
t. >
max m{?/X m/\a,X min a, S. a (

seA

Using the Holder’s inequality for A and p, we obtain the
following;:

st a2 (@A) OLhw)) )

where h(u) = ||{h(g, )}$ || 0. The proof is completed. [

min min a
SEA a

Now we utilize Lemma 3 to prove Theorem 1:
Proof. The proof of the Theorem 1 is equal
to proving that Equation (17) is equivalent to

maxgee,y, , Zuev(iz(u))ﬁnu(ﬁ), which is now proved
in the following. The Lagrangian of Equation (18) is:

L(5,a,8) =a+ Y Bu(d,? > (55 .h(u)” —a)

veV ueD(v)

(20)

Let the derivative of L with respect to a to be 0, we obtain:

: —2¢2 " D
max min o (dy "6 P 21
s pe S S sy e
which can be transformed to the following;:
max h mln Bo(dy 252 u)’D (22)
AEOVI uey ueg(v)

whose equivalence is obtained using the Holder’s inequal-
ity.

max
BEBIV| 1
u

1/(1-p)
hw' | > anpr (23)
eV vEA(u)

which is equivalent to maxgseeo,,, , Zuev(ﬁ(u))ﬁnu(ﬂ). The
proof is completed. O

APPENDIX D
PROOF OF THEOREM 2
Proof. Consider the following function of o and S.

S iy S () hiw)

teT,seS ueV

(24)

which is concave in « and convex in . According to Sion-
Kakutani minimax theorem, there is no duality gap between
the following min-max interchange problems:

mﬁinmaxF(a,,B) = maxmﬁinF(a,ﬁ) (25)
Therefore, the error of the current solution («, ) to the
global optima is bounded by the duality gap below:

max F (o, 8) —min F(a, ) < P —min (o, #) < Py~ Dy+e(8)
where Pj is the value of the primal objective (in Equation
8) while P73 is its optimal value. Dg is the value of the dual
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objective. e(8) = B) > 0 is the error based
on the solution 5.
Therefore to ensure the duality gap is less than ¢, we

need:

F(O[,ﬁ*) _F(aa

F(a,ﬂ*)fF(a,/j')+ngD5§e (26)
which is equivalent to
H i
max(Znu > (Znu iL )JrPﬁ —Dg <€
uey uey

(27)

According to Proposition 5 in [5], we have,
max (E (B ) (28)

ueVy

max Z hig,v) }

u€SU) (ZIEA(U)QD(U) du)Z

< max{Q(Wy)?,

veD(u)
Combine Equation (27) and (28), and consider the fact
that Pg — Dg > 0, the proof is completed. O
APPENDIX E

PROOF OF THEOREM 3

Before proving Theorem 2, we first present the following
lemma:

Lemma 4.

¢z z

(Zzel Hcev r ) ' (Z]’EJ Hcev xJ‘j)
= Zie[,je] (HCEV Thi HCEV ilcJ’j)

Now we give the proof of Theorem 3:

Proof. Then the time complexity of the computation of the
kernel matrix can be reduced from exponential to polyno-
mial, which will be proved in the following.

3 h(g,v)
veD(w) (ZIEA(v)ﬁD(v) du)?
_ Z DU mer Uity Ys,tr Po (Xt ) Do (X tz)Ys, bz Qs
7UeD(u) (XCeecawnp(u) @)

9 ¢U(X~9,t1)¢v(x-9,t2)
S e 2

2
Dty (Zeeawnp(u) d=)

where my 4, +, = st Ys,ty Ys,ta O t- By applying Lemma 4,
the above equation can be transformed to:
g ZiEn(tl),jGn(tQ) (HCEV thvincev Xt2vj)
DD Menn)

2
s t1,to€T veD(u) (ZZGA(UWD(H) da)

:zg: Z Ms,ty,ty Z Z HCEVthﬁiHcevth,j)
S)t1,

2
s t1,t2€T  i€n(ty),jEn(ts) vED(u) (Z%A(v)ﬁD(u)dz)

- i Z Ms,ty,ta Z Hce(Sufsu) ke,i,j

2 —
s t1,t2€T  ien(ty),jen(ts) (a+1)%|S = Sl

Y e 3 +1)

s t1,t2€T i€n(ty),jEn(t2)
Therefore, the computation of the kernel matrix requires
time in O(ZS 2) . |U*| - e). Besides, the calculation of
Moty 45,8 € S,t1,t2 e T and right-hand side of Equa-
tion (14) requires O(Z n2) - [U*]? - €). The proof is com-
pleted. O

Hcesu Kc,i,j Z
a2!Sul
veD(u)

Hcesu Kc,i,j H Kc,i,j
(a+1)2

2| Sy |
a
cEB—Sy
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