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ABSTRACT
The explosive growth and increasing sophistication of Android

malware call for new defensive techniques that are capable of pro-

tecting mobile users against novel threats. To combat the evolving

Android malware attacks, systems of HinDroid and AiDroid have

demonstrated the success of heterogeneous graph (HG) based clas-

sifiers in Android malware detection; however, their success may

also incentivize attackers to defeat HG based models to bypass the

detection. By far, there has no work on adversarial attack and/or

defense on HG data. In this paper, we explore the robustness of HG

based model in Android malware detection at the first attempt. In

particular, based on a generic HG based classifier, (1) we first present

a novel yet practical adversarial attack model (named HG-Attack)
on HG data by considering Android malware attackers’ current

capabilities and knowledge; (2) to effectively combat the adversar-

ial attacks on HG, we then propose a resilient yet elegant defense

paradigm (named Rad-HGC) to enhance robustness of HG based

classifier in Android malware detection. Promising experimental

results based on the large-scale and real sample collections from

Tencent Security Lab demonstrate the effectiveness of our devel-

oped system αCyber, which integrates our proposed defense model

Rad-HGC that is resilient against practical adversarial malware

attacks on the HG data performed by HG-Attack.

CCS CONCEPTS
• Artificial Intelligence → General; • Database applications
→ Data mining; • Security and Protection→ Invasive Software.
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1 INTRODUCTION
Due to the mobility and ever expanding capabilities, smart phones

have become increasingly ubiquitous in people’s everyday life per-

forming tasks such as social networking and online banking. An-

droid, as an open source and customizable operating system (OS)

for smart phones, is currently dominating the market by 74.85%

[19]. However, due to its large market share and open source ecosys-

tem of development, Android attracts not only the developers for

producing legitimate Android applications (apps), but also attack-

ers to disseminate malware (malicious software) that deliberately
fulfills the harmful intent to smart phone users. Driven by consider-

able economic profits, there has been explosive growth of Android

malware - i.e., according to Tencent Security Lab [23], there have

been 4, 687, 008 newly generated Android malware that infected

more than 61 million smart phones in the first half of 2018. The

large volume of increasingly sophisticated Android malware has

posed serious threats to smart phone users, such as stealing user’s

credentials, pushing unwanted apps or advertisements (ads) [14].

Therefore, the detection of Android malware is of major concern

to both anti-malware industry and researchers.

Attackers and defenders always engage in a never-ending arms

race. At each round, both of them try to analyze methodologies and

vulnerabilities of each other, and develop their own optimal strate-

gies to overcome the opponents [1], which has led to considerable

countermeasures of variability and sophistication between them.

For example, Android malware attackers employ techniques such

as repackaging and obfuscation to bypass the signature-based de-

tection and defeat attempts to analyze their inner mechanisms [26].

To combat the evolving Android malware attacks, systems applying

data mining and machine learning techniques have been developed

for Android malware detection [8, 14, 18, 22, 24, 25], where different

kinds of classification models are constructed based on different

feature representations to detect malicious apps. Different from

most of the existing works that merely leveraged content-based

information (i.e., statically or dynamically extracted features from

Android apps) for malware detection, HinDroid [14] and AiDroid

[25] were proposed which considered higher-level semantic re-

lations among apps and other types of entities (e.g., Application

Programming Interfaces (APIs) called by apps, smart phones where

apps installed, signatures signed by app developers, etc.) and in-

troduced structured heterogeneous graphs (HGs) to model such

complex relations for Android malware detection. These systems
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resting on HG based models have been successfully deployed in

anti-malware industry [8, 14, 25]. However, the success of deploy-

ments may also incentivize attackers to defeat HG based models

to bypass the detection. To put this into perspective, as shown in

Figure 1, driven by considerable profits, malware attackers are orga-

nized within the complicated and decentralized ecosystem, which

enables them to have powerful capabilities: by exploiting vulner-

abilities and/or utilizing social engineering tactics (e.g., induced

installation), attackers are capable of downloading apps to com-

promised devices from the Command and Control (C&C) servers

and executing them on-demand. Such mechanism makes evasion

attacks together with poisoning attacks on HG based models real-

istic: under the cover of injected apps that perturb the relational

(non-i.i.d.) nature of the data in HG (i.e., poisoning attacks), the

target apps (i.e., new malware) can be better “protected” to bypass

the detection (i.e., evasion attacks).

Figure 1: Adversarial attacks on heterogeneous graph (HG).

With the popularity of machine learning based models deployed

for various applications, the issues of understanding their security

in adversarial settings have been widely studied ranging from tra-

ditional learning models (e.g., Support Vector Machine (SVM) or

logistic regression [17]) towards deep neural networks [4, 10, 16, 21].

However, majority of these works are based on the assumption that

data samples are independent. Although there have been a few stud-

ies of adversarial settings on non-i.i.d. samples (e.g., graph data)

[2, 6, 28, 29], these works only considered homogeneous graph

data. Due to the heterogeneous property (i.e., graph consisting of

multi-typed entities and relations), it is difficult to directly apply

these existing adversarial settings on heterogeneous graph. By far,
there has no work on adversarial attack and/or defense on
heterogeneous graph data.Our work in this paper aims to bridge

this gap with the application in Android malware detection.

In this paper, to explore the robustness of HG based classifiers

in Android malware detection, built upon the preliminary work

[14, 25], we first construct a generic HG based classification model:

we extract the API call sequences from runtime executions of An-

droid apps to capture their behaviors; and then we further analyze

higher-level semantic relations such as whether two apps have

similar behaviors, whether they co-exist in the same smart phone

that can be identified by its unique International Mobile Equipment

Identity (IMEI) number, and whether they are signed by the same

developer or produced by the same company (i.e., affiliation); later,

we present a structured HG to model such complex relations and

exploit meta-path based embedding approach to learn the represen-

tations of nodes (i.e., apps) fed to the downstream classifier. Based

on the constructed HG based classifier, we first present a novel yet

practical adversarial attack model (named HG-Attack) on HG data

by considering Android malware attackers’ current capabilities and

knowledge. Then, to effectively combat the adversarial attacks on

HG,we further propose a resilient yet elegant defensemodel (named

Rad-HGC) to enhance robustness of HG based classifier in Android

malware detection. Promising experimental results based on the

large-scale and real sample collections from Tencent Security Lab

demonstrate the effectiveness of our developed system αCyber (as
shown in Figure 2), which integrates our proposed defense model

Rad-HGC that is resilient against practical adversarial malware

attacks on HG performed by HG-Attack. The major contributions

of our work in this paper can be summarized as follows:

• Novel yet practical adversarial attacks on HG data: In the

adversarial point of view, to conduct a practical attack, attackers

need to answer the following question: how to optimally inject
poisoning nodes (i.e., apps) to influence the relational nature of
the data in HG to make the classifier maximally misclassify the
target node (i.e., new malware) as benign? Note that the efficacy

of adversarial attacks is also constrained in the capabilities and

knowledge attackers possess. In this paper, HG-Attack model is

proposed to answer the above question, by taking consideration

of Android malware attackers’ current capabilities (e.g., the com-

promised devices they have and the limit of poisoning nodes

they can leverage) and knowledge (i.e., the information of the

training data and learning algorithms).

• Resilient yet elegant defense model against adversarial at-
tacks on HG: Like the game of packing and unpacking between

malware attackers and defenders [26], to be resilient against the

adversarial attacks on HG, defenders need to resolve the follow-

ing puzzle: how to uncover the poisoning nodes (i.e., injected apps)
in the HG in order to detect the target node (i.e., new malware)? To
solve this problem, Rad-HGC is proposed to enhance the robust-

ness of HG based model against the adversarial attacks while

not compromising its detection accuracy.

• A practical and robust system against adversarial Android
malware attacks on HG based model: We obtain two large-

scale and real sample collections from Tencent Security Lab: (1)

the first data set is the historically accumulative data including

1,389,408 apps uploaded by 70,184 users (i.e., IMEIs) and its gener-

ated HG (i.e., denoted as HG-1 consisting of 1,389,408 nodes with
five different entity types and 20,576,125 edges with six types

of relations); and (2) the second data set is generated based on

HG-1 which further incorporates 13,129 new apps uploaded by

2,817 mobile users (i.e., IMEIs). Based on these data collections,

we develop a system named αCyber, which integrates our pro-

posed defense model Rad-HGC that is resilient against practical

adversarial malware attacks performed by HG-Attack.

2 HETEROGENEOUS GRAPH BASED MODEL
FOR ANDROID MALWARE DETECTION

In this section, we define the Android malware detection problem

based on a generic HG based classification model.
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Figure 2: An architecture overview of αCyber. In αCyber, a generic HG based classifier (denoted asOrig-HGC) is first introduced;
and then novel yet practical adversarial model on HG (denoted as HG-Attack) is presented; later, integrating our proposed de-
fense mechanism (i.e., HG-Defense), a detection model with robustness enhancement (denoted as Rad-HGC) is devised against
the adversarial attacks on HG based model in Android malware detection.

2.1 Feature Extraction
To detect Android malware, we consider both content- and relation-

based information to comprehensively describe the Android apps.

Content-based Feature Extraction. API calls are used by An-

droid apps in order to access Android OS functionality and system

resources. Therefore, we extract the sequences of API calls in the

application framework from runtime executions of Android apps

to capture their behaviors. For example, the sequence of API calls

(startActivity, checkConnect, sendSMS, finishActivity) denotes the
intention of sending SMS messages without user’s concern by a

malicious “TigerEyeing” trojan.

Relation-based Feature Extraction. To detect the increasingly

sophisticated Android malware, we further extract the following

kinds of relations: (1) R1: The app-invoke-API means if an app

invokes an API call during runtime execution. (2) R2: The app-
exist-IMEI indicates if an app exists (i.e., is installed) in a smart

phone (i.e., IMEI). (3) R3: The app-certify-signature means if an app

is certified by a signature (i.e., every app run on the Android plat-

form must be signed by the developer). (4) R4: Package name (a.k.a.

Google Play ID) is a unique name to identify a specific app. Compa-

nies conventionally use their reversed domain names to begin their

package names (e.g., “com.tencent.mobileqq”). We extract domain

name from package name to denote the relation between an app

(e.g., “mobileqq”) and its affiliation (e.g., “tencent.com”); and then

we generate the app-associate-affiliation to describe if an app is as-

sociated with an affiliation. (5) R5: To represent that a smart phone

has a set of apps signed by a particular developer, we extract the

IMEI-have-signature to indicate if a device has a specific signature.

(6)R6: To denote that a smart phone installs a set of apps associated

with a specific affiliation, we generate the IMEI-possess-affiliation
to describe if a smart phone possesses a particular affiliation.

2.2 Heterogeneous Graph Construction
To depict apps, APIs, IMEIs, signatures, affiliations and the rich

relations among them (i.e., R1-R6), we introduce HG to model them,

which is able to be composed of multi-typed entities and relations.

Definition 1. A heterogeneous graph (HG) [20] is defined as
a graph G = (V, E) with an entity type mapping ϕ:V → A and a
relation type mappingψ : E → R, whereV denotes the entity set and
E is the relation set,A denotes the entity type set and R is the relation
type set, and the number of entity types |A| > 1 or the number of
relation types |R | > 1. The network schema [20] for the G, denoted
as TG = (A,R), is a graph with nodes as entity types from A and
edges as relation types from R.

HG not only provides the network structure of data associations,

but also a high-level abstraction of categorical association. Based

on the definitions above, the network schema shown in Figure 3

enables the apps to be represented in a comprehensive way that

utilizes their semantic and structural information.
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Figure 3: Network schema in our application.

To formulate the relatedness among entities in HG, the concept of

meta-path has been proposed [20]: ameta-path P is a path defined

on the network schema TG = (A,R), and is denoted in the form

of A1

R1

−−→ A2

R2

−−→ ...
RL
−−→ AL+1, which defines a composite relation

R = R1 · R2 · . . . · RL between types A1 and AL+1, where · denotes

relation composition operator, and L is length of P. Based on the

network schema shown in Figure 3, incorporated anti-malware

experts’ domain knowledge, we design six meaningful meta-paths

to characterize the relatedness over apps at different views (i.e.,

PID1-PID6 shown in Figure 4). For example, PID1 depicts that two
apps are related if they both invoke the sameAPI (e.g., twomalicious

mobile video players both invoke the API of “requestAudioFocus”).

Figure 4: Meta-paths built for Android malware detection.

2.3 Classifier Based on Heterogeneous Graph
After constructing the HG, the problem of Android malware detec-

tion can be considered as node classification in HG. To efficiently

solve this problem, we first present the concept of HG represen-

tation learning [7, 9]: given a HG G = (V, E), the representation

learning task is to learn a function д : V → Rd that maps each

node v ∈ V to a vector in a d-dimensional space Rd , d ≪ |V|

that are capable to preserve the structural and semantic relations

among them. To learn the presentations of nodes in HG, various

embedding methods [7–9] have been proposed. In this work, with-

out loss of generality, we exploit metapath2vec [7] which employed

meta-path based random walks and heterogeneous skip-grams to

learn the latent representations for HG such that the semantic and

structural correlations between different types of nodes could be

persevered. After employing metapath2vec to learn representations

of nodes (e.g., apps) in HG, we denote our datasetD to be of the form

D = {xi ,yi }ni=1 of n apps, where xi ∈ Rd is the learned representa-

tion for app i , and yi is the class label of app i (yi ∈ {+1,−1, 0}, +1:

malicious, −1: benign, and 0: unknown). To this end, the problem of

Android malware detection can be stated in the form of: h : X → Y

which assigns a label y ∈ Y (i.e., −1 or +1) to an input app x ∈ X

through the learning function h (i.e., without loss of generality, in

this paper, we use SVM as the downstream classifier after learning

representations of apps in HG). We denote this original HG based

classifier as Orig-HGC throughout the paper.

3 ADVERSARIAL ATTACKS ON HG
In Android malware detection, a HG based detection system is to

detect malicious apps based on the classifier trained on HG data

and prevent them from interfering users’ smart phones. In contrast,

attackers would like to perform adversarial attacks on HG (i.e., de-

liberate perturbations of HG data that can lead to misclassification)

to violate the security context. Since the efficacy of adversarial

attacks is constrained in the capabilities and knowledge attackers

possess, we first present the power of Android malware attackers

based on the current development of malware industry.

3.1 Preliminary and Problem Definition
Goal of attackers.Given a newly developed malicious app x ∈ X+

that has bypassed content-based classifiers (i.e., classifiers only take

content-based features as input and assume apps are independent),

the goal of Android malware attackers is to devise a model that can

enable it to be misclassified as benign by the HG based classifier

(i.e., x ∈ X−
), with optimal perturbations on HG.

Capabilities of attackers. According to different capabilities at-
tackers have, they can perform: (1) evasion attack which exploits

misclassification without affecting training distribution, or (2) poi-
soning attack which influences the training data that is used to con-

struct the classifier, or (3) both of them. As previously mentioned, in

Android malware industry, the new kind of C&C malware enables

attackers to leverage C&C servers to create powerful networks

of compromised devices capable of downloading and executing

apps on-demand. For example, a malicious app in “SDKSmartPush”

family with package name of “com.i***soft.***.gamecenter” and sig-

nature hash value of “20B***12F” is able to query the C&C servers to

download and execute other malicious apps to push unwanted ads

in users’ smart phones; it is also capable of downloading and exe-

cuting benign apps such as mobile games and tool apps on-demand.

Such powerful capabilities enable attackers to concurrently perform
evasion and poisoning attacks on HG: they can cleverly devise tactics

to inject poisoning apps in the compromised devices to protect the

new malware (i.e., target node in HG) to evade the detection.

Knowledge of attackers. Attacker can have different levels of

knowledge about (i) the training data (i.e., the HG G), and (ii) the

learning algorithms (i.e., HG representation learning algorithm д
and classification function h in our case). As apps in users’ smart

phones (including compromised and non-compromised devices) are

dynamically generated, attackers can only have partial knowledge

about the training data (i.e., a subset of HG data). Practically, in our

work, we assume attackers can have complete knowledge about

the learning algorithms of Orig-HGC and use a subset of the data

to devise a surrogate model to perform attacks on the HG.

Problem Definition. Based on the capabilities and knowledge of

attackers, the problem of an adversarial attack on the HG based

classifier (i.e., Orig-HGC) can be defined as: given a subset of HG

data (i.e., a sub-HG)
˜G = ( ˜V, ˜E), an adversarial attack is to opti-

mally inject poisoning nodes VP along with the target node vt
(i.e. new malicious app x) into G, leading to an adversarial HG

ˆG = ( ˆV, ˆE) where ˆV = ˜V∪V∗
({VP ,vt } ⊆ V∗

) and
ˆE = ˜E ∪E∗

(E∗
is the set of new generated edges after injecting V∗

in
˜G);

taking
ˆG as part of training data, the attack will lead the learning

model (i.e., employing HG representation learning algorithm д and

classification function h) to maximumly misclassify vt as benign.
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3.2 HG-Attack : Adversarial Attack Model
Based on the above definition of adversarial attack on Orig-HGC, to
make the classifierh maximumly misclassifyvt as benign, attackers
can perturb the embeddings - representations of nodes (i.e., apps) -

learned from д which are fed to train the classifier h. In Orig-HGC,
the embeddings are learned from metapath2vec (i.e., д) which first

generates a set of meta-path guided random walks that serve as a

training corpus for the skip-gram model; in this way, the learned

embeddings are largely dependent on the generated corpus. By

injecting poisoning nodes along with target node in the given
˜G,

the attacker necessarily changes a set of possible random walks

and thus influences the training corpus and subsequent embed-

dings. How to optimally inject poisoning nodes (i.e., apps) to influence
the embeddings to maximize the misclassification of vt ? Following
observation enlightens us for the solution to answer this question.

Figure 5: 1-order app-app neighborhood relations under dif-
ferent meta-path schemes (i.e., PID1-PID6).

Based on a large-scale and real data collection from Tencent

Security Lab, including 1,389,408 apps uploaded by 70,184 users (i.e.,

217,107 are malicious, 547,366 are benign, and 624,935 are unknown)

and its constructed HG (i.e., HG-1 as described in Section 5.1). As

shown in Figure 5, guided by the six designed meta-paths (i.e., PID1-
PID6), we observe that the more malicious apps the node (i.e., app)

neighbors the higher probability the node is classified as malicious,

and vice versa. Based on this observation, to make target node vt
bypass the detection, attackers can devise tactics to cleverly inject

poisoning nodes to perturb the relational nature of the data (i.e.,

optimally link target node to benign apps via injected nodes). To this

end, given
˜G, the problem of adversarial attack turns to maximize

the likelihood of target node vt connecting with benign apps by

optimally injecting poisoning nodesVP in
˜G while minimize the

probability of vt being predicted as malicious.

To solve this problem, we first assume that if vp ∈ VP is suc-

cessfully injected along with vt in
˜G, then it should be capable

of connecting vt with benign apps in
˜G (i.e., it should have high

connectivity after being injected). To determine how to inject vp ,

based on given
˜G, we would like to first measure its connectivity

by using its estimated frequency fvp (i.e., number of occurrences)

via its neighbors in the random walks. We formulate fvp as:

fvp =
∑

ṽ ∈N (vp )

fṽ
dṽ + 1

, (1)

where N (vp ) denotes 1-order neighbors of node vp ; fṽ denotes the

number of occurrences of ṽ in the random walks generated from

˜G using metapath2vec; dṽ is the degree of node ṽ in
˜G. Then, to

further estimate the likelihood of vp being predicted as malicious

(denoted as cvp ), we devise following approach for computation:

cvp =
1

fvp
·

∑
ṽ ∈N (vp )

fṽcṽ
dṽ + 1

, (2)

where cṽ is the probability of ṽ being malicious measured by label

propagation (e.g., LLGC algorithm [30]) on
˜G.

With the above estimated fvp and cvp , once vp along with vt

being injected in
˜G to generate the adversarial

ˆG, the information

of each of its neighborhood nodes (i.e., v̂ ∈ N (vp )) in ˆG will be

further updated as follows:

fv̂ = fv̂ +
fvp

dvp
, (3)

cv̂ =
1

fv̂
· (

fvp cvp

dvp
+ fv̂cv̂ ). (4)

Accordingly, we would like to maximize fvt while minimize cvt ;
to this end, the objective function can be defined as:

L(f , c) = (
∑

v̂ ∈N (vt )

fv̂
dv̂

)−1 ·
∑

v̂ ∈N (vt )

fv̂cv̂
dv̂
. (5)

To perform practical adversarial Android malware attacks, at-

tackers are also constrained in their capabilities: (1) they can only

inject vp ∈ VP in the devices (i.e., IMEIs) that are compromised;

and (2) they have limited number of compromised devices. There-

fore, we impose two budget constraints δ1 and δ2 on the attacks:

(i) |E(vp ,vIMEI ) | ≤ δ1 which limits the number of poisoning nodes

injected to compromised devices; (ii) |Mcompromised | ≤ δ2 which

limits the number of compromised devices. To this end, given
˜G, an

adversarial attack is to solve the following optimization problem:

argmin

N (vp )
L(f , c)

s.t. |E(vp ,vIMEI ) | ≤ δ1, |Mcompromised | ≤ δ2.
(6)

To solve this optimization problem, we propose HG-Attack model

based on the following strategies to perform realistic adversarial at-

tacks on
˜G: (i) greedily selecting those APIs with low cṽ (cv̂ in later

iterations) to generate poisoning apps VP ; (ii) greedily choosing

compromised devices (s.t. |Mcompromised | ≤ δ2) with minimum

cṽ (cv̂ in later iterations) to injectVP until minimum cvt or δ1 is
reached. The detailed implementation of HG-Attack is given in Al-

gorithm 1 (we empirically set ξ1 = 0.15, ξ2 = 0.5, ξexp = 0.1, δ1 =
500). InHG-Attack, given a target node (i.e., a newmalicious app), to

simulate the compromised devices its attacker owns, we retrieve the

devices (i.e., IMEIs) that include this app’s signature. As signature

can indicate the ownership of an app (i.e., app’s signature can only

be used with the corresponding private key that is owned by a spe-

cific developer), if a device installs app(s) with the same signature

as the target node, we assume the attacker is capable of accessing

this device. In our experiments, we further remove the signatures

whose private keys have been exposed in the Internet, since these

signatures could be publicly accessible for all developers.
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Algorithm 1: HG-Attack : Adversarial Attack on HG.

Input: ˜G = ( ˜V, ˜E); vt : target node; δ1: the number of

poisoning nodes; Mcompromised : compromised

devices; ξ1, ξ2, ξexp : user-pecified thresholds.

Output: Adversarial ˆG = ( ˆV, ˆE).

Get the edges between vt and the nodes in
˜G as

˜Evt ;

Initialize
ˆG = ( ˆV, ˆE) where ˆV = ˜V +vt , ˆE = ˜E + ˜Evt ,;

Calculate cv̂ for each node v̂ ∈ ˆV via LLGC;

n = 1;

while n < δ1 or cvt > ξexp do
Create poisoning node vp and set its associated edges as

ˆEvp = ∅;

for vi ∈ ˜V and ϕ(vi ) = Aapi do
if (vi ,vt ) ∈ ˜Evt and cvi < ξ1 then

Update
ˆEvp by

ˆEvp =
ˆEvp + (vi ,vp );

end
if (vi ,vt ) < ˜Evt and cvi < ξ2 then

Update
ˆEvp by

ˆEvp =
ˆEvp + (vi ,vp );

end
end
Select vIMEI ∈ ( ˜V ∩Mcompromised ) with minimal

cvIMEI ;

Update
ˆEvp by

ˆEvp =
ˆEvp + (vIMEI ,vp );

Randomly select vIMEI sujects to (vt ,vIMEI ) ∈ ˜Evt ;

Update
ˆEvp by

ˆEvp =
ˆEvp + (vIMEI ,vp );

Update
ˆV by

ˆV = ˆV +vp ;

Update
ˆE by

ˆE = ˆE + ˆEvp ;

Recalculate cv̂ for each node v̂ ∈ ˆV;

n + +;

end
Return

ˆG = ( ˆV, ˆE);

4 DEFENSE FROM ADVERSARIAL ATTACKS
To enhance robustness of a generic HG based classifier (i.e., Orig-
HGC) against the adversarial attacks, in following sections, we

first present our defense mechanism (named HG-Defense) and then

propose our defense model (named Rad-HGC).

4.1 HG-Defense: Defense Mechanism
The key idea to enhance robustness of the HG based classifier

against adversarial attacks is to uncover those poisoning nodes

injected in the HG. Recall that, in HG-Attack, to protect target node
vt bypassing the detection of Orig-HGC, attackers inject poisoning
nodes in the given

˜G to maximize the likelihood of vt neighbor-
ing with benign apps while to minimize the probability of it being

predicted as malicious. That is, a poisoning node in the adversar-

ial
ˆG will have following properties: (i) in order to maximize the

likelihood of vt neighboring with benign apps, it might have high

connectivity in the
ˆG which can be implied by its frequency in the

generated random walks; and (ii) as it connects both malicious app

(i.e., target node) and benign apps, after performing label proroga-

tion on
ˆG, the likelihood of it being considered as either malicious

or benign could be low. Therefore, we formulate the probability of

a node v̂i in ˆG being an injected poisoning node as:

Iv̂i ∝
fv̂i

|(cv̂i − β)|
, (7)

where β is user-specific parameter (in this paper we empirically set

β = 0.45). To normalize Iv̂i , we further define it as:

Iv̂i = λ fv̂i (1 − (cv̂i − β)2), (8)

where λ is a rescaling parameter to keep Iv̂i in the range of [0, 1].

Based on the above definition, we can see that the maximum

of Iv̂i is attained when node v̂i in ˆG is estimated with greatest

chance as an injected poisoning node, and vice versa. Then we

propose to uncover the possible poisoning nodes to reconstruct a

ÛG− = ( ÛV−, ÛE−): given a pseudo random function R(.) ∈ (0, 1),

ÛV− = ÛV − v̂i , s.t. R(.) ≤ Iv̂i ,

ÛE− = ÛE − (v̂i , v̂j ), s.t. v̂j ∈ ÛV, (v̂i , v̂j ) ∈ ÛE .
(9)

The proposed method to uncover the possible injected poisoning

nodes in
ÛG is namedHG-Defense, which aims to enhance robustness

of Orig-HGC against adversarial attacks.

4.2 Rad-HGC: Defense Model
To enhance the robustness while not compromising detection accu-

racy, in this section, we further propose an attention-based frame-

work to aggregate a set of reconstructed
ÛG−
s to build the classifier.

Although a classifier can be directly trained based on a recon-

structed
ÛG−

using the proposed HG-Defense, we expect it should
cover as many features as possible in the original feature space

to assure the integrity of original G (i.e., the HG before attack).

To address this challenge, we first define the integrity of original

feature space a classifier built on as:

T ÛG−
S

=
| ∪Kk=1

ÛV−
k |

| ÛV|
, s.t. T ÛG−

S

≥ η, (10)

where K is the number of reconstructed
ÛG−
s using HG-Defense, η

can be empirically set as 1 − (
∑

Ûvi ∈ ÛV
I Ûvi /|

ÛV|).

To this end, given K reconstructed
ÛG−
s, for each of them, we

employ metapath2vec to learn its node (i.e., app) representations.

To fuse the embeddings learned from each
ÛG−
, because of its ef-

fectiveness in various machine learning tasks [27], we propose an

attention framework to learn attention weights of different
ÛG−
s to

obtain final embedding for each app. Specifically, for a node vapp
(i.e., a node with type of app), we define the attention weight of

its embedding learned based on the kth reconstructed
ÛG−

using a

softmax unit as following:

α
kth
vapp =

exp(zkth
T · eCvapp )∑K

k=1 exp(zk
T · eCvapp )

, (11)

where zkth ∈ R |K |∗d
is the attention vector learned based on the

kth reconstructed
ÛG−

(i.e., d is the dimension of the embeddings)

and eCvapp is the concatenation of node vapp ’s embeddings w.r.t. all

ÛG−
s. A higher α

kth
vapp means that the kth reconstructed

ÛG−
is more
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informative for node vapp . After obtaining the attention weight of

each
ÛG−
, the final embedding of nodevapp is given by the following:

evapp =
K∑
k=1

αkvapp · ekvapp , (12)

where ekvapp is node vapp ’s embedding learned based on the kth
ÛG−
. The final obtained embeddings of all nodes (i.e., apps) will then

be fed to the downstream classifier to train the model.

We name the above proposed defense model as Rad-HGC, whose
detailed implementation is given in Algorithm 2.

Algorithm 2: Rad-HGC against Adversarial Attacks.

Input: ÛG = ( ÛV, ÛE).

Output: Class label for unlabeled node Ûv ∈ ÛV .

t = 0;

while 1 do
t + +;
ÛG−
t = HG-Defense( ÛG);

Learn node embeddings for
ÛG−
t via metapath2vec;

Calculate T ÛG−
S
using Eq. (10);

if T ÛG−
S
≥ η then

break;

end
end
K = t ;

for k = 1 to K do
Calculate the attention weight of graph

ÛG−
k for nodes

(i.e., apps) using Eq. (11);

end
Get the final node (i.e., app) embeddings using Eq. (12) to

train SVM;

Use the trained model to predict unlabeled node Ûv ∈ ÛV;

HG-Defense( ÛG)
Initialize

ÛG− = ( ÛV−, ÛE−) where ÛV− = ÛV ,
ÛE− = ÛE;

Calculate f Ûv , c Ûv for each node in
ÛV;

for Ûvi ∈ ÛV do
Calculate I Ûvi using Eq. (8);

Get a pseudo random number from R(.);

if R(.) ≤ I Ûvi then
Collect the edges associated with Ûvi as ÛE−

Ûvi
;

Update
ÛV−

by
ÛV− = ÛV− − Ûvi ;

Update
ÛE−

by
ÛE− = ÛE− − ÛE−

Ûvi
;

end
end
Return

ÛG− = ( ÛV−, ÛE−);

5 EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we conduct four sets of experimental studies using

large-scale and real sample collections from Tencent Security Lab to

fully evaluate the performance of αCyber : (1) we first evaluate the
performance of our proposed adversarial attack model HG-Attack;

(2) and then we evaluate the effectiveness of our proposed defense

model Rad-HGC against adversarial attacks on HG; (3) later, we

perform parameter sensitivity, scalability and stability evaluations

of Rad-HGC; (4) finally, we compare the performance of Rad-HGC
with other popular Android malware detection systems.

5.1 Experimental Setup
Through Tencent Mobile Manager (i.e., one of the most popular

mobile security products in China), its users can scan and upload the

Andorid apps for detection (i.e., these data are fully de-identified).

We obtain the large-scale and real data collections from Tencent

Security Lab: (1) The first data set is the historically accumulative

data collected from Aug. 30, 2018 till Nov. 30, 2018, which contains

1,389,408 apps uploaded by 70,184 users (i.e., IMEIs) (i.e., 217,107 of

them are detected as malicious, 547,366 are benign, and 624,935 are

unknown). After feature extraction (note that, for content-based

features, 75,419 benign apps and 72,868 malware are uploaded with

runtime API sequences) and based on the designed network schema,

the constructed HG has 1,865,034 nodes (i.e., 1,389,408 nodes with

type of app, 331 nodes with type of API, 70,184 nodes with type

of IMEI, 228,976 nodes with type of signature, and 176,135 with

type of affiliation) and 20,576,125 edges including R1-R6 relations.
We denote this constructed HG as HG-1. (2) The second data set

is the newly generated data on Dec. 1, 2018, including 13,129 new

apps uploaded by 2,817 users. Based on HG-1, we incorporate this
newly collected data to generate an updated HG (denoted as HG-2)
which contains 1,882,978 nodes (i.e., 1,402,537 nodes with type of

app, 331 nodes with type of API, 70,571 nodes with type of IMEI,

231,462 nodes with type of signature, and 178,077 with type of

affiliation) and 21,721,829 edges. For those newly uploaded 13,129

apps, to obtain the ground truth, we ask anti-malware experts of

Tencent Security Lab for further analysis - i.e., 9,456 of them are

labeled as benign and 3,673 are malicious. To quantitatively assess

the Android malware detection performance of different methods,

we use the measures shown in Table 1 for evaluations.

The experimental studies are conducted under the environment

of ubuntu 16.04 operating system, plus two Intel Xeon E5-2620 v4

CPU, 4-way SLI GeForce GTX 1080 Ti Graphics Cards and 80 GB of

RAM. Other parameters include the dimension of node embedding

d = 128, neighborhood size w = 5, iteration time epoch = 5 for

skip-gram model. We use sklearn.svm with RBF kernel in our exper-

iments as the downstream classifier and the penalty is empirically

set to be 50 while other parameters are set by default.

Table 1: Performance indices of Android malware detection

Indices Description

TP # of apps correctly classified as malicious

TN # of apps correctly classified as benign

FP # of apps mistakenly classified as malicious

FN # of apps mistakenly classified as benign

Precision TP/(TP + FP)

Recall TP/(TP + FN )

ACC (TP +TN )/(TP +TN + FP + FN )

F1 2 ∗ Precision ∗ Recall/(Precision + Recall)
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5.2 Evaluation of Attack Model HG-Attack
Since this is the first work considering adversarial attacks on HGs,

there are no known baselines. In this set of experiments, similar

to the way how the works [2, 6, 28, 29] evaluate their attacks, we

compare our proposed HG-Attack with the baseline of anonymous
attack (AN-Attack): given the same experimental settings as HG-
Attack (e.g., same budgets of δ1 and δ2), attackers are assumed to be

capable of randomly injecting the randomly generated poisoning

nodes to the compromised devices they possess.

Based on the data collections described in Section 5.1, we first

evaluate the effectiveness of evasion attacks for the proposed

HG-Attack. We conduct 10 sets of experiments: each set includes

100 new malicious apps randomly selected from the data collected

on Dec. 1, 2018; the goal of the attacks is to inject poisoning nodes in

the HG-1 to make the Orig-HGC maximumly misclassify these new

malicious apps. Figure 6.(a) shows different performances of HG-
Attack and AN-Attack in each set of experiments, from which we

can see that: (1) AN-Attack almost fails in performing the evasion

attacks for each set of experiments; while (2) HG-Attack shows

powerful capabilities to evade the detection of Orig-HGC (i.e., the

average TPR ofOrig-HGC is brought down from 97.1% to 41.9%). The

success of HG-Attack lies in its novel yet practical adversarial attack

mechanism. We then evaluate the evasion cost (i.e., the numbers

of compromised devices and injected nodes) of HG-Attack in each

set of experiments. Figure 6.(b) shows that HG-Attack is able to

compromise Orig-HGC with an efficient cost (i.e., to evade a new

malware, the median number of compromised devices HG-Attack
leverages is 5, while the median number of nodes injected is 298).

Figure 6: Evaluation of evasion attacks.

We then evaluate the effectiveness of poisoning attacks for the
proposed HG-Attack. We first randomly select a new malicious app

collected on Dec. 1, 2018; as signature can indicate the ownership

of an app, we then retrieve the devices that include this app’s

signature (i.e., “4CD***194”) to simulate the compromised devices

this malware attacker owns (i.e., δ2 = 5); later, we use HG-Attack
to inject all new malicious apps that are with this signature along

with 38 poisoning apps generated by HG-Attack based on HG-1.
Figure 7.(a) shows that the F1 of Orig-HGC drops from 0.9599 to

0.9412 (i.e., those three new malware all successfully evade the

detection). Based on the same setting, we then further test the

worst case of Orig-HGC being attacked by HG-Attack (i.e., using all

the new malware collected on Dec. 1, 2018 to perform the attacks).

The results are shown in Figure 7.(b), from which we can see that

the performance of Orig-HGC significantly degrades under such

setting (i.e., F1 drops from 0.9599 to 0.5168). The results demonstrate

the effectiveness of poisoning attacks performed by HG-Attack.

Figure 7: Evaluation of poisoning attacks.

5.3 Evaluation of Defense Model Rad-HGC
Since no other defenses against adversarial attacks on HG based

models exist, we evaluate our proposed defense Rad-HGC against

the adversarial attacks (i.e., HG-Attack and AN-Attack on HG-1 us-
ing all new malware collected on Dec. 1, 2018) and without attacks

by comparisons with two baselines (i.e., Orig-HGC and AU-HGC):
(1) Orig-HGC is the original HG based classifier described in Sec-

tion 2.3; (2) different from Rad-HGC, AU-HGC performs arbitrary

guess of injected nodes in the HG while other settings are the same

as Rad-HGC. Table 2 and Figure 8 show the experimental results.

Table 2: Evaluation of defense model Rad-HGC

HG-Attack F1 ACC TP FP TN FN

Orig-HGC 0.5168 0.7855 1506 649 8807 2167

AU-HGC 0.8077 0.8987 2794 451 9005 879

Rad-HGC 0.9350 0.9631 3488 300 9156 185

AN-Attack F1 ACC TP FP TN FN

Orig-HGC 0.9308 0.9600 3537 390 9066 136

AU-HGC 0.9317 0.9604 3545 391 9065 128

Rad-HGC 0.9372 0.9641 3516 314 9142 157

Non-Attack F1 ACC TP FP TN FN

Orig-HGC 0.9599 0.9768 3636 267 9189 37

AU-HGC 0.9535 0.9732 3608 287 9169 65

Rad-HGC 0.9565 0.9749 3613 269 9187 60

From the results, we can see that our proposed defense Rad-HGC
outperforms other defense models (Orig-HGC andAU-HGC) against
the adversarial attacks (HG-Attack and AN-Attack). To further illus-
trate, (1) Based on the most powerful HG-Attack, Rad-HGC stays

resilient (i.e., almost retains the F1 before attack), while Orig-HGC
(i.e., F1 drops from 0.9599 to 0.5168) and AU-HGC (i.e., F1 drops

from 0.9535 to 0.8077) are both vulnerable to such attack; the suc-

cess of Rad-HGC lies in its well-designed defense mechanism to

uncover the possible injected poisoning nodes. (2) For AN-Attack,
as it almost fails in attacking HG based model, there are not great

differences for different defense models. In the case of without at-

tacks (Non-Attack), compared with Orig-HGC (i.e., F1 of 0.9599),

due to its resilient yet elegant defense framework by aggregating a

set of reconstructed HGs with attention strategy, Rad-HGC retains

the detection accuracy (i.e., F1 of 0.9565).
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Figure 8: Comparisons of different defenses.

5.4 Evaluation of Parameter Sensitivity,
Scalability and Stability

In this set of experiments, we first examine how different choices of

parameters (number of walks per node r and walk length l) will af-
fect the performance of Rad-HGC in Android malware detection. As

shown in Figure 9.(a) and (b), we can see that the performance tends

to be stable when we varied the number of walks per node from

r = 5 to r = 25 or walk length l = 30 to l = 60 in the model. Thus,

Rad-HGC is not strictly sensitive to these parameters and is able

to reach high performance under a cost-effective parameter choice.

We also examine the running time with different sizes of training

data generated in terms of the number of devices (i.e., IMEIs). From

Figure 9.(c), we can see that the running time is quadratic to the

number of training samples. When dealing with more data, ap-

proximation or parallel algorithms can be developed. We then run

the experiments using new collected apps from Dec. 2-8, 2018 to

assess the detection performance: as shown in Figure 9.(d) and (e),

Rad-HGC is stable over a long time span in detecting new Android

malware, which achieves an impressive average 0.9812 true positive

rate (TPR) at 0.0289 false positive rate (FPR). We can conclude that

Rad-HGC is feasible in practical use for Android malware detection.

Figure 9: Parameter sensitivity, scalability and stability.

5.5 Comparisons with Other Detection Systems
In this section, based on the labeled 3,673 Android malware de-

scribed in Section 5.1, we evaluate the performance of our devel-

oped detection model Rad-HGC in comparisons with some popular

commercial mobile security products (i.e., Lookout: 10.25-03571d4,

Norton: 4.4.0.4302) and HG based Android malware detection sys-

tems (i.e., HinDroid [14] and AiDroid [25]). Table 3 shows the

detection results of different Android malware families. From Ta-

ble 3, we can see that Rad-HGC performs better than others in the

overall detection of recent collected Android malware; in particular,

it outperform others in the detection of C&C malware families

such as “BlackBaby” and “SDKSmartPush” (i.e., C&C malware is

a new kind of malware that attackers can leverage C&C servers

to create powerful networks of compromised devices capable of

downloading and executing apps on-demand).

Table 3: Comparisons with other detection systems

Family # Norton Lookout HinDroid AiDroid Rad-HGC

FakeBank 167 166 164 165 166 166

CryptoMiner 155 154 151 153 154 154

AppCracked 357 354 341 354 353 355

MalPlayer 256 249 242 249 250 251

GameTrojan 212 208 205 209 210 209

BlackBaby 129 108 105 109 79 128

SDKSmartPush 321 298 275 299 259 319

...
...

...
...

...
...

Others 985 924 908 943 913 961

Total 3,673 3,497 3,442 3,516 3,426 3,613

DetectionRate – 95.21% 93.71% 95.72% 93.27% 98.37%

6 SYSTEM DEPLOYMENT AND OPERATION
Our defensed model Rad-HGC in αCyber has already been incor-

porated into Tencent’s Mobile Security product that provides anti-

malware service for over 5,000,000 users. Rad-HGC has been used

to predict the daily sample collection from the Tencent Security Lab

which includes around 15,000 newly uploaded apps per day. Note

that Android malware techniques are constantly evolving and new

malicious apps are produced on a daily basis. To detect the increas-

ingly sophisticated Android malware, our developed system has

been upgraded to train the model by incorporating newly detected

malicious and benign apps everyday. Our system Rad-HGC has

been deployed and tested based on the real daily sample collections

for over 150 days.

For the development of the system, it has been spent over $325K,

$145K of which is on the hardware equipment. Due to the high

performance in the detection of evolving Android malware, the

developed system Rad-HGC has greatly saved human labors and

cost: over 35 anti-malware analysts and developers at Tencent Se-

curity Lab are utilizing the system on the daily basis. Practically,

an anti-malware analyst can manually analyze 20-40 Android apps

per day. Using the developed system Rad-HGC, the analysis of daily
collected unknown apps (i.e., about 15,000 apps/day) based on mil-

lions of labeled data can be performed within hours with multiple

servers. This has benefited over 5,000,000 smart phone users of

Tencent’s Mobile Security product.
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7 RELATED WORK
In recent years, there have been ample studies on developing An-

droid malware detection systems using data mining and machine

learning techniques [3, 5, 8, 11–15, 18, 22, 24, 25]. However, most of

the existing systems merely utilize content-based features for the

detection. To combat the increasingly sophisticated Android mal-

ware, in the preliminary work, besides content-based information,

HinDroid [14] and AiDroid [25] were proposed which considered

higher-level semantic relations among apps and other types of en-

tities (e.g., APIs, IMEIs, signatures, etc.) and introduced structured

HGs to model such complex relations for malware detection, which

have been successfully deployed in anti-malware industry. As at-

tackers and defenders always engage in a never-ending arms race,

the success of deployments may also incentivize attackers to defeat

the HG based models to bypass the detection.

The robustness of learning-basedmodels has beenwidely studied

including traditional shallow learning models [17] and emerging

deep learning models [4, 10, 16, 21]. However, majority of these

works are based on the assumption that data samples are indepen-

dent. Adversarial attacks and/or defenses for graph (i.e., non-i.i.d.

samples) learning tasks have been sparse with a few exceptions of

[2, 6, 28, 29]. Unfortunately, these works only considered adversar-

ial settings (i.e., particularly attacks) on homogeneous graph data.

Due to the heterogeneous property, it is difficult to directly apply

these existing adversarial settings on heterogeneous graph. By far,

there has no work on adversarial attack/defense on heterogeneous

graph data. Our work in this paper is the first attempt to bridge

this gap with the application in Android malware detection.

8 CONCLUSION
To combat the increasingly sophisticated Android malware, systems

of HinDroid andAiDroidwere developed, which have demonstrated

the success of HG based classifiers in Android malware detection;

however, their success may also incentivize attackers to defeat HG

based models to bypass the detection. To date, there has no work on

adversarial attack and/or defense on HG data. This work is the first

study on the robustness of HG based classifier in Android malware

detection. To explore the security of a generic HG based classifier,

we first propose a novel yet practical adversarial attack model (i.e.,

HG-Attack) on HG data by considering Android malware attack-

ers’ current capabilities and knowledge; then, to effectively combat

the adversarial attacks, we further propose a resilient yet elegant

defense model (i.e., Rad-HGC) to enhance robustness of HG based

classifier in Android malware detection. Promising experimental

results based on the large-scale and real sample collections from

Tencent Security Lab demonstrate the effectiveness of our devel-

oped system αCyber, which integrates our proposed defense model

Rad-HGC that is resilient against practical adversarial malware

attacks on HG performed by HG-Attack.
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