RIGHTS

Session: Long - Heterogeneous Data

CIKM ’19, November 3-7, 2019, Beijing, China

aCyber: Enhancing Robustness of Android Malware Detection

System against Adversarial Attacks on Heterogeneous Graph
based Model

Shifu Hou, Yujie Fan
Yiming Zhang, Yanfang Ye*

Dept. of CDS, Case Western Reserve University, OH, USA

ABSTRACT

The explosive growth and increasing sophistication of Android
malware call for new defensive techniques that are capable of pro-
tecting mobile users against novel threats. To combat the evolving
Android malware attacks, systems of HinDroid and AiDroid have
demonstrated the success of heterogeneous graph (HG) based clas-
sifiers in Android malware detection; however, their success may
also incentivize attackers to defeat HG based models to bypass the
detection. By far, there has no work on adversarial attack and/or
defense on HG data. In this paper, we explore the robustness of HG
based model in Android malware detection at the first attempt. In
particular, based on a generic HG based classifier, (1) we first present
a novel yet practical adversarial attack model (named HG-Attack)
on HG data by considering Android malware attackers’ current
capabilities and knowledge; (2) to effectively combat the adversar-
ial attacks on HG, we then propose a resilient yet elegant defense
paradigm (named Rad-HGC) to enhance robustness of HG based
classifier in Android malware detection. Promising experimental
results based on the large-scale and real sample collections from
Tencent Security Lab demonstrate the effectiveness of our devel-
oped system a Cyber, which integrates our proposed defense model
Rad-HGC that is resilient against practical adversarial malware
attacks on the HG data performed by HG-Attack.

CCS CONCEPTS

- Artificial Intelligence — General; - Database applications
—> Data mining; « Security and Protection — Invasive Software.

KEYWORDS

Android malware detection; heterogeneous graph (HG); node clas-
sification; adversarial attack and defense on HG.

ACM Reference Format:

Shifu Hou, Yujie Fan, Yiming Zhang, Yanfang Ye, Jingwei Lei, Wenqiang
Wan, and Jiabin Wang, Qi Xiong, Fudong Shao. 2019. a Cyber: Enhanc-
ing Robustness of Android Malware Detection System against Adversarial

*Corresponding author: yanfang.ye@case.edu

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CIKM 19, November 3-7, 2019, Beijing, China

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6976-3/19/11...$15.00
https://doi.org/10.1145/3357384.3357875

i,

609

Jingwei Lei, Wengiang Wan
Jiabin Wang, Qi Xiong, Fudong Shao
Tencent Security Lab, Tencent, Guangdong, China

Attacks on Heterogeneous Graph based Model. In The 28th ACM Interna-
tional Conference on Information and Knowledge Management (CIKM’19),
November 3-7, 2019, Beijing, China. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3357384.3357875

1 INTRODUCTION

Due to the mobility and ever expanding capabilities, smart phones
have become increasingly ubiquitous in people’s everyday life per-
forming tasks such as social networking and online banking. An-
droid, as an open source and customizable operating system (OS)
for smart phones, is currently dominating the market by 74.85%
[19]. However, due to its large market share and open source ecosys-
tem of development, Android attracts not only the developers for
producing legitimate Android applications (apps), but also attack-
ers to disseminate malware (malicious software) that deliberately
fulfills the harmful intent to smart phone users. Driven by consider-
able economic profits, there has been explosive growth of Android
malware - i.e., according to Tencent Security Lab [23], there have
been 4, 687,008 newly generated Android malware that infected
more than 61 million smart phones in the first half of 2018. The
large volume of increasingly sophisticated Android malware has
posed serious threats to smart phone users, such as stealing user’s
credentials, pushing unwanted apps or advertisements (ads) [14].
Therefore, the detection of Android malware is of major concern
to both anti-malware industry and researchers.

Attackers and defenders always engage in a never-ending arms
race. At each round, both of them try to analyze methodologies and
vulnerabilities of each other, and develop their own optimal strate-
gies to overcome the opponents [1], which has led to considerable
countermeasures of variability and sophistication between them.
For example, Android malware attackers employ techniques such
as repackaging and obfuscation to bypass the signature-based de-
tection and defeat attempts to analyze their inner mechanisms [26].
To combat the evolving Android malware attacks, systems applying
data mining and machine learning techniques have been developed
for Android malware detection [8, 14, 18, 22, 24, 25], where different
kinds of classification models are constructed based on different
feature representations to detect malicious apps. Different from
most of the existing works that merely leveraged content-based
information (i.e., statically or dynamically extracted features from
Android apps) for malware detection, HinDroid [14] and AiDroid
[25] were proposed which considered higher-level semantic re-
lations among apps and other types of entities (e.g., Application
Programming Interfaces (APIs) called by apps, smart phones where
apps installed, signatures signed by app developers, etc.) and in-
troduced structured heterogeneous graphs (HGs) to model such
complex relations for Android malware detection. These systems

https://doi.org/10.1145/3357384.3357875
https://doi.org/10.1145/3357384.3357875

RIGHTS LI

Session: Long - Heterogeneous Data

resting on HG based models have been successfully deployed in
anti-malware industry [8, 14, 25]. However, the success of deploy-
ments may also incentivize attackers to defeat HG based models
to bypass the detection. To put this into perspective, as shown in
Figure 1, driven by considerable profits, malware attackers are orga-
nized within the complicated and decentralized ecosystem, which
enables them to have powerful capabilities: by exploiting vulner-
abilities and/or utilizing social engineering tactics (e.g., induced
installation), attackers are capable of downloading apps to com-
promised devices from the Command and Control (C&C) servers
and executing them on-demand. Such mechanism makes evasion
attacks together with poisoning attacks on HG based models real-
istic: under the cover of injected apps that perturb the relational
(non-i.i.d.) nature of the data in HG (i.e., poisoning attacks), the
target apps (i.e., new malware) can be better “protected” to bypass
the detection (i.e., evasion attacks).

Heterogeneous Graph (HG)

Mobile Devices
AL p— -
e E‘il
I'I
“onfig
4. Confie : :
4 : :
W | (B2
|ﬁ| |ﬁ|

red!
anlo
=—— = =
[Maticious App 1§ Benign App 1§t Unknown App i Target Node (New malware attackers aim to evade the model’s detection)

ues's

o/ o >
nlod!

——downlo®”

6. S‘l]“_mk request

3. Task duwnlnad

[l compromised Device 1! Poisoning Node (App injected by attackers to perturb the relational nature of the model’s training data)

Figure 1: Adversarial attacks on heterogeneous graph (HG).

With the popularity of machine learning based models deployed
for various applications, the issues of understanding their security
in adversarial settings have been widely studied ranging from tra-
ditional learning models (e.g., Support Vector Machine (SVM) or
logistic regression [17]) towards deep neural networks [4, 10, 16, 21].
However, majority of these works are based on the assumption that
data samples are independent. Although there have been a few stud-
ies of adversarial settings on non-ii.d. samples (e.g., graph data)
[2, 6, 28, 29], these works only considered homogeneous graph
data. Due to the heterogeneous property (i.e., graph consisting of
multi-typed entities and relations), it is difficult to directly apply
these existing adversarial settings on heterogeneous graph. By far,
there has no work on adversarial attack and/or defense on
heterogeneous graph data. Our work in this paper aims to bridge
this gap with the application in Android malware detection.

In this paper, to explore the robustness of HG based classifiers
in Android malware detection, built upon the preliminary work
[14, 25], we first construct a generic HG based classification model:
we extract the API call sequences from runtime executions of An-
droid apps to capture their behaviors; and then we further analyze
higher-level semantic relations such as whether two apps have
similar behaviors, whether they co-exist in the same smart phone
that can be identified by its unique International Mobile Equipment
Identity (IMEI) number, and whether they are signed by the same
developer or produced by the same company (i.e., affiliation); later,
we present a structured HG to model such complex relations and

Ay

610

CIKM ’19, November 3-7, 2019, Beijing, China

exploit meta-path based embedding approach to learn the represen-
tations of nodes (i.e., apps) fed to the downstream classifier. Based
on the constructed HG based classifier, we first present a novel yet
practical adversarial attack model (named HG-Attack) on HG data
by considering Android malware attackers’ current capabilities and
knowledge. Then, to effectively combat the adversarial attacks on
HG, we further propose a resilient yet elegant defense model (named
Rad-HGC) to enhance robustness of HG based classifier in Android
malware detection. Promising experimental results based on the
large-scale and real sample collections from Tencent Security Lab
demonstrate the effectiveness of our developed system aCyber (as
shown in Figure 2), which integrates our proposed defense model
Rad-HGC that is resilient against practical adversarial malware
attacks on HG performed by HG-Attack. The major contributions
of our work in this paper can be summarized as follows:

o Novel yet practical adversarial attacks on HG data: In the
adversarial point of view, to conduct a practical attack, attackers
need to answer the following question: how to optimally inject
poisoning nodes (i.e., apps) to influence the relational nature of
the data in HG to make the classifier maximally misclassify the
target node (i.e., new malware) as benign? Note that the efficacy
of adversarial attacks is also constrained in the capabilities and
knowledge attackers possess. In this paper, HG-Attack model is
proposed to answer the above question, by taking consideration
of Android malware attackers’ current capabilities (e.g., the com-
promised devices they have and the limit of poisoning nodes
they can leverage) and knowledge (i.e., the information of the
training data and learning algorithms).

e Resilient yet elegant defense model against adversarial at-
tacks on HG: Like the game of packing and unpacking between
malware attackers and defenders [26], to be resilient against the
adversarial attacks on HG, defenders need to resolve the follow-
ing puzzle: how to uncover the poisoning nodes (i.e., injected apps)
in the HG in order to detect the target node (i.e., new malware)? To
solve this problem, Rad-HGC is proposed to enhance the robust-
ness of HG based model against the adversarial attacks while
not compromising its detection accuracy.

A practical and robust system against adversarial Android

malware attacks on HG based model: We obtain two large-

scale and real sample collections from Tencent Security Lab: (1)

the first data set is the historically accumulative data including

1,389,408 apps uploaded by 70,184 users (i.e., IMEIs) and its gener-

ated HG (i.e., denoted as HG-1 consisting of 1,389,408 nodes with

five different entity types and 20,576,125 edges with six types
of relations); and (2) the second data set is generated based on

HG-1which further incorporates 13,129 new apps uploaded by

2,817 mobile users (i.e., IMEIs). Based on these data collections,

we develop a system named o Cyber, which integrates our pro-

posed defense model Rad-HGC that is resilient against practical
adversarial malware attacks performed by HG-Attack.

2 HETEROGENEOUS GRAPH BASED MODEL
FOR ANDROID MALWARE DETECTION

In this section, we define the Android malware detection problem
based on a generic HG based classification model.

Session: Long - Heterogeneous Data

CIKM ’19, November 3-7, 2019, Beijing, China

(a) Heterogeneous Graph (HG) Based Classifier (Orig-HGC)

HG (G6) HG Representation Learning: Meta-path Based Embedding Classifier
r oo

PR .) (===
I’F‘:‘/ ﬁl 'ﬁ s\‘ :.ﬁ. o~ © ‘prrrorrers > |ﬁ|

,' /\ e y | \1 1 :
P Py

; e \i\-"’R/ | i

1 & ! . .

L 7N —p & £
‘\\] 1 - []) i ») = U
ittt taslacka b e e e e e e = = =

e =
. G")

Protecting the target node (i.e., new
malware) to evade detection by injecting
poisoning apps in compromised devices.

Uncovering the injected poisoning nodes
in the HG to detect the target node (i.e.,
new malware).

G('l_)”%_—’"\ | _HG-Defense
1]

X ~N
S Ay}
HG Representation Learning

(Meta-path Based Embedding)

(¢) Rad-HGC (HGC with Robustness Enhancement)

e

[v e

Figure 2: An architecture overview of a Cyber. In a Cyber, a generic HG based classifier (denoted as Orig-HGC) is first introduced;
and then novel yet practical adversarial model on HG (denoted as HG-Attack) is presented; later, integrating our proposed de-
fense mechanism (i.e., HG-Defense), a detection model with robustness enhancement (denoted as Rad-HGC) is devised against
the adversarial attacks on HG based model in Android malware detection.

2.1 Feature Extraction

To detect Android malware, we consider both content- and relation-
based information to comprehensively describe the Android apps.
Content-based Feature Extraction. API calls are used by An-
droid apps in order to access Android OS functionality and system
resources. Therefore, we extract the sequences of API calls in the
application framework from runtime executions of Android apps
to capture their behaviors. For example, the sequence of API calls
(startActivity, checkConnect, sendSMS, finishActivity) denotes the
intention of sending SMS messages without user’s concern by a
malicious “TigerEyeing” trojan.

Relation-based Feature Extraction. To detect the increasingly
sophisticated Android malware, we further extract the following
kinds of relations: (1) R1: The app-invoke-API means if an app
invokes an API call during runtime execution. (2) R2: The app-
exist-IMEI indicates if an app exists (i.e., is installed) in a smart
phone (i.e., IMEI). (3) R3: The app-certify-signature means if an app
is certified by a signature (i.e., every app run on the Android plat-
form must be signed by the developer). (4) R4: Package name (a.k.a.
Google Play ID) is a unique name to identify a specific app. Compa-
nies conventionally use their reversed domain names to begin their
package names (e.g., “com.tencent.mobileqq”). We extract domain
name from package name to denote the relation between an app
(e.g., “mobileqq”) and its affiliation (e.g., “tencent.com”); and then

RIGHTS L1 N Hig

611

we generate the app-associate-affiliation to describe if an app is as-
sociated with an affiliation. (5) R5: To represent that a smart phone
has a set of apps signed by a particular developer, we extract the
IMEI-have-signature to indicate if a device has a specific signature.
(6) Ré6: To denote that a smart phone installs a set of apps associated
with a specific affiliation, we generate the IMEI-possess-affiliation
to describe if a smart phone possesses a particular affiliation.

2.2 Heterogeneous Graph Construction

To depict apps, APIs, IMEIs, signatures, affiliations and the rich
relations among them (i.e., R1-R6), we introduce HG to model them,
which is able to be composed of multi-typed entities and relations.

DEFINITION 1. A heterogeneous graph (HG) [20] is defined as
a graph G = (V, E) with an entity type mapping ¢: V — A and a
relation type mapping : & — R, whereV denotes the entity set and
& is the relation set, A denotes the entity type set and R is the relation
type set, and the number of entity types |A| > 1 or the number of
relation types |R| > 1. The network schema [20] for the G, denoted
as Tg = (A, R), is a graph with nodes as entity types from A and
edges as relation types from R.

HG not only provides the network structure of data associations,
but also a high-level abstraction of categorical association. Based
on the definitions above, the network schema shown in Figure 3
enables the apps to be represented in a comprehensive way that
utilizes their semantic and structural information.

RIGHTS LI N

Session: Long - Heterogeneous Data

Have(H)

Invoke(l)

Associate(4)

Figure 3: Network schema in our application.

To formulate the relatedness among entities in HG, the concept of
meta-path has been proposed [20]: a meta-path P is a path defined
on the network schema 7g = (A, R), and is denoted in the form

of A; i Ay & R—L> Ar+1, which defines a composite relation
R=Ry-Ry-... Ry between types A; and Ay, where - denotes
relation composition operator, and L is length of #. Based on the
network schema shown in Figure 3, incorporated anti-malware
experts’ domain knowledge, we design six meaningful meta-paths
to characterize the relatedness over apps at different views (i.e.,
PID1-PID6 shown in Figure 4). For example, PID1 depicts that two
apps are related if they both invoke the same API (e.g., two malicious
mobile video players both invoke the API of “requestAudioFocus”).

PIDI: |ﬁ|—’»¢i>|ﬁ| PID2: |ﬁ|LDL |ﬁ|
PID3: |ﬁ|¢».‘}"—">|ﬁ| PID4: lﬁlL»@C—'/nil
PIDS5: |ﬁ| 4 .‘}]2 .‘} A7 |ﬁ|
pis: Ifg—— 5] —— [——E——i

Figure 4: Meta-paths built for Android malware detection.

2.3 Classifier Based on Heterogeneous Graph

After constructing the HG, the problem of Android malware detec-
tion can be considered as node classification in HG. To efficiently
solve this problem, we first present the concept of HG represen-
tation learning [7, 9]: given a HG G = (V, &), the representation
learning task is to learn a function g : V — R? that maps each
node v € V to a vector in a d-dimensional space RY, d < |V
that are capable to preserve the structural and semantic relations
among them. To learn the presentations of nodes in HG, various
embedding methods [7-9] have been proposed. In this work, with-
out loss of generality, we exploit metapath2vec [7] which employed
meta-path based random walks and heterogeneous skip-grams to
learn the latent representations for HG such that the semantic and
structural correlations between different types of nodes could be
persevered. After employing metapath2vec to learn representations
of nodes (e.g., apps) in HG, we denote our dataset D to be of the form
D = {x;,yi}]-, of n apps, where x; € R is the learned representa-
tion for app i, and y; is the class label of app i (y; € {+1,—1,0}, +1:
malicious, —1: benign, and 0: unknown). To this end, the problem of
Android malware detection can be stated in the formof: h : X — Y
which assigns a label y € Y (i.e., —1 or +1) to an input app x € X
through the learning function h (i.e., without loss of generality, in
this paper, we use SVM as the downstream classifier after learning
representations of apps in HG). We denote this original HG based
classifier as Orig-HGC throughout the paper.

612

CIKM ’19, November 3-7, 2019, Beijing, China

3 ADVERSARIAL ATTACKS ON HG

In Android malware detection, a HG based detection system is to
detect malicious apps based on the classifier trained on HG data
and prevent them from interfering users’ smart phones. In contrast,
attackers would like to perform adversarial attacks on HG (i.e., de-
liberate perturbations of HG data that can lead to misclassification)
to violate the security context. Since the efficacy of adversarial
attacks is constrained in the capabilities and knowledge attackers
possess, we first present the power of Android malware attackers
based on the current development of malware industry.

3.1 Preliminary and Problem Definition

Goal of attackers. Given a newly developed malicious app x € X*
that has bypassed content-based classifiers (i.e., classifiers only take
content-based features as input and assume apps are independent),
the goal of Android malware attackers is to devise a model that can
enable it to be misclassified as benign by the HG based classifier
(i.e., x € X7), with optimal perturbations on HG.

Capabilities of attackers. According to different capabilities at-
tackers have, they can perform: (1) evasion attack which exploits
misclassification without affecting training distribution, or (2) poi-
soning attack which influences the training data that is used to con-
struct the classifier, or (3) both of them. As previously mentioned, in
Android malware industry, the new kind of C&C malware enables
attackers to leverage C&C servers to create powerful networks
of compromised devices capable of downloading and executing
apps on-demand. For example, a malicious app in “SDKSmartPush”
family with package name of “com.i***soft***.gamecenter” and sig-
nature hash value of “20B***12F” is able to query the C&C servers to
download and execute other malicious apps to push unwanted ads
in users’ smart phones; it is also capable of downloading and exe-
cuting benign apps such as mobile games and tool apps on-demand.
Such powerful capabilities enable attackers to concurrently perform
evasion and poisoning attacks on HG: they can cleverly devise tactics
to inject poisoning apps in the compromised devices to protect the
new malware (i.e., target node in HG) to evade the detection.
Knowledge of attackers. Attacker can have different levels of
knowledge about (i) the training data (i.e., the HG @), and (ii) the
learning algorithms (i.e., HG representation learning algorithm g
and classification function A in our case). As apps in users’ smart
phones (including compromised and non-compromised devices) are
dynamically generated, attackers can only have partial knowledge
about the training data (i.e., a subset of HG data). Practically, in our
work, we assume attackers can have complete knowledge about
the learning algorithms of Orig-HGC and use a subset of the data
to devise a surrogate model to perform attacks on the HG.
Problem Definition. Based on the capabilities and knowledge of
attackers, the problem of an adversarial attack on the HG based
classifier (i.e., Orig-HGC) can be defined as: given a subset of HG
data (i.e., a sub-HG) G = (V, &), an adversarial attack is to opti-
mally inject poisoning nodes Vp along with the target node v;
(i.e. new malicious app x) into G, leading to an adversarial HG
G = (V,E) where V = VUV* ({Vp,v;} CV*)and & = EUE*
(&* is the set of new generated edges after injecting V* in G);
taking G as part of training data, the attack will lead the learning
model (i.e., employing HG representation learning algorithm g and
classification function h) to maximumly misclassify v; as benign.

RIGHTS LI

Session: Long - Heterogeneous Data

3.2 HG-Attack : Adversarial Attack Model

Based on the above definition of adversarial attack on Orig-HGC, to
make the classifier h maximumly misclassify v; as benign, attackers
can perturb the embeddings - representations of nodes (i.e., apps) -
learned from g which are fed to train the classifier h. In Orig-HGC,
the embeddings are learned from metapath2vec (i.e., g) which first
generates a set of meta-path guided random walks that serve as a
training corpus for the skip-gram model; in this way, the learned
embeddings are largely dependent on the generated corpus. By
injecting poisoning nodes along with target node in the given G,
the attacker necessarily changes a set of possible random walks
and thus influences the training corpus and subsequent embed-
dings. How to optimally inject poisoning nodes (i.e., apps) to influence
the embeddings to maximize the misclassification of v;? Following
observation enlightens us for the solution to answer this question.

1 1

@ @

Sos Sos

2 0.6 2 06

g N

3 04 § 0.4

302 (a) PIDI, 5 02 (b) PID2

s 0 s 0

= 0.35 0.4 045 0.5 0.55 = 0 0.1 02 03 04 05 06 0.7 08 09 1
1-order app neighbors (% of malicious apps) I-order app neighbors (% of malicious apps)

. 1 2 1

508 S os

2 06 g 06

£ 04 3 04

5 02 (c) PID3 5 02 (d) PID4

s s 0

§ 0 01 02 03 04 05 06 0.7 08 09 1 8 0 0.1 02 03 04 05 06 0.7 08 09 1

N 1I-order app neighbors (% of malicious apps) 1I-order app neighbors (% of malicious apps)

21 e 1

§os § 0.8

$os £ 06

S 04 g 04

g 02 (e) PIDS 5 02 f) PID6

s 0 s 0

K3 0 0.1 02 03 04 05 0.6 0.7 0.8 09 1 = 0 0.1 02 03 04 05 0.6 0.7 0.8 09 1

I-order app neighbors (% of malicious apps) I-order app neighbors (% of malicious apps)
Figure 5: 1-order app-app neighborhood relations under dif-
ferent meta-path schemes (i.e., PID1-PIDé6).

Based on a large-scale and real data collection from Tencent
Security Lab, including 1,389,408 apps uploaded by 70,184 users (i.e.,
217,107 are malicious, 547,366 are benign, and 624,935 are unknown)
and its constructed HG (i.e., HG-1 as described in Section 5.1). As
shown in Figure 5, guided by the six designed meta-paths (i.e., PID1-
PID6), we observe that the more malicious apps the node (i.e., app)
neighbors the higher probability the node is classified as malicious,
and vice versa. Based on this observation, to make target node v;
bypass the detection, attackers can devise tactics to cleverly inject
poisoning nodes to perturb the relational nature of the data (i.e.,
optimally link target node to benign apps via injected nodes). To this
end, given G the problem of adversarial attack turns to maximize
the likelihood of target node v; connecting with benign apps by
optimally injecting poisoning nodes Vp in G while minimize the
probability of v; being predicted as malicious.

To solve this problem, we first assume that if vp € Vp is suc-
cessfully injected along with v; in G. then it should be capable
of connecting v; with benign apps in G (i.e., it should have high
connectivity after being injected). To determine how to inject vp,
based on given G. we would like to first measure its connectivity
by using its estimated frequency f,, (i.e., number of occurrences)
via its neighbors in the random walks. We formulate fo,, as:

fo

SN (vp) ds +1

fvp = (1)

Ay

613

CIKM ’19, November 3-7, 2019, Beijing, China

where N(vp) denotes 1-order neighbors of node vy; f; denotes the
number of occurrences of ¢ in the random walks generated from
G using metapath2vec; d is the degree of node ¢ in G. Then, to
further estimate the likelihood of v, being predicted as malicious
(denoted as ¢y,), we devise following approach for computation:

1 Z fz?cz”), @

for T, 90 1

Cov,

where c; is the probability of © being malicious measured by label
propagation (e.g., LLGC algorithm [30]) on G.

With the above estimated fvp and Co,,» ONCE Vp along with v;
being injected in G to generate the adversarial G, the information
of each of its neighborhood nodes (i.e., 9 € N(vp)) in G will be
further updated as follows:

fvp
f‘& =Jot 5> (3)
do,
0= & L foco) @)
% UP

Accordingly, we would like to maximize f,, while minimize c,,;
to this end, the objective function can be defined as:

po=(Y Loy S

veN(v,) ¢ 0eN(v;) ¢

®)

To perform practical adversarial Android malware attacks, at-
tackers are also constrained in their capabilities: (1) they can only
inject v, € Vp in the devices (i.e., IMEIs) that are compromised;
and (2) they have limited number of compromised devices. There-
fore, we impose two budget constraints §; and §2 on the attacks:
(1) |6(Ups'UIMEI)| < 1 which limits the number of poisoning nodes
injected to compromised devices; (ii) [Mcompromised| < 62 which
limits the number of compromised devices. To this end, given G, an
adversarial attack is to solve the following optimization problem:

argmin L(f, c)
N ('Up)

|8(‘UP,U[MEI)| <4, |Mcompr0mised| < 6.

(6)

s.t.

To solve this optimization problem, we propose HG-Attack model
based on the following strategies to perform realistic adversarial at-
tacks on G: (i) greedily selecting those APIs with low ¢ (¢4 in later
iterations) to generate poisoning apps Vp; (ii) greedily choosing
compromised devices (s.t. [Mcompromised| < 62) with minimum
¢ (cp in later iterations) to inject Vp until minimum c,, or &1 is
reached. The detailed implementation of HG-Attack is given in Al-
gorithm 1 (we empirically set £ = 0.15,& = 0.5, &exp = 0.1,81 =
500). In HG-Attack, given a target node (i.e., a new malicious app), to
simulate the compromised devices its attacker owns, we retrieve the
devices (i.e., IMEISs) that include this app’s signature. As signature
can indicate the ownership of an app (i.e., app’s signature can only
be used with the corresponding private key that is owned by a spe-
cific developer), if a device installs app(s) with the same signature
as the target node, we assume the attacker is capable of accessing
this device. In our experiments, we further remove the signatures
whose private keys have been exposed in the Internet, since these
signatures could be publicly accessible for all developers.

RIGHTS

Session: Long - Heterogeneous Data

Algorithm 1: HG-Attack : Adversarial Attack on HG.
Input: §~ = ((\7, é); v;: target node; 8;: the number of
poisoning nodes; Mcompromised: compromised
devices; &1, &2, £exp: user-pecified thresholds.
Output: Adversarial G =(V,8).

Get the edges between v; and the nodes in Q~ as Sv,;
Initialize G = (V,&) where V=V + v, E =& + Sy,,;
Calculate ¢ for each node 0 € Y via LLGC;
n=1;
while n < 61 orcy, > Eexp do
Create poisoning node v, and set its associated edges as
évp =0;
for v; € V and P(vi) = Agpi do
if (vi,vy) € &y, and ¢y, < & then
‘ Update Svp by Svp = év,, + (vi, vp);
end
if (vj,v;) ¢ év, and ¢y, < & then
‘ Update Svp by év,, = SUP + (vi, vp);
end

end

Select vrpmET € (q} al Mcompromised) with minimal
CormEers

Update Svp by évp = évp + (VIMEL Vp);

Randomly select vrprgr sujects to (v, vrmET) € Ev,;

Update Svp by évp = évp + (VIMEL Vp);

Update V by V =V + vp;

Update & by E=6+ Svp;

Recalculate ¢ for each node 0 € V;

n++;

end

Return G = (V, &);

4 DEFENSE FROM ADVERSARIAL ATTACKS

To enhance robustness of a generic HG based classifier (i.e., Orig-
HGC) against the adversarial attacks, in following sections, we
first present our defense mechanism (named HG-Defense) and then
propose our defense model (named Rad-HGC).

4.1 HG-Defense: Defense Mechanism

The key idea to enhance robustness of the HG based classifier
against adversarial attacks is to uncover those poisoning nodes
injected in the HG. Recall that, in HG-Attack, to protect target node
vy bypassing the detection of Orig-HGC, attackers inject poisoning
nodes in the given G to maximize the likelihood of v; neighbor-
ing with benign apps while to minimize the probability of it being
predicted as malicious. That is, a poisoning node in the adversar-
ial G will have following properties: (i) in order to maximize the
likelihood of v; neighboring with benign apps, it might have high
connectivity in the G which can be implied by its frequency in the
generated random walks; and (ii) as it connects both malicious app

Ay

614

CIKM ’19, November 3-7, 2019, Beijing, China

(i.e., target node) and benign apps, after performing label proroga-
tion on G, the likelihood of it being considered as either malicious
or benign could be low. Therefore, we formulate the probability of
anode ; in G being an injected poisoning node as:
oS

N (GRSl

where f is user-specific parameter (in this paper we empirically set
B = 0.45). To normalize I, we further define it as:

Iy, = Afp, (1= (co, = B)), (®)

where A is a rescaling parameter to keep I, in the range of [0, 1].

Based on the above definition, we can see that the maximum

of I3, is attained when node 9; in g is estimated with greatest

chance as an injected poisoning node, and vice versa. Then we

propose to uncover the possible poisoning nodes to reconstruct a
G~ = (V~,&7): given a pseudo random function R(.) € (0, 1),

I 7)

(V_ = (V - 0j, st R() < I.[,i, ©)
) . . . 9
E =&E-(9;, ﬁj), s.t. ZA)j €YV, (0;, ’&j) € é&.

The proposed method to uncover the possible injected poisoning
nodes in G is named HG-Defense, which aims to enhance robustness
of Orig-HGC against adversarial attacks.

4.2 Rad-HGC: Defense Model

To enhance the robustness while not compromising detection accu-
racy, in this section, we further propose an attention-based frame-
work to aggregate a set of reconstructed G~s to build the classifier.

Although a classifier can be directly trained based on a recon-
structed G~ using the proposed HG-Defense, we expect it should
cover as many features as possible in the original feature space
to assure the integrity of original G (i.e., the HG before attack).
To address this challenge, we first define the integrity of original
feature space a classifier built on as:

K —
UK,
[V]

where K is the number of reconstructed G~s using HG-Defense, 1
can be empirically setas 1 — (X, .7 Iﬁi/|(V|).

ng s.t. ng >, (10)

To this end, given K reconstructed G~ s, for each of them, we
employ metapath2vec to learn its node (i.e., app) representations.
To fuse the embeddings learned from each Q‘, because of its ef-
fectiveness in various machine learning tasks [27], we propose an
attention framework to learn attention weights of different G™s to
obtain final embedding for each app. Specifically, for a node vgpp
(i.e., a node with type of app), we define the attention weight of
its embedding learned based on the k,j, reconstructed G~ using a
softmax unit as following:

T . .C
exp(z,, T -5,)
T VK T.eC Y (1)
Zk:l exp(zg” - eval,p)

ken
Vapp

where zg,, € RIKI#d jg the attention vector learned based on the
k;p, reconstructed G~ (i.e., d is the dimension of the embeddings)
and egw is the concatenation of node vgp)’s embeddings w.r.t. all

G~s. A higher “z]j; ;p means that the k,j, reconstructed G~ is more

RIGHTS

Session: Long - Heterogeneous Data

informative for node vqpp. After obtaining the attention weight of
each G, the final embedding of node vy, is given by the following:

K
— k k
€0app = Z app " CVapp’ (12)
k=1
where eﬁupp is node vgpp’s embedding learned based on the k;p,

G~ . The final obtained embeddings of all nodes (i.e., apps) will then
be fed to the downstream classifier to train the model.

We name the above proposed defense model as Rad-HGC, whose
detailed implementation is given in Algorithm 2.

Algorithm 2: Rad-HGC against Adversarial Attacks.

Input: G = (V, E).)
Output: Class label for unlabeled node v € V.

t=0;
while 1do
t++;

Gt_ = HG-Defense(3);
Learn node embeddings for Qt_ via metapath2vec;
Calculate TQ;
if Tg-, > 5 then
S
‘ break;
end

using Eq. (10);

end
K=t
fork=1toK do
Calculate the attention weight of graph g,; for nodes
(i-e., apps) using Eq. (11);
end
Get the final node (i.e., app) embeddings using Eq. (12) to
train SVM;
Use the trained model to predict unlabeled node v € V;

HG-Defepse(Q) o ' ' '
Initialize G~ = (V~,&7) where V™ =V, & =&;
Calculate fy, ¢, for each node in V;
for v; €V do
Calculate I, using Eq. (8);
Get a pseudo random number from R(.);
if R(\) < I, then
Collect the edges associated with v; as 8;1_;
Update V™ by V™ =V~ —o;;
Update E-by &~ =&~ — S;i;

end

end
Return G~ = (V~,&7);

5 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we conduct four sets of experimental studies using
large-scale and real sample collections from Tencent Security Lab to
fully evaluate the performance of aCyber: (1) we first evaluate the
performance of our proposed adversarial attack model HG-Attack;

Ay

615

CIKM ’19, November 3-7, 2019, Beijing, China

(2) and then we evaluate the effectiveness of our proposed defense
model Rad-HGC against adversarial attacks on HG; (3) later, we
perform parameter sensitivity, scalability and stability evaluations
of Rad-HGC; (4) finally, we compare the performance of Rad-HGC
with other popular Android malware detection systems.

5.1 Experimental Setup

Through Tencent Mobile Manager (i.e., one of the most popular
mobile security products in China), its users can scan and upload the
Andorid apps for detection (i.e., these data are fully de-identified).
We obtain the large-scale and real data collections from Tencent
Security Lab: (1) The first data set is the historically accumulative
data collected from Aug. 30, 2018 till Nov. 30, 2018, which contains
1,389,408 apps uploaded by 70,184 users (i.e., IMEIs) (i.e., 217,107 of
them are detected as malicious, 547,366 are benign, and 624,935 are
unknown). After feature extraction (note that, for content-based
features, 75,419 benign apps and 72,868 malware are uploaded with
runtime API sequences) and based on the designed network schema,
the constructed HG has 1,865,034 nodes (i.e., 1,389,408 nodes with
type of app, 331 nodes with type of API, 70,184 nodes with type
of IMEI, 228,976 nodes with type of signature, and 176,135 with
type of affiliation) and 20,576,125 edges including RI-R6 relations.
We denote this constructed HG as HG-1. (2) The second data set
is the newly generated data on Dec. 1, 2018, including 13,129 new
apps uploaded by 2,817 users. Based on HG-1, we incorporate this
newly collected data to generate an updated HG (denoted as HG-2)
which contains 1,882,978 nodes (i.e., 1,402,537 nodes with type of
app, 331 nodes with type of API, 70,571 nodes with type of IMEIL,
231,462 nodes with type of signature, and 178,077 with type of
affiliation) and 21,721,829 edges. For those newly uploaded 13,129
apps, to obtain the ground truth, we ask anti-malware experts of
Tencent Security Lab for further analysis - i.e., 9,456 of them are
labeled as benign and 3,673 are malicious. To quantitatively assess
the Android malware detection performance of different methods,
we use the measures shown in Table 1 for evaluations.

The experimental studies are conducted under the environment
of ubuntu 16.04 operating system, plus two Intel Xeon E5-2620 v4
CPU, 4-way SLI GeForce GTX 1080 Ti Graphics Cards and 80 GB of
RAM. Other parameters include the dimension of node embedding
d = 128, neighborhood size w = 5, iteration time epoch = 5 for
skip-gram model. We use sklearn.svm with RBF kernel in our exper-
iments as the downstream classifier and the penalty is empirically
set to be 50 while other parameters are set by default.

Table 1: Performance indices of Android malware detection

Indices Description

TP # of apps correctly classified as malicious
TN # of apps correctly classified as benign

FP # of apps mistakenly classified as malicious
FN # of apps mistakenly classified as benign
Precision TP/(TP + FP)

Recall TP/(TP + FN)

ACC (TP + TN)/(TP + TN + FP + FN)

F1 2 * Precision * Recall /(Precision + Recall)

RIGHTS LI

Session: Long - Heterogeneous Data

5.2 Evaluation of Attack Model HG-Attack

Since this is the first work considering adversarial attacks on HGs,
there are no known baselines. In this set of experiments, similar
to the way how the works [2, 6, 28, 29] evaluate their attacks, we
compare our proposed HG-Attack with the baseline of anonymous
attack (AN-Attack): given the same experimental settings as HG-
Attack (e.g., same budgets of §; and 2), attackers are assumed to be
capable of randomly injecting the randomly generated poisoning
nodes to the compromised devices they possess.

Based on the data collections described in Section 5.1, we first
evaluate the effectiveness of evasion attacks for the proposed
HG-Attack. We conduct 10 sets of experiments: each set includes
100 new malicious apps randomly selected from the data collected
on Dec. 1, 2018; the goal of the attacks is to inject poisoning nodes in
the HG-1 to make the Orig-HGC maximumly misclassify these new
malicious apps. Figure 6.(a) shows different performances of HG-
Attack and AN-Attack in each set of experiments, from which we
can see that: (1) AN-Attack almost fails in performing the evasion
attacks for each set of experiments; while (2) HG-Attack shows
powerful capabilities to evade the detection of Orig-HGC (i.e., the
average TPR of Orig-HGC is brought down from 97.1% to 41.9%). The
success of HG-Attack lies in its novel yet practical adversarial attack
mechanism. We then evaluate the evasion cost (i.e., the numbers
of compromised devices and injected nodes) of HG-Attack in each
set of experiments. Figure 6.(b) shows that HG-Attack is able to
compromise Orig-HGC with an efficient cost (i.e., to evade a new
malware, the median number of compromised devices HG-Attack
leverages is 5, while the median number of nodes injected is 298).

1 400 10 =
> Py
3 g R
Sos g 8 3
N £ 300 §
§0'6 ; 200 ¢ .§
§0.4 j§ 4 §
IS - Non-Attack = 100 N
S0.2 , &
% - -# AN-Attack 3+)
§ 0 - HG-Attack 0 0 §
=]

1 2 3 4 5 6 7 8 9 10
Different Sets of Experiments

1 23 456 7 8 910
Different Sets of Experiments

(a) Evasion attack evaluations (b) Comparisons of evasion costs

Figure 6: Evaluation of evasion attacks.

We then evaluate the effectiveness of poisoning attacks for the
proposed HG-Attack. We first randomly select a new malicious app
collected on Dec. 1, 2018; as signature can indicate the ownership
of an app, we then retrieve the devices that include this app’s
signature (i.e., “4CD***194”) to simulate the compromised devices
this malware attacker owns (i.e., d2 = 5); later, we use HG-Attack
to inject all new malicious apps that are with this signature along
with 38 poisoning apps generated by HG-Attack based on HG-1.
Figure 7.(a) shows that the F1 of Orig-HGC drops from 0.9599 to
0.9412 (i.e., those three new malware all successfully evade the
detection). Based on the same setting, we then further test the
worst case of Orig-HGC being attacked by HG-Attack (i.e., using all
the new malware collected on Dec. 1, 2018 to perform the attacks).
The results are shown in Figure 7.(b), from which we can see that
the performance of Orig-HGC significantly degrades under such
setting (i.e., F1 drops from 0.9599 to 0.5168). The results demonstrate
the effectiveness of poisoning attacks performed by HG-Attack.

Ay

616

CIKM ’19, November 3-7, 2019, Beijing, China

0.8 0.8
0.6 0.6
&
S g
— HG-. — HG-Attack
0.2 HG-Attack 02
FPR FPR
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(a) Performed by a single attacker (b) Performed by all new malware attackers

Figure 7: Evaluation of poisoning attacks.

5.3 Evaluation of Defense Model Rad-HGC

Since no other defenses against adversarial attacks on HG based
models exist, we evaluate our proposed defense Rad-HGC against
the adversarial attacks (i.e., HG-Attack and AN-Attack on HG-1 us-
ing all new malware collected on Dec. 1, 2018) and without attacks
by comparisons with two baselines (i.e., Orig-HGC and AU-HGC):
(1) Orig-HGC is the original HG based classifier described in Sec-
tion 2.3; (2) different from Rad-HGC, AU-HGC performs arbitrary
guess of injected nodes in the HG while other settings are the same
as Rad-HGC. Table 2 and Figure 8 show the experimental results.

Table 2: Evaluation of defense model Rad-HGC

HG-Attack F1 ACC TP FP TN FN
Orig-HGC 0.5168 0.7855 1506 649 8807 2167
AU-HGC 0.8077 0.8987 2794 451 9005 879
Rad-HGC 0.9350 0.9631 3488 300 9156 185
AN-Attack F1 ACC TP FP TN FN
Orig-HGC ~ 0.9308 0.9600 3537 390 9066 136
AU-HGC 0.9317 0.9604 3545 391 9065 128
Rad-HGC 0.9372 0.9641 3516 314 9142 157
Non-Attack F1 ACC TP FP TN FN
Orig-HGC ~ 0.9599 0.9768 3636 267 9189 37
AU-HGC 0.9535 0.9732 3608 287 9169 65
Rad-HGC 0.9565 0.9749 3613 269 9187 60

From the results, we can see that our proposed defense Rad-HGC
outperforms other defense models (Orig-HGC and AU-HGC) against
the adversarial attacks (HG-Attack and AN-Attack). To further illus-
trate, (1) Based on the most powerful HG-Attack, Rad-HGC stays
resilient (i.e., almost retains the F1 before attack), while Orig-HGC
(i.e., F1 drops from 0.9599 to 0.5168) and AU-HGC (i.e., F1 drops
from 0.9535 to 0.8077) are both vulnerable to such attack; the suc-
cess of Rad-HGC lies in its well-designed defense mechanism to
uncover the possible injected poisoning nodes. (2) For AN-Attack,
as it almost fails in attacking HG based model, there are not great
differences for different defense models. In the case of without at-
tacks (Non-Attack), compared with Orig-HGC (i.e., F1 of 0.9599),
due to its resilient yet elegant defense framework by aggregating a
set of reconstructed HGs with attention strategy, Rad-HGC retains
the detection accuracy (i.e., F1 of 0.9565).

RIGHTS LI

Session: Long - Heterogeneous Data

0.8 0.8
< 0.6 0.6
& 0.4 — Orig-HGC E 0.4 — Orig-HGC
: — AU-HGC : — AU-HGC
0.2 — Rad-HGC 0.2 — Rad-HGC
0 FPR 0 FPR
0 02 04 06 08 1 0 02 04 06 08 1

(a) Defenses under HG-Attacks (b) Defenses without attacks

Figure 8: Comparisons of different defenses.

5.4 Evaluation of Parameter Sensitivity,
Scalability and Stability

In this set of experiments, we first examine how different choices of
parameters (number of walks per node r and walk length I) will af-
fect the performance of Rad-HGC in Android malware detection. As
shown in Figure 9.(a) and (b), we can see that the performance tends
to be stable when we varied the number of walks per node from
r =5tor = 25or walk length [= 30 to [= 60 in the model. Thus,
Rad-HGC is not strictly sensitive to these parameters and is able
to reach high performance under a cost-effective parameter choice.
We also examine the running time with different sizes of training
data generated in terms of the number of devices (i.e., IMEIs). From
Figure 9.(c), we can see that the running time is quadratic to the
number of training samples. When dealing with more data, ap-
proximation or parallel algorithms can be developed. We then run
the experiments using new collected apps from Dec. 2-8, 2018 to
assess the detection performance: as shown in Figure 9.(d) and (e),
Rad-HGC is stable over a long time span in detecting new Android
malware, which achieves an impressive average 0.9812 true positive
rate (TPR) at 0.0289 false positive rate (FPR). We can conclude that
Rad-HGC is feasible in practical use for Android malware detection.

0_9; Fl-measure 0.9; Fl-measure
0.96 L 0.96
0.94 004 f——
0.92 # walks per node r | 0.92 walk length /
0.9 0.9
5 10 15 20 25 30 40 50 60
(a) # walks per node r vs. F1 (b) walk length / vs. F1
1
4 0.98 |F1-measure
0.96 e
2 0.94
of devices | 0.92 Date
0 0.9
10k 20k 30k 40k 50k 60k 70k 12.2 123 12.4 12.5 12.6 12.7 12.8
(¢) Training time (d) Detection accuracy
1 1
0.8 || TPR 0.8 |TPR (0.0289, 0.9812)
0.6 Zoom in 0.6
0.4 0.4
0.2 FPR 0.2 FPR
0 0
0 0.2 04 06 08 1 0 0.01 0.02 0.03 0.04

(e) Left: ROC curve of Rad-HGC, Right: Zoom-in

Figure 9: Parameter sensitivity, scalability and stability.

5.5 Comparisons with Other Detection Systems

In this section, based on the labeled 3,673 Android malware de-
scribed in Section 5.1, we evaluate the performance of our devel-
oped detection model Rad-HGC in comparisons with some popular
commercial mobile security products (i.e., Lookout: 10.25-03571d4,

Ay

617

CIKM ’19, November 3-7, 2019, Beijing, China

Norton: 4.4.0.4302) and HG based Android malware detection sys-
tems (i.e., HinDroid [14] and AiDroid [25]). Table 3 shows the
detection results of different Android malware families. From Ta-
ble 3, we can see that Rad-HGC performs better than others in the
overall detection of recent collected Android malware; in particular,
it outperform others in the detection of C&C malware families
such as “BlackBaby” and “SDKSmartPush” (i.e., C&C malware is
a new kind of malware that attackers can leverage C&C servers
to create powerful networks of compromised devices capable of
downloading and executing apps on-demand).

Table 3: Comparisons with other detection systems

Family # Norton Lookout HinDroid AiDroid Rad-HGC
FakeBank 167 166 164 165 166 166
CryptoMiner 155 154 151 153 154 154
AppCracked 357 354 341 354 353 355
MalPlayer 256 249 242 249 250 251
GameTrojan 212 208 205 209 210 209
BlackBaby 129 108 105 109 79 128
SDKSmartPush 321 298 275 299 259 319
Others 985 924 908 943 913 961
Total 3,673 3,497 3,442 3,516 3,426 3,613
DetectionRate - 95.21% 93.71% 95.72% 93.27% 98.37%

6 SYSTEM DEPLOYMENT AND OPERATION

Our defensed model Rad-HGC in aCyber has already been incor-
porated into Tencent’s Mobile Security product that provides anti-
malware service for over 5,000,000 users. Rad-HGC has been used
to predict the daily sample collection from the Tencent Security Lab
which includes around 15,000 newly uploaded apps per day. Note
that Android malware techniques are constantly evolving and new
malicious apps are produced on a daily basis. To detect the increas-
ingly sophisticated Android malware, our developed system has
been upgraded to train the model by incorporating newly detected
malicious and benign apps everyday. Our system Rad-HGC has
been deployed and tested based on the real daily sample collections
for over 150 days.

For the development of the system, it has been spent over $325K,
$145K of which is on the hardware equipment. Due to the high
performance in the detection of evolving Android malware, the
developed system Rad-HGC has greatly saved human labors and
cost: over 35 anti-malware analysts and developers at Tencent Se-
curity Lab are utilizing the system on the daily basis. Practically,
an anti-malware analyst can manually analyze 20-40 Android apps
per day. Using the developed system Rad-HGC, the analysis of daily
collected unknown apps (i.e., about 15,000 apps/day) based on mil-
lions of labeled data can be performed within hours with multiple
servers. This has benefited over 5,000,000 smart phone users of
Tencent’s Mobile Security product.

RIGHTS LI

Session: Long - Heterogeneous Data

7 RELATED WORK

In recent years, there have been ample studies on developing An-
droid malware detection systems using data mining and machine
learning techniques [3, 5, 8, 11-15, 18, 22, 24, 25]. However, most of
the existing systems merely utilize content-based features for the
detection. To combat the increasingly sophisticated Android mal-
ware, in the preliminary work, besides content-based information,
HinDroid [14] and AiDroid [25] were proposed which considered
higher-level semantic relations among apps and other types of en-
tities (e.g., APIs, IMEIs, signatures, etc.) and introduced structured
HGs to model such complex relations for malware detection, which
have been successfully deployed in anti-malware industry. As at-
tackers and defenders always engage in a never-ending arms race,
the success of deployments may also incentivize attackers to defeat
the HG based models to bypass the detection.

The robustness of learning-based models has been widely studied
including traditional shallow learning models [17] and emerging
deep learning models [4, 10, 16, 21]. However, majority of these
works are based on the assumption that data samples are indepen-
dent. Adversarial attacks and/or defenses for graph (i.e., non-i.i.d.
samples) learning tasks have been sparse with a few exceptions of
[2, 6, 28, 29]. Unfortunately, these works only considered adversar-
ial settings (i.e., particularly attacks) on homogeneous graph data.
Due to the heterogeneous property, it is difficult to directly apply
these existing adversarial settings on heterogeneous graph. By far,
there has no work on adversarial attack/defense on heterogeneous
graph data. Our work in this paper is the first attempt to bridge
this gap with the application in Android malware detection.

8 CONCLUSION

To combat the increasingly sophisticated Android malware, systems
of HinDroid and AiDroid were developed, which have demonstrated
the success of HG based classifiers in Android malware detection;
however, their success may also incentivize attackers to defeat HG
based models to bypass the detection. To date, there has no work on
adversarial attack and/or defense on HG data. This work is the first
study on the robustness of HG based classifier in Android malware
detection. To explore the security of a generic HG based classifier,
we first propose a novel yet practical adversarial attack model (i.e.,
HG-Attack) on HG data by considering Android malware attack-
ers’ current capabilities and knowledge; then, to effectively combat
the adversarial attacks, we further propose a resilient yet elegant
defense model (i.e., Rad-HGC) to enhance robustness of HG based
classifier in Android malware detection. Promising experimental
results based on the large-scale and real sample collections from
Tencent Security Lab demonstrate the effectiveness of our devel-
oped system a Cyber, which integrates our proposed defense model
Rad-HGC that is resilient against practical adversarial malware
attacks on HG performed by HG-Attack.

ACKNOWLEDGMENTS

S. Hou, Y. Fan, Y. Zhang, Y. Ye’s work is partially supported by
the NSF under grants CNS-1618629, CNS-1814825, CNS-1845138,
0OAC-1839909, and I1I-1908215, the NIJ 2018-75-CX-0032, the WV
HEPC Grant (HEPC.dsr.18.5), and the WVU RSA grant (R-844).

Ay

618

CIKM ’19, November 3-7, 2019, Beijing, China

REFERENCES

[1] Battista Biggio, Giorgio Fumera, and Fabio Roli. 2014. Security evaluation of
pattern classifiers under attack. TKDE 26, 4 (2014), 984-996.

Aleksandar Bojcheski and Stephan Giinnemann. 2019. Adversarial attacks on
node embeddings. In ICLR.

Haipeng Cai, Na Meng, Barbara Ryder, and Daphne Yao. 2019. Droidcat: Effective
android malware detection and categorization via app-level profiling. IEEE TIFS
14, 6 (2019), 1455-1470.

Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness of
neural networks. In IEEE S&P.

Lingwei Chen, Shifu Hou, Yanfang Ye, and Shouhuai Xu. 2018. Droideye: Forti-
fying security of learning-based classifier against adversarial android malware
attacks. In ASONAM. IEEE, 782-789.

Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song,. 2018.
Adversarial Attack on Graph Structured Data. In PMLR.

Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:
Scalable representation learning for heterogeneous networks. In KDD. ACM,
135-144.

Yujie Fan, Shifu Hou, Yiming Zhang, Yanfang Ye, and Melih Abdulhayoglu. 2018.
Gotcha-sly malware! Scorpion: a metagraph2vec based malware detection system.
In KDD.

Tao-Yang Fu, Wang-Chien Lee, and Zhen Lei. 2017. HIN2Vec: Explore Meta-paths
in Heterogeneous Information Networks for Representation Learning. In CIKM.
Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In NIPS. 2672-2680.

William Hardy, Lingwei Chen, Shifu Hou, Yanfang Ye, and Xin Li. 2016. DL4MD:
A deep learning framework for intelligent malware detection. In DMIN. 61-67.
Shifu Hou, Aaron Saas, Lifei Chen, and Yanfang Ye. 2016. Deep4maldroid: A deep
learning framework for android malware detection based on linux kernel system
call graphs. In WIW. IEEE, 104-111.

Shifu Hou, Aaron Saas, Yanfang Ye, and Lifei Chen. 2016. Droiddelver: An android
malware detection system using deep belief network based on api call blocks. In
WAIM. Springer, 54-66.

Shifu Hou, Yanfang Ye, Yangqiu Song, and Melih Abdulhayoglu. 2017. Hin-
droid: An intelligent android malware detection system based on structured
heterogeneous information network. In KDD. ACM, 1507-1515.

TaeGuen Kim, BooJoong Kang, Mina Rho, Sakir Sezer, and Eul Gyu Im. 2019.
A Multimodal Deep Learning Method for Android Malware Detection Using
Various Features. IEEE TIFS 14, 3 (2019), 773-788.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2018. Towards deep learning models resistant to adversarial attacks.
In ICLR.

Shike Mei and Xiaojin Zhu. 2015. Using Machine Teaching to Identify Optimal
Training-Set Attacks on Machine Learners. In AAAL 2871-2877.

Andrea Saracino, Daniele Sgandurra, Gianluca Dini, and Fabio Martinelli. 2018.
Madam: Effective and efficient behavior-based android malware detection and
prevention. TDSC (2018).

Statcounter. 2019. Mobile Operating System Market Share Worldwide. In
http://gs.statcounter.com/os-market-share /mobile/worldwide.

Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S. Yu, and Tianyi Wu. 2011. Path-
Sim: Meta Path-Based Top-K Similarity Search in Heterogeneous Information
Networks. PVLDB (2011).

C. Szegedy, W. Zaremba, . Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R.
Fergus. 2014. Intriguing properties of neural networks. In ICLR.

K. Tam, S. Khan, A. Fattori, and L. Cavallaro. 2015. CopperDroid: Automatic
Reconstruction of Android Malware Behaviors.. In NDSS.

TencentSecurity. 2018. Mobile phone security report for the first half of 2018. In
https://m.qq.com/security_lab/news _detail_471.html.

Chao Yang, Zhaoyan Xu, Guofei Gu, Vinod Yegneswaran, and Phillip Porras. 2014.
DroidMiner: Automated Mining and Characterization of Fine-grained Malicious
Behaviors in Android Applications. In ESORICS.

Yanfang Ye, Shifu Hou, Lingwei Chen, Jingwei Lei, Wenqiang Wan, Jiabin Wang,
Qi Xiong, and Fudong Shao. 2019. Out-of-sample Node Representation Learning
for Heterogeneous Graph in Real-time Android Malware Detection. In I[JCAL
4150-4156.

Yanfang Ye, Tao Li, Donald Adjeroh, and S Sitharama Iyengar. 2017. A Survey
on Malware Detection Using Data Mining Techniques. ACM Computing Surveys
(CSUR) 50, 3 (2017).

Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang, and Jiebo Luo. 2016. Image
captioning with semantic attention. In CVPR.

Daniel Zugner, Amir Akbarnejad, and Stephan Ginnemann. 2018. Adversarial
attacks on neural networks for graph data. In KDD.

Daniel Ziigner and Stephan Giinnemann. 2019. Adversarial Attacks on Graph
Neural Networks via Meta Learning. In ICLR.

Dengyong Zhou, Olivier Bousquet, Thomas N Lal, Jason Weston, and Bernhard
Scholkopf. 2004. Learning with local and global consistency. In NIPS.

—_
)

=
S

—
_

=
)

ey
)

[14]

[15

[16]

(18

[19

[20

[21

[22]

[23

[24]

[25

[26

[27

™~
&

[29

[30

	Abstract
	1 Introduction
	2 Heterogeneous Graph based Model for Android Malware Detection
	2.1 Feature Extraction
	2.2 Heterogeneous Graph Construction
	2.3 Classifier Based on Heterogeneous Graph

	3 Adversarial Attacks on HG
	3.1 Preliminary and Problem Definition
	3.2 HG-Attack : Adversarial Attack Model

	4 Defense from Adversarial Attacks
	4.1 HG-Defense: Defense Mechanism
	4.2 Rad-HGC: Defense Model

	5 Experimental Results and Analysis
	5.1 Experimental Setup
	5.2 Evaluation of Attack Model HG-Attack
	5.3 Evaluation of Defense Model Rad-HGC
	5.4 Evaluation of Parameter Sensitivity, Scalability and Stability
	5.5 Comparisons with Other Detection Systems

	6 System Deployment and Operation
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

